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A topological characterization of

toroidally alternating knots

Seungwon Kim

We extend Howie’s characterization of alternating knots to give a
topological characterization of toroidally alternating knots, which
were defined by Adams. We provide necessary and sufficient condi-
tions for a knot to be toroidally alternating. We also give a topolog-
ical characterization of almost-alternating knots which is different
from Ito’s recent characterization.

1. Introduction

Recently, Greene [7] and Howie [8, 9] independently gave a topological char-
acterization of alternating knots, which answered a long-standing question
of Ralph Fox. Below is Howie’s characterization:

Theorem. [8, 9] A non-trivial knot is alternating if and only if there exists
a pair of connected spanning surfaces Σ and Σ′ in the knot exterior such that

(1) χ(Σ) + χ(Σ′) +
1

2
i(∂Σ, ∂Σ′) = 2,

where i(∂Σ, ∂Σ′) is the minimal intersection number of ∂Σ and ∂Σ′.

In [3], Adams defined a toroidally alternating knot as a knot which has
an alternating diagram on an unknotted torus in S3, such that the dia-
gram divides the torus into a disjoint union of discs; i.e., the diagram is cel-
lularly embedded. Toroidally alternating knots include almost-alternating
knots and Turaev genus one knots. Adams showed that non-trivial prime
toroidally alternating knots which are not torus knots are hyperbolic. In
this paper, we give a topological characterization of toroidally alternating
knots, extending Howie’s characterization of alternating knots.

Several other generalizations of alternating knots have recently been
topologically characterized. In [10], Ito gave a topological characterization
of almost-alternating knots, which were defined by Adams in [4]. In [9],
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Howie defined weakly generalized alternating knots and gave a topological
characterization of these knots on the torus. Furthermore, in [11], Kalfa-
gianni gave a characterization of adequate knots in terms of the degree of
their colored Jones polynomial.

In this paper, we consider a pair of spanning surfaces satisfying an equa-
tion similar to equation (1). Theorem 1 shows that in this case, the knot has
a “non-trivial” alternating diagram on the torus. Non-triviality is important
because every knot has an alternating diagram on the torus boundary of its
regular neighborhood. See Figure 1.

Figure 1. Every knot has an alternating diagram on the torus boundary of
its regular neighborhood.

Theorem 1 also says that if one of the spanning surfaces is free, then we
can find an alternating diagram of a knot on an unknotted torus. When the
torus is unknotted, it is a Heegaard surface, and this condition plays an im-
portant role in defining alternating distances, which measure topologically
how far a knot is from being alternating (see [13] for more details.). For
example, the alternating genus of a knot is the minimal genus of a Heegaard
surface such that the knot has a cellularly embedded alternating diagram on
it. The Turaev genus is another interesting alternating distance, which is the
minimal genus of a Heegaard surface with a Morse function condition, such
that the knot has a cellularly embedded alternating diagram on it (see [6]
for more details.). Alternating genus and Turaev genus are both defined for
an alternating diagram that is cellularly embedded on the surface. The con-
ditions in Theorem 1 are not enough to find a cellularly embedded diagram:
The alternating diagrams on the torus that we get from Theorem 1 may
have an annular region and they might not be checkerboard colorable. Note
that every cellularly embedded alternating diagram on a closed orientable
surface is checkerboard colorable.

In Theorem 2, we give additional conditions – that the spanning surfaces
are relatively separable, and a detachable curve is incident to a bigon (which
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Toroidally alternating knots 1827

(a) An example of a
cellularly embedded
alternating diagram
on a torus.

(b) An example of a
non-cellularly embed-
ded, checkerboard-
colorable alternating
diagram on a torus.

(c) An example of an
alternating diagram
on a torus which
is not checkerboard-
colorable.

are defined in Definition 4 below) – to find a cellularly embedded alternating
diagram on a torus. These conditions give a trichotomy for a pair of spanning
surfaces:

1) A pair of spanning surfaces is not relatively separable.

2) A pair of spanning surfaces is relatively separable, and every detach-
able curve on both spanning surfaces is incident to a bigon.

3) A pair of spanning surfaces is relatively separable, but there exists a
detachable curve which is not incident to a bigon.

Theorem 2 shows that a knot is toroidally alternating if and only if there
exists a pair of spanning surfaces that satisfies certain conditions and either
condition (1) or (2). If every pair of spanning surfaces satisfies condition (3),
then we can still find some non-trivial alternating diagram on an unknotted
torus by Theorem 1, but it may or may not be checkerboard colorable.

Finally, a knot is almost-alternating if it has an almost-alternating dia-
gram that can be changed to an alternating diagram by one crossing change.
In Theorem 3, we show that for any knot as in Theorem 2, condition (2) is
equivalent to a knot being almost-alternating. In [10], Ito gave a topolog-
ical characterization of almost-alternating knots, but our characterization
is different. He used all-A and all-B state surfaces of an almost-alternating
diagram, which are the checkerboard surfaces of the Turaev surface of the
almost-alternating diagram. We use a different pair of spanning surfaces to
obtain a checkerboard-colorable alternating diagram on an unknotted torus,
which is not cellularly embedded. It is an interesting question how the two
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checkerboard surfaces of this diagram are related to the spanning surfaces
used in [10].
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2. Alternating knots on a torus

Throughout this paper, we use the following proposition that every alter-
nating knot is both almost-alternating and toroidally alternating.

Proposition 1. Let K be an alternating knot. Then K has an almost-
alternating diagram and a toroidally alternating diagram.

Proof. By [4], every alternating knot has an almost-alternating diagram. By
[3], we can find a toroidally alternating diagram from an almost-alternating
diagram. �

Definition 1. A spanning surface Σ̄ of a knot K in S3 is a surface
embedded in S3 such that ∂Σ̄ = K. For Σ̄, we define a spanning surface Σ
in a knot exterior E(K) = S3 − int(N(K)) by Σ = Σ̄ ∩ E(K). A spanning
surface Σ̄ of a knot K in S3 is free if π1(S

3 − Σ̄) is a free group.

Note that a spanning surface is free if and only if the closure of S3 − Σ̄
is a handlebody.

For every pair of spanning surfaces Σ and Σ′, we can isotope them so
that their boundaries realize the minimal intersection number, and each such
isotopy can be extended to an isotopy of S3. Then we have the following
lemma from [8, 9].

Lemma 1 ([8, 9]). If two spanning surfaces in a knot exterior are isotoped
so that their boundaries realize the minimal intersection number, then every
intersection arc is standard, as shown in Figure 2.
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Toroidally alternating knots 1829

Figure 2. A neighborhood of a standard intersection arc of two spanning
surfaces in a knot exterior.

Consider Σ̄ ∪ Σ̄′ in S3 as above. If we contract all standard arcs, as
in Figure 3, then we get an immersed surface in S3 such that every self-
intersection is a simple closed curve. We also get a connected 4-valent graph
GK on this immersed surface, coming from K, which is away from every self-
intersection loop. We will call this immersed surface an almost-projection
surface of Σ and Σ′.

Figure 3. Contracting a standard arc intersection.

Figure 4. An example of an almost-projection surface (left). It is homeo-
morphic to a Klein bottle which is immersed as in the middle figure, and a
4-valent graph GK is on the surface as in the right figure.

Lastly, we define the complexity of an alternating diagram DK of a
knot K on an embedded surface. Below, let GK denote the 4-valent graph
obtained from projecting DK on the surface naturally.
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Definition 2. Let K be a knot which has a diagram DK on some embedded
surface T .

r(DK , T ) = min{|γ ∩GK |
∣∣ γ is a boundary of a compressing disc of T

which intersects GK transversely only in edges of GK .}(2)

Theorem 1. Let Σ and Σ′ be connected spanning surfaces in the knot ex-
terior E(K), such that

(3) χ(Σ) + χ(Σ′) +
1

2
i(∂Σ, ∂Σ′) = 0,

where i(∂Σ, ∂Σ′) is the minimal intersection number of ∂Σ and ∂Σ′. Then
there exists a torus T embedded in S3 such that K has an alternating diagram
DK on T with r(DK , T ) ≥ 2. Furthermore, if Σ or Σ′ is free, then T is an
unknotted torus (i.e., a Heegaard torus).

Remark 1. Howie [9] considered an alternating diagram on the torus which
is checkerboard colorable. To get his characterization of weakly generalized
alternating knots, he added certain other conditions. In Theorem 1, we show
that without additional conditions, we can still find a non-trivial alternating
diagram of the knot on the torus.

Proof. First, we will prove the existence of DK and T . Consider an almost-
projection surface of Σ and Σ′. By equation (3), this almost-projection sur-
face can be either an immersed torus or an immersed Klein bottle.

Case 1: The almost-projection surface is an immersed torus.

For each self-intersection curve, we have two possibilities. First, a self-
intersection curve can bound a disc on the immersed torus. Then we can find
an innermost self-intersection curve inside the disc. If we surger along the
disc bounded by the innermost self-intersection curve as in Figure 5, then
the resulting surface can be disconnected, or it is an immersed sphere.

If the resulting surface is an immersed sphere, then by [8, 9], K is al-
ternating. Hence, by Proposition 1, K is toroidally alternating. Also in this
case, by Corollary 4.6 in [12], r(DK , T ) = 2. If the resulting surface is dis-
connected, then one component is a torus, and the other component is a
sphere. If GK is on the sphere component, then again, K is alternating.
Otherwise, we have reduced the number of self-intersections. We continue
until all such inessential self-intersections are eliminated.
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Figure 5. Sugery along a disc.

On the other hand, the self-intersection curve can be essential on the
immersed torus. But we now prove by contradiction that this cannot occur.
Let f : T ′ → S3 be an immersion map, and let σ be a self-intersection loop
on f(T ′). Then f−1(σ) consists of two essential simple closed curves, so they
bound an annulus on the torus as in Figure 6. Since GK does not intersect
with any self-intersection curves, f−1(GK) is a connected 4-valent graph on
one of the annuli bounded by f−1(σ). Hence, both components of f−1(σ) are
in the same region of f−1(GK), which implies that σ is a self-intersection of
either Σ̄ or Σ̄′, which contradicts the fact that each of them is an embedded
surface. Hence, there are no essential self-intersection curves.

Figure 6. Preimages of a self-intersection loop bound an annulus on the
torus.

Therefore, GK is a 4-valent graph on an embedded torus T in S3. We
can recover the diagram DK from GK by replacing each vertex of GK with
a neighborhood of a standard arc. If the resulting diagram DK is not al-
ternating, there exists a bigon between ∂Σ and ∂Σ′, which contradicts the
minimality of the intersection number of boundaries. Hence, K has an al-
ternating diagram on T . Also, from the construction, DK is checkerboard
colorable.

We claim that either r(DK , T ) ≥ 2 or K is alternating. Suppose that for
the resulting alternating diagram DK on the torus T , r(DK , T ) < 2. Since
DK is checkerboard colorable, every simple closed curve on T intersects GK

transversely in an even number of points. Therefore, r(DK , T ) = 0, so we
can find a compressing disc of T which does not intersect DK . Then com-
pressing T along this disc yields an embedded S2, so K is an alternating
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knot. Then, as above, by [12, Corollary 4.6], we can find an alternating dia-
gram DK of K on some embedded torus T ′′ such that r(DK , T

′′) = 2. This
concludes the proof of Case 1.

Case 2: The almost-projection surface is an immersed Klein bottle.

Let f : B → S3 be an immersion of a Klein bottle B. If a simple closed
self-intersection curve of f(B) bounds a disc on f(B), then we can surger
along this curve as in Figure 5 to reduce all such inessential intersections.
If GK is on an immersed sphere, then K is alternating. Hence, we can
assume that all preimages of the remaining self-intersections are essential
simple loops of f(B). Let s1, s2 ⊂ B be the preimages of an essential self-
intersection σ of f(B). For i = 1, 2, we call a regular neighborhood of si
2-sided if it is homeomorphic to an annulus, or 1-sided if it is homeomorphic
to a Möbius band. Furthermore, the two regular neighborhoods of s1 and s2
in B are homeomorphic, because an annulus and Möbius band embedded in
S3 cannot intersect only in the core loop. Then we have three subcases to
consider, depending on the topology of s1 on B:

(a) An example
of a 2-sided non-
separating curve on
the Klein bottle.

(b) An example of
a 2-sided separating
curve on the Klein
bottle.

(c) An example of a
1-sided curve on the
Klein bottle.

Subcase 1: s1 is a non-separating, 2-sided curve on B.

We prove by contradiction that this subcase cannot occur. The comple-
ment of a regular neighborhood of s1 in B is an annulus. Hence, s2 is the
core of the annulus. Then s1 and s2 cut B into two annuli, and f−1(GK)
is on one of them. Hence, s1 and s2 are in the same region of f−1(GK) on
B. See Figure 7. This implies that σ is a self-intersection of Σ or Σ′, which
contradicts the assumption that Σ and Σ′ are embedded.
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Figure 7. Two pre-images cut a Klein bottle into two annuli and f−1(GK)
is on one of them.

Subcase 2: s1 is a separating, 2-sided curve on B.

In this case, s1 cuts B into two Möbius bands. Then s2 is on one of the
Möbius bands, and cuts it into one Möbius band and one annulus. Hence,
s1 and s2 cut B into two Möbius bands and one annulus.

Figure 8. Two pre-images cut a Klein bottle into two Möbius bands and one
annulus.

Furthermore, f−1(GK) is contained in one of the components. If f−1(GK)
is on the Möbius band, then σ is a self-intersection of Σ̄ or Σ̄′ which is im-
possible. Hence, f−1(GK) is on the annulus. In this annulus, every preimage
of an essential self-intersection is isotopic to a core of the annulus. Let A be
the annulus which contains f−1(GK) and does not contain any preimages of
self-intersections. Then we can recover DK from GK , as in the torus case,
so that K is alternating on f(A) as follows.

Now, to construct the torus, we consider B −A, which consists of two
disjoint Möbius bands M and M ′. The image of each Möbius band under
f is a subset of either Σ or Σ′. Furthermore, both Möbius bands cannot be
contained in the same spanning surface. Consider M ∪A, which is homeo-
morphic to a Möbius band. Now, f(M ∪A) is embedded in S3 because every
self-intersection of f(B) is an intersection of f(M) and f(M ′). Consider a
thickening of the Möbius band f(M ∪A) in S3, which is homeomorphic to a
solid torus. Let T be its boundary. Then using the natural projection, we can
think of T − ∂f(M ∪A) as a two fold cover of the Möbius band f(M ∪A).
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Then f(A) is lifted to two annuli with disjoint interiors on the torus. Since
K is alternating on f(A), we can choose a lift of the alternating diagram
DK to one of the annuli. Hence, DK is alternating on T .

Figure 9. Torus T , coming from thickening the Möbius band f(M ∪A), and
an example of one of the lifts of f(A) on T , denoted by a shaded band.

Now we show that r(DK , T ) ≥ 2 or K is alternating. By construction, T
bounds a solid torus for which the boundary of every compressing disc inter-
sects each lift of f(A) twice. If this boundary curve intersects the diagram
less than twice, then this implies that GK is contained in a disc in f(A).
But then, this implies that M and M ′ are in the same region of f−1(GK),
which cannot occur because these Möbius bands are not contained in the
same spanning surface. Hence, the boundary of every compressing disc of
this solid torus intersects GK at least twice.

Finally, r(DK , T ) < 2 may occur for a compressing disc on the other side
of T . If the 3-manifold on the other side of T has a compressing disc Ω, then it
is a solid torus, hence, T is an unknotted torus. Note that ∂Ω ∩ ∂f(M ∪A) 6=
∅. If ∂Ω does not intersect the diagram, then just as above, DK is contained
in a disc. Suppose that ∂Ω intersects the diagram once. This implies that
f(M ∪A) is an embedded Möbius band in S3 such that the core is the
unknot and its boundary is also the unknot. This implies that we can find
an essential arc on f(A) which intersects GK transversely once. Now, we
need the following lemma.

Lemma 2. Let K be a knot with an alternating diagram DK on an annulus
A embedded in S3. If there exists a properly embedded simple arc τ ⊂ A which
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intersects DK transversely once, then K is a connected sum of an alternating
knot and a knot isotopic to the core of A.

Proof. Every crossing of DK is in the complement of τ in A, which is a disc.
Hence we can find a decomposing sphere from the boundary of the thickened
disc which contains every crossing of DK . This implies that we have an
alternating 1-tangle in the decomposing sphere and another 1-tangle outside.
Then K is a connected sum of an alternating knot, which is obtained by
taking the trivial closure of the alternating 1-tangle, and the trivial closure
the other 1-tangle, which is isotopic to the core of A. �

Then, by Lemma 2, K is a connected sum of an alternating knot and a
knot which is isotopic to the core of f(A), which is an unknot. Hence, K is
alternating.

Subcase 3: s1 is a 1-sided curve on B.

The complement of s1 and s2 in B is an annulus. Hence, f−1(GK) is on
the annulus. If there is no other self-intersection, then GK is on the embed-
ded Möbius band B − s1. If there exists another essential self-intersection,
then its pre-images are separating 2-sided curves, soGK is still on the embed-
ded Möbius band f(M ∪A). Hence, the claim follows by the same argument
as in the previous subcase.

This completes the proof of Case 2.
To show that the torus T is unknotted, we need the following lemmas.

Lemma 3. Let DK be a knot diagram on the torus T with r(DK , T ) ≥ 2.
Then every region of T −GK is homeomorphic to a disc, except possibly one
region which is homeomorphic to an annulus.

Proof. Let R be a region of DK . Since DK is connected, |T −R| = 1. Hence,
χ(R) ≥ −1. If χ(R) = −1, then DK is contained in a disc, hence we always
can find a compressing disc of T which does not intersect DK . But this
violates the condition r(DK , T ) ≥ 2. Lastly, if there exist two annular regions
R1 and R2 of DK , then |T − (R1 ∪R2)| = 2. Again, since DK is connected,
this is not possible. �

Lemma 4. Suppose that a link L has a checkerboard-colorable, connected
diagram DL on a torus T in S3 such that r(DL, T ) ≥ 2. Then T is unknotted
if and only if one of the checkerboard surfaces is free.
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Proof. From Lemma 3, every region is homeomorphic to a disc except pos-
sibly one region, which is homeomorphic to an annulus. Let Σ and Σ′ be
two checkerboard surfaces of DL. Suppose that Σ′ is a checkerboard surface
which consists of only disc regions. Since Σ′ − (Σ ∩ Σ′) is a set of disjoint
discs and S3 − T has two connected components, S3 − Σ is homeomorphic
to a 3-manifold obtained from connecting the two components of S3 − T
with 3-dimensional 1-handles, each corresponding to a disc of Σ′ − (Σ ∩ Σ′)
(see Figure 10). If Σ contains an annular region of DL, then S3 − Σ′ can
be obtained similarly, except we connect two components with a thickened
annulus.

Figure 10. A 1-handle correspond to a disc region of DL.

If T is an unknotted torus, then S3 − T is a disjoint union of two solid
tori. If we connect two solid tori with several 3-dimensional 1-handles, then
it is still a handlebody. Hence, Σ is free.

Conversely, suppose that T is knotted. We show that both checkerboard
surfaces are not free. We use the fact that compressing a handlebody with a
disjoint set of compressing discs yields a disjoint union of handlebodies. First,
we show that Σ is not free. We can obtain S3 − Σ from S3 − T as above.
If we compress S3 − Σ along all compressing discs, each corresponding to
a disc of Σ′ − (Σ ∩ Σ′), then we get a solid torus and a 3-manifold with
boundary, which is not a solid torus, because T is knotted. Hence Σ is not
free. Lastly, we show that Σ′ is not free. Consider S3 − Σ′ and compress
this manifold along all compressing discs each corresponding to a disc of
Σ− (Σ ∩ Σ′). Then we get a 3-manifold which is homeomorphic to a knot
exterior, such that the knot is isotopic to a core of the annular region of DL.
T is knotted, so the core of the annular region is a non-trivial knot. So, the
resulting 3-manifold is not a handlebody. Hence, Σ′ is not free. �

Now we can complete the proof of Theorem 1. Consider the almost-
projection surface of Σ and Σ′. Suppose that the almost-projection surface
is an immersed torus. If we surger the almost-projection surface along a
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disc, the surface might become disconnected or its genus will decrease. If
the surgery reduces the genus, then we get an alternating knot by [8, 9].
As mentioned above, using the Turaev surface, such a knot is toroidally
alternating. We continue performing the surgery, cutting off spheres until we
get an alternating diagram DK on an embedded torus. As discussed above,
since DK is checkerboard colorable, r(DK , T ) is even. If r(DK , T ) = 0, then
K is an alternating knot. Suppose r(DK , T ) ≥ 2. During the surgery, we cut
off spheres, so the resulting checkerboard surfaces of DK on T are isotopic
to Σ and Σ′. By assumption, one of them is free, hence, T is unknotted by
Lemma 4.

On the other hand, suppose that the almost-projection surface is an
immersed Klein bottle. From the proof above, we can find an embedded
Möbius band, f(M ∪A).

Lemma 5. The core of f(M ∪A) is unknotted.

Proof. Every region of DK on f(M ∪A) is a disc except one annular region
in Σ′ and one Möbius band region in Σ. Consider the regular neighborhood
of Σ in S3 as the following:

We first thicken f(M ∪A), and remove every thickened region of DK on
f(M ∪A) that is a subset of Σ′. The resulting manifold is homeomorphic
to a regular neighborhood of Σ. Now, we compress the complement of Σ by
filling each thickened disc region of Σ′. Then, under the assumption that Σ is
free, the resulting complementary region is still a handlebody. We recover the
complement of f(M ∪A), so this handlebody is a solid torus. This implies
that the core of the Möbius band is unknotted in S3. �

Hence, by Lemma 5, the solid torus that we obtained in Case 2 is unknotted.
This completes the proof of Theorem 1. �

3. Toroidally alternating knots

Definition 3. [9] Let Σ and Σ′ be properly embedded surfaces in general
position in E(K). A bigon is a disc B embedded in E(K) such that ∂B =
β ∪ β′, where β ⊂ Σ and β′ ⊂ Σ′ are connected arcs, β ∩ β′ consists of two
distinct points of Σ ∩ Σ′ and B ∩ (Σ ∪ Σ′) = ∂B. The arcs β and β′ are called
edges of B, and β ∩ β′ are called vertices of B. A bigon is inessential if
it can be homotoped to an intersection arc or an intersection loop of Σ and
Σ′. Otherwise, it is essential.



i
i

“6-Kim” — 2020/1/21 — 13:29 — page 1838 — #14 i
i

i
i

i
i

1838 Seungwon Kim

Here, the homotopy must be such that restricted to the boundary of B,
β and β′ must remain in Σ and Σ′, respectively, throughout the homotopy.

Let Σ and Σ′ be a pair of spanning surfaces in E(K). A minimal repre-
sentative of a simple loop γ in Σ is a simple loop in Σ which is isotopic to
γ and intersects Σ′ minimally. We can define a minimal representative of a
simple loop in Σ′ in the same manner.

Definition 4. Let Σ and Σ′ be a pair of spanning surfaces in E(K). Then Σ
and Σ′ are relatively separable if there exists an essential 2-sided simple
loop γ in Σ or Σ′ such that its push-off γ′ does not intersect the other
spanning surface. We say such γ is detachable. In this case, γ is incident
to a bigon if for every minimal representative of γ, there exists an essential
bigon whose boundary intersects γ transversely in one point.

Figure 11. A detachable curve which is incident to a bigon.

Definition 5. Let Σ and Σ′ be spanning surfaces in E(K). We say that Σ
and Σ′ are essentially intersecting if their boundaries intersect minimally
on ∂E(K) and every intersection loop is essential on both surfaces.

Lemma 6. Let Σ and Σ′ be essentially intersecting spanning surfaces in
E(K). Then the almost projection surface F has no self-intersection loop
that bounds a disc on F .

Proof. Suppose that F has a simple loop intersection which bounds a disc
in F . Take the innermost loop intersection σ and consider a disc bounded
by σ. If this disc does not contain GK , then Σ and Σ′ are not essentially
intersecting. Suppose that this disc contains GK . Let f : F ′ → S3 be an
immersion map such that f(F ′) = F . Consider the f−1(σ), which consists
of two simple loops s1 and s2 on F ′. Then without loss of generality, we can
assume that s1 bounds a disc on F ′ which contains f−1(GK), but does not
contain other pre-images of self-intersections of F . Then both pre-images
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are contained in the same region of f−1(GK), which implies that σ is a self-
intersection of either Σ or Σ′, which contradicts the assumption that Σ and
Σ′ are embedded. Hence, there is no self-intersection loop which bounds a
disc on F . �

Since by Proposition 1, every alternating knot is toroidally alternating,
we only consider non-alternating knots below.

Theorem 2. A non-alternating knot K is toroidally alternating if and only
if there exists a pair of essentially intersecting connected, free spanning sur-
faces Σ and Σ′ in the knot exterior which satisfy the following:

1) χ(Σ) + χ(Σ′) + 1
2 i(∂Σ, ∂Σ′) = 0.

2) If Σ and Σ′ are relatively separable, then every detachable curve is
incident to a bigon.

Remark 2. In [9, Figure 3.18], Howie gave an example of a weakly gener-
alized alternating projection of the knot 10139, for which one of the regions
is homeomorphic to an annulus. He showed that there is no essential bigon
between the two checkerboard surfaces Σ and Σ′. Hence, this pair Σ and
Σ′ is an example of a pair of essentially intersecting free spanning surfaces
which are relatively separable, but not every detachable curve is incident to
a bigon.

Proof. First, we show that if the two checkerboard surfaces Σ and Σ′ of a
toroidally alternating diagram are relatively separable, then every detach-
able loop is incident to a bigon. Let γ be a minimal representative of a
detachable loop on Σ. Consider the push-off γ′ of γ. Let A be the annulus
bounded by γ and γ′ such that A ∩ Σ = γ. Every essential loop of Σ inter-
sects Σ′, so A intersects with Σ′. Then every intersection of Σ′ and A is
either an arc which has its endpoints on γ or a simple loop isotopic to γ. We
can modify γ′ so that A only intersects Σ′ in arcs. Consider an innermost
bigon B in A bounded by γ and one of the intersection arcs. Then B is an
essential bigon, because if B is inessential, we can isotope γ and A to re-
move the intersection arc, which contradicts our hypothesis, γ is a minimal
representative. Then we can slightly isotope this bigon to intersect γ in one
point. Hence, every detachable curve is incident to a bigon. This completes
the proof of the “only if” part of Theorem 2.

Now to show the “if” part, since Σ and Σ′ are essentially intersecting, we
can contract every standard arc to get an almost-projection surface. Below,
let F denote the almost-projection surface of Σ and Σ′. By Lemma 6 and the



i
i

“6-Kim” — 2020/1/21 — 13:29 — page 1840 — #16 i
i

i
i

i
i

1840 Seungwon Kim

proof of Theorem 1, F is either an unknotted torus or an immersed Klein
bottle with no 2-sided, non-separating self-intersection loop.

First, suppose that Σ and Σ′ are not relatively separable. We will show
that F is an unknotted torus and the alternating diagram on the almost-
projection surface is cellularly embedded.

Lemma 7. Let Σ and Σ′ be essentially intersecting spanning surfaces of
a knot K which are not relatively separable. Let F be the almost-projection
surface of Σ and Σ′. Then F cannot intersect itself in an essential simple
loop.

Proof. Suppose that there exists an essential simple loop intersection φ.
Then φ is either 1-sided or 2-sided. Consider one of the components ψ of the
boundary of a regular neighborhood of φ on Σ.
Claim 1: ψ is detachable, and it is a minimal representative.

From the construction, ψ does not intersect Σ′, so it is a minimal repre-
sentative.

If φ is 2-sided, then ψ is isotopic to φ, hence essential. Furthermore, ψ
has a push-off which does not intersect with Σ′. Hence, ψ is detachable.

If φ is 1-sided, then ψ bounds a Möbius band on Σ, which is a regular
neighborhood of φ on Σ. If ψ bounds a disc on the other side, then we get
a closed component, which is homeomorphic to a real projective plane. A
real projective plane cannot be embedded in S3, so the boundary does not
bound a disc on Σ, which implies that ψ is essential. Furthermore, ψ has a
push-off which does not intersect Σ′, so, it is detachable.

The existence of a detachable curve contradicts the assumption that Σ
and Σ′ are not relatively separable. Hence, there cannot exist an essential
simple loop intersection of F . �

Lemma 8. Let Σ and Σ′ be essentially intersecting spanning surfaces of a
knot K which are not relatively separable. Then Σ and Σ′ are checkerboard
surfaces of a cellularly embedded alternating diagram on a closed orientable
surface F with Euler characteristic χ(F ) = χ(Σ) + χ(Σ′) + 1

2 i(∂Σ, ∂Σ′).

Proof. If F is non-orientable, then it must have a self-intersection. However,
by Lemma 7, Σ and Σ′ are relatively separable. Since this contradicts our
hypothesis, F is orientable.

We now show that the alternating diagram on F is cellularly embedded.
Suppose that there exists a region which is not homeomorphic to a disc.
Without loss of generality, we can assume that this region is a subset of Σ.
Consider a graph which is a deformation retract of this region. Any loop of
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this graph is an essential loop of Σ because we can find an arc on Σ which
has both of its endpoints on K and intersects this loop transversely once.
Furthermore, we can find a push-off of this loop which does not intersect
Σ′. Hence, it is a detachable curve, so Σ and Σ′ are relatively separable,
which contradicts our hypothesis. Therefore, the alternating diagram on F
is cellularly embedded. This completes the proof of Lemma 8. �

By Lemma 8, if Σ and Σ′ are not relatively separable, then the almost-
projection surface F is an unknotted torus with a cellularly embedded al-
ternating diagram.

Now, suppose that Σ and Σ′ are relatively separable. If F is an unknot-
ted torus with a cellularly embedded alternating diagram, then we are done.
Otherwise, by the proof of Theorem 1, we have two cases: either F is an
unknotted torus with a non-cellularly embedded alternating diagram, or F
is an immersed Klein bottle with no 2-sided, non-separating self-intersection
loop. We will show in the first case, K is almost-alternating hence toroidally
alternating, and that the second case is not possible.

Case 1: F is an unknotted torus with a non-cellularly embedded alternating
diagram.

Let γ be a core of the annular region, which is a minimal representative of
itself. We showed above that γ is detachable. We can assume that γ is on Σ.
Now, we show that if γ is incident to a bigon, then K is almost-alternating.
To show this, we need the following lemma.

Lemma 9. Suppose Σ and Σ′ are relatively separable and every detachable
curve is incident to a bigon B. Let F denote the almost-projection surface,
and suppose F is an unknotted torus with a non-cellularly embedded diagram
GK . Then B is isotopic to a compressing disk of F which intersects the set
of edges of GK transversely twice.

Proof. By assumption, there is an essential bigon B which intersects γ trans-
versely once on its boundary ∂B. After contracting standard arc intersections
to get F , bigon B becomes a disc whose interior is embedded in the comple-
ment of F , and ∂B is a loop on F which intersects GK only in its vertices.
The loop ∂B is simple, whenever both vertices of ∂B are on different stan-
dard arc intersections of Σ and Σ′. If ∂B is simple, we can modify ∂B to
intersect GK transversely twice on edges of GK . Otherwise, ∂B on F is a
loop which has one self-intersection on some vertex of GK . However, the
interior of B does not intersect itself, so the self-intersection of ∂B is not
transverse. Therefore, we can modify ∂B to be a simple loop, and intersect
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GK transversely twice on its edges.(See Figure 12.) Since ∂B intersects γ
transversely once, ∂B on F is essential, so B is a compressing disc of F . �

Figure 12. If B intersect itself in one point on ∂B, then we can modify ∂B
to remove the self-intersection.

With the assumption that F is unknotted, the fact that B is a compress-
ing disc of F implies that a regular neighborhood of γ on F is an annulus
whose core is unknotted in S3. Then GK is also on the annulus with an un-
knotted core, since GK is on the complementary region of γ on F . Now, ∂B
intersects GK transversely twice, hence we can find an essential simple arc
on the annulus which contains GK such that it intersects GK transversely
twice. If we cut GK along this arc, we get an alternating 2-tangle on a disc
as in Figure 13.

Figure 13. If we cut GK along the red arc, we get an alternating 2-tangle
on a disc.

Since the core of the annulus which contains GK is unknotted, K can
be obtained by taking n-full twists on two strands of some alternating knot
diagram. This operation yields either an alternating knot diagram or a cycle
of two alternating 2-tangles, as defined in [12](see Figure 14.). By assump-
tion, K is not alternating, so it is a cycle of two alternating 2-tangles. Then
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by [12], its Turaev genus is one, so K is toroidally alternating.

Figure 14. A cycle of alternating 2-tangles. Green discs represent alternating
2-tangles, and black arcs are non-alternating edges.

Case 2: F is a Klein bottle.
By Lemma 8, Σ and Σ′ are relatively separable. We will show that if

every detachable curve is incident to a bigon, then K is alternating.
As we discussed above, every self-intersection loop of F is either a 2-

sided separating loop or a 1-sided loop. Suppose that there exists a 2-sided
self-intersection loop. Consider one of the 2-sided self-intersection loops γ′

on Σ, which is adjacent to GK on the almost-projection surface. Consider
a simple loop γ on Σ which is on the region between γ′ and GK on the
almost-projection surface, and isotopic to γ′. By Claim 1 in Lemma 7, γ is
detachable and it is a minimal representative of itself. Consider a bigon B
which is incident to γ. Let β be the edge of B which is on Σ and intersects
γ transversely once. Since γ is adjacent to GK , one of the vertices of β is
on γ′ and the other is on some standard arc intersection as in Figure 15b.
This implies that there exists a properly embedded essential arc τ on the
annulus f(A), which intersects GK once. (Recall that GK is contained in
the annulus f(A) as in the proof of Theorem 1, Case 2, subcase 2.)

Hence, by Lemma 2, K is a connected sum of an alternating knot and
the other knot, which is isotopic to a core of the annulus which contains
GK . By Lemma 5, the core of f(M ∪A) is unknotted, so the core of f(A)
is a torus knot type (2, 2q + 1), q ≥ 0 in S3, which is alternating. Therefore,
K is alternating.

Instead, suppose that there is no 2-sided intersection loop. Then there
exists a 1-sided self-intersection loop, η′. Note that there is no other 1-sided
self-intersection loop because the complement of η′ is an annulus, so every
other loop is 2-sided. By Claim 1 in Lemma 7, the boundary η of a regular
neighborhood of η′ on Σ is detachable and a minimal representative of itself.
Consider a bigon B incident to η. By the same argument, ∂B has one vertex
on η′, and the other vertex on the standard arc intersection. By the same
argument as above, K is alternating.
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(a) Σ and Σ′ near K and a detachable
curve γ, which is incident to a bigon B.

(b) One of the vertices of ∂B is on
γ′ and the other is on a standard arc.
Then we can find τ on the annulus con-
tains GK , which intersects GK once.

Figure 15.

This completes the proof of Theorem 2. �

4. Almost-alternating knots

Theorem 3. A non-alternating knot K is almost-alternating if and only if
there exists a pair of essentially intersecting connected, free spanning sur-
faces Σ and Σ′ in the knot exterior which satisfy the following:

1) χ(Σ) + χ(Σ′) + 1
2 i(∂Σ, ∂Σ′) = 0.

2) Σ and Σ′ are relatively separable and every detachable curve is incident
to a bigon.

Proof. We show the “if” part first. In Case 2 of the proof of Theorem 2, we
showed that if Σ and Σ′ are relatively separable and their almost-projection
surface is a Klein bottle, then K is alternating. Assuming that K is non-
alternating, the almost-projection surface of Σ and Σ′ is an unknotted torus.
Below, let F denote the almost-projection surface of Σ and Σ′. The alternat-
ing diagram DK on F may be cellularly embedded or not, which we consider
in separate cases.

Suppose that DK on F is not cellulary embedded. Then by Lemma 9, we
can find an essential simple loop on F which intersects DK twice and bounds
a compressing disc. Hence, K has a cycle of two alternating 2-tangles, as
defined in [12]. Then by [2, Proposition A.6], K can be transformed into an
almost alternating diagram.
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On the other hand, suppose that the diagram DK is cellularly embedded.
Let γ be a detachable curve on Σ. We will show that we can isotope Σ and
Σ′ so that after the isotopy, the new almost-projection surface of Σ and Σ′

has an alternating diagram with an annular region whose core is γ. Let γ′

be a push-off of γ, and A be an annulus bounded by γ and γ′.
Since γ is on Σ and DK is cellularly embedded, A ∩ Σ′ 6= ∅. Furthermore,

by the relatively separable condition, every intersection of A and Σ′ is an arc
which has both its endpoints on γ. The innermost intersection arc bounds
a bigon B. If B is inessential, we can isotope γ and A to remove such an
intersection. If B is essential, then we can isotope Σ′ along B to remove the
intersection, as in Figure 16. After the isotopy, we get a new bigon B′ as in
Figure 16(right).

Figure 16. A surface isotoped along a bigon.

Now, we show that after the isotopy, Σ and Σ′ are still essentially inter-
secting, the new almost-projection surface of Σ and Σ′ is still an embedded
unknotted torus. Below, let F ′ denote the new almost-projection surface of
Σ and Σ′ after the isotopy along B.

First, we show that after the isotopy, Σ and Σ′ are still essentially inter-
secting. Since this isotopy does not change Σ and Σ′ near their boundaries,
the number of arc intersections remains minimal. Therefore, if Σ and Σ′ are
not essentially intersecting after the isotopy, then there exists an inessential
intersection loop. Furthermore, each isotopy can change the number of inter-
secting components at most once, so there is only one inessential intersection
loop µ.

We will show that µ bounds a disc on both spanning surfaces. Since µ is
inessential, it bounds a disc in one of the spanning surfaces, say Σ. If µ does
not bound a disc in the other spanning surface, Σ′, then we can surger Σ′

along a disc bounded by µ on Σ. Let Σ∗ be the resulting spanning surface.
Then the first condition implies that χ(Σ) + χ(Σ∗) + 1

2 i(∂Σ, ∂Σ∗) = 2, so K
is alternating. As this contradicts the hypothesis that K is non-alternating,
µ bounds discs in both spanning surfaces.
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If we undo the isotopy, then the intersection pattern of Σ and Σ′ changes
as in Figure 17. More specifically, it changes from the right picture to the
left picture. Then the edge of B is an arc on the left picture, which cobounds
a disc with a subarc of Σ ∩ Σ′. Then each edge can be isotoped onto Σ ∩ Σ′,
hence B is inessential. This contradicts the assumption that B is essential.
Therefore, Σ and Σ′ are essentially intersecting after the isotopy along B.

Figure 17. Intersection pattern changes whenever we isotope a surface along
a bigon.

Now, we show that F ′ is an embedded torus. Suppose that F ′ is a Klein
bottle. A Klein bottle cannot be embedded in S3 so there exists at least one
self-intersection loop. Since Σ and Σ′ intersect only in standard arcs before
the isotopy, the isotopy along B divides one standard arc into a standard
arc and an essential intersection loop. Consider a new bigon B′ after the
isotopy as in Figure 16. Then one of the vertices of B′ is on the standard
arc intersection and the other is on the essential intersection loop, so B′ is
essential. This essential simple intersection loop is a self-intersection loop of
F ′, and F ′ is a Klein bottle, so the self-intersection loop is either 1-sided or
2-sided and separating. Hence, the boundary of a regular neighborhood of
the essential intersection loop on each spanning surface is incident to B′ as
in Figure 15a. Then, as in Case 2 of the proof of Theorem 2, we can show
that K is alternating. By hypothesis, K is non-alternating, so F ′ cannot be
a Klein bottle. Hence, we still have an alternating diagram on an embedded
torus.

We can continue these isotopies to remove all intersections between A
and Σ′. Then the almost-projection surface obtained from Σ and Σ′ after
isotopy is another unknotted torus, such that the alternating diagram on the
torus has an annular region whose core is γ. We will show that γ is incident
to a bigon after isotopies. Then by the same argument as in the previous case
(non-cellularly embedded diagram), it follows that K is almost-alternating.

First, we will show that the new bigon B′ after the isotopy (as in Fig-
ure 16) is an essential bigon. Suppose B′ is inessential. Then by definition,
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it can be homotoped to a standard arc intersection. This implies that two
vertices of B′ are on the same standard arc intersection and both edges of B′
are homotopic to a subarc of the standard arc intersection on each spanning
surface. Let β be an edge of B′ on Σ. Then β and the subarc of the standard
arc intersection cobound a disc on Σ as in Figure 17(left). If we undo the
isotopy that we performed, we have an inessential loop intersection, which
contradicts the assumption that Σ and Σ′ are essentially intersecting. Hence,
B′ is essential.

Furthermore, by the argument similar to [14, Proposition 2.3], ∂B′ is not
an inessential curve on F ′. Hence, B′ is a compressing disc of F ′.

Lastly, we will show that γ is incident to B′. If γ is an inessential simple
loop on F ′, then the diagram is disconnected, which contradicts the assump-
tion that K is a knot. If γ is isotopic to ∂B′, then we can compress F ′ along
γ to get an alternating diagram on a sphere. Hence, γ intersects ∂B′ at least
once. Suppose that γ intersects ∂B′ more than once. By Lemma 9, ∂B′ in-
tersects the diagram transversely twice. Hence, γ intersects ∂B′ transversely
once or twice.

We will show that γ intersects ∂B′ once, which is equivalent to saying
that γ is incident to B′. To show this, we first assume that γ intersects
∂B′ twice and show that K is alternating, which contradicts the assump-
tion that K is non-alternating. If γ intersects ∂B′ twice, then the annulus
F ′ − int(N(γ)), which contains the diagram, intersects ∂B′ in two essential
arcs. The diagram intersects ∂B′ in two points, so either two essential arcs
intersect the diagram in one point or one of the essential arcs intersects the
diagram in two points. In first case, by Lemma 2, K is a connected sum of
an alternating knot and a core of the annulus. The core is a (2, q) curve on
the torus F ′, because it intersects ∂B′ twice. F ′ is unknotted, hence, the core
is a (2, q) torus knot, which is alternating. Hence, K is alternating. In latter
case, the diagram is in a disc, so K is also alternating. Since we assumed
that K is non-alternating, γ intersects ∂B′ once, so γ is incident to B′

Now, to show the “only if” part, suppose that the knot K is almost-
alternating. Consider almost-alternating diagram of K as in Figure 18(left).
Then we can do a Reidemeister II move as in Figure 18(middle) to make
the diagram as in Figure 18(right). Then K has a checkerboard-colorable,
non-cellularly embedded, alternating diagram D′K on an unknotted torus
as in Figure 19(left). By Lemma 3, D′K has a unique annular region. The
core of the annular region is detachable, so the two checkerboard surfaces
of D′K are relatively separable. Now we need to show that every detachable
curve is incident to a bigon. The core of the annular region is incident to
the bigon shown in Figure 19(right). This bigon is essential because the two
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Figure 18.

vertices of this bigon are contained in different standard arc intersections. If
there exists another detachable curve, then it must intersect a standard arc
intersection. Hence, as in the proof of the “if” part of this theorem, we can
find an essential bigon using the annulus bounded by the detachable curve
and its push-off.

This completes the proof of Theorem 3.

Figure 19. �
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