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Finsler metrics of weakly isotropic
flag curvature

BENLING L1

Finsler metrics of scalar flag curvature play an important role to
show the complexity and richness of Finsler geometry. In this pa-
per, on an n-dimensional manifold M we study the Finsler metric
F = F(z,y) of scalar flag curvature K = K(z, y) and discover some
equations K should be satisfied. As an application, we mainly study
the metric F' of weakly isotropic flag curvature. We prove that in
this case, F' must be a Randers metric when dim(M) > 3 or be of
constant flag curvature. Without the restriction on the dimension,
the same result is obtained for projectively flat Finsler metrics of
weakly isotropic flag curvature.

1. Introduction

The flag curvature of Finsler metrics is a natural analogue of sectional cur-
vature of Riemannian metrics. Let F' = F(z,y) be a Finsler metric on an
n-dimensional manifold M. The flag curvature K = K(II, y) of F' is a func-
tion of "flag” 11 C T, M and "flag pole” y € T, M at x with y € II. A Finsler
metric is of scalar flag curvature K = K(z,y) if the flag curvature is inde-
pendent of the "flags” Il C T, M for each "flag pole” y at x with y € II.
As a special class in Finsler geometry, with the quadratic restriction, if a
Riemannian metric is of scalar flag curvature, then the flag curvature must
be independent of the ”flag pole”, i.e. K = K(z). By Schur’s Lemma, in
dimension n > 3, K = constant. The classification of Riemannian metrics
of constant flag curvature (sectional curvature) is well-known. However, the
classification of Finsler metrics of scalar flag curvature (even constant flag
curvature) is far from being understood. Then a natural inverse problem
arises: how to determine the Finsler metric F' = F(x,y) when its flag cur-
vature K = K(z,y) is given?

In this paper, we first establish two equations of the scalar flag curvature
K should be satisfied in Lemma and From these two equations, one
can see that there are some restrictions on K. As an application, we study

113



114 Benling Li

the Finsler metrics of weakly isotropic flag curvature

(1.1) K = % + o,

where 6§ = 0;(x)y’ is a 1-form and o = o(x) is a scalar function. It is easy
to see that when 6 = 0, then K = o(z) and hence K = constant in dimen-
sion n > 3 by the Schur’s Lemma. The classification of Finsler metrics of
constant flag curvature is still unknown though many metrics of constant
flag curvature were found [2][4][5] [9][10][L1][13]. When 6 # 0, it seems more
general than the previous case. That’s why the name ”weakly isotropic” flag
curvature is given. The flag curvature in was first considered in [6] when
the authors studied Finsler metrics with isotropic S-curvature. They proved
that if a Finsler metric with isotropic S-curvature and of scalar flag curva-
ture K = K(z,y), then K must be in the form . In the past years, many
Finsler metrics of weakly isotropic flag curvature are discovered. However,
all of them are Randers metrics when the 1-form 6 # 0. In [7], X. Cheng and
Z. Shen classified Randers metrics of weakly isotropic flag curvature when
dim(M) > 3. These Randers metrics can be expressed by

A=W + W2
= W3 =W

(1.2) F=

where

VI + p(zPlyl? — (=, 4)?)

h =
1+ plzf?

9
alz|?

V14 plz)2+1

d, u are constant, QQ = (qji) is an anti-symmetric matrix and a, b € R" are
constant vectors. In this case, the flag curvature is given by

W=-2 [(5 1+ plaf? + (a, z))x +2Q + b+ p(b, z),

m
Caml

K=3

+ o,

where

1)
C:M O':M—CQ—QC;Eme.

V14 plz?’
Then it is natural to ask that if a Finsler metric of weakly isotropic
flag curvature (6 # 0) must be a Randers metric or not? In the following
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theorem, we give the positive answer to this question when the dimension
of the manifold is not less than 3.

Theorem 1.1. Let F be a Finsler metric on an n-dimensional manifold
M (n > 3) of weakly isotropic flag curvature. Then F must be a Randers
metric in or be of constant flag curvature.

When 6 = 0, then K = o(z) and by Schur’s Lemma K = constant. When
0 # 0, the proof is based on Lemma [3.1]and Lemma obtained in Section
We first prove the 1-form 6 is closed and then find a quadratic equation F’
should be satisfied. By the above theorem and Lemma [2.1] we immediately
get the following corollary.

Corollary 1.2. Let F be a Finsler metric on an n-dimensional manifold
M (n > 3) of scalar flag curvature and having almost isotropic S-curvature,
i.e.,

S=(n+1)(cF +n),

where ¢ = c(x) is a scalar function and n = n;(x)y’ is a closed 1-form. If
c(x) is not a constant, then F is a Randers metric in .

If there is no restriction on flag curvature, some results of Randers met-
rics having almost S-curvature can be found in [7][8][16].

In Theorem 1.1} we need the condition that dim(M) > 3. Then it is
natural to ask how about the case when dim(M) = 27 Till now, we still do
not know how to discuss this case in general. However, as we known that all
projectively flat Finsler metrics are of scalar flag curvature. For this special
class we obtain the following result without the restriction on the dimension.

Theorem 1.3. Let F' be a projectively flat Finsler metric of weakly isotropic
flag curvature

6
K:%—i-a,

where 0 = 0;(x)y’ # 0 is a 1-form and o = o(x) is a scalar function. Then
F' is a Randers metric.

It is known that Randers metrics of weakly isotropic flag curvature must
be with isotropic S-curvature. In [6], projectively flat Randers metric with
isotropic S-curvature is totally determined. When 6 = 0, then K = o(z). It
is known that projectively flat Finsler metrics with K = o(x) must be of
constant flag curvature. In dimension greater than two, it follows from the
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Schur’s Lemma. In dimension two, it is proved by L. Berwald. In [9], we have
given the classification of projectively flat Finsler metrics with constant flag
curvature.

The following corollary is obvious by Theorem and Lemma [2.1

Corollary 1.4. Let I be a locally projectively flat Finsler metric with al-
most isotropic S-curvature, i.e.,

S =(n+1)(cF+n),

where ¢ = c(x) is a scalar function and n = n;(x)y’ is a closed 1-form. If
c(x) is not a constant, then F is a Randers metric.

Then we ask the following
Open Problem: On a 2-dimensional manifold, is there any Finsler metric
which is not a Randers metric of weakly isotropic flag curvature in ([1.1))

(6 # 0)?
2. Preliminaries

Let M be a C* n-dimensional manifold. A Finlser metric F = F(x,y) on
M is a C* function on TM \ {0} with the following properties: (i) F' > 0
and F(z,y) =0 if and only if y =0; (ii) F is a positively homogeneous
function of degree one, i.e., F(z,\y) = AF(z,y), A > 0; (iii) F is strongly
convex, i.e., for any y # 0, the matrix g;; := 3[F%],:,s is positive definite.
Specially, if g;; = gij(x), then F' is called a Riemannian metric, i.e. F =
V 9ij (x)y'y? . Randers metrics compose another group of simplest metrics
in Finsler geometry, which arise from many areas in mathematics, physics
and biology [I]. They can be expressed in the form F = « + 3, where a =
Vaij(z)yiyl is a Riemannian metric and 8 = b;(z)y’ is a 1-form with || 3]s <
1 for any point.

Consider a Finsler metric F' = F'(z,y) on an open domain U/ C R". The
geodesics of F' are characterized by the following ODEs:

d*x’ ; dx
— +2G"' (z,— ) =0,
az " <‘T dt)
where G' = G'(x,y) are called geodesic coefficients given by

o= Lyt PIFY L, O 3

drmoyl? 92!
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The Riemann curvature R, = R, a‘zi ® dz* is defined by G' as the fol-
lowing

i IG" 0?Gt , 02G" oG OG!
Ry =2—— ———y +2 — .
oxk  Oxloyk oyloyk oyt oyk
As an extension of sectional curvature in Riemannian geometry, for each
tangent plane I C T, M and y € II, the flag curvature of (II,y) is defined

by

gim R yuu™

K(II,y) = — —
(L) F2gijuind — [gijy'ui]?’

where IT = span{y,u}. A Finsler metric F is of scalar flag curvature if its
flag curvature K(II, y) = K(z,y) is independent of the tangent plane II. In

this case
T 2 <1 7

If F is a Riemannian metric, the flag curvature K(II,y) = K(II) is inde-
pendent of y. Finsler metric F' is said to be of isotropic flag curvature if
K = K(z). If K is a constant, then F is said to be of constant flag curva-
ture.

In Finsler geometry, there are some non-Riemannian quantities. There
quantities always vanish for Riemannian metrics, such as Cartan torsion,

mean Cartan torsion, Berwald curvature, Landsberg curvature, S-curvature.
The Cartan torsion C,; = Cjjrdzr’ @ do’ & dz® is defined by

109y 1 0K
kT 9 9yk T 4 0yioyioyk

And the mean Cartan torsion L, = I, wdz” is defined by
I, = g Cyjy..

It is obvious that G* = %F;k (x)y’y* are quadratic in y for any Riemannian
metric,.where "% are Christoffel symbols. However for general Finsler met-
rics, G* are not always quadratic in y. Thus a natural quantity is given
by
B, = B! i@dxj®dxk®dxl
Y jkl oxt ’
where

P = Bane0) = g s
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B is called the Berwald curvature. Metrics with vanished Berwald curvature
are called Berwald metrics. It is obvious that all Riemannian metrics are
Berwald metrics.

The Landsberg curvature Ly, = Lijkdxi ® dx? @ dz¥ is defined by

R S PG
Lijk = =3y gmiBijk = —5Y Il oy oyt

Metrics with vanished Landsberg curvature are called Landsberg metrics.
It is obvious that all Berwald metrics are Landsberg metrics. The mean
Landsberg curvature J, = Jpdx® is defined by

Jr = g Lijp.

Related to weakly isotropic flag curvature we discussed here, S-curvature
is first introduced by Z. Shen in [14] when he studied the volume compar-
ison theorem in Finsler geometry. For a Finsler metric F' = F(z,y), the
S-curvature is defined as the following.

oGg™ Olnop

S — —
aym L T opm

where dVp = op(z)dz' - - - da™ is the Busemann-Hausdorff volume form. F is
said to have almost isotropic S-curvature if there is a scalar function ¢ = ¢(x)
such that

(2.1) S = (n+1)(cF +n),

where 7 = 1;(z)y" is a closed 1-form. F is said to have isotropic S-curvature
if n = 0. Specially, F is said to have constant S-curvature if n =0 and cis a
constant. The following lemma shows the relationship between the weakly
isotropic flag curvature and almost S-curvature.

Lemma 2.1 ([6]). Let F be a Finsler metric of scalar flag curvature K =
K(z,y). If F has almost isotropic S-curvature as in , then F is of
weakly isotropic flag curvature

3 0c(x) 4
“Fo Y T

K

where o = o(x) is a scalar function.
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Projectively flat Finsler metrics compose a large class of metrics of scalar
flag curvature in Finsler geometry. A Finsler metric F' = F'(z,y) on an open
domain U C R" is said to be projectively flat in U if all geodesics are straight
lines. In 1903, G. Hamel proved that F' is projectively flat if and only if

O*F O*F 0
oxloyk  oxkoyl

(2.2)

This is also equivalent to its geodesic coefficients G* = P(z, y)y’, where P =
Fouy* /(2F) is called the projective factor of F. In this case, the flag curvature
K is a scalar function on TU given by

2 oP
K= oy

F2

In 1929, L. Berwald proved the following lemma which plays an important
role in our proof of Theorem

Lemma 2.2 ([3]). Let F = F(x,y) be a Finsler metric on an open sub-
set U C R™. Then F 1is projectively flat if and only if there is a positively
y-homogeneous function of degree one, P = P(x,y), and a positively homo-
geneous function of degree zero, K = K(x,y), on TU ~U x R"™ such that

OF  O(PF)
3
(2.4) OP _ 0P _ 1 0(KF?)

Ok dyk  3F Oyk
In this case, P is the projective factor of F.
3. Berwald Connection and Main Lemmas

In this section, we use Berwald connection to prove our main lemmas. One
can find details in [I5]. For simplicity, let

OF 0*F OF
Fi= gy 1= gyiggr T gan
Let ”|” denote the covariant derivative of Berwald connection. The index

”0” means the contraction with y’. For example, for any scalar function



120 Benling Li

T=T(z,y) on TM

Tio = Ty™, Tok = Tims¥™ Tkjo = Tipm¥™, Tojo = Tipmy'y™,

Let R,! ;; denote the hh-curvature of the Berwald connection. Then
1 2R, 0’R
Rni ij T 9 OR, P =,
3\ oymoy  Oy™moy
OR', OR;
R, =y™R! . = i J |
J Jj ayj ayz

Using the Berwald connection, the following Bianchi identities for Rni ij
are well-known.

(3.1) R,
(3.2) R! . +R! . .+R!

szk:|m B

RY ik + iju mkuRu

i mk-j — igm|k>

m ijlk m jk|i m kilj — mzu

Contracting the above equation with 4™ and 3’ yields

(3.3) Ry — Ry + Ry = 0.
Taking a trace of over [ and ¢, we get

(3.4) R™ mlk — R™ klm T R™ kmjo = 0-

We use the above two identities to prove the following two lemmas. Now
assume that Finsler metric F is of scalar flag curvature K = K(z,y). Then

(3.5) R, = KF?h,
R™ = (n—1)KF?

where

o T
k=90 =0, — p Ry gk = gjk — FjEg.
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By a direct computation, we have

1

(3.7) R = §F2(K.jh;” — K.ih") — KF(F;6 — F;01)
:Tj(ﬂsi - Fiy™) — 3 (F'6]" — Fyy™)

+ FK(F;6;" — Fi07"),

. . , F2 . .

(3.8) R’y = K(gjud), — gu0p) + —- (Kojahy, — Kojchy)
+ K. F(F 0} — F.6))

+ S K(2FF;6} — P13} — giuy')

1 . . .
— gK.k(2FF.j5l’ — FF.MS;- - g1y"),
n+1

The following lemma was first proved in [12] when F' is of weakly isotropic
flag curvature. Here we give the general version.

Lemma 3.1. Let F be a Finsler metric on an n-dimensional manifold M
(n > 3) of scalar flag curvature K = K(z,y). Then

1
(3.10) FKp, — FrKpo — 5 FK o = 0,

i.e.

(3.11) [KIO} _4Kuyo

Fl, 3 F
Proof. By a direct computation, we get

R = (n — DK F?, "hm = FPKjp — FEKg,

—2
m o 5 FKy — (n— KFF,
; n—2
el = — F*K j0 — (n — 1) FFK .

Substituting the above equations into (3.4) yields

1



122 Benling Li

By the assumption n > 3, we obtain (3.10). Noting that K o.;, = K 3o, then
Kol = K + Ko

Thus (3.10) is equivalent to (3.11]). O

The following lemma plays an important role in proving our main results.

Lemma 3.2. Let F be a Finsler metric on M of scalar flag curvature
K =K(z,y). Then

(3.12) (K — K Fle + (K — Kogo) Fly + (Kogyy — Kjp) Fi = 0.

Proof. Differentiating (3.10]) with respect to 3* yields

1 1 1

Exchanging the indices, we have

(3.14) FiKji + FKjp — FriKjg — FLiKj, — FiKjo.x
— % kKo — %FKﬂk - %FK.i‘o‘k =0.
Note that
(3.15) K|k.i = K.i|k — Kmezm'glm, K|O-i = K~i|0
and
(3.16) Kojjo.r = Koo + K.zijkyj - K-i-lejkglmyj = K. x0-

%[ - ] x F.; yields

1 F,F 1 FiF; 2
(K@' - K0> 7o (Klk - Klo-k> * 4 5 (K — Ko Fy = 0.

3 F 3 F 3

The following two equations can be obtained similarly,

1 FF, 1 FjFy 2
<Klj - 3K|0-j> —% (Kz - 3K|0-z'> T 3 (K — K Fi =0,
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1 FF; 1 FyF; 2

By summing up the above three equations, we obtain (3.12)). O

Based on Lemma when K = 3—; + o, we can prove that 8 must be
closed.

Lemma 3.3. Let F be a Finsler metric on an n-dimensional manifold M
(n > 3) of weakly isotropic flag curvature
~ 30

K—F‘i‘a,

where 0 = 0;(x)y’ is a 1-form and o = o(x) is a scalar function. Then 0

must be a closed 1-form.

Proof. By a direct computation, we get

30; 30
Ki=——-—5Fi
" F  F?
30:; _ 30,
Plugging (3.17) into (3.12]) yields
(3.18) (Or)j — Ojik) Fii + (ke — Opi) Foj + (05 — 0315) Fe = 0.
By 6i1j = Oi0s — 0mG . 0 — Oifj = Ojs — Ois and Fy = [%Fﬂ , we have
(3.19) 1 ) ) '
—0.) | = F? ik — | =F? '7'/_'_]72:-
(ekIJ Hjac )[2F :|.Z,+(0m ekx )|:2F ]j—{_(ejx ezx )|:2F }k 0

Noticing g;; = %[FQ]” and differentiating respect to 3! yields
(3.20) (Oras — Ojar )git + (Oizr — Okai)gji + Oz — Oigi ) grr = 0.
Contracting the above equation with ¢g*, we get

(3.21) (1= 2) (001 — Ors) = 0.

By the assumption n > 3, then 60;,: = 6;,;. Thus 0 is a closed 1-form. O
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By Lemma [3.2] and we can prove the following main lemma which
plays an important role in our proof of Theorem [I.1

Lemma 3.4. Let F' be a Finsler metric on an n-dimensional manifold M
(n > 3) of weakly isotropic flag curvature

0
K:%—i-a,

where 0 = 0;(x)y" is a 1-form and o = o(z) is a scalar function. Then 0 is
a closed 1-form and there exists a scalar function f = f(x) such that

(3.22) fF? —0gF — 0y = 0.

In this case,

(3.23) O = fFF; — %J“F - %U‘OF.i,
(3.24) 0155 = f;F'Fi — %O'MJ'F — %0|0|jF.i.
Proof. By Lemma [3.3] 6 is closed. Then

(3.25) Bt — Ok = 0, Ot — O™ = 0,
and

(3.26) (Omy™) ke = 20}

By a direct computation, we have

36,0
F
3040 _ 300, _ 30 _ 30

K. — B _3
k0= T I N R N

K|0 = +0'|0,

Plugging the above two equations into (3.11)) yields

g0 90
(3.27) LL + F'Q} =0

Then there exists a scalar function f = f(x) such that (3.22) holds. Differ-
entiating (3.22) respect to y’ yields
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Differentiating the above equation along the direction % yields
20 FFi = 01 " = o103 £ = 26)3; = 0.
Then we obtain ((3.23)) and (3.24). O

Our proofs of the Theorem 1.1 and [I.3|are based on the following lemma.

Lemma 3.5. Let F' = F(z,y) be a Finsler metric. If there is a scalar func-
tion a = a(x), a 1-form n = n;(z)y* and a 2-form & = &;y'y’ such that

(3.28) aF? +nF +£=0.
If € #0 orn#0, then F is a Randers metric.

Proof. Obviously, (3.28) is a quadratic equation of F. By the assumption
that &€ # 0 or 1 # 0, then

a#0
and
o T+ VP —dag
- 2a
is a Randers metric. O

4. Proof of Theorem [1.1]

In this section, we prove Theorem [1.1] by Proposition [4.1] and Lemma [4.2
By Lemma the following proposition can be proved now. The key idea
is to use the Ricci identity several times.

Proposition 4.1. Let F be a Finsler metric on an n-dimensional manifold
M (n > 3) of weakly isotropic flag curvature

30
K= f + g,
where § = 0;(z)y" # 0 is a 1-form and o = o(x) is a scalar function. Then
there exists a scalar function A = \(x) such that 6 = \ojg and one of the
following holds.
(i) F is a Randers metric;
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(ii) The scalar function o and \ satisfy

(41) 4>\(f|0+0'9) +O"0 =0
and
(4.2) 6A%019 + Ao = 0,

where f = f(z) satisfies (3.29).

Proof. By the assumption K = % + o, plugging it into || yields

m 1 m m m
RYj = (067" — 0565") — y™ (6, F; — 0:F5)

0 m m m m

By the Ricci identity we have

Oitj — Ot = Om i = FK(O:F; — 0;F.).
Substituting into the above equation, then by oy;; = oy;; we get
(4.3) fFFi— fiF'Fj— %am‘jF.i + %O’|0|iFj = FK(0;F; — 0;F;).
Contracting with 17 yields
(4.4) foFFi — fj,F? - %a‘omF.i + %UWF = FK(0;F — 0F;).

Noting that

foFFi — fiF? = —F? [f|0

2 F?

1 T)0l0
. opF = ol = SF° [L} .

and

0 1, [30 1
(0;F — 0F;) = F [ ] 3 { +UL s FK.,

we can rewrite (4.4)) into

fo 1opp 1 fo o0 1lopgo 362
e G I i LI il ()
F 4 F? +6 y F+F 4 F? +2F2 y 0
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Then there exists a scalar function h = h(z) such that

Jo o6 lopp  36° 1,
F  F 4 F2 22 27

Which is equivalent to
1
(4.5) 7100 = hF? +2(fjo + 00)F + 36°.

Now we divided our left proof into the following two cases.
Case (a) o) = 0. In this case, (4.5) becomes into

hF? +2(fjo + 00)F + 36° = 0.

It is easy to see that F' must be a Randers metric by Lemma
Case (b) 0|y # 0. In this case, we prove that 6 is parallel to o|q. Differ-

entiating (4.5) respect to ' yields
(4.6) Oloji = 2hFF; + 2(f|2' +00;)F + 2(f|0 +00)F.,; + 660;.

Differentiating 1) along the direction % yields

(4.7) Tl0jil — 9ol
= 2<h|jF.i - h|ZFJ)F + 2(U|j0i - O'|i9j)F
+ 2(f‘0 + 09)\]-}7-1' — 2(f|0 + 09)|1~F.j + 6(9”(91' — G‘iej).

Here we used fj;; = fji; and 6;; = 0;;. Contracting 1) with 7 yields

(4.8)  ajopijo — apojoi = 2(hpFli — b F)F + 2(000; — 0,0) F
+2(flo + 00)0F — 2(fjo + 00)i I + 6(6)08; — 6,:0)
2hg N (fio + 09)|0}

= —F3
F F?

+2(0pF'0; — 0 F'0) + 6(0)00; — 0);0).



128 Benling Li

By (3.22) and (3.23)), we have

O"OF = fF2 — 0|0,
1

Substituting the above two equations into (4.8)) yields

(4.9) a0lijo — Tlojoli
[2h + o6
[P0, ote )'0} L 2fF26; — fFF6)
— %HKJFZH + 49|09i — 29&9
. [2h (fio +00) 0 2
3 [0 0 0
=_—F ja + Joz — 2fF:| ) — FHIOFZH + 40|09i — 20|19

On the other hand, by Ricci identity we have

(38
(4.10)  opjijo — ojoj0)i = O Ry =2 <F + U) (0L — FO);)

6

) 0
3 0
= —F9|0F.Z-9 — 60,0 — F [a} R

F2

By (@9) and (E-10), we have

2hyo  (flo+ 980 0 00
4 2
o [0 Oo] 6
SRS
Then

Qh\o (f\0+00)\0 0 9|0 9|()(9 9|0 0

=, 5] - =17

Thus, we obtain
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By (3.22), the above equation is equivalent to

%1, 7], - 21 [3].

Simplifying the above equation yields

(4.13) (O"zﬂj - O'UQZ‘)F2 + o‘mym(ﬁiFF.j - HJFFZ)

Differentiating (4.13)) with respect to y* and y' yields

(4.14) 0 = 2(01;0; — 01;0:) g1 + o1 (0igsi — 059) + 0)1(0igjx — 0jgik)
+ 201,y (0iCjp1 — 0;Cixt) + Ok (01590 — 01i91)
+ 01(01;9ik — 01i95k) + 20(0;Cirt — 0;Cja),

where Cj1, = %[FQ].i.j.k and I; = gjkCZ-jk. Contracting with ¢*, we get
(4.15) 0= (n—2)(00; — 0;6i) + 010(0il; — 0;1;) + 0(0);1; — o3 1;).
By ijj = 0, contracting with y? yields
0= (n—2)(0,0 — o)00;).
Thus, there exists a scalar function A = A(x) such that
(4.16) i = Aoy;.
By a direct computation, we get

(4.17)  6jg =Xo0)0 + Aopojp = 2AhF? + 4X(fjo + 00)F + 6A6° + Agoyo.

Here the second equality is from (4.5). Substituting (4.17)) back into (3.22)
yields

(4.18)  (f —2XR)F? — [4X(fio + 08) + 010 F — (6A°0)g + Ajg)opg = 0.

If 4X\(fio +00) + 019 #0 or 6/\30|0 + Ajg # 0, then by Lemma Fis a
Randers metric. Otherwise (4.1]) and (4.2) hold. O

In the following lemma we prove that the case (ii) in Proposition is
impossible if the metric is not a Randers metric.
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Lemma 4.2. Let F' be a Finsler metric on an n-dimensional manifold M
(n > 2) of weakly isotropic flag curvature

30
K= f + g,
where 6 = 0;(x)y’ = Aoy’ is a closed 1-form and o = o(x), X = \x) are
two scalar functions. Assume that F is not a Randers metric. If

(4.19) 4N (flo+00) +01p=0
and
(4.20) 6A%0p0 + A = 0,

where f = f(z) satisfies (3.29), then
0= >\a|iyi =0.

Proof: If at some point x,, A\(z,) = 0, then at this point # = 0. Thus we
only need to consider the point x such that \(z) # 0. Plugging 6 = /\a‘iyi
back to (3.23)) yields

OF
A

Then by a direct substitution, (4.12]) can be written into

0o = fF* -

2h + 06 TN 2
o, Uotablo .0 O oo 71 _,

4.21
( ) F F? F F? F2F  \F?

This means that there is a function r = r(z) such that

2hy N (fo+o)o .0 O)0 0o 60 62

4.22 AfL — g0 907 T
(4.22) F F2 5= m ?mF "
By (4.19)), we have
9o\ _ 1 /%00 Ao
(4.23) (fjo + B0 = (4)\> 4 ( A A2
1 2 2
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The last equality is from (4.5) and (4.19)). Then by the above expression of

(fio +08)0 and (4.20)), (4.22) can be simplified into

1
- 5A(2an +2r\ 4 h)F?

1
+ <—6 [P0+ Noajg + 2\ — 16%) F+ A\ = 1)ojy = 0.

If F is not a Randers metric, then by Lemma A3(A\2 — 1)020 = (0. Then
A = const. or g = 0. In fact, if A is a constant, then by (4.20)), o9 = 0.
Thus o)p = 0. ]

Proof of Theorem[1.1]. By the assumption, F' is of weakly isotropic flag cur-
vature

30

If 6 =0, then by Schur’s Lemma F' is of constant flag curvature. If 0 #
0, then by Proposition and Lemma F must be a Randers metric.
Further, by the results in [7] F' must be expressed in (|1.2). O

5. Projectively flat Finsler metrics

Without the restriction on the dimension of the manifold, we study projec-
tively flat Finsler metrics of weakly isotropic flag curvature in this section.
The following lemma shows the equation which the flag curvature should
satisfy.

Lemma 5.1. Let F' be a projectively flat Finsler metric of scalar flag cur-
vature K = K(z,y). Then

F
(5.1) §(KlPk —KiP))+ P(K,F—KiFy)

F
+ Koy — K Fy + g(Kl:c’“ —K) =0,

where P = P(x,y) is the projective factor of F.

Proof. By (2.4) and a direct computation we have

1 1 2 1
(5.2) Py = §[P2].k.l — FF K, — §K[F2].k.l — 3PP K - §F2K.k.l
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(5.3) Pyt = PyPyp+ PPy — FKuFy — KFuFy — KFF
2

1
— ZFE.K — —F?K j.
3 ! k

Plugging (2.3), (2.4) and (5.2]) into above equation yields
(5.4) Puey =2PPLP;+ PQP.k.l —KPFLF; — KF(PkFl + Ple)

KP PF?
- T[Fg].k., — K. — KFF
F? 2PF
— ?<Kkpl + K.lPk) - T(KkFl + K.lF.k)
F? F?
— 5 KiP1 = PFKF) = FKp Py — — Ko
Then
F2

(55) 0= Ppry — Pz = ?(Klpk — Kkpl) + PF(Kle — KkFl)

FZ
+ F(KupFy —KuFy) + ?(lek —K).
Here G. Hamel’s equation (2.2) is used. O
Now we can prove that when
36
K = F + g,

6 must be closed. By the equations (2.3) and (2.4) in Lemma we get the
following equations.

(5.6) K, = %(ekp —OF),
(5.7) K, — %(azm COF) + o
- % [exkF _Q(PLF + PF.k)] ¥ o,
(5.8) Koy = (0~ 20P) + 0,1t
(5.9) Koy = 1;75(9}% — O F)

3
+ ﬁ(emlylF + 2PF0;, — 0y Fj, — 0F,).
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Then we can prove the following lemma.

Lemma 5.2. Let F be a projectively flat Finsler metric of weakly isotropic

flag curvature

30
K:f+0',

where 0 = 6;(x)y" is a 1-form and o = o(x) is a scalar function. Then 0
must be a closed 1-form. In this case, there exists a scalar function a = a(x)
such that

i

(5.10) aF? — ouy'F +20P — 0,y = 0.

Proof. Contracting (5.1)) with ' yields

4PF F
(5.11) — =5 K+ FKo — Koy i — 5Ky =0.

Substituting (5.6))—(5.9) into the above equation yields

2
F(?HPF]C —0FP, — PFHk) + Fogn

2
— O’zzylF.k — fewzylF.k — szzyl + 30, = 0.

The above equation can be written into

Orpt Yt — O 20P oyt Ouyt
(5-12) S -l Iy A
Then we have
Qkxzyl - ka ijl,yl - 9333'
(5.13) [F2 el = i
g .

By a direct computation, we get

1 1
(ekxj - szk)FQ - (kazyl - ka) |:2F2:| + (szzyl - 0957) |:F2:| =0.
-k

y 2

Differentiating the above equation respect to y* yields

2 (Ohat — 0300 ) FFs — (O — 0300 ) FF
+ (0jar — 0izs ) FF g — (O’ — 020) 35 + (009" — 025)gri = 0.
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Contracting it with ¢, we get
n(0x — Opzryy) = 0.

Then
elx’“ = ekxl-

Thus 6 is a closed 1-form. Substituting it back into ([5.12)) yields

20P oyt Ouyt
F? F F?2 |,

Then we obtain (5.10). O

=0.

Lemma 5.3. Let F be a projectively flat Finsler metric of weakly isotropic
flag curvature

0
K:%—i—o,

where 0 = 0;(x)y" is a 1-form and o = o(z) is a scalar function. Then one
of the following holds.

(i) F is a Randers metric;

(i) o = o(x) # const. and there exist two scalar function b = b(x) and \ =

A(z) such that
1
(5.14) Ekaxlykyl — 0 y' P = bF? + 2(auy' + 06)F + 362,
0= N\opy.

Proof. By Lemma (5.10) holds. Differentiating it with respect to z*
yields

i F2 + 20F Fy — 0310y F — 031y  Fyr + 20,6 P+ 20 Py — Oyt = 0.

Set
O :=aF?— o,y F+20P — 0,y

By (5.10), © = 0. Differentiating (5.10)) with respect to 3* yields

(5.15) 0=0,=(2aF — 0,y )Fi — Fog +2(0P; + Pt; — 0,:).
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Here we use the fact that 6 is closed. Which implies 6, = 6;,:3'. Differenti-
ating (5.15) with respect to 27 yields

(5.16) 0= 0.z = (2005 F + 2aFy — 0giy') F;
+ (2aF — szyl)F.mj — Fpiogi — Fogig
+2(0,Pi + 0P + Ppi6; + POiyi — Oyizi).

By the assumption, F' is projectively flat, then by (2.3]), (2.4) and (5.2) we
have

F, = FP.j + PF.j,
1., 1 2 1,
~[PY.; — FF;K; — -K[F?,; - “FF,K;— ~F°K.;
2 2 3 3

1 1
= §[P2].i.j —20F;.; — 5<;[F2].Z~.j —20,F; — 0,F,.

(5.17)  Pipi =

Plugging above two equations into ([b.16|), we get

(5.18) 0= 0,135 = (204 F 4+ 2aF P — 04y’ — 200;)F.;
— (800; +20F0; + Pogi)Fj + 20, P,
+ (2P0; — Fo,:)Pj + 2aPF,F,
— 2F0;0; — Foyigi — 20455 + 0[P?.i.j
— 00[F?].ij — 46°F . + 2P0;p5 + (2aF — 040y ) Fligi.

Then we have

(519)  0=0.ip — O jui
= (204 F 4+ 2aF P — 04y’ +600; +20F0; + Po,;)F.;
— (241 F 4+ 2aFP; — 0gigy’ + 600; + 20F0; + Py )F,
+ 20,5 Py — 20, Pj + (2P0; — Fo,:)Pj — (2P0; — Fo,)P;

Contracting above equation with 3/ yields

(5.20) 0= (2a4y'F + 2aFP — 04 uyffy! + 66% + 200F + Poyy')F;
- (2ax'iF + 2aFP,; — sz‘xzyl + 6600; + 20 F0; + PO’xi)F
+ 20,y Py — 20,: P + (2P8; — Fo,: )P — (20P — Foy')P,.
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Observing that

l
24,y FF; — 2a,: F? = —2F° [c%ﬁ] |
K

P
2aFPF; — 2aF?P; = —2aF3 [F} ’
i
1 O 1kl kol
_O-xkxlykylF’i + Faxixlyl = §F3 |:x}6:712/y:| )
KA

92
2 g, — 3
660 F1—69 (97,——3F |:2:|"’

0
200FF; — 20F2%0; = —20 F* [} ,
F 7
l
Oty
Poyy'Fi+ Fouy'P; — 2FPoy = —21/(FP)3 [ \/%F] R
9 lyl
20,y P; — 20, P = —P3 [ }”32 } E
)
0
2P%9; — 20PP,; = 2P [] ,
P,
(5.20]) can be written into
l k.l 2
Aty P 10’xkxzy Yy 0 0
=F3|-2-55 —2q— + - 3 20—
0 [ F Fta m Sg2 g
! !
Opy 3| Oy 0
—2 (FP)3[ - ] + P [— +2} :
VPF],; P2 P,
It is equivalent to
gty P 1 O'mkmlykyl 2
21 I 20— — = 42
(5.21) [ 2 A%~ 5 +3F2+ 0% z

P\3T 0.4
= —xy+2ﬁ
F P2 p.i

_ o (DY [t Bye] o (B [y eF?
F P2 F p F P2 ;

|

I

N\
—
Bl lav!
~

S
3=
—
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Here ([5.10]) is used. Then there exists a scalar function b = b(z) such that

l k,l 2 !
azy  logray®y g §  ouyP
—b=222 3— 4+ 20— )
F 2 2 Cm TRt Tm
Thus
1
(5.22) —bF% —2(apy! + 00)F + 5ggckxly’“y’ —30% — oy P = 0.

By Lemma [5.2] (5.10) holds. Then a,:y' x (5.10) + 260 x (5.22) yields

(5.23)  (acuy! — 200)F? — [(0.9")% + 4(agy’ + 00)0)F
— kaykexlyl + Qazkzzykyl —66% =0.

If (0,y")2 + 4(apy’ + 06)6 # 0, then by Lemma (3.5 F is a Randers metric.
If

(5.24) (o29")% + 4(agy' + 00)0 =0,

we divide the left proof into two cases.
Case (i) 0,y' = 0. In this case, (5.22) becomes into

(5.25) —bF% — 2(apy' + 00)F —36% = 0.

Then by Lemma [3.5) F' is a Randers metric.
Case (ii) oyt # 0. In this case, by (5.24)) there exists a scalar function
A = A(z) such that

0 = Aoyt q

Proof of Theorem|[I.3 By Lemma we only need to prove the theorem
when o,1y! = oo # 0. By the assumption G' = Py’, then 1D and 1D

can be rewritten into

(5.26) 0o = aF® — o F
1

5.27 Zoi910 = bF? + 2(auy' + ob)F + 36°.
2710l

By a direct computation, we get

(528) 9|0 = )\|00"mym + )\0'|0|0
= 2MbF? + 4X(ap + 00)F + 6X6% + Ajojo.
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Here the second equality is from ([5.27]). Substituting (5.28]) back into ([5.26)
yields

(529)  (a—2Xb)F? — [4\(ajg + 00) + 0] F — (6X’0)g + Ajg)ajo = 0.

If 4X(ajp + o)) + )9 # 0 or 6)\30|0 + Ajo # 0, then by Lemma F is a
Randers metric. Otherwise

(530) 4)\(a|0 + 0'9) + 0"0 =0
and
(5.31) 6A%0p0 + A = 0.

We claim that it is impossible if F' is not a Randers metric. By replacing the
function f = f(z) with a = a(z), (5.30), and are just ({.19),
(4.20) and (3.22)) in Lemma Then Lemma is still true in this case
(even in dimension two). Then 6 = 0. This case is excluded by the assump-
tion 6 # 0. 0
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