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In this paper, we will prove the Weyl’s law for the asymptotic
formula of Dirichlet eigenvalues on metric measure spaces with
generalized Ricci curvature bounded from below.
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1. Introduction

One of most fundamental theorems in spectral geometry is the Weyl’s law
[20], which states that, on any closed n-dimensional Riemannian manifold
(M™, g), we have a leading asymptotic

. N W,
lim =
A—oo AP/2 (271')"

volg(M™),

where \;, 1 < j < oo, are the eigenvalues of Laplace-Beltrami operator A
on (M™, g), and N()) is the spectral counting function

N(V) == #{\; € Spec(A), A; < A},
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and wy, is the volume of unit ball in R™, and voly(M™) is the volume of M™.
If Q € M™ is a bounded domain in (M™, g) with smooth boundary, then the
same asymptotic formula holds for the Dirichlet (or Neumann) eigenvalues,
by replacing voly(M™) by volg(£2).

It has a wide range of interests about the extensions of Weyl’s law, (see,
for examples, [42] [45] [46] and a survey [34]). In particular, on a weighted
Riemannian manifold with Bakry-Emery Ricci curvature bounded from be-
low, if the density u := f - voly is smooth, and is bounded away from 0 and
00, then it was shown by E. Milman in [42] that the classical Weyl’s law still
holds for weighted Laplacian A, := A+ (VIn f, V).

In this paper, we will extend this classical result to non-smooth settings.
To formulate our main result, we need to introduce some notations. Let
(X, d, ) be a metric measure space (a metric space equipped a Radon mea-
sure). A synthetic notion of lower Ricci bounds on (X, d, 1) was introduced
in the pioneering works of Sturm [51],52] and Lott-Villani [40, 41]. Nowadays,
many important developments were given in this field (see [3, 5] 6l 111 12} [15]
22, 23,133, 35, [44] and so on). In particular, to rule out the Finsler spaces, an
improvement notion, RC' D(K, oo)-condition, was introduced by Ambrosio-
Gigli-Savaré in [5, §5]. The finitely dimensional case, RC D(K, N), was given
by Gigli in [23] 24], §4.3], and a splitting theorem for RC'D(0, N)-space was
proved by Gigli [23]. The parameters K and N play the role of “Ricci cur-
vature > K and dimension < N”. Very recently, Ambrosio-Gigli-Savaré [6],
Erbar-Kuwada-Sturm [22] and Ambrosio-Mondino-Savaré [I1] introduced a
Bakry-Emery condition BFE, which is a weak formulation of Bochner inequal-
ity. They proved in [11], 22] that the condition BE(K, N) is equivalent to the
(reduced) Riemannian curvature-dimension condition RC'D*(K, N) for con-
stants K € R and N > 1. In [I4, Theorem 1.1], Cavalletti-Milman showed
that the condition RCD*(K, N) is equivalent to the condition RCD(K, N)
provided the total measure p(X) < oco.

Let (X, d, ;1) be a metric measure space satisfying RCD*(K, N) for some
K €R and N € [1,00). For any bounded domain © C X, according to [6,
16, 149], the Sobolev spaces W1P(2), 1 < p < oo, are well defined. Moreover,
the space W12(Q) is a Hilbert space ([6}, 24]). The Cheeger energy over )

Ch(f) = /Q IV fPdu

provides a closed quadratic form acting on the Sobolev space VVO1 )2 (Q), where
|V f| is the weak upper gradient of f ([6]). The Dirichlet form (Ch, W,?(£2))
is associated with a self-adjoint operator Agq. If diam((2) < diam(X)/a for
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some a > 1, then the Rellich’s compactness theorem holds (see [13], 25] 29]),
and hence the operator (Id — Aq)~! is compact. The classical spectral the-
orem implies that Dirichlet spectrum is discrete, denoted by

0< A <A< <M<, jeEN,

Our main result in this paper is the following Weyl asymptotic formula for
these Dirichlet eigenvalues:

Theorem 1.1. Let (X,d,u) be a metric measure space satisfying
RCD*(K,N) for some K € R and some N > 1. Suppose that the measure
w and the N -dimensional Hausdorff dimension €N are mutually absolutely
continuous. Namely, p < AN < p. Let Q C X be a bounded domain of X
such that diam(Q2) < diam(X)/s for some s > 1. Then N is an integer and
it holds the asymptotic formula:

Na(N)  wy N9
(L.1) am oNE T T @nN

where No(X) := #{\} : A <A}

Remark that the RHS of does not depend on the measure p. The-
orem is a consequence of Theorem 4.6, a more general result on RCD*-
spaces. In the case of a smooth Riemannian manifold (M, g) of n-dimension
with the Riemannian volume p := volg, the relation recovers the clas-
sical Weyl’s law.

Let us look at the case of an n(> 2)-dimensional Alexandrov space (X, d)
with the Hausdorff measure 5", and with curvature > k for some k € R.
It was proved [47, 55| that (X,d, #") satisfies RCD*((n — 1)k, n). From
Theorem [1.1], we have the following consequence.

Corollary 1.2. Let Q be a bounded domain in an n-dimensional Alexan-
drov space (X,d, 7). Then we have the Weyl’s law

. No(A)  wy-"(Q)
(12) v R

Another consequence is that the Weyl’s law also holds for noncollapsing
limit spaces in the sense of Cheeger-Colding. More precisely, if (X, d, i) is a
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measured Gromov-Hausdorff limit space of a sequence of pointed Rieman-
nian manifolds (M, g;,p;) with

Ricy, 2 K, dim(Mj) =n,  woly,(B1(pj)) = vo > 0,

then the Weyl’s law still holds. This case has been already proved by
Ding in [21].

Recalling that in the proof of the Weyl’s law on smooth setting, a key
ingredient is a uniformly small time asymptotic behaviour of heat trace
H(t,x,z) via the parametrix of heat kernels. However, the construction of
the parametrix on smooth manifolds does not work on singular metric mea-
sure spaces. To deal with this lack of the parametrix, we shall get the small
time asymptotic behavior via the (locally) uniform convergence of Dirichlet
heat kernels living on a converging sequence of metric measure spaces in the
sense of pointed measured Gromov-Hausdorff topology, as in [21), 25] [54].

As a byproduct, we show a local spectral convergence on RCD*(K, N)-
spaces, which is of independent interesting (See Theorem [3.8)).

Proposition 1.3. Let pointed metric measure spaces (Xj,d;, pij,pj)jen
converge to (Xoo, doo, floos Poo) i1 the sense of pointed measured Gromov-
Hausdorff. Suppose that all (X;,d;, ;) satisfy RCD*(K,N) for some K €
R and some N > 1. Let R > 0 with R € (0, dlamX )/a) for some a > 2,
Vj € N. Assume that O0Br(pso) = ( OO\BR poo

For each j € N, we denote by Al ; the m—th Dzmchlet eigenvalues of
AB(p,) on ball Br(pj). Then we have that the spectral convergence

lim /\(R) )\( )

j—00 mj o

Remark 1.4. A spectral convergence theorem for eigenvalues A, ;(Xj),
different from the local Dirichlet eigenvalues in Proposition on a se-
quence of convergent compact metric measure spaces (X}, dj, j1;) was proved
by Gigli e.t. in [25].

"'We remark that this assumption can be replaced by

Cap, (aBR(poo)\a(XOO\BR(poo))) =0.
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The following example shows that the assumption

OBR(pso) = (X \Br(poo))

is necessary in Proposition We would like to thank Prof. S. Honda for
telling us such an example.

Example 1.5. Let X, :=[-1+ %, 1-— %] equip the Euclidean distance dg
and the 1-dimensional Lebesgue measure £! and let p; = 0. Then we have
(X, d, £1,p;) 28 (X oo 1= [-1,1],dp, £, poc 1= 0).

Now we consider the balls By(p;) (= Xj). It is clear that B;(p;) converge to
Bi(pso) ( = (-1, 1)) in the sense of Gromov-Hausdorff, as j — co. However,
we remark that 0B (pso) = {—1,1} and that (X \Bi(px)) = 2.
Consider the first Dirichlet eigenvalue X ; of on Bi(p;). Because
0B1(p;) = @, we have Lip (31 (pj)) = Lip(Bl (pj)). So the function f = 1is
in Lipg (B1 (pj)). This implies A1 ; = 0. On the other hand, it is obvious that
the first Dirichlet eigenvalue of Bi(pao) is A1.00 = m2/4 (with eigenfunction

f(t) = cos(mt/2)).

Remark 1.6. (1) Very recently, in an independent work [9] by L. Ambrosio,
S. Honda and D. Tewodrose, they show that the Weyl’s law for eigenvalues
Aj(X) of a whole compact RCD*(K, N)-space (and the Neumann eigenval-
ues), different from the local Dirichlet eigenvalues in this paper, holds if and
only if
rk ) rk
i [ = I

where k is the largest integer k& such that u(Ry) > 0, and the Ry is the pieces
in the decomposition in [43]. See also the constant kpax in Theorem

(2) In another independent work [8] by L. Ambrosio and S. Honda, they
get that the same local spectral convergence result in Proposition holds
if and only if the following condition holds:

Wy (Br(pso)) = NesoWy *(Brae(poo))-

(3) The condition u < s~ < u in Theorem plays a role of non-
collapsing. G. De Philippis and N. Gigli [I§] introduced the weak non-
collapsed space by the condition v < YV, and very recently S. Honda [32]
proved this implies y = a - 7Y for some constant a € (0,00) when X is
compact.
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Organization of the paper. In Section 2, we will provide some necessary
materials about RCD*(K, N) metric measure spaces and heat kernels on
metric measure spaces. In Section 3, we will prove the locally uniformly
convergence of heat kernels for a sequence of converging metric measure
spaces. The main result Theorem will be proved in Section 4. At last,
for the convenient of readers, we will give an appendix to introduce the
dominated convergence theorem and Fatou’s lemma for functions living on
pmG H-converging metric measure spaces.

Acknowledgements. In the previous version we overlooked the condi-
tion OBR(pos) = (Xoo\Br(ps)) in Proposition We appreciate Prof.
S. Honda for showing us Example We are also grateful to Prof. Am-
brosio and S. Honda for sharing us their manuscripts [8, 9]. We would like
to thank the anonymous referees for very careful reading and many useful
suggestions. We thank also Prof. D. G. Chen, B. B. Hua and Z. Q. Wang,
and Dr. X. T. Huang for their interesting in the paper. Both authors are
partially supported by NSFC 11521101, and the first author is also partially
supported by NSFC 11571374.

2. Preliminaries

Let (X, d) be a complete metric measure space and p be a Radon measure
on X with supp(u) = X. Given any p € X and R > 0, we denote by Br(p)
the ball centered at p with radius R.

2.1. Riemannian curvature-dimension conditions RCD*(K,N)

Let (X,d, ) be a metric measure space. We denote by %5(X,d) the L%
Wasserstein space over (X, d), i.e., the set of all Borel probability measures
v with

/ d? (g, z)dv(z) < 00
X

for some (hence for all) xg € X. Given vy, vy € P5(X, d), the L?-Wasserstein
distance between them is defined by

Wi, m) = in [ d(ag)de(e.y)
XxX

where the infimum is taken over all couplings ¢ of v1 and s, i.e., Borel
probability measures ¢ on X x X with marginals vy and v;. The relative
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entropy is a functional on 5(X,d), defined by

Ent(v) ::/ pln pdp,
X

if v = p - p is absolutely continuous w.r.t. u and (pln p); is integrable. Oth-
erwise we set Ent(v) = +o0. Let Z5(X,d, u) C P2(X,d) be the subset of
all measures v such that Ent(v) is finite.

We set the function

sin(Vk-t0) 2 2

m, 0< kO < e,
(t) )t k0> =0,

sinh(v/—k-0) ’ ’

0, k0% > 2.

Definition 2.1 ([22]). Let K € R and N € [1,00). A metric measure
space (X,d,p) is called to satisfy the entropy curvature-dimension condi-
tion CD®(K, N) if and only if for each pair vy, 1 € Z25(X,d, 1) there exists
a constant speed geodesic (14)o<i<1 in #5(X, d, 1) connecting vy to v such
that for all t € [0, 1]:

(2.1) Un() = o) (Walvo, 1) - Un(v) + 03 (Walvo, 1) - Un (1),

where Uy (v) := exp (— & Ent(v)).

Given a locally Lipschitz continuous function f on X, the pointwise
Lipschitz constant ([16]) of f at z is defined by

[f(y) = f(=)]

Lipf(x) := limsup = limsup sup ——F——=—
y—x (iL‘, y) r—=0  d(z,y)<r r

and Lipf(z) = 0 if z is isolated. It is clear that Lipf is u-measurable. The
Cheeger energy, denoted by Ch : L?(X) — [0, oc], is defined [6] by

1
Ch(f) := inf {liminf/ Lip2fjdu} :
where the infimum is taken over all sequences of Lipschitz functions (f;);en
converging to f in L?(X). In general, Ch is a lower semi-continuous convex
functional.
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Definition 2.2 ([24]). A metric measure space (X, d, p) is called infinites-
imally Hilbertian if the associated Cheeger energy is quadratic.

Several equivalent definitions for Riemannian curvature-dimension con-
dition were introduced in [B, [11],22-24]. In this paper, we adapt the following
notions for the convenience.

Definition 2.3 ([22]). Let K € R and N € [1,00). A metric measure
space (X, d, p) is said to satisfy Riemannian curvature-dimension condition
RCD*(K, N), if it is infinitesimally Hilbertian and satisfies the C'D(K, N)
condition.

Let N > 1, the generalized Bishop-Gromov inequality for RCD*(K, N)
space (by a combination of [27, Corollary of 1.5] and [52, Remark 5.3]) states
that for any p € X and any 0 < r < R,

w(Br) _ _n#(B(p)

OR ENL_I (r)dr = Or sNil (r)dr
N—1 N-1

(2.2)

where the function si(7) is given by

sn(VkT) ip s 0,

VE
(2.3) se(r) =47 if k=0,
SOERT) i <0,

Let (X,d,u) be a metric measure space with RCD*(K, N) for some
K € R and N > 1. We summarize some basic properties in [2] 5 22, [52] as
follows:
e (X,d) is a locally compact length space, i.e., for any p,q € X, there is a
shortest curve joined them:;
e (X,d, ) has a local measure doubling property on each ball Br(z) C X.
Moreover, we have that, for all 0 < r < R,

.y LERO) (VY (VDR AT B) o= O ()

1(Br(p)) T

e (X,d, ;) supports a local L2-Poincaré inequality on each ball Br(x) C
X. Moreover, the Poincaré constant Cp(N, K, R) depends only on N and

VIEAOIR.

e The canonical Dirichlet form (Ch, D(Ch)) is strongly local and regular, and
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admits a Carré du champ I'(f) for each f € D(Ch). Moreover, the intrinsic
distance dcy, induced by (Ch, D(Ch)) coincides with the original distance d
on X (see [2,5]);

e The heat kernel H(x,y,t) on X exists (see [53] and [36, Theorem 1.2]),
and there is a positive constant Cy x, depending only on NV and K A 0, such
that

Cn.k d*(z,y)
(2'5) H(l‘,y,t) < WGXP <— 5t +CnN K -t> .

2.2. Sobolev spaces, local Dirichlet heat kernels and
Dirichlet eigenvalues

Several different notions of Sobolev spaces for metric measure spaces have
been given in [4] (6, [16] 28, 29] 49]. In this paper, we will pay our attentions to
the RCD*(K, N)-spaces for some K € Rand N > 1. In the case, the notions
of Sobolev spaces in [4] 6], [16], 49] coincide each other (see, for example, [4]6]),
and they have the equivalent norms with the notion of Sobolev spaces in
28, 29].

Let (X,d, ) be a metric measure space with RCD*(K, N) for some
K € R and N > 1. For an open subset 2 C X, we denote by Lipj,.(€2) (and
Lipy(£2)), the set of all locally Lipschitz continuous functions on © (and the
set of all locally Lipschitz continuous functions f such that d(supp(f),99Q) >
0, respectively). Let p € [1,00] and let f € LP(Q) N Lipioc(2). The WP(Q)-
norm, ||f||1,p, is given by

[ llp == [[fllp + ILip £l

here and in the sequel, we denote || f||, := || f||L»- The Sobolev space W1P(Q)
is defined to be the completion of all locally Lipschitz continuous, f, for
which || f]|1, < oo, with respect to the norm | fl|1,. Given p € (1,00), it
was proved [4, [16] , for each f € W1P(Q), that there exists a function |V f| €
LP(Q), called the minimal weak upper gradient, such that

£l = 11l + [TV £l

For a locally Lipschitz function f € W1P(Q), it was showed [16] that |V f| =
Lipf a.e. in 2. We say that a function f € VVéf(Q) if f € WhP(Q) for every

open subset Q' CC Q. We refer the readers to [4, 16l 24 [49] for further
information of these Sobolev spaces.



1878 H.-C. Zhang and X.-P. Zhu

For 1 < p < oo, let us recall from [30] that the Sobolev p-capacity of the
set £ C X:

Capy,(E) := inf {|| fIfy0x) : f€WHP(X)
such that f > 1 on a neighborhood of E}E

If there is no such a function f, we set Cap,(E) = oc. It is clear that
Cap,(E) = Cap,(E). An equivalent definition is given in [49], see for in-
stance [38, Theorem 3.4] and [50].

A property holds p-q.e. (p-quasi everywhere), if it holds except of a set Z
with Cap,(Z) = 0. Since Cap,,(Z) = Cap,(Z), we may assume that the ex-
cept set Z is closed. A function f: X —[—00,00] is called p-quasi continuous
in X if for each € > 0, there is a set F, such that Cap,(F¢) < € and the re-
striction f|x\r, is continuous. We may also assume that F is closed.

It is well-known that any W1P-function f has a p-quasi continuous repre-
sentative (see [30]). We will always use such a representative in this paper. In
[38, Theorem 3.2], it is proved that, for any two p-quasi continuous functions
f and g, if f = g p-a.e. in an open set O, then f = g p-q.e. in O.

Definition 2.4 ([38]). Let 1 <p < oo and E C X, a function f on E is
called to belong to the Sobolev space with zero boundary values, denoted
by f € VVO1 P(E), if there exists a p-quasi continuous function fewtr (X)
such that f = f p-a.e. in E and f =0 p-q.e. in X\E.

According to [38, Remark 5.10] (see also [0, Theorem 4.8]), the space
W, P () = HyP(Q), which is the closure of Lipo(Q) under the Whr(Q)-
norm. Given any open set Q C X, it is clear that Wo P(Q) c VVO1 P(Q). How-
ever, generally speaking, W, (Q ) + WyP(Q).

Lemma 2.5. Let O C X be an open set and let 1 < p < co. Suppose that
f is a p-quasi continuous in X and that f =0 p-g.e. in O. Then we have
that f =0 p-q.e. in O.

Proof. From the definition, we know that f = 0 p-q.e. in O. So it suffices to
show that f =0 p-q.e. in 90. We can assume Cap,(00) > 0. Otherwise, it
is nothing to do.

2In [30], the definition of Sobolev p-capacity was given via the Sobolev norm in
[28]. Meanwhile, according to [49], the Sobolev norms in [28] is equivalent to the
one in [4, 16l 49]. Therefore, the following both definitions of p—quasi everywhere
and p-quasi continuity concide with the corresponding definitions in [30].
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We will argue by a contradiction. Suppose that there is a subset A C 00
such that Cap,(A4) > 0 and that f(x) # 0 for any z € A.

Taken arbitrarily € € (0, CappA/ 2), since f is a p-quasi continuous in X,
we can find a closed set F, with Cap,(F¢) < ¢ and the restriction f|x\p, is
continuous. Noting that f = 0 p-qg.e. in O, i.e., there exists a closed set Z
with Cap,(Z) = 0 such that f =0 on O\Z. We have that the restriction
flo\(r.uz) = 0 and that f|x\(r.uz) is continuous.

By Cap,(F: U Z) < € < Cap,A/2, we can find a point xg € A\(F. U Z).
There exists a sequence {:cj};-";l C O with lim;_, z; = 20, since zg € 00.
Noting that F, U Z is closed and z¢ ¢ F. U Z, we know that z; € F,. U Z for
all sufficiently large j. By combining the facts that f|x\(r.uz) is continuous
at zo and that f(z;) =0 for all large j (since z; € O\(F U Z) for all large
J), we conclude that f(xg) = 0. This contradicts with zo € A, and hence we
finish the proof. U

Corollary 2.6. Let QcX be an open set and let 1 <p < oco. If 09 =
A(X\Q), then WP () = WP ().

Proof. Tt suffices to show W, (Q) D W, (Q). Given any f € W, P (), there
exists a p-quasi continuous function f in X such that f f p-a.e. in Q and
that f = 0 p-q.e. in X\Q. By _applying Lemma 5to f and O := X\Q, we
conclude that f = 0 p-q.e. in X\Q. The assumption 9Q = (X \Q) implies

X\Q = (X\Q)UaX\Q) = (X\Q) U = X\Q.

Therefore, we get that f=0 p-qe. in X\Q. Noting that f=7f p-a.e. in
Q CQ, we have f € WOLZ(Q), by Definition The proof is finished. [

Remark 2.7. (1) In fact, in Corollary we only need to assume that
Cap, (0OMO(X\Q)) =

(2) The space Wy (Q) is equivalent to the space Hy”(Q) given in [8] by
Ambrosio-Honda.

Let (X,d,u) be an RCD*(K, N) metric measure space with some K €
R and some N > 1. Given any bounded open set 2 C X and p € (1,0),
according to [24 §4.3], the space W12(Q) is a Hilbert space, and for any
f,g € W(9), the inner product (Vf, Vg) is well defined in Ll .(Q). In the

loc
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sequel of the paper, we will always denote that

HY(Q) = WhA(Q), HH(Q):=W,*(Q) and HL(Q) := W22 (Q).
For any fixed bounded domain 2 C X, we consider the canonical Dirich-
let form (&g, HE(2)), where

(2.6) Salf) = /Q ViPdu, f € H(Q).

This canonical Dirichlet form is strongly local and regular (see, for example,
the proof of [5, Lemma 6.7]). Indeed, the strong locality is a consequence of
the locality of minimal weak upper gradients and the regularity comes from
the density of Lipschitz functions in H{(£). The associated infinitesimal
generator of (&, Hg(9)), denoted by Ag with domain D(Ag), is a non-
positive definite self-adjoint operator, and the associated analytic semi-group
is (Hif)¢>o for any f € L*(Q). If diam(Q) < diam(X)/s for some s > 1, a
compact embedding of H}() into L?(2) was proved in [29] (see also [25]
for RCD*(K, oo)-spaces for some K € R, or [13| Eq.(5.2)] for the spaces
with a local measure doubling property and a local L2-Pincaré inequality,
by the equivalence of the Sobolev norms in [4] 6, [16] and in [28] 29]). Hence
the operator (Id — Aqg)~! is compact. The spectral theorem implies that
spectrum is discrete (see, for example [20]). We denote by

0 <A <A

N

the (Dirichlet) eigenvalues of Ag. For each A, the associated eigenfunction
. Q .
is ¢y, 1.e.,

(27) Aoty = =My,
We normalize them so that ||¢S} ||z = 1 for each m € N. It is well-known that

the sequence {@,, }men forms a complete basis of L?(£2), and that the (local)
Dirichlet heat flow is given by

Hof(x) = /Q H(t ) f(y)dp, 30, Vf € L2(9),
where

(28) HYtz,y)=> e pl(@)ofh(y), Y(z,y.t) € QxQx (0,00).

m>1
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is the (local) Dirichlet heat kernel (the fundamental solution of the heat
equation with Dirichlet boundary value).

The weak maximum principle implies the monotonicity of Dirichlet heat
kernels with respect to domains. Namely, given two domains Q C ' C X,
we have

HY(t, z,y) < HY (t,2,y), Y(z,y,t) € Qx Qx(0,00).

The existence and Gaussian bounds of the global heat kernels have been
established in [53] on (X, d, it). Thus for a sequence of balls { Bg,(xo)} with
R; /0o, the heat kernels HPx (IO)(x, y,t) converge to a global heat kernel
H(z,y,t) on X x X x (0,00), as R; / 0.

Let us recall the definition of the distributional Laplacian. Given a func-
tion f € HL (), the distributional Laplacian .Z f is defined as a functional

29 25(0) =~ [(VA.Vo)u Vo HY@NI™(@),

If fe HYQ), then Zf can be extended to a functional on H}(Q). It is
clear that if f € D(Aq) and Aqf = g, then £ f = g - 1 in the sense of dis-
tributions. Conversely, it was proved [24] that any f € H}(Q), if there is g €
L?(Q) such that .Zf = g- u in the sense of distributions, then f € D(Aq)
and Aof =g.

2.3. Pointed measured Gromov-Hausdorff convergence

A pointed metric measure space (X,d,u,p) is a metric measure space
(X,d, ) with a base point p € supp(u). Recall that we always assume
supp(p) = X.

Definition 2.8. Let (Xj,d;, 1j,p;), j € NU{oo}, be a sequence of pointed
metric measure spaces. It is said that (X, d;, 15, pj) jen converge to (X0, doo,
loos Poo), @S J — 00, in the sense of pointed measured Gromov-Hausdorff
topology, denoted by

GH
(XJ7 d]uu]apj) pL (Xooa doouuooapoo)a

if for any fixed €, R > 0, there exists a constant N (e, R) > 0 such that, for
every j > N(e, R), there exists a Borel map @;’R : Br(p;j) = Xoo such that

(1> CI);"R(pj) = Poo;
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(2) for all 2,y € Br(py), |deo (@ (2), 25 (y)) — dj(z,y)| < ¢

(3) the e-neighborhood of @;’R(BR(pj)) contains Br_¢(poo);

(4) the Levi metric p; between the measures (@?R)ﬂ(/LjIBR(pJ_)) and
Hoo|Bp(p..) 18 less than e, for almost all R > 0. Here the Levi met-
ric pr(v1,12) < € for two measures vy, v, if and only if for any 6 > 0,
the d-neighborhood As of A, there hold

Vl(A) < 1/2(145) +¢ and VQ(A) < 1/1(145) + €.

Such maps <I>§-’R are called e-mGH approximations. Remark that the Levi
metric convergence is equivalent to the measure’s weak convergence.

Recall that any RCD*(K, N)-space is a length space. The pointed mea-
sured Gromov-Hausdorff convergence on length spaces can be given as fol-
lows (see, for example, [25, Remark 3.29]).

Proposition 2.9. Let (X, d;, 115,p;), 7 € NU {00}, be a sequence of pointed
metric measure spaces. Assume that all (X;,d;)jen are length spaces. Then

GH
(X]7 d]a M]?p]) prn—> (XOO> dooa ,Uoo,poo)

is equivalent to the following: There exist sequences R; /00, €; \,0 and
Borel maps ®; : X; — X such that

(1) @5(pj) = Poo;

(2') for all x,y € Bg, (pj), |doo(<1>j(x), <I>j(y)) —dj(z,y)| <€ and
®;(Br,(pj)) C Br,(P);

(3") the ej-neighborhood of ®;(Br,(p;)) contains Br,(poo);

(4’) the measures (P;)4(1;) weakly converges to pie as j — 00, that is, for
any ¢ € Co(Xxo),

lim qbo(I)jduj:/ od -
Xoc

j—o0 Xj

Given a sequence of points {z; € X;}jenu{oc}, We say that 1; — o with
respect to the sequences (¢;) and maps (®;) if and only if dog (Zoo, ®j(2;)) <
€j for all j € N. Here both (¢;) and (®;) are given in the Proposition
Below, we will sometimes write ; — 2o without mention of the particular
choices of (¢;) and (®;).
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We refer the readers to [25] for some other notions of convergence for
pointed metric measure spaces. We also consider the convergence of functions
on a sequence of converging pointed metric measure spaces.

Definition 2.10. Let (X}, d;, 115, p;) jenuiso} De a sequence of pointed met-
ric measure spaces. Assume that all (X, d;) are length spaces and that

GH
(va d]v ijpj) an_) (Xooa doov ,Moo,poo)

with the sequences (¢;) with €¢; \, 0 and maps (®;) as in Proposition
Let R > 0. Suppose that {f;};enu{oc} 18 @ sequence of Borel functions on
Bpr(pj). It is said that:

(1) fj = foo over Br(pj) at point oo € Br(Poo), if fj(z;) = foo(2oo) for any
sequence z; € X; such that ®;(z;) = o in Xo. Precisely, for any € > 0,
there exist N(g,2) € N and (e, z) > 0 such that

sup |fi(2) = foo(mec)| <&, ¥V j 2= N(g,2c0);
wEBR(pj)v dx((bj(x)’zx)<5(€7zw)

(i1) f;j = foo uniformly over Br(pj), if for any € > 0 there exist N(¢) € N
and 0(g) > 0 such that

sup |fi(®) = fo(y)] <&, Vj=N(e).
2€BR(P;), YEBR(Px); deo(P;(2),y)<6(e)

Remark 2.11. (1) The pointwise and uniform convergence of functions de-
fined on varying space have been given in [43] via an extrinsic point of view.
This definition (i) is equivalent to the pointwise convergence in Definition
2.11 in [43]. If the limit function fs is uniformly continuous on Br(p«), then
this definition (i) is equivalent to the uniform convergence in Definition 2.11
in [43).

(2) It is well know (see, for example, [I7, §3]) that if f; — fo over
Br(pso) then fo is continuous. Indeed, it can be seen as follows. Suppose
not, there exist {Ya }aenufoo} € BR(Poc) such that yo — Yoo as @ — oo and
| foo(Ya) — foo(Yoo)| = €0 for some gy > 0. Fixed each o € N, we can find a se-
quence y; o € X; such that ®;(y; ) converge to yo and fj(yja) = foo(Ya) as
J — oo. Now for sufficiently large ja, jo = N (o, Ya,€0), we have |f; (y;.) —
foo(Ya)| < €0/3. By a diagonal argument, there exists a subsequence y;_ o
converging to Yoo as o — oo. Hence, we get | fj. (yj.) — foo(¥oo)| < €0/3 for
large enough «. This is a contradiction.
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We remark that the Arzela-Ascoli theorem can be generalized to the
case where the functions live on different spaces (see, for example, [40] or
Proposition 2.12 in [43]). We also need the following lemma:

Lemma 2.12 ([16, Lemma 10.7]). Let R > 0 and let (X;,d;, pij,0j)j=1,2
be two pointed metric measure spaces with RCD*(K,N) for some K € R
and N > 1. Assume that deH(BR(pl),BR(pQ)) < g, for some € > 0, with
an e-mGH-approzimation ® = ®% : Br(p1) — Br(p2) (see Deﬁm’tion@.

If f1 is a Lipschitz function on Br(p1) with |||V filll L~ (Bp(p)) < L, then
there exists a Lipschitz function fo on Br(p2) such that

1f20 @ = fill L (Bagea)) < (),
IV falll Lo (Brpe)) < (L + 5(€)),

/ IV fo]*dpa < / |V f12dpuy + w(e),
Br(p2 Br(p1)

where k(e) := kN K, R,1L(€) 15 a positive function, depending on N, K, R and
L,with lim._,o k(e) = 0.

The lower semi-continuity of Dirichlet energy on converging spaces is
given in [43] Proposition 2.13] and [25, Theorem III]. The following special
case is enough for our purpose in this paper.

Lemma 2.13 (Lower semi-continuity of the energy). Let R > 0. Let
(X5, dj, 1y, pj)jenufsc} be a sequence of pointed metric measure spaces. As-
sume that all (Xj,d;, ) satisfy RCD*(K,N) for some K € R and N > 1
and that

GH
(Xju dja :U’jvpj) p7n—> (X007 dOO?IU’OO’pOO)

If {fi}jenn{oc} 8 a sequence of Lipschitz functions on Br(pj), for each
Jj € NU{oo}, and f; — foo uniformly over Br(p;), and if there exists Cy
such that

(2.10) sup [V fjll L= (Br(p,)) < C1,
JEN
then we have

liminf/ |V £ [2du, 2/ IV foo | dpioo -
=00 JBr(p; r(P

 \Poo
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Proof. For completeness, we sketch a proof.
By using Lemma to each f;, we can find a Lipschitz function g; on
BRr(pso) such that

195 © @5 = fill L (Ba(py)) < K(€)),

and
/ Vg Pdpiss < / IV f517d s + K(€)),
Br(poo Rr(Dj

where (@), (¢;) are given in Proposition [2.9 and s(¢;) := kn k,rc, (€j) = 0
as €; — 0, and where the constant C is in (2.10]). Then, we get that g; = foo
in L*°(Bgr(ps)) and that

lim inf/ IV f;]2dp; > lim inf/ Vi 2 dpico-
I J Br(p;) 77 JBr(pe)

Now the assertion follows, by the lower semi-continuity of energy on a fixed
space, see [16, Theorem 2.5]. O

3. The converge of Dirichlet heat kernels

In this section, we will discuss the convergence of the local Dirichlet heat
kernels on different pointed metric measure spaces.

3.1. Convergence of functions living on pmGH-converging spaces

We fix a sequence of pointed metric measure spaces (Xj, d;, Mjapj)jeNu{oo}
such that
pmGH
(va djv vapj) — (Xoo, dom Hoo»]%o)'

Throughout of this subsection, we always assume that, for each j € N,
(Xj,dj, pj) satisties RCD*(K,N) for some K € R and N > 1. Then the
limit space (X0, dso, fioo) does so, by the stability of the RC' D*-condition
under pmGH-convergence.

Let us first introduce the notions of L?-convergence and H'-convergence
for functions living on varying spaces X;. We will adapt an intrinsic point
of view for the definitions, similar as in [21, B}, [39] . We refer also readers
to [7, 25] for some similar concepts of convergence via an extrinsic point of
view.

Definition 3.1. Let R > 0.
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(1) Suppose that {f;}; € L*(Br(p;)) for each j € NU{oo}. We say that
[i = foo in L*(Br(p;)) if we have f; — foo over Br(p;) fioo-a-€. (in the
sense that f; — f for some f with foo(2) = f(2) poc-a.e. 2 € Br(pso)),
and if

i [P = [P
770 JBr(p;) Br(pee

(2) Suppose that {f;}; € H'(Br(p;)) (:=W"*(Br(p;))) for each j e
NU {oo}. We say that f; — fs in H'(Bg(p;)) if it holds f; — fxo
in L2(Br(pj) and

i [ AP = [ 9Pl

7= J Br(p;) r(pec)

It is not hard to see that if f; — fo in L*(Bgr(p;)) in the above Defi-
nition (i), then their zero extensions f; (that is, f; = f; in Br(p;) and
fi =0 in X;\Bg(p;)) strongly L?-converge to f, in the sense of [25] (see
also [7]). Indeed, by using the weak compactness of {f;} in L?(X;) (see, page
1115 on [25]), we get that f; weakly L-converge to fs, in the sense of [25].
From the Definition [3.1| (i), we have also that || £ r2(x,) = [l foll2(x.)-

Similar as in the case of functions on a fixed space, it is available that the
dominated convergence theorem for functions living on pmGH-converging
spaces. In particular, if {f;};enufoo} I8 @ sequence of functions such that
fj = fso over Br(pj) at fieo-almost all points in Br(ps) and that they are
bounded uniformly, then f; — fo in L?(Bg(p;)). For convenient, we will
give some detailed information, in the Appendix A, for the dominated con-
vergence theorem and Fatou’s lemma for functions living on varying spaces.

Let us sum up some basis properties on these convergence.

Proposition 3.2. Let R > 0.

(i) Assume that OBr(pso) = O(Xoo\Br(P))- If g; € H}(Br(pj)) with
IVgjlla < C for some C >0, for all j €N, and if gj = goo in
L%*(Br(p;)), then we have goo € HE(Br(pso))-

(ii) Let {fj}jenn{oc} e a sequence of Lipschitz functions on Bgr(p;) such
that fj = foo uniformly over Br(p;). Suppose that

(3.1) sup [V fjl| Lo<(Br(n,)) < O
jJeN

for some constant Cy > 0. Then for any goo € H'(Br(Pso)) with goo —
foo € H}(Br(poo)), there exists a sequence of functions {gj}jen such
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that g; — f; € Hy(Br(p;)), for each j €N, and that g; — goo in
H'(Br(pj))-

In particular, by taking f; =0, we conclude that: given any goo €
H}(Br(po)), there exists a sequence of functions {g;}jen such that g; €
H}(Br(p;)), for each j € N, and that g; — goo in H*(Br(p;)).

Proof. (i). From the density of the Lipo(Br(p;)) C Hi(Br(p;)), we can
assume that g; € Lipo(Bgr(p;)) for each j € N.

Let g; be the zero extension of g; in X; for each j € N. Namely, g; = g;
in Br(p;) and g; = 0 in X;\Br(p;). Noticing that §; weakly L2-converge to
Joo in the sense of [25] (see also [7]) and that

1Vgilllzax,) = IVilllL2(Ba) < C;

we obtain that oo € H'(Xso) and that §oo = goo foo-a-e. in Br(pso), and
that §oo = 0 fieo-a.e. in X\ Br(Poo)-

Now we want to show goo € H}(Br(peo)). Noting that g is a 2-quasi
continuous function and that X\ Br(pso) is an open set, we conclude, by

[38, Theorem 3.2], that oo = 0 2-q.e. in X\ Br(peo). By using the fact that
Joo = Joo Moo-a-€. In Br(Poo) and that pieo(0BRr(pso)) = 0, we have Joo = goo
loo-a.€. in Br(ps). Hence, by Deﬁnition we have goo € H} (Br(po))-

At last, by using the assumption Bg(ps) = 0(Xoc\Br(Pso)) and Corol-
lary we conclude goo € H}(Br(poo))-

(ii). From the density of the Lipy(Br(pso)) C Hi(Br(ps)), We can
assume that goo — foo € Lipo(Br(po)), and hence goo € Lip(Br(poo)) (since
foo € Lip(Br(psc)). We use Lemma [2.12) to lift a sequence of functions g; €
Lip(Br(pj)) so that:

(3.2) 1) — goo © WjllL= < K(gj),
(3.3) 1IVgilll L~ < IVgoolllz~ + K(gj) < Cy.
(3.4) 11Vjlll2 < I Vgoolll2 + #(g5),

where k(e;) depends on K,N,R and [||Vgsl|r~, and the maps ¥;:
Br(pss) = Br(p;) are the €;-mGH approximations. By (3.2)) and the facts
that f; = fo uniformly over Bgr(p;) and that goo — foo € Lipo(Br(Pso))s
we get

1gj(x) — fi(z)| < ki(e;) for all x is close near OBr(p;),
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for each j € N, and for some positive function x; with lim;_,o x1(t) = 0. We
shall modify g; slightly to

g; —r(gg) it g — f; = ka(e)),
(3.5) g5 =1 fj if |g; — fil < kile),
gj +ri(ej) if gj — f; < —k1(ey).

Then we have, for each j € N, that g; — f; € Lipo(Br(pj)) and that, by

B3 6 and (.

3.6)  IVgjlll~ < Cg. +C1 and  Timsup [[[Vg;{fl2 < [[[Vgeolllo-

J—00

From (3.5)), we have
lg; — gille= < K1(gj)-

The combination of this and implies g; = goo uniformly over Br(p;).

By using and the lower semi-continuity of energy, Lemma we
conclude that lim;_, [[|Vgjl|ll2 = || Vgso!|l2- Thus we finish the proof of (ii).
The proof is completed. O

As a corollary, we have the following convergence for the solutions of
Poisson equations living on varying spaces, which is due essentially to [21]
25, 311, [54].

Corollary 3.3. Let R > 0. Let {fj}jenufoc} and {hj}jenufoc} e two se-
quences of functions on Br(pj) such that

ffj:hj-,uj, VijeN,
on Br(pj) in the sense of distributions. Suppose that, for every s € (0, R),

fi = fso uniformly over Bs(p;), and h; — heo in L*(Bs(p;)), and there ex-
ists a constant Cs > 0 such that

(3.7) sup [Vl < (B.(p,)) < Cs-
jeN

Then we have L foo = hoo * ftoo 0N Br(pso) in the sense of distributions.
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Proof. Tt suffices to show that for any ball B CC Br(po) there holds . fo =
hoo * lhoo ON B in the sense of distributions. Namely, fo, minimizes the func-
tional

I5(f) = /B (IVF12 + hoo - f)dtioc

among all of f € H'(B) such that f — f € H}(B).

We will argue by a contradiction. Suppose not, then there exists a ball
B (goo) CC Br(poo) such that fo is not a minimizer of I (,_)(f). Accord-
ing to [16, Theorem 7.12], there exists a function go, € H'(B,(¢so)) such
that goo — foo € Hi(Br(goo)) and that

3.8 I 00) 1= min I <1I ) — €
(3.8) B, (g) (9o0) i B (goe) (f) < 1B, (g.0)(foc) — €0

for some g¢ > 0.

Fix some sp < R such that B, (¢s) CC By, (Pso). Take points By, (p;) 2
¢j = ¢oo- Note that f; € Lip(B,(q;)) for each j € NN {oo}, and f; = foo
uniformly over B,(g;). Recall that, on each B, (p;), we have |Vh;| < Cy
and Zf; = h; - pj. Then, the localized Bochner formula [56, Theorem 3.2]
implies that

, (hj )2 J— 2
.,%(\ij\ ) = N +(Vfj, Vhj) + K|V f;]
> —

Vil - |V fil + K - [V ;[

in the sense of distributions in By, (p;). Then we by (3.7)) get that
(39) H‘vaH’L"O(B,(qJ)) < 027 v.] eN,

where Cy depends only on N, K, R, C,, and dist(B,(q;),0Bs,(p;))-

By using Proposition (ii) on B,(g;) and noting that go — foo €
H{(B;(goo)), we obtain a sequence of functions g; € H'(B,(g;)) such that
gj = goo in H'(B,(gj)) and that 95~ fj € HY(B:(g;)) for all j € N. The

combination of g; a, Joo and h; —> hoo implies
(3.10)

I, (q,)(95) = / (IVg;1> + hjg;)dpj = Ip (4. (9ec)s as j — oc.

B:(g5)

The fact £ f; = h; - 11 on B, (g;) in the sense of distributions yields

I, (q))(f5) < IB,(g,)(95)
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for each j € N. Then, we by combining with (3.8]) and (3.10|) have that

limsup I (4,)(f;) < IB,(q..)(foo) — €0-

]—}OO

This contradicts to the lower semi-continuity of energy, Lemma [2.13] by
noticing that f; = fo uniformly over B,(g;) and ( -, and h; — hoo in
L%(B,(q;)). The proof is completed. O

3.2. Estimates of Dirichlet eigenvalues and eigenfunctions

Let (X,d,p) be a metric measure space satisfying RCD*(K, N) for some
K €R and N € [1,00). Note that, for any N’ > N and K' < K, (X,d, u)
satisfies RCD*(K', N') too. For simplicity, we always assume that K <0
and N 2> 3 in the following.
Fix a geodesic ball Br(p) C X with radius R € (0, dlam( )/a) for some
P

a > 2 (hence diamBg(p) < dla;?é )) Denote by A = 2\Br®) he m—th

Dirichlet eigenvalues of Ag, (,) on ball Bg(p), and by qﬁm the associated

eigenfunction with respect to AYD We normalize (;Sm such that Hd)m k) |2 = 1.
The Dirichlet heat kernel on Br(p) is

Y(w,y,t) =Y e Mo ()0l (y).
m=1

Lemma 3.4. Let Br(p) and )\7(7?), ) be as the above. Then there exist
constants C7,Ch > 0, depending only on N, K and R, such that

(3.11) Ch-mPN <A < b om? VmeN.
Proof. To simplify the notations, in this proof, we will denote by Bpg :=

Br(p) and A\, := A From the monotonicity of the heat kernels with re-
spect to domains and (2.4)—(2.5)), we have

Cn.Kk

1(B ()
CN,K,R ) t_N/2

p(Br(x))

HB) (2, 2,t) < H(z, z,t) < -exp(Cnk - t)

. exp(C’NJ( . t).
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By integrating over Bg(x), we get, for each m € N, that

m - e At < Z et < Zei)\lt < CN,K,R . tiN/Q . exp(CMK . t)
I<m leN

= Cl : t_N/2 . eXp(CQ . t).

etling v = y— and noving a m = A1 =2 UN K R 10T sOme constan N.K.R
Setting ¢ = - and noting that A, > A1 > C kR tant Civ .
(by the L?-Poincaré inequality on Bpr), we conclude that

m/je < Cp - ANV/2 . exp(Cy/Am) < C1 - AN/2 . exp(Cy /A1) < Cs - AV/2.

This implies the lower bounds in .

The upper bounds in can be proved by a comparison result for
heat kernels of Cheng (see, for example, [21]). Here we provide a simple
argument as follows.

Fix any m € N. We can find m points {x;};=12, . in Bgr such that
d(zp,xp) = R/m for any 1 <1 # 1" < m. We define functions 1; by

¢l() = n(d(.%'l,-)), Vl:1,2,...,m,

where the function 7(s) is given by

1 s<%
)= 5 (=) s ()
0 32%.

It is clear that fBR Pippdp =0, for all 1 <1 #1' < m, and that, for any
[=1,2,...,m,

Jo IVOrPdn (5)° - u(B s (@) 9006
< = < -m-,

Jpptidn — p(Ba(a)) R

where Cp is the doubling constant of u on Bg, depending only on N, K
and R. By the Rellich’s compactness (see also [13, Eq.(5.2)]), the Courant’s
min-max principle of eigenvalues still holds (see, for example, [25]). It follows
Am < 26016 R=2.m2. The proof is completed. [l
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Lemma 3.5. Let Bgr(p) and )\,(q?), ,(qjj) be as the above. Then there exists

a constant Cn ik ,rm > 0, depending on N, K, R and m, such that

Hqﬁsf)HLoo(BR(p)) < CnNk,R*Am < CNK Rm»
and that

(3.12) IV e (8, () < W, Vre(0,R).
Proof. To simplify the notations, we shall denote by Bpr := Bgr(p), Am =
A and H(z,y,t) := HB (z,y,1).

From A¢y, = —Am - dm and A\, = 0, we can get Z|om| = —Am|dm| in
the sense of distributions. Noticing that |¢,,| € H}(Bg), the Sobolev in-
equality (see [13, Eq.(5.2)]) (by the standard argument of Nash-De Giorgi-
Moser iteration and ||¢y,||2 = 1, indeed, we can choose the |¢,,| as the text
function) implies

PmllLo(Br) < ONK.R* Am - |0mll22(Br) = ON KR Am

for some constant Cy i r > 0.
By using the equation Z¢n, = Ay, - 1t = — A - 1 and the localized
Bochner formula [56, Theorem3.2], we have

Ay )?
L 2(56nP) > B0 4 (96, (A6,)) + K|V

Z (K - Am) ’ |v¢m’2

in the sense of distributions in Br. The Nash-De Giorgi-Moser iteration and
Lemma [3:4] implies that

CN.k.R
196 llm() € 2R = Dl (10l
C.k.R CN,K,Rm
_ . K — )\ . )\ < R ek it
R—r | ml - Am R—r
for some constant Cy ;c p > 0. The proof is finished. O

3.3. The convergence of heat kernels

Let K <0 and N >3 and let (Xj,dj, i1j) jenu{oc} De @ sequence of metric
measure spaces so that (Xj,d;, ;) satisfying RCD*(K, N) for each j € N.
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Take points p; € X, for all j € NU {oo}. We assume that

GH
(X, dj, 17, 75) " (Koo, doos oo Poc)-

Hence, the (Xoo, doo, floo) satisfies still RCD*(K, N) (see [22]).
Fix a > 2 and R > 0 with R € (0,diam(Xj;)/a) for all j € N. For each

j € N, we denote by )\557 3 the m—th Dirichlet eigenvalues of Apg, (, on
the ball Bgr(p;), and by d)fi?-, normalized by ||¢£,f3\|2 = 1, the associated
eigenfunction with respect to )\fﬁ z The Dirichlet heat kernel on Br(p;) is

oS )
H (@,y.1) = 3 e 000 (@)o0 w).

m=1

By using Lemma [3.4] and Lemma [3.5] we can assume that, after pass-
ing to a subsequence, (say jk,), for each fixed m € N, the eigenvalues and
eigenfunctions converge:

(3.13) lim A = A oo
J—00 ’

and

(3.14) lim ¢\ = G, oo
J—00 ’

where the convergence of gbgf ;%gbm,oo is in L?(Bg(p;j)) and is also uniformly

in B,(p;), for any r € (0, R), by Lemma and the Arzela-Ascoli theorem.

Lemma 3.6. Assume that OBp(pss) = 0(Xoo\Br(pso)). Let AP =
Ap,(p..) be the infinitesimal generator of the Dirichlet form

(EBn(pe) Ho (Br(poo)))

on Br(pso), with domain D(Agf)). Then, for each m € N, we have that
Pm,00 € D(Aéff)) and that

(3'15) Ag)gbm,oo = _)\m,oo¢m,oo-

That is, Mmoo 15 an eigenvalue of A(()g) with an associated eigenfunction

Om,oo- Moreover, the convergence qﬁﬁﬂ-%qﬁmm m (3.14]) is also in
H'(Br(pj))-
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Proof. From qﬁfﬁ; — Gm,0o in L*(Br(p;)) and

R R R R
V652112 = A6l 12 = AL

m?]’
by using Lemma and Proposition (i), we have ¢, 00 € HE (Br(poo))-
By applying Corollary and (3.12)), we conclude that

(316) googi)m,oo = _)\m,oo : Qbm,oo * Mooy

where %, is the distributional Laplacian on Br(ps). Notice that ¢y, €

H}(Br(poo))- From [24], we conclude that ¢y, o € D(Ag)) and that ||
holds. This proves the first assertion.
For the second assertion, we need only to show

(3.17) V65212 — IV 2 as 5 — oc.

The equation 1) implies that || |V¢£,§ <)>o| ll2 = Am,oo- Now the desired 1)

comes from the combination of this and || |V¢,(713- lll2 = )\gr]f} and )‘57}3' = A

as j — 0o. The proof is finished. O

The following is the crucial point in this section.

Lemma 3.7. Assume that O0Bgr(ps) = O(Xoo\Br(Po)). The sequence
{dm.c0 fmen forms a complete basis of L*(Br(peo))-

Proof. According to Lemma [3.6], it suffices to show that all of eigenfunctions
of Aéff ) are in {®m, 00 }men. Suppose not, then there exists an eigenfunction
Yoo € H} (Br(poo)) with

(3.18) |lVooll2 =1 and Yoo * Pm,codftoc =0, Vm € N.
Br(pso)

(R)

Let 0o be the eigenvalue of As’ with respect to ¥.. Define

(3.19) mo = max{m eEN: Apoo <200 + 2}.
By Proposition (i), we can lift 1» to a sequence of functions v; €

H{(Br(p;)) such that 1); — e in H'(Bg(p;)). For each j, since {¢n, ;}5°_,
is a complete basis in L?, we denote the Fourier expansion of ¢; w.r.t. {¢m, ;}
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(320) 1,[}]' = Z amJgZ)m,j, where am,j ‘= / 1/)]' : qu,jd,uj.

m—1 Br(p;)

Then
2 2
(3:21) 10513 = an;= D amy+ Z .
m2=1 m<mo m>mo+1
(3:22) IVl =Y Amiar; = D At
m>1 m>=mo+1
> Amot1g D, G
m>=mo+1

By ¥ = Yoo and ¢y j — ¢m.co in L2(Bg(p;)) as j — oo, we have, for each
m € N, that

lim am,j = / woo ’ ¢m,ooduoo =0.
J=ro0 Br(ps)
By combining with 1; = ¢e in H(Bg(pj)) and A j — Am.cc as j — 00,

for any given € € (0, 1), there exists some jg = jo(mo, €) > 0 such that for all
J = jo we have that

(323) Iyil3 =1 —e VY3 <o te lamgl <e ¥Vm<mo+1,

(where we have used [[thoo|l2 = 1 and ||Vi)||3 = 00,) and that

(3.19)
(324) )\mo+1,j > )\mOJrLOO —€ = 205 +1.

From (3.21)—(3.22) and (3.23]), we get that, for all j > jo,

2 2 2
E U j 2 1 —€e—moe”, Amg+1, E U S Oco T €

m2=2mo+1 m2mo+1
The combination of this and (3.24)) implies that

1—e—mge < M
S 20+ 17

This is impossible when € is small enough. The proof is finished. U
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This Lemma states that {\n, co; ®m.co fmen is the complete spectral system
of Agf ). Hence, the limit of the convergence in is unique and does
not depend of the choice of subsequence j. So the Dirichlet heat kernel of
Br(ps), in fact, is

(3.25) (x,y,1t) Z e Ml oo(T) * oo (y)-

Therefore, we have obtained:

Theorem 3.8. Assume that 9Br(poo) za(XOO\BR(pOO)) Let H](,R) (z,9,1)
be the Dirichlet heat kernel on Br(p;) for all j € NU {oc}. Then for any
fized t > 0, we have that HJ(R)(pj, b)) — Héf)(poo, -, t) is in L*(Br(p;)) and
is also uniformly in Br/s(p;), as j — 0o.

In particular, the local spectral convergence, Proposition[1.3, holds.

Remark that an L2?-convergence theorem for global heat flows on
(X;,dj, ;) was proved in [25]. An H'-convergence theorem for local heat
flows has been recently obtained by Ambrosio-Honda in [§].

Lemma 3.9. Let (X,d,u,p) be a pointed metric measure space with
RCD*(K,N) for some K €R and N > 3. Let H®)(z,y,t) be the Dirich-
let heat kernel on Br(p). Then, for any t > 0, there exists a constant some
constant Cn it > 0 such that for all R > R > Ry := max{5t, \/5Nt/2},
we have that

’ Cr.Nit _R
3.26 sup H(R) :E7p7t _H(R) l’apat < ———"F"=-¢€ ;
@20 s [t = 0@ 0] < o 2o
and that
520 | Hp)aue) < Cusea e
X\Br

3According to Remark (1), the assumption can be replaced by

CapQ (aBR(poo)\a(Xoo\BR(poo))) =0.
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Proof. Let H(x,y,t) be the heat kernel on (X,d, ). Recalling the mono-

tonicity of heat kernels with respect to domains that
(3.28) HB (z,p,t) < HE) (2,p,t) < H(z,p,t), V&€ Br(p),
and combining with the upper bound of H, (12.5)), we have

(3.29) sup [H(z,p,t) — H®) (2, p, )|
Br

< sup ‘H(x,p,s)—H(R)(x,p,s)‘
8BR><(0,t]

C 2
g sup ﬂexp <_R+CK7NS>
s€(0,t] M(B\/E) 95

1 R?
< Cg,N - exp (CK,N : t) - sup - exp (—> ;
se(04 H(B3) 5s

where B, := B,(p), and we have used the maximum principle for the first
inequality, since both H(-,p,-) and H®) (. p,-) are weak solutions of the
heat equation on Bg x (0,00) with the same initial data. From the local

measure doubling property (2.4]), we have

(3.30)

If R? > 5Nt/2, then we by %logv(s) =N i(R2 — 5N8) > 0 have

552 2s 552
that v(s) < wv(t) for all 0 < s < t. Hence,

(- 8) _oo( %)
(3.31) <

sup S )
s€(0,] sN/2 tN/2

2
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provided R > /5Nt/2. The combination of |)|) yields that

(3.32) sup }H(w,p,t) - H(R)(:c,p, t)|
Br
CN it R?
<C . C ) — -
KN eXp( KN ) u(B) eXp( 5t)
< ONKC R e RS s

for any R > Ry := max {5t, \/5Nt/2}. Now the assertion 1' comes from
(3.28) and (3.32]).

The generalized Bishop-Gromov inequality (2.2)) for RC'D*(K, N)-space
implies that, for all 7 > 1 and all R > Vi,

u(BGryr\Bin) _ Al + DR) ~a(R) _ Crrif
ZEV I (V) S v

for some constant Cly 5, where fi(s) := [ sV (7)dr and s, (7) is given in
’ N1

(2.3). Hence we have, for all j > 1 and all R >/t (which is ensured by
R = Ro), that

/ H(zp, t)dpu(z)
X\Br

o0

d2
Z/ exp <—M +CkN - t) dp(x)
B+1yr\Bjr 5t

Jj=1

2. w(Bg+1yr\BjR) (R)?
< . — .
<CknN E W(B.) exp e +Cni -t

CrnN
= u(By)

J=1

CrN (jR)? _
< SEN NN op (- Cnx-t+ClyyiR).
i 2o o (= + Ot G

The combination of this and (3.28)) implies (3.27)). The proof is finished. [

Jj=1

As a consequence, we have the convergence of heat kernels as follows.

Corollary 3.10. For any R large enough, we assume that OBgr(pso) =

9(Xoo\Br(px))-
Let R; be a sequence such that Rj — 0o as j — oco. Let H;Rj)(x,y,t) be
the Dirichlet heat kernel on By, (p;) for all j € NU {oo}. Then for any fized
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t > 0, the convergence H§Rj)(~,pj,t) — Hoo(*, Poo, ) holds in L' sense, and

holds also uniformly in Br(p;) for any fired R, as j — oo.

Proof. It comes immediately from the combination of Theorem and
Lemma [3.91 O
This corollary in the special case where (M]”, gj,vol;,pj) are a sequence
of smooth n-dimensional Riemannian manifolds with Ric > —k and
volj(Bi(p1)) = vg > 0, was earlier obtained by Ding [21]. A pointed con-
verging theorem for global heat kernels on RC D*(K, N) spaces was recently
given in [9].

Remark 3.11. Let X :=C(Y) be the cone over space Y such that
(X,d, p,0y) is an RCD*(0, N) space (with the cone metric and cone mea-
sure), where oy is the vertex. Then, for any ball Br(oy ), we have 0Bgr(oy) =

9(X\Br(oy)). In particular, it holds for any Euclidean space.

4. Weyl’s law

In this section, we fix a metric measure space (X,d,u) satisfying
RCD*(K,N) for some K € R and N € [1,00). Without loss the general-
ity, we can assume that K < 0 and N > 3 in the following.
Let p € X and r € (0, 1), we consider the rescaled and normalized pointed
metric measure space (X, d,., b, p), where
R T o O p._ M
dp(e, ) i=r2d(- ), pbi= bp.7) and

(4.1) blon) = /l3r(P) (1 B d(ij x)) )

By the measure doubling property, we have

p(B,9) = bp.) > 5o (B, )

where Cp is the doubling constant on B, (p). Indeed, for any r > 0, we have

/B dlp () < 5 (Bra) (B 0)\Bra)

N3

r

= u(B.0) ~ (B < (7= i) u(B0)
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This implies immediately that

b.0) = (B 0) [ dp (@) > s (B )

,
Definition 4.1 (Tangent cones). Let (X,d, p) be a metric measure space
and let p € X. A pointed metric measure space (Y,dy,my,y) is called a
tangent cone of (X, d, p) at p if there exists a sequence {r;}jen with r; — 0,
as j — oo, such that

GH
(X> drj ) ,Ulr)jap) pm_> (Y7 dy,my, y)

The set of all the tangent cones at p is denoted by Tan(X,d, u, p). Remark
that a tangent cone at p may depend on the choice of the sequence {r;}.

A point p € X, is called a k-regular point if the tangent cones at p is
unique and if

(4.2) Tan(X, d, 1, p) = { (R*, dg,.%:,0) },

where dg is the standard Euclidean metric of R* and .£¥ is the k-dimensional
Lebesgue measure normalized so that fBl(O (1 — |z)dZL*(z) = 1. We denote
by Ry := all of k-regular points of (X,d, ug

Very recently, a structure theorem of RC'D*(K, N )-spaces has been given
by Mondino-Naber [43], and by Kell-Mondino [37], Gigli-Pasqualetto [26]
and De Philippis al. [19].

Theorem 4.2. Let (X,d,u) be a metric measure space salisfying
RCD*(K,N) for some K € R and some N € [1,00). Then we have

(i) ([43, Theorem 6.7]). pu(X\ Urcrgn] Rie) = 0, where [N] := max{n €
N: n< N},

(ii) ([43, Theorem 1.3]). Each Ry is k-rectifiable. More precisely, for
every € > 0, we can cover Ry, up to an u-negligible subset, by a countable
collection of sets Uf’g, € N, with the property that each URt s (1+¢)-
bilipschitz to a subset of R¥;

(iii) ([19,26,137]). For each UF* in above (ii), the measure il re < A,
the k-dimensional Hausdorff measure.

Let us recall that the k-dimensional density function of u (k> 1), 6y :
X — [0,00] is defined by

1(Br(p)

(4.3) Or(p) = Ok(p, p) == lim r

r—=0 Wi T
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where wy, is the volume of the unit ball in R* (under the standard Lebesgue’s
measure). From Theorem 4.2 (ii) and (iii), we conclude that, for u-almost
all p € Ry, the limit (4.3)) exists and is in (0, 00), and that

(4.4) plr, = Ok - A"

Indeed, by the fact u|r, is a k-rectifiable measure, we by [10, Theorem 5.4]
have that u|g, = 0 - A k for some non-negative .#*-integrable function 6y,
and moreover,

Be(p) = lim 1(Br(p) N Ri)

= . AH* —ae peRy.
r—0 Wg T

On the other hand, Ry has density 1 p-almost all p € Ry, that is

B,
limwzl, U —ae peERg.

r=0 (B (p))

By using the fact u|lr, < #* again and combining with the above two
equalities, we get that, for u-almost all p € Ry, the limit of (4.3)) exists and
0k (p) = Or(p) for p-almost all points in Ry (see also [I8, Theorem 2.12)).

Lemma 4.3. For p-almost all p € Ry, we have

. b(p,r) _ Ok(p)wr
(4.5) }gr[l) rk k41

Proof. Let p € Ry, such that the limit of (4.3]) exists and is in (0,00). By
(4.3), we have

(4.6) 1(By(p)) = Ou(p)wi - "+ (14 0(1)).

From 1} it is clear that r — ,u(Br(p)) is locally Lipschitz on (0, R) for
any R > 0. So we get by (4.6) that for almost all » € (0, R),

L u(Br(9) 1= Ap(r) = Oxlp)en - k- - (14 0(1)),

and hence

e A(svds = B OWPWE kL,
/Br(p)d(p,x)du(m)—/o s Ap(s)ds = B (1 o)),



1902 H.-C. Zhang and X.-P. Zhu

Therefore, from (4.6) and the definition of b(p,r) in (4.1]), we conclude

b(p,r) = 92(]_):0;!3 rF (14 0(1)).

This is (4.5)), and the proof is finished. U

Let Q C X be a bounded open subset and let H*}(z,y,t) be the Dirichlet
heat kernel on €.

Lemma 4.4. For p-almost all p € R N, we have

1
Or(p) - (4m)h/2

Proof. By Lemma [£.3] it suffices to show that, for y-almost all p € Ry, N Q,

(4.7) hmH (p,p,t) - /% =

WE

k/2
E+1 - (4m)

(4.8) lim H(p, p, ) - b(p, V't) =
We shall first consider the case where 2 = Br(p) for some R > 0.
Given any «, 5 > 0, we denote by H(Eéa;)(x, y, 1) the Dirichlet heat kernel

on Byr(p) C (X, ad, Bu,p), the rescaled space. It is clear that

a 1 t
(4.9) H (@) = 5 HOwy, o).

By taking any sequence r; “\ 0 as j — oo and choosing « := =r;, 8=
b~1(p,r;), by using Corollary [3.10| (and Remark [3.11)) and the deﬁmtlon
of Ry, we get

mw%m@wm—mmkmrwuww

J—00

where

— _ _ Yk
by, = /Bl(Ok) (1— |z])d= PR

Hence, we get

Wk

Lk —k/2
k+1 (4) %

(4.10) lim H (p, p, 1) - b(p, V't) =
t—0

Secondly, we consider that €2 is general a bounded domain. In this case,
we can find two balls such that Bpg, (p) C Q C Bg,(p). According to the
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monotonicity of Dirichlet heat kernels on domains, we have
H) (p,p,t) < H(p,p,t) < HF) (p,p, 1).

The desired (4.8) comes from the combination of this and (4.10f). Now, the
proof is finished. 0

In order to state the Weyl’s law, we introduce the following condition.

Definition 4.5. Let ko > 0 and ro € (0,1), and let Q C (X,d) be domain.
A Radon measure v is said to be kg—noncollapsing on € of scale rg, if the
functions x — % are integrable uniformly inr € (0,ry). More precisely,
for any e > 0, there exists a constant § = §(e, 1o, ko, Q) > 0 such that, for any
v-measurable set E C Q with v(E) < 4, it holds

rko
(4.11) /EV(BT(HJ))dV(x) <e, Vre(0,r).

It is clear that if a measure v is kg—noncollapsing on 2 of scale 7y, then
for any k' > ko and ' < rg, it is still &’—noncollapsing of scale r’. Let us
consider some examples.

Example 1. Let (X,d,u) be an RCD*(K, N)-space for some K € R and
N > 1. Then, for any bounded domain 2 C X, the measure p must be
N —noncollapsing on 2 of scale dq := diam(2). Indeed, by (2.4), we have

p(Br(x))

AL S N, Y e (0, dq).
W(Ba(a)) = (0,do)

N

That is, m < Cd_Q1 /1(Bg,(z)). Hence, the measure p is N—noncol-

lapsing on (2 of scale dgq.

Example 2. Let (X,d, ) be a metric measure space. Suppose that p is
ko—noncollapsing on €2 of scale 9. Assume that v is another Radon measure
such that

v(Br(p)) =2 C- u(Br(p)), Vre(0,r),Vpeq

for some constant C' > 0. Then v is also kg—noncollapsing on €2 of scale rg.
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Theorem 4.6. Let (X,d, ) be an RCD*(K, N)-metric measure space and
let Q C X be a bounded domain. We set

(4.12) kmax := max {k | p(QNRy) > 0}.

Assume that p is ko-noncollapsing on 0 of scale ro for some ko € (0, kmax]
and some rg > 0. Then we have the asymptotic formula of Dirichlet eigen-
values

Hhmax (N Ry,
(A2

(4.13) lim e

A /2 T (Emax/2 + 1)

where Nq(\) == #{)\? : )\? < A}, and T'(s) is the Gamma function.

Proof. By the upper bounds of the heat kernel (2.5)), we have that, for any
t<1,

Cn i

Cl
4.14) HYz,2,t) < H(z,z,t) < -exp (C ‘1) < DK
(4140) HOwa.0) < Hint) < e o (O 1) <

B j(x))

In the following, we denote by k,, := kmnax. Since k., > kg, we know that u
is also k,,—noncollapsing on 2 of scale ry. Fix any € > 0 and let § > 0 be
given in the definition of k,,—noncollapsing on €2 of scale rg. From Lemma
and Egorov’s Theorem, there exists a p-measurable set £ with u(E) < 6
such that

H(z, z,t) - thn/? uniformly on (QN Ry, )\E.

O, (x) - (47)km/2

Hence, by using (4.14)) and the fact that p is k,, —noncollapsing on €2 of scale
0, We get

(4.15) lim e thn/2 . HY (2, 2, t)d ()
m k?n
< Oy g€+ lim thm/2 {2 2, t)dp(x)

=0 J(QnRy, \E

=Chg €+ / lim t57/2 . H® (2, x, t)dp(z)
' (QNRy, )\E 10

m
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O
=Chg- €+ /
K onRry, Ok, ()
(4m)km/2 7

z)
4 )kem /2

1
= C -5—1—/ du(z
WK Ry, Ok, (x) - (4m)km/2 ule)

(

:CJ,V,K'6+

where we have used pu|g, =60, - % On the other hand, Fatou’s lemma
implies

lim /2 HY (2, 2, t)dp(x) > / lim t5/2 . H? (2, 2, t)du(z)
t=0 JanRr,,, QNRy,, t70
_ A (QNRy,)
(47)km /2 '

Therefore, letting € — 0, we conclude that

km (O
(4.16) lim the /2 HY 2, 2, t)du(z) = . kﬁ /7231%)
=0 Qﬂka (47‘() m

For each k < ky,, From Lemma [4.4] we have, for u-almost all z € Ry, that

limHQ(x,x,t)  tkm/2 = Jim HQ(azja:,t) st = 0, Vk<kpny.

t—0 t—0

By the same argument as deducing (4.15)), we obtain

(4.17) lim thm/2 L HY (g, 2, t)dp(x) = 0.
t—0 QMR

The combination of (4.16)), (4.17) and Theorem (i) implies that

o0
lim Fm/2 Z e Nt =Tim [ thn/2. H®(z, 2, t)dp
j=1

t—0 t—0 Jo
= lim /2 H (2, 2, t)dp
=0 Januim R))
k
=lm> / o2, gy = 2 O R)
=0~ Jr;n0 (4)kn/2

where, in the second equality, we have used the fact that p(Q2NR;) = 0 for
any j' > k.
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Finally, by applying the Karamata Tauberian theorem, we have

. Nao(\) o A (QNRy,)
o e G VR VR
The proof is finished. O

Remark 4.7. We can consider the constant kpayx in (4.12)) as the maximal
essential dimension of . It is clear that kyax < [N] for any domain €2 of an
RCD*(K, N)-space, by Theorem [4.2](1).

Proof of Theorem|[1.1]. Let  C X be a bounded domain. We first show that
(4.18) (2N Rg) =0, forany integer k < N.

From Theorem [4.2{(ii), we know that, for any integer 1 < k < [N], Ry is k-
rectifiable. Thus the Hausdorff dimension dim »(Ry) < k. In particular, we
have

AN (QNRE) =0, forany integer k < N.

The assumption p < 2V implies p(Q2 NRy) = 0. This is (4.18).
Secondly, we want to prove

(4.19) NeN and p(Q\Ry)=0.

We will argue by a contradiction to show that N is an integer. Suppose
not, then we have [N] < N. From , we get u(Q N (UISkS[N]Rk)) =0.
By combining with Theorem [4.2i), we conclude p(€2) = 0. This contradicts
to the fact that pu(O) > 0 for any open subset O C X (since supp(p) = X).
Thus, N is an integer. Now let us prove the assertion ,u(Q\R N) = 0. By using
again, we get p1(Q N (Urcken—1Ry)) = 0. It follows pu(Q\Ry) = 0, by
Theorem [4.2]1).

At last, we will complete the proof of 1) From 1) we have M(Q N
RN) = () > 0, the definition of kyax yields kmax = N (see ) Thus,

we have kpax = N (recalling that kmax < N, see Remark . Now we con-
clude by Theorem (and by Ezample 1 above) that

(4.20) lim Y2 oG

A—00 )\N/2

=T(N/2 +1)

. wN-ij(QﬂRN)
N (2m)N ’

where we have used that I'(N/2) = %’;Z/;
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We remain only to show that sV (QNRy) = #N(Q). Equivalently,
HN(Q\Rn) = 0. It follows immediately from the assumption #V < p and
(4.19). Now the proof is finished. O

Appendix A. Dominated convergence theorem and Fatou’s
lemma on pmG H-converging spaces

Dominated convergence theorem and Fatou’s lemma are among the most
important assertions in all of analysis. In this appendix, we will give an in-
troduction of them for functions defined on a sequence of pmG H-converging
metric measure spaces. They are well-known for experts.

Let (Xj,dj, 1j,pj), 7 € NU{oo}, be a sequence of pointed metric mea-
sure spaces. In this appendix, we always assume that

(A1) all of (Xj,d;) are length spaces

GH
and (Xj, dj, Mj,pj) P (Xom oo, Moo:pOO)'

Please see Proposition for the definitions of pointed measured Gromov-
Hausdorff convergence (pmG H-convergence).

Definition A.1. Let R > 0. Let {f;} be a sequence of Borel functions
defined on Bg(p;) for each j € NU {oo}. We say that

(A.2) hjrgg.}f [i 2 feo at ZToo € Br(Pso)

if liminf; o fj(2j) > foo(2s) holds for any sequence {z;};en converging
to Too. More precisely, by letting (®;) and (¢;) be given in Proposition
means the following: for any € > 0, there exist N (e, z~) € N and
0(g,xoo) > 0 such that

(4.3) inf F(2) > foolan) — =
2z€BRr(pj), dso (<I>j (z),zw) <I(e,20)

We say that limsup;_,, fj < feo at oo € Br(poo) if and only if

lim inf<_fj) > — foo
j—o0

at Too. It is clear that f; — fo over Br(pj) at 2o € Br(pso) in the sense of
Definition 2.10| (7) if and only if im inf; e fj > foo and limsup,_, o, fj < foo
at Too € Br(poo)-
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Proposition A.2 (Fatou’s Lemma on pmGH-converging spaces).
Let R > 0. Let {f;}jenuioc} be a sequence of nonnegative Borel real func-
tion defined on Br(p;). Suppose that fso € L'(Br(pso)) and lower semi-
continuous foo-a.e. on Br(pso), and that

(A4) liminf f; > foo, poo—a.e. in Br(poo),
J—00

then

(A.5) lim inf / fidp; > / foodpioo.
7700 J Br(p;) Br(peo)

We need the following a variant of the classical Fatou’s lemma:

Lemma A.3. Let (X,d) be a metric space, and let g be a nonnegative
Borel real function on X. Suppose that {v;}jenuic} be a sequence of Radon
measures on X such that v; = v, as j — 0o. Assume that g is lower semi-
continuous Vso-a.e. on X. Then we have

liminf/ gdv; 2/ gdvso.

Proof. Since g is lower semi-continuous almost everywhere, there exist a
sequence of (Lipschitz) continuous functions g; such that g;(x) < g(x) and
gt(z) T g(z) as t = 00 at ve-a.e. © € X ([Il Lemma 1.61]).

Fix each t > 0, we put, for any s > 0, that

E(s) := g;l((s,oo)) and Gj(s) = vj(E(s)).
Then G; >0 and Ei(s) is open, and by vj — vs that lim; o Gj(s) >

Goo(s). By using the fact that [ gidv; = [; G;(s)ds ant the Fatou’s lemma
on [0,00), we conclude that

liminf/ grdv; 2/ gidrse, for all ¢t > 0.
X X

J—00

At last, the assertion comes from the fact g; < g and the monotone converge
theorem. 0

Proof of Proposition[A.4 Let (®;) and (¢;) be given in Proposition
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For any fixed € > 0 and k € N, we denote
Ay(e) == {xoo € Br(pss): ¥ £ > k, it holds
inf fo(2) > foo(2oo) — 5}.

2€Ba(pr), doo (20(2) 200 ) <B(e200)
It is easily seen that Ay (e) is increasing in k and by (A.4) that
fioo(BR(Poo)) = oo (Ukz1 Ak(e)) = m pio (Ak(e)).

Then, for any fixed £ > 0, there exists some kg := ko(¢) € N such that

(A.6) / Foollinn > / Frodfins — ¢,
Ako(é‘)

Br(peo)
where we have used fo, € L'(Br(pso)). We put
Ej(s)i={x € Ba(p): f(x) > s}, VjeNU{oo}, Vselo,00).
Given any € > 0 (and fixed some ko in (A.6)), we have
(A.7) <I>;1(Eoo(s) N Ay, (€)) C Ey(s—e), VIL=ky, Vsé€lgo00).

Indeed, letting ¢ > ko, for each z € <I>€_1 (Eso(s) N A, (e)), we get ®(z) €
E(s) N Ag, (). This implies foo(Pr(x)) > s and fo(x) > foo(Pe(z)) —e. It
follows fy(z) > s —e. Le., x € Ey(s —¢).

By , we have
pe(Ee(s —€)) = e (2, (Boo(s) N Ak, (2))) = [(2e)giue] (Eoo(s) N Ak, (€))

for any ¢ > ko and any s > . By integrating over s € (g,00), we get

/ fedpe = / pie(Eq(s —e))ds > food[(Pe)gie]
Br(pe) €

/Ako (5)m{foo 25}

for any ¢ > kg. Thus, by the weak convergence (®¢)stt¢ — fioo 0N BRr(Poo)
and Lemma we conclude that, for any fixed € > 0,

=00 JBu(p,) Aso ()N foo 2e}

2/ foodﬂoo_/ foodﬂoo-
Ay (€) Br(pss){foo<e}
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At last, letting € — 0 and noting that f., € L'((Br(pso)), the assertion

(A.5) comes from the combination of (A.6) and (A.8]). The proof is fin-
ished. O

From this, it is not hard to deduce the dominated converge theorem for
functions living on a sequence of pmG H-converging spaces as following.

Proposition A.4 (Dominated convergence thoerem on pmGH-
converging spaces). Let R > 0 and let { f;}jenu{oc} be a sequence of Borel
real function defined on Br(p;). Suppose that fj = foo pioo-a.€. 0n Br(poo).
If there exists a sequence of functions {Fj}jenufoc} Such that Fy — Fu in
LY(Br(p;)) in the sense of Deﬁmtion (by replacing L? there by L'), and
that

[fi(x)] < Fj(z)  Va € Br(pj), Vj €N,

and |foo| < Foo for poo-almost all in Br(pso), then

(A.9) lim Bl = [ Ul
I J Br(p;) Br(ps

Proof. From Remark [2.11{(2), we know that f is continuous at almost ev-

erywhere. By using Proposition to both |f;| and Fj — | f;], the assertion

follows. O
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