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The splitting problem for spacetimes with timelike Ricci curvature
bounded below by zero has been discussed extensively in the past
(most notably by Eschenburg, Galloway and Newman), in partic-
ular there exist versions for both spacetimes containing a com-
plete timelike line and spacetimes containing a maximal hypersur-
face ¥ and a (future) complete Y-ray. For timelike Ricci curvature
bounded below by some x > 0 only an analogue to the first case
has been shown explicitly (see [AGH96]).

In this paper we employ their methods (a geometric maximum
principle for the level sets of the Busemann function) to study
analogues of the second case for hypersurfaces with mean curvature
bounded from above by 5. We show that given a Y-ray of maximal
length JT(X) is isometric to a warped product if either x > 0 or
B<—(n— l)m . Additionally we present an elementary proof
for such a splitting if one assumes that the volume of (future)
distance balls over subsets of this hypersurface is maximal.

[1__Introduction| 60
2__Definitions| 63
(3 Comparison results| 66
[4 Maximality in the injectivity radius| 71

[5 A splitting theorem for hypersurfaces with a maximal ray| 73

[6 A splitting theorem for maximal volume)| 80

[References] 86

59



60 Melanie Graf

1. Introduction

Over the past 50 years the study of comparison and rigidity theorems has
been an important part of Riemannian geometry and, as so often the case,
this interest soon carried over to Lorentzian geometry. In the Riemannian
context important results for manifolds with a bound on the Ricci curvature
(instead of the sectional curvatures) include Myers’s theorem, the maximal
diameter theorem ([Che75, Thm. 3.1]) and the Cheeger-Gromoll splitting
theorem ([CGTI, Thm. 2]), which is already very similar to the most inter-
esting Lorentzian case from a physics point of view:

Theorem (Cheeger-Gromoll splitting theorem). Let (M, g) be a com-
plete Riemannian manifold of dimension > 2 which satisfies

Ric(v,v) > 0 forallv € TM

and which contains a complete geodesic line (i.e., a complete geodesic that
is minimizing between each of its points). Then (M,g) can be decomposed
uniquely as an isometric product N x RF, where N contains no lines, k > 1
and RF is equipped with the standard euclidean metric.

In Lorentzian geometry one usually assumes only a bound on the timelike
Ricci curvature, i.e., we want to look at spacetimes (M, g) where

Ric(v,v) > —(n — 1)k g(v,v) forall timelikev € T'M

for some k € R.

So far most results have been focused on spacetimes having non-negative
timelike Ricci curvature (i.e., satisfying the strong energy condition), the
exception being [AGH96] who looked at the case k > 0. A nice overview of
past work can also be found in [BEE96, Ch. 14].

The first Lorentzian splitting theorem for spacetimes using a bound on
the Ricci curvature instead of the sectional curvatures (for non-positive time-
like sectional curvatures the first such result was obtained by Beem, Ehrlich,
Markvorsen and Galloway in 1985, [BEMGS85]) was due to Eschenburg in
1988 ([Esc88]) who additionally assumed both global hyperbolicity and time-
like geodesic completeness. Shortly thereafter Galloway showed that the as-
sumption of only global hyperbolicity is sufficient (|Gal89b]) and a year
later Newman gave a proof assuming timelike geodesic completeness but
not global hyperbolicity ([New90]). These three results are summarized as
follows:
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Theorem (Lorentzian splitting theorem). Let (M,g) be a spacetime
of dimension n > 2 that

1) is either globally hyperbolic or timelike geodesically complete
2) satisfies the strong energy condition and

3) contains a complete timelike line (i.e., a curve mazimizing the distance
between any of its points).

Then (M, g) splits isometrically as a product (R x V, —dt*> @ h), where (V, h)
is a complete Riemannian manifold.

While k = 0 certainly is the most important case from a physical point
of view, it nevertheless seems to be interesting to give a complete descrip-
tion under which curvature assumptions similar results hold. To allow for
spacetimes that behave differently in one time direction than in the other
(e.g., ones that are incomplete to the future but not to the past) we as-
sume the existence of a smooth, acausal spacelike hypersurface > that is
future causally complete (cf. Def. and look at both a lower bound x on
the timelike Ricci curvature and an upper bound 3 for the mean curvature
Hy, of 3. This combination has so far mainly been studied for k =8 =0
(though there are also some recent results for x > 0 and § = —(n — l)m ,
see [GV16]). This case is again of exceptional physical interest because for
k = 0 and 8 < 0 these are exactly the curvature assumptions in the Hawking
singularity theorem. Here [Gal89al, Thm. C] showed

Theorem. Let M be a space-time which obeys the strong energy condition
containing a smooth acausal maximal (i.e., zero mean curvature) spacelike
hypersurface ¥, which is either geodesically complete or future causally com-
plete. Assume JT(X) is future timelike geodesically complete. If v is a future
complete Y-ray such that I~ (y) N JT(X) is globally hyperbolic then J*(X)
is isometric to ([0,00) x ¥, —dt? @ h), where h is the induced metric on X.

For general &, 8 there is recent work by Treude and Grant ([TG13]) using
Riccati comparison theorems from [EH90] to derive comparison results re-
garding the time evolution of the area and volume of subsets of 3, comparing
them to the evolution in fixed Lorentzian warped product manifolds. Similar
comparison techniques have been used in the past with the Raychaudhuri
equation to show the Hawking singularity theorem, or more precisely that no
timelike geodesic starting at 3 can have length greater than —”T_l ifk=0
and 8 < 0 (see, e.g., [Sen9§| for an overview). Those same techniques can be
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used to show that this length is bounded from above by a constant b, 3 < co
for arbitrary x, 8. Concrete values for b, g can be found in Table Our first
goal is to investigate under which conditions the existence of an inextendible
geodesic maximizing the distance to ¥ of length exactly b, g already implies
that I*(X) is isometric to the warped product (0, b, g) X5, , (%, mgb)
(with f. g from Table[T]). '

For k = 8 = 0 this question is basically answered positively by [Gal89al,
Thm. C] (see above), using the Lorentzian Busemann function and that the
value of b, g going to infinity from below as 8 0 (and remains infinity for
all B> 0). For k <0 the same transition happens at 3= —(n — 1)\/|#],
hence the methods used in [Gal89a] for x = =0 would carry over to
k<0, 8=—(n—1)y/|x]. We refer to [GV14, [GVI6] for a more modern
treatment of these cases based on a low regularity maximum principle shown
in [AGH96] and using generalized horospheres instead of Busemann func-
tions. For other values , 8 with b, g = 00, i.e., k <0and 8 > —(n — 1)\/@7
it is easy to see that similar results are false (see Example the space-
time containing an inextendible maximizing geodesic is nothing “special” in
that case). For the remaining variations of &, 5 (with b, g < 00, i.e., Kk >0
or B < —(n—1)/]k|) analogues remain true, but the proof now requires
the aforementioned low regularity version of the maximum principle by
[AGH96].

At this point one should also briefly mention recent results of Bernal
and Sanchez ([BS05]), who showed that actually any globally hyperbolic
spacetime (M, g) admits a smooth time function 7 with smooth Cauchy
hypersurfaces Y7 as level sets and thus splits isometrically as M Z R x X
with ¢ = —8dT? + hy, where ¥ is a smooth Cauchy hypersurface for M,
B : R x X — R, is smooth and h is a Riemannian metric on 7. Their work
improves upon a classical topological splitting result obtained by Geroch
in 1970 ([Ger70]). They refined their arguments further to also show that
given any spacelike Cauchy hypersurface 3 there exists a Cauchy temporal
function 7 : M — R such that ¥ = 71(0) (see [BS06]). One should note,
however, that these results require neither curvature nor any maximality
assumptions and thus there is no additional information on 8 or the time
evolution of A7 and the product structure obtained this way will in general
not be a warped product.

The outline of the paper is as follows. In Sections [2| and [3| we review
basic definitions and the comparison results presented in [TGI13]. We also
include a table (Table giving a detailed description of the comparison
spaces (introduced by [TG13]) that we will use.
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In Section [4] we show that maximality in the injectivity radius already
implies that M is (isometric to) a warped product: While this seems to be
a somewhat well-known fact a detailed proof is hard to find and it ties in
nicely with the following results.

In Section [5| we use a combination of arguments from [Esc88], [Gal89b],
[Gal89a] and [AGH96|] to show our main result, which is that for k <0
or B < —(n—1)y/|x| the existence of an inextendible geodesic maximiz-
ing the distance to X of length exactly b, g already implies that 1T (%) =
(0,bs,8) X, (5, 7=59ls) (with fi s from Table .

Then in Section [6| we give an elementary proof (that requires neither the
Busemann function nor the maximum principle) of the same result under
the assumption of maximality in certain volumes instead of the existence of
a ray of maximal length.

Notation

Throughout, M will always be a connected, Hausdorff and second countable
smooth manifold of dimension n > 2 with a Lorentzian metric g and a time
orientation. We also always assume that (M, g) is globally hyperbolic. The
curvature tensor of the metric is defined with the convention R(X,Y)Z =
([Vx,Vy] - V[X,Y]) Z and we denote the Ricci tensor of g by Ric. Given a
spacelike, acausal hypersurface ¥ C M with future pointing unit normal ny;
we define the shape operator with sign convention Sy; = Vny, and the mean
curvature as Hy, = tr Sy.

2. Definitions

As in [Chrll] we define causal (timelike) curves to be locally Lipschitz con-
tinuous maps v : I — M (I being an interval) with 4 # 0 and g(%,%) <0
(< 0) a.e. and a causal curve is called future (past) directed if # is future
(past) pointing almost everywhere. For p,q € M we write p < ¢ if there is
a future directed (f.d.) timelike curve from p to g and p < ¢ if either p = ¢
or there exists a f.d. causal curve from p to ¢ and we set

I*(p):={geM:p<yq}
Jtp):={qeM: p<q}.
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Definition 2.1 (Signed time separation). Let p € M. Then for ¢ € M
the future time separation to p is defined by

(2.1)  7p(q) :==sup({L(y) : vis a f.d. causal curve from p to ¢} U {0}),

where L(7y) denotes the Lorentzian arc-length of ~, i.e., for a curve 7 :

(t1,t2) — M one has L(v) := ttf \0g(v(t), v(1))|dt.

Similarly one defines the signed time separation to an acausal subset X
by

supexn 7(¢,p)  peIt(Y)
(2.2) ™) =1 — SUpPexn T(P,q) pel (X).
0 otherwise

It is easy to see that both the time separation to a point and to an
acausal subset satisfy the reverse triangle inequality

(2.3) 7p(q) + 74(r) < 7p(r) and 75(q) + 74(r) < (1)

forp<qg<randr>qe It (), respectively.

If (M,g) is globally hyperbolic (i.e., J*(p) N J (g) is compact for all
p,q € M and M contains no closed causal curvesEI) then any two points
p,q € M with p < g can be connected by a maximizing curve ([O’N83]
Prop. 14.19]). If an acausal subset has the following property, one also gets
the existence of maximizing curves to this subset.

Definition 2.2 (Future causally complete). A subset ¥ C M is called
future causally complete (FCC) if for any p € J7(X) the set J~(p) N2 has
compact relative closure in X.

Remark 2.3. Note that any smooth spacelike Cauchy hypersurface for
M is also a smooth, spacelike, acausal, FCC hypersurface (see [O’N83,
Lem. 14.40, 14.42 and 14.43]). If ¥ is also past causally complete and (M, g)
is globally hyperbolic then ¥ is a (smooth, spacelike) Cauchy hypersurface.

The following Proposition sums up some common knowledge about the
(future) time-separation to an acausal (p < ¢ implies p = ¢ for any p,q € ),
FCC subset (see [TG13, Thm. 2]).

INote that this definition of global hyperbolicity is equivalent to the one using
strong causality instead of causality, see [BSOT].
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Proposition 2.4. Let ¥ C M be an acausal, FCC subset. Then the fu-
ture time-separation 75 : M — R to X is finite-valued and continuous and
for any p € JT(X)\ X there exists ¢ € X and a causal curve vy from q to
p with s(p) = 7(q,p) = L(7y). Any such mazimizing curve v has to be a
(reparametrization of) a geodesic, which is timelike for p € I't(X) and null
otherwise. If ¥ C M 1is, additionally, a spacelike hypersurface, then any maz-
imizing geodesic has to start orthogonally to ¥ (so in particular It(X) =

JT(X)).
An important tool will be the normal exponential map to X.

Definition 2.5 (Normal exponential map). Let DY C TS' be the set
of all w € TS+ such that w € dom(expy(y)). The normal exponential map
exp” : DN — M to ¥ is defined by

exp¥ (w) := eXPr () (W) = (1)
for t € R and v € STNY such that w = tv.

For any v € TM we denote by 7, the unique inextendible geodesic start-
ing at 7(v) with initial velocity v. For v € TX* each Yol[o, maximizes the
distance to X for small ¢, but it may not remain maximizing for larger t. We
write STNY for the (future) unit normal bundle to ¥, i.e.

STNY := {v eTM|s : v fp., glv,w) =0
Vw € TS and g(v,v) = =1} C TS,

and define
Definition 2.6 (Cut function). The function

s; :STNY — [0, 0]
5% (v) :=sup {t > 0: m=(7(t)) = L(lp) }

is called future cut function.

An easy adaptation (looking at a hypersurface instead of a point) of
arguments from [BEE96, Prop. 9.7 and Thm. 9.8] (see also [Tre, 3.2.29])
shows

Lemma 2.7. The cut function sg s lower semi-continuous and continuous
at points v where sy, (v) = oo or sy (v)v € DV,
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Definition 2.8 (Cut locus). The (future) cut locus of ¥ is defined as the
image of the tangential cut locus under the normal exponential map:

Cut™ (%) := {eXpN(sg(v)v) :v € STNY and sf (v)v € DN} .

An important fact is that Cut™(X) has measure zero, is closed and
exp™ |, sye (where Jp(E) := {tv: v € STNY andt € 0,55 (v))}) is a dif-
feomorphism onto I (X) \ Cut™ (%) ([TG13, Thm. 3]).

3. Comparison results

In this section we will briefly review the comparison results from [TGI13]. We
will generally omit the proofs, but may give a sketch if it will be helpful later
on. First, we need to define the sets of whose areas respectively volumes will
be estimated.

Definition 3.1 (Future spheres and balls). For any t >0 and A C ¥
we define the spheres S7(¢) and balls B} () of time ¢ above A by

Si(t):={peIT(X): Iq € Awithd(q,p) = t=(p) =t} and
Bit):= |J si(s)

s€(0,t)
We also set Z+(X) := IT(X) \ Cutt(X) and

84(t) : = Si(t)\ Cut™(¥) and
Bi(t):=Bi(t)\ Cut™(%).

Second, we need appropriate curvature conditions.

Definition 3.2 (Cosmological comparison condition). Let k, € R.
We say that (M,g,X) satisfies the cosmological comparison condition

CCC(k,p) if
1) (M,g) is a globally hyperbolic spacetime and > C M is a smooth,
connected, spacelike, acausal, FCC hypersurface,
2) the mean curvature Hy of ¥ satisfies Hy < 3 and
3) Ric(v,v) > —(n — 1)k g(v,v) for all timelike v € T M.

Under these assumptions [T'G13] showed various estimates for mean cur-
vature, area and volume, comparing them to the respective quantities in
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Table for Kk < 0

e S8 ¢ Jrp(t) i Hrs(t) b,

; 7\1/)3I . <1 g1 tanh_l((’ 71@* \’I) ﬁ cosh(y/|k[t +¢) +/|k[tanh(y/|klt+¢) oo
(nifl\/m =1 Rt 0 exp(sgn(B)+/|k|t) sgn(B)+/| x| 00
B n—1 . -1 B 1 g -~ )
Etw >1 H coth ((n—l)\/W) \/mblnh(\/|n\t+c) V|klcoth(\/|&l|t +¢) oo

8 _ n-1  ooth—1 B8 1 g . __c
(n—l)\/m< 1 H coth ((n—l)\/W) \/mblnh(\/|n\t+c) v/ |k| coth(\/|k|t + ¢) ‘

Table for Kk =0

B Zn,ﬁ c fﬁ,ﬂ(t) H%Hrcﬁ(t) bn‘,/ﬁ
B=0 R 0 1 0 00
B8>0 ot "51 t+c H% 00

n— n—1 . n—
<0 Hm a3t t+e = et
Table for £ > 0

B k8 c Fr(t) i e (1) br.s
5>0 H ! cotfl(ﬁ) ﬁ sin(y/kt + ¢) VE cot(y/kt + c) *\C/E”
B<0 2 cot™ () T sin(V/At + ) VEcot(y/rt + ¢) =%
B=0 H ! 5 ﬁ cos(y/kt) Vk tan(y/kt) ﬁ

Table 1: Warping functions for different values of x, 5. The mean curvature
is given by Hy, g = (n — 1)f7 and by, g is the upper bound of the interval con-
taining zero on which f, g # 0 and ¢ = ¢(k, B) is a (k, 8 dependent) constant.
This table is based on [T'G13, Table 1].

certain warped products My g = (axg, bk ) X, , Lx,3 Where a, g,bs 5 € R,
frp: (akp,beg) — R\ {0} is the warping function and X, g is the (unique)
simply connected, complete (n — 1)-dimensional Riemannian manifold with
constant curvature k. g € {—1,0,1} (i.e., X, 3 is either hyperbolic space
H" ! euclidean space R™~! or the sphere S"~!). These comparison spaces
are listed in Table [1l

Now we are ready to state some of the relevant results of [TG13|: Their
arguments are based on a comparison result for Riccati equations from
[EH90], which they then adapt to their needs [TG13, Thm. 6].
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Theorem 3.3 (Riccati comparison). Let R:R — S(E) (self-adjoint op-
erators from an n-dimensional vector space E into itself) be smooth and as-
sume that tr R > nk for some k € R. Furthermore, let S : (0,b) — S(E) be a
solution of 8"+ S? + R =0, and s, : (0,b.) — R a solution of s/, + s2 + K =
0 that can not be extended beyond by. If limy o(sx(t) — %trS) exists and s
non-negative, then b < b, and

trS(t) < ns,(t)

forallt € (0,b). Moreover, if equality holds for some ty € (0,b), then equality
holds for all t < ty. In this case, we also have S(t) = s,(t)Idg and R(t) =
kIdg for all t € (0,to].

It is easy to see that the shape operators S; = —Vgradrs, to the level sets
%t = 75, "({t}) satisfy such a Riccati equation along each timelike geodesic
starting orthogonally to ¥ with Ry : 4(t)* — 4(t)* given by R(.,5(t))¥(t).
This leads to the following result about the mean curvatures H; := Hy, of
the level sets ¥; [TG13, Thm. 7]:

Theorem 3.4 (Mean curvature comparison). Letk,[ € R and assume
that M and ¥ C M satisfy CCC(k, 3). Then

1) For any inextendible unit-speed geodesic «y : [0,a) — M mazimizing the
distance to ¥, one has Hy(y(t)) < H, py(y(0))(t) along v, hence a <
br, s (1(0))

2) For each qeI* (%), we have 12(q) <bxp and trS. () (q)=Hy(g)(q) <
Hyp(1s(q)) = tr S, 5(s(q))-

3) If Hry(q)(q@) = Hy p(ms(q)) and 7 : [0,7s(q)] — M is the (unique unit-
speed) geodesic mazximizing the distance from q to X, then even

Su(v(1)) = 715 Hos(t)id for all t € [0, 75(q)].

Not stated explicitly in [TG13] is an immediate corollary we will use
later on.

Corollary 3.5. Actually 7s(q) < by for all ¢ € IT(X).

Proof. From 75,(q) < by, g for any ¢ € ZT(X) it follows from density of Z (%)
in I7(X) that m(q) < by, g for any ¢ € I (X). Now assume there exists a ¢ €
I't(X) withrs(q) = bs s and let v : [0,b, 5] — M be a geodesic maximizing
the distance from ¥ to ¢q. By extending this geodesic we get a point ¢’ €
I't(2) with 75(¢") > by, g, arriving at a contradiction. O
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Next [TG13] use a standard result on the variation of area (see [Sim83|
Ch. 2]).

Proposition 3.6 (First variation of area). Let K C 8; be compact and
let € > 0 be such that the flow, ®, of n is defined on [—¢,e] x K. Set Kg :=
O, (K) C 8445 for each s € [—¢,¢]. Then

(3.1) di

areaKS:/ tr Sedpe,
S 1s=0 K

where py denotes the Riemannian volume measure on 8 induced by g.

This allows them to proof the following area comparison theorem [T'G13,
Thm. 8.

Theorem 3.7 (Area comparison). Letr,5€R and assume that (M, g,Y)
satisfies CCC(k, B). Then, for any B C ¥, g with finite, non-zero measure
and any measurable A C X, the function

area 87 (t)
area, 355 ()’
is nonincreasing on [0,by g). Further, for t \, 0 this function converges to

areaA
area,, g B’ S0

area, 353 (t)

area 87 (t) < areaA.

area, g B

Proof. We will only give a sketch here. If A is compact and the flow ® of
the unit normal vector field n is defined on [0, b, 5), then 8% (t) = ®;(A) and
one can use Prop. and Thm. to calculate

1

d
3.2 Z! 0= s
(32) Glosreasit) = Sk D Jseo

Hi(q)dpt(q)
d
< H,3(t) = o log(area,i,gsg(t)),

proving the assertion. If this is not the case, one looks at 0 < t; <t < b, 3
and a sequence of compact sets K; C 87 7 (t2) with arealk; area 8™ ( 2) and
uses the sets K;(t) := ®;_¢,(K;) (for t € [0,t,]) instead of 87 (¢) in (3.2). O
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The co-area formula (note that Cut™*(X) has measure zero) implies
t
(3.3) volB} (t) = / area8 i (1)dr,
0

and some basic analysis regarding integrals of functions with a non-increasing
quotient gives [TG13, Thm. 9]:

Theorem 3.8 (Volume comparison). Letk, 3 € R and assume (M, g,X)
satisfies CCC(k, B). Then, for any B C ¥, 3 with finite, non-zero measure
and any measurable A C X, the function

volB} (t)
VOl,iﬁBJBf (t) ’
is nonincreasing. Further, for t 0 this function converges to a;fj?B, s0
vol,. g BE (¢
(3.4) volB (t) < voles B (1) areaA.
area, g B

A similar result has also recently been shown for Ct!-metrics ([Gralf]).

Moving away from the hypersurface case for a moment we will also need
a comparison theorem for the d’Alembertian of the distance function to a
point. This seems to be a well known result (see, e.g., [BEE96, Eq. (14.29)]
for k = 0, the proof of [AGH96, Prop. 4.9] for x < 0 or [Tre, Thm. 3.3.5]).

Theorem 3.9. Assume M is globally hyperbolic and its timelike Ricci
curvature is bounded from below by k € R. Fixz p € M. Then for any q €
It (p) \ Cut™(p) we have

(3.5) —Urp(a) < (n—1)sk(1(q)),
where

VK cot(y/kt) k>0
(3.6) Se(t) = 1 k=0.

t
V |kl coth(y/|k|t) k<O

Proof. As in Thm. [3.4 we have that along a maximizing, unit speed geodesic
7 from p to g the function f(¢) := —Ump(y(t)) = trS -1y (7(t)) is smooth
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(q ¢ Cut™t(p)) and satisfies

f+ f; < (n—1)k and (s4(t) — ﬁf(t)) — Oast ™\, 0,

where the limiting behavior is seen by looking at Minkowski space. This
gives (13.5) by Thm. (3.3 O

4. Maximality in the injectivity radius

In the next three sections we will investigate manifolds (M, g, ¥) satisfying
CCC(k, ) which are in a sense maximal with respect to the bounds on
distance, area and volume from Thm. implied by the curvature.

The first (and simplest) involves maximality in the ¥-injectivity radius
of M and although this seems to be a somewhat well-known fact, we will
nevertheless provide a detailed proof.

Definition 4.1. The future S-injectivity radius injy, (M) is defined as the
infimum over the future cut parameter of points in X, i.e.,

inj (M) := inf s (p).

Note that exp? \(O’mj;( w))-s+nx Will be a diffeomorphism onto
By (injh (M) \ Cut* ().

If (M, g, %) satisfies CCC(k, 3) for some &, 3, then Cor. shows that
75(q) < by for all ¢ € I'T(X), which in turn implies inj (M) < by g. We will
now show

Theorem 4.2 (Maximal injectivity radius rigidity). Let (M,g) be
globally hyperbolic and assume that (M, g,%) satisfies CCC(k, ) with con-
stants k, B such that either k >0 or f < —(n — 1)\/W If ianEr(M) = by 3,
then It (X) is isometric to the warped product

(4.1) () 2 (0,bug) x5, . (z, f;(O)Qg|g> .

)
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Proof. Since injs (M) =b, 5 and 7s(p) < beg for all p € IT(X) one has
Cut™ () = () and hence the normal exponential map is a diffeomorphism

exp” : (0,bep) - STNE — IT(%).

Identifying (0,bx ) - STNX with (0,b,3) X X in the usual way and pulling
back the metric g on IT(X) we obtain a metric g on (0,b,5) x X that
is of the form g = —dt®> + h(t,z), where h(t,.) denotes the induced Rie-
mannian metric on the time slice {¢t} x 3. It remains to show that g =

—di? + 4220 1y (0, 7).

Next we show that S;(q) = f 8 id for all ¢t < b, and g € S5 (t) =
85 (t). From Thm. . we know that it suffices to show that —1- Hy(q) =

L_H, 5(t) = ;n ﬁgtg Assume to the contrary that there exists gy € Ss; (o)

with (3 := Hy(y(ty)) < Hy(to) =: B, and let v be the unique geodesic v

starting orthogonally to ¥ with v(t9) = qo (any such curve maximizes the
distance due to Cut™(X) = 0)). Then starting the Riccati comparison argu-
ment not at y(0) but at y(fp) (note that ¥, is again a smooth, acausal, space-
like, FCC hypersurface) we see that Hy, (v(¢t — t0)) < H, 5(t — o) for t > to.

Looking at Table[l| (or Thm.[3.3/and we see that H_ ( —tg) — —oo for
t—ty /b, F and that the map 3 — b, g is strictly increasing on R for k < 0

and on (—o00, —(n — 1)y/|x]] for k£ < 0, hence in all cases we are considering
one has b, 5 < byg, . Using that fi g, (t —to) = fxp(t) by uniqueness of so-
lutions of ODE we see that b,8,, = br,p — to. This gives b 5 < b.g — to, i.e.,
Hy(v(t)) = —oo for t /b, 5+ to <byp , which contradlcts ~ not having a
focal point before by g.

Now follows from

d
7hij (t, .%') =

(4.2) 7

%g(azia 8cc])

= Vat (g(axia aa:7))

= Q(Vat aa:,i s 81’3) + g(ax“ Vat a:cj)

= g(Vawi O, azj) + 9(0y,, Vawj O)

= 9(S7 (t,2)0u,, On,) + 9(Ou,, S5 (£, 7))
5(t)

B 2ff$/3( t)

hzj(ta fL‘),

as the solution of this equation is given by h;;(t, z) = 6 ) £, st O
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Remark 4.3. As mentioned above this result in itself is not surprising. One
can find a related result in [AH98, Thm. 5.3] and similar calculations also
appear in [Esc88]. In general, if 3 is a spacelike hypersurface in M the nor-
mal exponential map is defined on (0, inj5 (M)) - STNE, exp ((0, inj§; (M) -
STNY) 2 (0,inj(M)) x ¥ and the induced metric on (0,injs;(M)) x ¥ is
adapted to this product structure (as defined by [AH98, Def. 5.1]): For
any p € ¥ the curve t — ¢, (t) := (t,p) = exp’¥ (tn,) is a unit speed geodesic
which shows that ¢ is locally of the form —dt? + Z?;:ll gij(t, x)dx;dxj. So
in the case of a maximal Y-injectivity radius, while it remains to actually
calculate the g;;(t, ), one gets an “almost” warped product for free. This
will no longer be the case if one looks at maximality in the volume as will
be done in Section [l

Example 4.4. For k > 0 and § > —(n — 1)4/|k| the analogue of Thm.
is false: Obviously the warped product spacetimes M, 5= (ak,g,00) X Fus

(2, ﬁh) with § € [8, —(n — 1)y/||) satisfy CCC(R,B),Ninjg(M&B) = 0
and g, 5]2 = h but they are not isometric to M, g unless 3 = §3.

5. A splitting theorem for hypersurfaces with a maximal ray

The goal of this section is to show that one does not need injg(M ) =b.pto
obtain a splitting result and that indeed the existence of only one X-ray of
length b, 5 is sufficient. As mentioned in the introduction the proof will be
a rather straightforward combination of arguments from [Esc88], [Gal89b],
[Gal89al and [AGH96].

Definition 5.1 ((Maximal length) Y-rays). Let ¥ C M be an acausal
subset. A timelike future inextendible unit-speed geodesic 7 : [0,a) — M is
called a ¥-ray if v(0) € ¥ and v maximizes distance to X, i.e., L(7|j ) =
s(7(t)) for all t € [0,a). If (M, g,%) satisfies CCC(k, ) we say a X-ray 7y
is mazimal (or has mazximal length) if a = b, g.

To any ray one can define asymptotes:

Definition 5.2 (Asymptotes). Forp € M we call an inextendible geodesic
ap :[0,a) — M an asymptote to the (X-)ray v : [0,a) — M at p if a,,(0) =p
and ¢, (0) = limy, 00 Gy s, (0) for some sequence s, — a, where «, ; denotes
the maximizing unit speed geodesic from p to y(s). So «y, arises as a limit
curve of a sequence oy, s, of maximizing curves from p to y(s,) as s, — a.
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Given aray v : [0,a) — M we define the Busemann function b associated
to this ray.

Definition 5.3 (Busemann function). Given a ¥-ray v :[0,a) — M one
defines its Busemann function b as the limit

(5.1) b(x) := lim r — 7,.(y(r))

rT—a

forz e I~ (y)NIT(Y).

Remark 5.4. That this limit actually exists is seen as follows: By the
reverse triangle inequality one has 7, (y(r)) > 1z(v(s)) +r — s for r >
s > ro with ¢ such that x € I~ (v(rg)) so the map r — r — 7, ((r)) is mono-
tonously decreasing and using 7 (v(r)) < 7,0y (7(7)) — T2(7) it is easy to see
that 7 — 7,(v(r)) > ms(x) for all z € I~ (y) N IT(X). This also shows

(5.2) b(x) > m=(x).

Before we summarize the most important facts about the Busemann
function in the following Proposition we need one more definition.

We say that a set N C M in a spacetime (M, g) is edgeless if for all
p € N and all neighborhoods V' of p in M any timelike curve from I~ (p, V)
to I't(p, V) must meet N. The following definition was introduced in [EG92].

Definition 5.5 (C° spacelike hypersurface). A subset N C M of a
spacetime (M, g) is called C° spacelike hypersurface if for each p € N there
is a neighborhood U of p in M such that N N U is acausal and edgeless in
U. Note that this implies that N is a topological hypersurface by [O’N83,
Prop. 14.25].

Proposition 5.6 (Properties of the Busemann function). Let (M, g)
be a globally hyperbolic spacetime, ¥ C M an acausal, FCC, spacelike hy-
persurface and 7y : [0,a) = M a 3-ray. Then for any t € (0,a) there is a
neighborhood U of v(t) (called a nice neighborhood) such that the following
holds:

1) The Busemann function b is continuous on U and if ¢ € J*(p) one
has

(5.3) b(q) > b(p) + 7(q)
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2) For any given Riemannian background metric h there exists a con-
stants C' and t <T < a such that for any mazimizing geodesic s
from a point p € U to ~(s) with s > T

(5.4) h(éyp,5(0), 6, 4(0)) < C,

i.e., the set {Gyp s(0) :p € U, T < s < a} CTM is contained in a com-
pact set.

3) For anyp € U there exists a timelike, unit-speed asymptote o, : [0,a —
b(p)) — M at p that is future inextendible, mazximizing, and satisfies

(5.5) b(ap(t)) =t + b(p).

4) The level set Ny := {x € U : b(z) =t} of b in U is edgeless and acausal,
i.e., a CO spacelike hypersurface in U.

Proof. This was shown in [Esc88], [Gal89b] and [Gal89a], see specifically
[Esc88| Lem. 3.3] for Lipschitz continuity, [Esc88| Lem. 3.2] for the estimate
and [Gal89bl, Lem. 2.3] for the properties of N;. The existence of time-
like, unit speed asymptotes follows from . By a standard result about
the length functional regarding limits of curves contained in a common com-
pact set one then haslimsup,_,, L(ap sljo) < L(apljy) (for any ¢ > 0 such
that there exists sg such that oy, s is well defined on [0,t] for sop < s < a).
This shows that the asymptote is maximzing and has length at least

lim sup L(ap,s) = lim 7,(7(s)) = lim (s — (s = 7(7(s)))) = a = b(p)-
Finally, because 7(s) — oo (i.e., leaves every compact set) for s — a the
asymptote oy, : [0,a — b(p)) — M is inextendible. Equations and
are immediate consequences of the reverse triangle inequality .

The statement is also included in [AGH96]. Note that all of this is inde-
pendent of any curvature assumptions. Il

The main argument we use from [AGH96] will be a theorem about C° space-
like hypersurfaces with curvature bounds. Given two CY spacelike hypersur-
faces in (M, g) which meet at a point ¢ we say that Ny is locally to the
future of Ny near ¢ if they meet at ¢ and for some neighborhood U of ¢ in
which N is acausal and edgeless, No N U C J+(Ny,U). Now one can define
mean curvature bounds of such a C° spacelike hypersurface as follows

Definition 5.7. Let N be a C° spacelike hypersurface in the spacetime
(M, g) and Hj a constant. Then
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1) N has mean curvature < Hy in the sense of support hypersurfaces if
for all ¢ € N and ¢ > 0 there is a C? future support hypersurface Sq.e
(i.e., ¢ € Sqc and Sy is locally to the future of N near ¢) such that

Hs, (q) < Hp+e.

2) N has mean curvature > Hy in the sense of support hypersurfaces with
one-sided Hessian bounds if for all compact sets K C N there exists
a compact set K c TM and a constant C' > 0 such that for all ge K
there is a C? past support hypersurface P,. (ie., g € Pyc and P, is
locally to the past of N near ¢) such that the future pointing unit
normal np, (¢) is in K, the second fundamental form h p,. satisfies

(5.6) hp,.(q) > —Ckglp,.(q)

and
HPq,E(Q) Z HO — E&.

This definition was introduced in [AGH96] and allows them to prove a
Lorentzian geometric maximum principle for C° spacelike hypersurfaces.

Theorem 5.8 (Lorentzian Geometric Maximum Principle). Let Ny
and Ny be C° spacelike hypersurfaces in a spacetime (M,g) which meet at
a point qo, such that Ny is locally to the future of N1 mear qo. Assume for
some constant Hy:

1) No has mean curvature < Hy in the sense of support hypersurfaces and

2) N1 has mean curvature > Hy in the sense of support hypersurfaces
with one-sided Hessian bounds.

Then Nog = Ny near qq, i.e., there is a neighborhood U of qo such that Ny N
U= N1NU. Moreover, NoNU = N1 NU is a smooth spacelike hypersurface
with mean curvature Hy.

Proof. See [AGH96, Thm. 3.6]. O

We are now going to show the analogue to [AGH96, Prop. 4.9, 4.] for our
situation.

Proposition 5.9. Let (M,g) be a globally hyperbolic spacetime, ¥ C M
an acausal, FCC and spacelike hypersurface, v : [0,a) — M a X-ray and let
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U be a nice neighborhood of ~(t). If Ric(v,v) > — (n — 1) kg(v,v) for all
timelike v € TM, then

—ﬁcot(ﬁ(a — 1)) k>0
(5.7  Hy,> —(n—1)sg(a—t) = L k=0

\/Ecoth\/ﬁa—t)) k<0

in the sense of support hypersurfaces with one-sided Hessian bounds. Note
that by Thm. a = oo can only happen if k = 0 or k < 0 (for k > 0 one has
be,p < 00 for any B € R) in which cases the functions behave nicely at infinity

and we set = := 0 and —+/|x| coth(y/|x[(a — 1)) := —\/|k|, respectively.

Proof. The proof is completely analogous to [AGH96, Prop. 4.9, 4.]. Given
any p € N, there exists a timelike asymptote o, : [0,a —t) — M by Prop.
Now we look at S (S)( s) :={x € M : 7,(p(s)) = s}. Clearly S (s )( s) is a

smooth hypersurface for any s € (0,a —t),pe S (s )( s), and by Thm. |3 .

HS—

O‘p<5)

(s) Z —(TL — 1)8,4(8).
From (5.3) and (5.5) we get immediately that
b(z) < blap(s)) — Ta(op(s)) =1t

forall z € S;p(s)(s) and invoking 1) again this shows Sa_p(s)(s) NIT(Ny) =
(). Since N; is an acausal topological hypersurface in U its Cauchy de-
velopment D (in U) must be open (JO’N83, Lem. 14.43]), N; is edgeless
and acausal in D and S_ )( s)N'D C J~ (N, D) (because as noted above
S;p(s)(s) NI*(Ny) = 0), hence the S (s )( s) lie locally to the past of N; near
p for any s € (0,a —t). But this means that they are past support hyper-
surfaces with the right curvature bounds. By (5.4) the unit normals a;,(0)
are contained in a compact set for all p € Ny N U , so we can use [AGH96
Prop. 3.5] to see hat they also satisfy the estimate on the second fun-
damental form. O

Combining the above with the mean curvature comparison Thm. [3.4] and
the geometric maximum principle (Thm. [AGH96l Prop. 4.6]) yields the
following analogue to [Gal89al, Lem. 3.2]:

Proposition 5.10. Assume that (M, g,X) satisfies CCC(k, 8) with either
k>0 orB<—(n—1)\I|&|l. If v:[0,bs8) = M is a mazimal X-ray, then
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there exists a neighborhood U of «(0) in ¥ such that any inextendible (f.d.,
unit-speed) geodesic o with o’(0) € TY* |y is also a L-ray.

Proof. Choose a neighborhood V' of v(0) in ¥ and § > 0 small enough such
that exp? is smooth on V x (—6,0) and denote by X5 the hypersurface
exp™ (V' x {4}). Note that by shrinking V if necessary we can assume %5 C U
for a nice neighborhood U of (). From it follows that b(p) > § for all
p € Xs. Since b is strictly increasing along timelike curves (again ) this
shows X5 N I~ (Ns) = 0, so as before looking at the Cachy development D of
U N N we see that X5 C J*(Ns, D) and obviously v(6) € ¥5 N Ns, so X5 lies
locally to the future of Ns. Now Thm. shows Hy, < H, 3(d) and com-
paring the definition of s, in with Table 1] shows H, 3(d) = —(n —
1)si(brg —06) if bep < oo (e, k>0 or f<—(n—1)\/[x]) and Hsx, <
Hn,ﬁ((s) <pB= _(n - 1)\/@ = lim; 00 —(TL - 1)SI€(T) if bn, = o0 (i'e'v B =
—(n — 1)+/]x|). Thus, taking into acount the lower bound on Hy,) we
can apply Thm. [5.§ to obtain N5 = Hy,.
Now for any p € V' we look at the curve &, : [0, b, g) — M given by

5 (1) exp™ (tn,) 0<t<é
(0% = .
b Qexpy (on)(t —0) 0 <t <bug

This curve satisfies 7x2(&,(t)) = t: By (5.5) one has
b(Gp(t)) =t — 0 + b(exp™ (6np)) = ¢

and the claim follows from ({5.2). Because &, is parametrized by arc-length
this shows that &, always maximizes the distance to ¥ so it has to be a
geodesic starting orthogonally to X and a X-ray. U

The previous result allows us to prove a local splitting via Thm. [£.2] To
extend this to a global one we need one more Lemma.

Lemma 5.11. Let k,5 € R with either kK >0 or 8 < —(n—1)\/|k|, let
(3,h) be an (n —1)-dimensional Riemannian manifold, and let M :=

[0,bk,8) X, , 2. Then for any t € [0,bep) and any r >0 there exists te
( beg) such that {t} x By(r) C J=((t,p)) for all p € B. Furthermore M =
J7([0, by

8) X {p}) for any p € ¥.
Proof. We look at (future directed) null curves ¢ = (co, ¢) starting at a point
(t,p) such that the projection ¢ is a unit-speed curve in (3, h). This yields
the ODE ¢ (s)? = iﬂ(co(s)) 2 (s)|2 = 3’5(00(8)) with ¢o(0) = ¢. Since we
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want ¢ to be future directed, we need ¢, > 0, so the ODE becomes c¢j(s) =
| fi.5(co(s))|. Noting that f2 , is monotonously decreasing on [ry g, by ) for
some 7 8 < by g(see Table [1)) this gives that co(s) < |f.g(t)|s+t for t >
8- So given any radius r there exists ¢ such that co(r) < |f. g(t)|r+t <
bs,s Now let p,q € ¥ with ¢ € S,(F) for 7 < r then there is a future directed
null curve c: [0,7] — M (with » > 7 > 7 since there may not exist a curve
from p to ¢ in ¥ of minimal length) from (¢,q) to (co(7),p), i.e., (t,q) €
J~((co(),p)) € J~((co(r),p)). This finishes the proof. O

Now we are ready to prove the theorem.

Theorem 5.12. Assume that (M, g,%) satisfies CCC(k, B) with constants
K, B such that k >0 or f < —(n — 1)y/|&|. If M contains a mazimal X-ray
v :[0,bs3) = M, then IT(X) is isometric to the warped product

Proof. Let U C % be as in Prop. and let j: R x ¥ — TS+ denote the
map (t,p) + tn,. Then exp” oj: (0,b,5) x U — M is a diffeomorphism
onto its image and by Thm. even an isometry if we equip (0,b, ) x U
with the metric —dt? + Jfﬁg((é))zg](] Now let 7 > 0 be such that U = B,.(v(0))
is the largest open ball in ¥ such that exp® oj l(0,5..5)xu 18 a diffeomor-
phism. If U = X we are done. Otherwise there exists a point p € QU such
that t — exp™ (tn,) =: o(t) either stops existing or being maximizing before
b3

If it stops being maximizing but not existing the cut function sg:
STNY — (0,00] is continuous at ¢(0) by Lem. so we find a neighbor-
hood V of p such that all f.d., unit-speed geodesics starting in V' orthogonally
to ¥ also have a cut parameter less than b, g, which contradicts p € OU.

If it stops existing at T < by 3, then o C exp™¥([0,T) - STNX|y). Now
by Lem. there exists ¢ < b, g such that

{T} x Br(7(0)) € J~((£,7(0))),

hence [0, 7] x B,(7(0)) € J~((£,7(0))). But this shows

o CexpN([0,T)-STNX|y) C J~(v(1)),

so o is contained in the compact set J¥(p) N J~(v(#)), contradicting its
inextendibility. U
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Remark 5.13. If ¥ is compact it is sufficient that sup{rs(p) : p € I (X)} =
by g for Thm. to hold: Let p, € M be such that 7s(p,) — bx g. Since X
is assumed to be FCC there exist ¢, € ¥ and unit speed timelike geodesics
Y ¢ [0, 72 (pn)] = M from g, to p, that maximize the distance to 3. Now
if 3 is compact, a subsequence of these 7, must converge to a geodesic
v :[0,bs3) = M that also maximizes the distance to 3. So we have con-
structed a maximal X-ray v : [0,b,5) — M.

Looking at some special cases of Thm. [5.12] we see that for k = =10
the warping function is given by foo = 1 so one recovers that I7(3) is iso-
metric to ((0,00) x ¥, —dt? @ h) (cf. [Gal89a]). For K = —1,8 = —(n — 1)
the warping function is f_; _(,_1)(t) = et giving the splitting IT(X) =
((0,00) x 2, —dt? + e~ 2th) (cf. [GVI6E, Thm. 5.13]). In this case 3 is not quite
negative enough to force incompleteness. If 5 < —(n — 1) (and Kk = —1) one
has cg = coth_l(%) < 0 and the warping function leﬂ = sinh?(t + c5) =
sinh?(t — |cg]). Finally, in the case of positive timelike Ricci curvature, we see
that for e.g. k = 1 and f =n — 1,0, —(n — 1) one has the warping functions
f12,n—1 = sin?(t + T), f12,0 =sin?(t + Z) and f12,—(n—1) = sin?(t + 2T, respec-
tively.

6. A splitting theorem for maximal volume

In this section we are going to look at spacetimes that are in a sense maximal
in volume, specifically we want the volume of distance balls B} (t) over a
set A C ¥ to be maximal. Obviously this volume depends on the area of
the base set, so we first introduce a function v, g on our comparison spaces
giving the volume of future balls over a subset A C X, g3 in M, g relative to
the area of A.

Definition 6.1. Given «,3 € R and any measurable set A C X, g with
non-zero measure we define

VO]KﬁBX (t)

t) =
U, (t) area,, g A

Note that trS, 3= H, 3= (n — 1)f7 for warped products ([O’N83l Prop.
7.35]), so the variation of area formula (3.1) and the coarea formula ([3.3)
show

_ 1 K n—1
ve8(t) = W/O frp(T)"dr
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for all t < b, g. For t > b,, 3 one obviously has v, g(t) = v. g(bx g) =: Ux3, SO
v g really is independent of the choice of A. If kK > 0 or B < —(n — 1)/]x|
then b, g3 < oo and hence v, g < 00.

We are now ready to prove a splitting theorem if the volume of B;g =

Use(0,00) S (s) is finite and maximal (w.r.t. 1) for compact K C 3.

Theorem 6.2 (Maximal volume splitting). If (M,g,X) satisfies
CCC(k,B) with either k >0 or f < —(n —1)\/|k| and there exists an ex-
haustion by compact sets { Ky }nen for ¥ such that

61 volB}n -
(6.1) areak,, = Unp
for all n, then
1
6.2 IT(2) =(0,b, Y, :
(62 ()% (0.b05) %1, (% g9l

If furthermore % is past causally complete, k > 0 and there exists an
exhaustion of compact sets { Ky tnen for ¥ such that also

volB s
areal, w=h
for all n, then
1
6.3 M = (anp,be) X5, Z,gg).
63 (@nobi) 1.0 (5 g

Proof. By Cor. We have m5,(q) < b, g for all ¢ € I'T(X), so VolB;gn(bnﬁ) =
VolB;g = 0, gareak,, = v, (b, g) areak,. Using this and the coarea for-
mula (3.3)) it follows that

volBf (by 5)
6.4 0= v, g(by g) — —LnT07
(6.4) U, (bs,3) Py

/bw; areamBSX (7‘) areaS}n (T) d
= - : T
0 area, gA areal(,

for any A C X, g with finite, non-zero measure. Now by the area comparison
theorem Thm. the integrand is always non-negative, so it has to be zero
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almost everywhere and we obtain

area, sS|(t)  areaSf (t)

. K t = =
(65) @,5(t) area,, gA arealk,

for almost all ¢ < b, 3. Since ¢ — areasic, (0). is non-increasing (again Thm
= k- area,, 5S1 () g ag )

, the equality follows for all t < by g.

Next we show that thus holds for any compact set K C X: Given
K choose n € N such that K C K,,. Then it follows immediately from the
definition of these spheres (see Def. that S}W (t)=8L(t)U SKn\K (t) and
the union is disjoint. But then

ay g(t) areak,, = areaS}'(n (t) = area8}(t) + areaS;r(n\K(t)

< ayp(t) areak + areaS}}n\K (t)

< apg(t) (areaK + areak,, \ K)
= a, g(t) areakp,

so all inequalities have to be equalities, showing for K.

This allows us to prove that actually Cut™(X) = {): First note that it
suffices to show Cut™ () NS¢ () = 0 for all ¢ < by, g since we know 75(g) <
bep for all g € IT(X) from Cor. Assume p € Cutt () NS¢ (¢), then
p = (t) for some f.d., unit-speed geodesic v starting orthogonally to ¥ with
t = s%,(%(0)). Since this ~ is certainly defined on an open interval containing
t the cut function sy, : STNY — (0, oc] is continuous at §(0) by Lem. Let
e > 0 with ¢ + ¢ < b, g. We can choose a relatively compact neighborhood V'
in ¥ of v(0) such that all f.d., unit-speed geodesics starting in V' orthogonally
to ¥ have a cut parameter less than ¢ + ¢ < b, g. But then SJ‘—;(t +e) =10,

area8 ‘J;_(t)

contradicting 0 # ax g(t +¢) = —/ .

Next we will show that Hy(q) = Hy g(t) for all ¢ € I'T(Z) with t = 7= (q).
To see this, let v be the unique geodesic from ¥ to ¢ realizing the distance
and choose K C ¥ to be a compact neighborhood of 7(0) such that the nor-
mal exponential map is defined on [0,¢') x K for some t' > t. By the

+
arcadic() _ ig constant on [0,#) and since the set 8% (t) = Sk (t) =

map t e LG



Splitting theorems for hypersurfaces 83

exp™ ({t} x K) is compact we may proceed as in the proof of the area com-
parison theorem and use the first variation of area (Prop. [3.6)) to obtain

0= d area, 5S4 (s)
ds|,_, area S} (s)
_ 4 log area,, 554 (s) — 4 log area S (s)
ds s=t meA ds s=t K

1

= renST(n) H, 5(t) — Hi(q)du(q).
areaS;;(t) SE(1) A1) t(q)dpe(q)

Now the integrand is non-negative (by the mean curvature comparison the-
orem, see Thm. and smooth (in ¢) on 85 (t) = S5 (¢) (because the nor-
mal exponential map is a diffeomorphism away from the cut locus), hence
H(q) = H,g(t) for all ¢ € Si(t).

By Thm. this already implies S; = H,, g(t)id = ;:28 id for all ¢t <
b..,3- Unfortunately, exp™ need a priori not be defined on all of (0,bx) -
STNY, so there is still some more work to do than in Thm. We can,
however, proceed similarly: Using the normal exponential map we obtain
coordinates (¢, ) on an open submanifold of M containing I (3) U X (note
again that Cut*(X) = 0) in which g = —dt? + h(t,x) where for any 0 < t <
b.,p the expression h(t,.) denotes the induced Riemannian metric on the
spacelike hypersurface 8% (t) = S5 (¢) (which is just the {¢}-level set of the
distance function 7v). Calculating as in we see that for ¢ >0 and
z € SH(t)

d . ,B(t)

L ity x) = 22

a1 =2 )

The solution of this equation is again given by h;(t,x) = ?fjé(()(’)x)g fop(®)?
This shows that 1

hij(t,l’).

I (%, M) = <p N ((0,b,5) - STNY) —di? + fﬁ,g(tﬁg’E)
7 IOk

1
c [0,b S — M, g,
[ Hﬁ) X fes < f576(0)2 g|2> KB

so it is isometric to an open submanifold of the warped product.

It only remains to show that all f.d., unit-speed geodesics starting or-
thogonally to ¥ are defined in M on [0, b, g), i.e., they remain in the sub-
manifold I7(X, M) C M, g. Assume to the contrary that there exists such
a geodesic v : [0,T) — I'T(X, M) with T < b, g that is inextendible in M.
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Let € > 0 such that 7'+ < b, g. Then areaSg(T + ¢) has to be maximal
for any relatively compact neighborhood U of ¢ := 7(0) in ¥ and hence non-
zero, in particular SE(T +¢) # (. Thus there exists a sequence of ¢, € ¥
with ds (g, ¢») = 1 (where dy is the Riemannian distance on ¥ induced by
gly) such that the corresponding =, exist until at least T'+ . Set p,, :=
(T +¢).

Let V' be a relatively compact and geodesically convex neighborhood
of ¢ in ¥ and choose N such that that ¢, € V for all n > N. Now for
any 0 <6 < T let o5 : [0, Smax) — My g be defined by o, 5(s) := (T + ¢ —
s, cn(s m)) where ¢, : [0,b) — X is the unit-speed geodesic in ¥ starting
at ¢, in direction q. Note that because V' was chosen to be geodesically con-
vex the curve o, 5 is actually well-defined on [0,e + §], its projection to the
second coordinate is contained in V' and o, 5(0) = (T'+ ¢, ¢, (0)) = v (T +
g)=ppand oy s5(c +0) = (T — 6, ¢n(ds(q,qn))) = (T —6,q) = (T — 5).2We
Eave ons(s) = (-1, mc’n(m)), so for n > maxc(o 74] % we

ave

f,iﬁ(T +e— 5)2

Foa2ne+o) <

9(0n5(s),ons(s)) = -1+

Note that this bound on n is independent of 4. So if we fix IV large enough,
we see that, at least in M, g, the curves on 5 : [0, + 6] — M, 3 can be used
to give a timelike connection from py to any point on ~.

Next we show that actually ongs: [0, 4+ 8] = IT(3, M) C M C M,z
for any 0 < <7T. Fix 4. Since we chose ons(0) =py € IT(X, M) and
IT(X,M) C Mg is open we get that so :=sup{s € [0, + ] : onslj0,5) C
IT(X,M)} > 0. If 5o = € + 0 we are finished since then o5 = o 5[0 c15) U
(T —§8) C IT(E,M). So assume that 0 < sy <e+d. Then the curve
ONslj0,s0) C IT(X, M) is a (past) inextendible, p.d., timelike curve in M
and oy 5([0,50)) C J ™ (pn, M) N JT (X, M) which is compact (because ¥ is
FCC and M is globally hyperbolic). This contradicts global hyperbolicity
of M.

This shows that oy is a timelike curve from py to v(T' —4) in M
for any 0 < § < T, so the original inextendible geodesic « is contained in
J(pn, M) N J*(q, M), which again contradicts global hyperbolicity of M.

The second assertion follows by reversing the time orientation of M
(note that while a bound from above on H; will in general only translate
to a bound from below for Hy,, the previous calculations show that H; and
hence also Hy, are constant anyways). O
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Contrary to the earlier two results (Thm. and Thm. [5.12)) this last the-
orem can easily be adapted to all remaining possible values of x, § (and not
only kK <0 and 5= —(n —1)4/|k|), by slightly tweaking the assumptions.

Proposition 6.3. Let (M,g,%) satisfy CCC(k,B) with kK <0 and B >
—(n —1)\/|k| and assume that there ezists an exhaustion by compact sets
{Km}men for ¥ and a sequence of times t,, — oo such that

olBE (t,
lim (Un,ﬁ(tn) _ VKm()> -0

areal(,,

for all m, then

1

I+(E) = (O,bm@) Xfm/a (E, mg’g).

Proof. The proof remains largely same, only in (6.4)) one uses that

volBj (tn)>

n—o0 areaKm

0= lim <U,{,5(tn)

tn areaHﬁSX(T) B areaS}m (T)

= lim
n—oo f area, g A areal,,
& areawgSAf(T) areaS}r( (1)
= _ m dT
0 area, g A areal(,,

by positivity of the integrand to get (6.5) for almost all t < co. The rest
follows exactly as above. O

To summarize, the above Thm. and Prop. complement the main
splitting Theorem [5.12| nicely: Using a slightly stronger assumption leads to
both a very natural and elementary proof and a natural generalization to all
possible curvature bounds (whereas Thm. only looks at ones that lead
to a finite bound b, g on 75 or that are boundary cases in the sense that
bk,p = o0 but b, 5 < oo for all B < B).
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