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This work addresses the singularity formation of complete non-
compact solutions to the conformally flat Yamabe flow whose con-
formal factors have cylindrical behavior at infinity. Their singular-
ity profiles happen to be Yamabe solitons, which are self-similar
solutions to the fast diffusion equation satisfied by the conformal
factor of the evolving metric. The self-similar profile is determined
by the second order asymptotics at infinity of the initial data which
is matched with that of the corresponding self-similar solution. So-
lutions may become extinct at the extinction time T of the cylin-
drical tail or may live longer than T . In the first case the singularity
profile is described by a Yamabe shrinker that becomes extinct at
time T . In the second case, the singularity profile is described by
a singular Yamabe shrinker slightly before T and by a matching
Yamabe expander slightly after T .
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1. Introduction

We consider a complete non-compact metric g = u4/(N+2) dx2 which is con-
formally equivalent to the standard euclidean metric of RN and evolves by
the Yamabe flow

(1.1)
∂g

∂t
= −Rg

where R denotes the scalar curvature with respect to metric g. Our goal is
to study the singularity formation of metric g at a singular time T , under
the assumption that the initial metric g0 has cylindrical behavior at infinity.

This flow was introduced by R. Hamilton [26] as an approach to solve
the Yamabe problem on manifolds of positive conformal Yamabe invariant. It
is the negative L2-gradient flow of the total scalar curvature, restricted to a
given conformal class. Hamilton [26] showed the existence of the normalized
Yamabe flow (which is the re-parametrization of (1.1) to keep the volume
fixed) for all time; moreover he established the exponential convergence of
the flow to a metric of constant scalar curvature under the assumption that
the initial metric has negative scalar curvature.

Since then, there have been a number of works on the convergence of the
Yamabe flow on a compact manifold to a metric of constant scalar curvature.
Chow [14] showed the convergence of the flow under the conditions that the
initial metric is locally conformally flat and of positive Ricci curvature. The
convergence of the flow for any locally conformally flat initial metric was
shown by Ye [37] (see also a relevant result of Del Pino and Saez [19] for the
conformally flat case).

Schwetlick and Struwe [34] obtained the convergence of the Yamabe
flow in lower dimensions 3 ≤ N ≤ 5 under the assumption that the Yamabe
energy Y (M, g0) of the initial metric is less than (Y (M, g0)

N

2 + Y (SN )
N

2 )
2

N ,
where Y (SN ) denotes the Yamabe energy of the sphere SN .

The convergence result for any general compact manifold was established
by Brendle [7] and [8] (up to a technical assumption, in dimensions N ≥ 6,
on the rate of vanishing of Weyl tensor at the points at which it vanishes):
starting with any smooth metric on a compact manifold, the normalized
Yamabe flow converges to a metric of constant scalar curvature.

Even though the analogue of Perelman’s monotonicity formula is still
lacking for the Yamabe flow, one expects that Yamabe soliton solutions
model finite time singularities. These are special solutions g = gij of the
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Complete non-compact solutions to the Yamabe flow 1759

Yamabe flow (1.1) for which there exist a potential function P (x, t) so that

(R− ρ)gij = ∇i∇jP, ρ ∈ {1,−1, 0}

where the covariant derivatives on the right hand side are taken with respect
to metric g(·, t). Depending on the sign of the constant ρ, a Yamabe soliton
is called a Yamabe shrinker, a Yamabe expander or a Yamabe steady soliton
if ρ = 1,−1 or 0 respectively. The classification of locally conformally flat
Yamabe solitons with positive sectional curvature was recently established
in [18] (see also [9] and [12]). It is shown in [18] that such solitons are globally
conformally equivalent to RN and correspond to self-similar solutions of the
fast-diffusion equation (1.7) satisfied by the conformal factor. A complete
description of those solutions is given in [18]. In [9] the assumption of positive
sectional curvature was relaxed to that of nonnegative Ricci curvature.

Our goal in this work is to relate the singularity profile of conformally
flat solutions to the Yamabe flow whose conformal factors have cylindrical
behavior at infinity with a class of self-similar shrinking Yamabe solitons
that have matched asymptotic behavior at infinity. One special result in
this direction was previously shown in [17] and [2], where the L1 stability
around the explicit Barenblatt profile was shown.

By observing that the conformal metric g = u4/(N+2) dx2 has scalar cur-
vature

R = −4(N − 1)

N − 2
u−1 ∆u

N−2

N+2

it follows that the function u evolves by the fast diffusion equation ut =
N−1
m ∆um, with exponent m = (N − 2)/(N + 2). Therefore studying the

Yamabe flow equation (1.1) in the conformally flat case is equivalent to
studying the fast diffusion equation on RN . It is well known [27] that for
any exponent 0 < m < 1 the Cauchy problem

(1.2)

{
ut = ∆um on RN × (0, T )

u(·, 0) = u0 on RN

with nonnegative and locally integrable initial data u0 admits a unique weak
solution and that bounded solutions are smooth. We refer the reader to [15]
and [13] for extensions of the results in [27] to the case that the initial data is
a nonnengative Borel measure µ0 and to [30] for formal results that suggest
that, within the setting (1.2), many of the phenomena described below are
more generally relevant to the range 0 < m < N−2

N of exponents.
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From now on we will fix m = (N − 2)/(N + 2) and set

n := 1−m =
4

N + 2
.

We will assume that the initial metric g0 = u
4/(N+2)
0 dxidxj is complete,

non-compact and has cylindrical behavior at infinity, namely

(1.3) u0(x) =

(
C∗T

|x|2

)1/n (
1 + o(1)

)
, as |x| → ∞

with C∗ given by

(1.4) C∗ :=
2
(
((1−m)N − 2

)
n

, n = 1−m, m =
N − 2

N + 2

and T > 0 any positive constant. One observes that the function

(1.5) C(x, t) =

(
C∗ (T − t)
|x|2

)1/n

defines a cylindrical solution of (1.2), namely g(t) = C4/(N+2)(·, t) dx2 rep-
resents a shrinking cylindrical metric. Its initial data C0 := C(·, 0) satisfies
(1.3) and the solution becomes extinct at time t = T . This suggests that the
cylindrical tail of any solution to (1.2) that satisfies (1.3) becomes extinct
at time T . Indeed, it will be shown in Proposition 4.1 that if the initial data
u0(x) satisfies (1.3) then for the solution u we have

(1.6) u(x, t) =

(
C∗(T − t)
|x|2

)1/n

(1 + o(1)), as |x| → ∞.

We will see in this work that the solution u starting at u0 that satisfies
(1.3) may or may not become extinct at time T , depending on the second
order asymptotic behavior, as |x| → ∞, of the cylindrical tail of the initial
data. In either case the metric g(t) = u4/(N+2)(·, t) dx2 will develop a sin-
gularity at time T . Our goal is to study these singularities. We will show
in Sections 5 and 6 that rescaled limits of solutions u with initial condition
satisfying (1.3) behave near a singularity at time T as self-similar shrinking
solutions (Yamabe shrinkers). These are special solutions of the fast-diffusion
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equation

(1.7) ut = ∆u
N−2

N+2

of the form

(1.8) U(x, t) = (T − t)α f(y), y = x (T − t)β, α =
1 + 2β

n
, β > 0.

It follows that the function f satisfies the elliptic equation

(1.9) ∆f
N−2

N+2 + β y · ∇f + α f = 0. on RN

It is well known (in [36], Section 3.2.2) that, for any given β > 0 and α =
(1 + 2β)/n, equation (1.9) admits an one parameter family fλ, λ > 0, of
radially symmetric smooth positive solutions that have cylindrical behavior
at infinity, namely

(1.10) fλ(y) =

(
C∗

|y|2

)1/n

(1 + oλ(1)), as y →∞.

with C∗ given by (1.4). We will refer to them as to cigar solitons. The
parameter λ is just a dilation parameter. Indeed, it follows from the results
in [18] that smooth solutions of equation (1.9) are radially symmetric and
they are uniquely determined by their value at the origin. In the special case
that α = βN the solutions are given in the closed form

(1.11) Bλ(y) =

(
C∗

λ2 + |y|2

)1/n

and we will refer to them as Barenblatt profiles.
In order to study the singularities of a metric g = u4/(N+2)dx2 evolving

by (1.2) and with initial data satisfying (1.3) we need to understand the sec-
ond order asymptotic behavior at infinity of the self-similar profiles fλ. We
will achieve this in Section 3 by linearizing equation (1.9) around the cylin-
drical solution. It will be more convenient to work in cylindrical coordinates
where the cylindrical solution becomes constant. Let γ1,2 be the solutions to
the characteristic equation of the corresponding linearized equation (that is
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equation (3.7) in Section 3). They satisfy

(1.12) γ2 + β(N − 2)γ + (N − 2) = 0,

which gives

(1.13) γ1,2 =
β(N − 2)∓

√
β2(N − 2)2 − 4(N − 2)

2
.

We see that we need to have β ≥ 2/
√
N − 2 in order for γ1,2 to be real and

the corresponding solution to have non-oscillatory behavior.
Our first result concerns the second order asymptotics of smooth profiles

f on RN which appear to model the singular behavior of some evolving
metrics g = u4/(N+2)dx2 that become extinct at a singular time T .

Theorem 1.1. Let m = (N − 2)/(N + 2), n = 1−m, N ≥ 3, C∗ = 2 ((1−
m)N − 2)/n, β0 := 2/

√
N − 2 and β1 := 1/(2m). The following hold:

• Let N ≥ 6 and β > β0 or 3 ≤ N < 6 and β > β1: For any B > 0 there
exists a unique radially symmetric smooth solution fβ,B of (1.9) that
satisfies

(1.14) fβ,B(y) =

(
C∗

|y|2

)1/n (
1−B |y|−γ + oB(|y|−γ)

)
with γ = γ1 given by (1.13).

• Let 3 ≤ N < 6 and β0 < β < β1: For any B < 0 there exists a unique
radially symmetric smooth solution fβ,B of (1.9) that satisfies (1.14)
with γ = γ1 given by (1.13).

• Let 3 ≤ N < 6 and β = β1: For any B < 0 there exists a unique radi-
ally symmetric smooth solution fβ,B of (1.9) that satisfies (1.14) with
γ = γ2 = 2 and which is given in closed form by

Bλ(y) =

(
C∗

λ2 + |y|2

)1/n

.

In all of the above cases we will denote by Uβ,B the self-similar solution of
equation (1.7). It is given in terms of fβ,B by (1.8) where fβ,B solves (1.9).

While the previous theorem provides a complete description of smooth
self-similar solutions of equation (1.7) of the form (1.8) with cylindrical
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behavior at infinity, one may ask whether there exist other radially sym-
metric self-similar solutions with singular behavior at r = 0. The answer
to this question is indeed affirmative as stated in our next result. We will
see in Section 6 that such solutions model the behavior of evolving metrics
g = u4/(N+2)dxidxj that do not become extinct at a singular time T , but
still develop a local singularity at time T .

Theorem 1.2. Let N ≥ 3, m = (N − 2)/(N + 2), n = 1−m, C∗ = 2 ((1−
m)N − 2)/n and β1 = 1/(2m). Then for any β > β1 and B > 0, there exists
a unique radially symmetric solution gβ,B of equation (1.9) that is smooth
on RN \ {0} and satisfies

(1.15) gβ,B(y) =

(
C∗

|y|2

)1/n

(1 +B|y|−γ + oB(|y|−γ)), as |y| → ∞

and

(1.16) gβ,B(y) = KB |y|−α/β(1 + o(1)), as |y| → 0

with KB a constant depending on B and γ := γ1. We will denote by Vβ,B
the self-similar solution of equation (1.7) which is given in terms of gβ,B
by (1.8).

Remark 1.3. One easily concludes, using the behavior of gβ,B at the origin,
that

(1.17) lim
t→T−

Vβ,B(x, t) = KB |x|−α/β ∀x 6= 0.

Note that for all β ≥ β1 = 1
2m we have α

β < N and hence the solution is
locally integrable around the origin.

For any T > 0 and any K > 0 we will denote by

(1.18) Wβ,K(x, t) = (t− T )αhβ,K(x (t− T )β), t > T

the forward self-similar solutions (Yamabe expanders) that satisfy

(1.19) hβ,K(y) = K |y|−α/β(1 + o(1)), as |y| → 0

and

(1.20) hβ,K(y) = DK |y|−(N+2)(1 + o(1)), as |y| → +∞
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with DK a constant depending on K. In [36] Vazquez proves the existence
of those solutions starting at Wβ,K(x, T ) = K |x|−α/β. The existence of such
solutions and their intermediate asymptotic role was conjectured in [30] on
the basis of a phase-plane analysis.

We will see in Sections 5 and 6 that the singularity profile of the metric
g = u4/(N+2)dxidxj evolving by (1.2) at a singular time T is closely related to
the self-similar solutions given above. In particular, the smooth self-similar
solutions Uβ,B model the singular behavior of some solutions u in the case
that u(·, T ) vanishes identically at time T , while the singular solutions Vβ,B
and Wβ,K model the singularity of some solutions u in the case that u(·, T )
does not vanish identically at the extinction time T of the cylindrical tail.

In describing the asymptotic profile of the solution slightly before time
T we will consider the rescaling from the left defined by

ū(y, τ) := (T − t)−αu(y (T − t)−β, t)|t=T (1−e−τ ),(1.21)

(y, τ) ∈ RN × (0,∞).

In describing the asymptotic profile of the solution slightly after time T (if
the solution lives for t ∈ [0, T ∗) and T ∗ > T ) we will consider the rescaling
from the right defined by

û(y, τ) := (t− T )αu(y (t− T )β, t)|t=T (1+eτ ),(1.22)

(y, τ) ∈ RN × (−∞, τ∗)

with τ∗ such that T ∗ = T (1 + eτ
∗
). It follows by direct computation that

both ū and û satisfy the nonlinear Fokker-Plank type equation

(1.23) ūτ = ∆ūm + β div(y · ū) + (α− βN) ū.

Let us begin by discussing the case when the solution with the cylindrical
behavior at infinity becomes extinct at the time T when its cylindrical tail
disappears. We will assume in this case that either

• N ≥ 3 and β ≥ β1 (or equivalently Nβ ≥ α), or

• N ≥ 6 and β0 < β < β1.

The condition β ≥ β0 := 2/
√
N − 2 is imposed so that the self similar solu-

tion Uβ,B has non-oscillating behavior as |x| → +∞. The common feature
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in both considered cases is that the difference of two self-similar solutions

|Uβ,B1
− Uβ,B2

| /∈ L1(RN ), if B1 6= B2.

The next two theorems generalize the result proved in [17] in the special
case when β = β1 (see also in [2] for an improvement of the result in [17]
shown independently). Theorem 1.4 addresses the case β ≥ β1 in all dimen-
sions N ≥ 3 and Theorem 1.5 deals with the case N ≥ 6 and β0 < β < β1.
Note that when N = 6 we have m∗ = ms, where m∗ = N−4

N−2 and ms = N−2
N+2 .

The sharp analysis of [3], [4] and [21], shows the sharp convergence towards
selfsimilar profiles of Barenblatt type, and in particular proves that the rate
of convergence can not be exponential (in Fokker-Planck variables). This
confirms that the case N = 6 falls in the asymptotic regime of Theorem 1.5,
instead of Theorem 1.4. This remark clarifies a bit more, with a concrete
example, the quite drastic change of asymptotic behaviour when N = 6 as
described in Theorems 1.3 and 1.4.

Theorem 1.4. Let β ≥ β1 and let u : RN × [0, T )→ R be a solution to
(1.2) with the initial data u0 satisfying 0 ≤ u0 ≤ Uβ,B1

(·, 0), for some B1 >
0. Assume in addition that

(1.24) u0 − Uβ,B ∈ L1(RN )

for some B > 0. Then, the rescaled solution ū given by (1.21) converges
as τ →∞ uniformly on compact subsets of RN to the self-similar solution
Uβ,B. Moreover, we also have convergence in the L1(RN ) norm. If β > β1

the convergence is exponential in the sense that

|ū(x, τ)− Uβ,B(x)| ≤ C e−(Nβ−α)τ , with Nβ − α > 0.

In the case when β < β1 we will restrict ourselves to N ≥ 6. Let C̄(x) =(
C∗/|x|2

)1/n
with C∗ = 2 ((1−m)N − 2)/n denote the rescaled cylinder

which is a singular solution to

∆ūm + β div (x · ∇ū) = 0.

We define the weighted L1-space with weight C̄p0 for some p0 ∈ (0, 2m) as

(1.25) L1(C̄p0 ,RN ) :=

{
f
∣∣∣ ∫

RN
|f(x)| C̄p0(x) dx <∞

}
.

Note that C̄p0 is integrable around the origin for any p0 ∈ (0, 2m). We have
the following result.



i
i

“4-Sesum” — 2020/1/8 — 0:46 — page 1766 — #10 i
i

i
i

i
i

1766 P. Daskalopoulos, J. King, and N. Sesum

Theorem 1.5. Let β0 < β < β1 with N ≥ 6 and let u : RN × [0, T )→ R be
a solution to (1.2) with the initial data u0 satisfying 0 ≤ u0 ≤ Uβ,B1

(·, 0), for
some B1 > 0. Assume in addition that

(1.26) u0 − Uβ,B ∈ L1(C̄p0 ,RN )

for some B > 0, where p0 := m
(

1− β +
√
β2 − 4

N−2

)
. Then the rescaled

function ū given by (1.21) converges as τ →∞ uniformly on compact subsets
of RN to the self-similar solution Ūβ,B. Moreover, we also have convergence
in the weighted L1(C̄p0 ,RN ), in the sense that the

lim
τ→∞

∫
RN
|ū(x, τ)− Ūβ,B(x)| C̄p0(x) dx = 0.

Remark 1.6. Note that when β < β1 the implication of the L1 contrac-
tion principle under rescaling (1.21) is inconclusive. The choice of p0 as in
Theorem 1.5 will allow us to replace the usual L1 contraction principle with
the weighted L1 contraction principle with the weight being C̄p0 . Note also
that |Uβ,B1

− Uβ,B2
| /∈ L1(C̄p0 ,RN ) if B1 6= B2. This would not be true for

any weight C̄q for q > p0.

Remark 1.7. The rate of convergence given in Theorem 1.4 may not be
sharp and in Theorem 1.5 we do not prove any particular arte of conver-
gence. In [2], [3], [4], [20], [21], [22] and [23] various results on asymptotics
of solutions to fast diffusion equations have been obtained. For example in
[2] the authors proved sharp rates of decay of solutions to the nonlinear fast
diffusion equation via functional inequalities.

In Section 6 we will discuss the singular behavior of solutions g =
u4/(N+2)dxidxj to (1.1) with cylindrical behavior at infinity that live past
the extinction time T of the cylindrical tail and become compact at time T .
We will assume that the initial data u0 ∈ L∞loc(RN ) and satisfies

(1.27) u0(x)− Vβ,B(x) ∈ L1(RN ),

where Vβ,B(x, t) = (T − t)α gβ,B(x(T − t)β) is one of the singular at the ori-
gin self similar solutions given by Theorem 1.2 with β > β1 and some B > 0.
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In addition we will assume that u0 satisfies the asymptotic behavior

(1.28) u0(x) =

(
C∗T

|x|2

)1/n

(1 +B |x|−γ + o(|x|−γ), as |x| → ∞,

for some B > 0 and γ := γ1. We will see that condition (1.27) implies that
the solution to (1.2) with initial data u0 is strictly positive at the exitinction
time T of the cylindrical tail. Denote by T ∗ > T the extinction time of the
solution u. We have the following result.

Theorem 1.8. Let β ≥ β1 and let u : RN × [0, T ∗)→ R be the solution to
(1.2) with the initial data u0 ∈ L∞loc(RN ) satisfying (1.27) and (1.28). Then,
the following hold

• The solution u is non-zero at time T , i.e. u(·, T ) > 0.

• The cylindrical tail becomes extinct at time T according to

u(x, t) =

(
C∗(T − t)
|x|2

)1/n

(1 + o(1)), as |x| → ∞.

The rescaled solution ū(η, τ) given by (1.21) converges as τ →∞ uni-
formly on compact subsets of RN to the self-similar profile gβ,B(η) that
satisfies

gβ,B(y) =

(
C∗

|y|2

)1/n

(1 +B|y|−γ + oB(|y|−γ)), as |y| → ∞,

and

gβ,B(y) = KB |y|−α/β(1 + o(1)), as |y| → 0.

• The rescaled solution û given by (1.22) converges as τ → −∞ uni-
formly on compact subsets of RN \ {0} to the self-similar profile hβ,K
that satisfies

hβ,K(y) = K |y|−α/β(1 + o(1)), as |y| → 0,

and

hβ,K(y) = DK |y|−(N+2)(1 + o(1)), as |y| → +∞.

with the same constant K = KB as in (1.16).
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• For t > T , the solution u satisfies the bound u(x, t) = O(|x|−(N+2)), as
|x| → ∞.

Remark 1.9. Let β ≥ β1 and γ := γ1. In Section 6 we will also see that
there exist solutions g = u4/(N+2)dxidxj to (1.1) with initial data satisfying
u0 − Uβ,B ∈ L1(RN ) and

(1.29) u0(x) =

(
C∗T

|x|2

)1/n

(1−B |x|−γ + o(|x|−γ), as |x| → ∞

with B > 0 that live longer than the vanishing time T of their cylindrical tail.
The rescaling ū of u given by (1.21) will still converge to fB, however, the
convergence will only be uniform on RN \ {0}, reflecting the non-vanishing
of the solution at time T . This in particular shows that the upper bound
u0 ≤ Uβ,B1

in Theorem 1.4 is necessary.

Further Discussion. It would be nice to understand better the singularity
formation of the Yamabe flow on complete non-compact manifolds. One of
the ultimate goals would be to show that the singularity of such a flow is
modeled by one of the gradient Yamabe solitons. For a general statement like
that some sort of monotonicity formula would play an important role. By the
results in [9, 18] the gradient Yamabe solitons with nonnegative Ricci cur-
vature are well understood and have been shown to be globally conformally
equivalent to RN . However, the class of solutions discussed in Theorem 1.8
provides prototypes of singularities that are not globally conformally flat.
By the results in [9, 18] the Ricci curvature of those solutions must change
sign. A characterization of all gradient Yamabe solitons is then necessary.

The organization of the paper is as follows. In Section 2 we discuss the
existence of smooth self-similar solutions Uβ,B and singular self-similar solu-
tions Vβ,B and Wβ,K . In Section 3 we prove Theorem 1.1 and Theorem 1.2.
In Section 4 we prove Proposition 4.1, which claims the cylindrical tail in
a solution persists up to the vanishing time of the cylinder. The proofs of
Theorems 1.4 and 1.5 are given in Section 5. These theorems discuss the
asymptotic profile of solutions that become extinct at the time that their
cylindrical tail disappears. In Section 6 we discuss solutions that live longer
than the time of disappearance of their cylindrical tail and we show the
precise singularity profile of those solutions, as stated in Theorem 1.8.

Acknowledgements. P. Daskalopoulos has been partially supported by
NSF grants 0604657 and 1266172. N. Sesum has been partially supported
by NSF grants 0905749 and 1056387.
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2. Self-similar solutions

Consider self-similar solutions U(x, t) of fast diffusion equation (1.2) in di-
mensions N ≥ 3 of the form

U(x, t) = (T − t)αf(y), y = x(T − t)β, α =
1 + 2β

n
, β > 0

where f(y) is a radial solution of the elliptic equation (1.9). We recall that
we have set n = 1−m, m = (N − 2)/(N + 2) and that N ≥ 3.

In this section we will discuss the existence and geometric properties of
three different kinds of self-similar solutions (Yamabe solitions) that will be
used in further singularity analysis. In the next section we will discuss their
second order asymptotic behavior as |y| → ∞, which is needed to understand
the singular profiles of solutions to (1.2) with cylindrical behavior at infinity.
In what follows let α := (2β + 1)/n and β > 0.

(i) We denote by Uβ,B(x, t) = (T − t)αfβ,B(x(T − t)β), t ∈ (−∞, T ) and
B > 0 a two parameter family of radially symmetric smooth self-similar
solutions satisfying the cylindrical behavior (1.10) at infinity. Their ex-
istence for any β > 0 is well known [36].

(ii) We denote by Vβ,B(x, t) = (T − t)αgβ,B(x(T − t)β), t ∈ (−∞, T ) and
B > 0 a two parameter family of radially symmetric singular at the
origin self-similar solutions with the cylindrical behavior (1.10) at in-
finity. The behavior of the profile function gβ,B at the origin is given
by (1.16), where KB is a constant depending on B. The existence of
these solutions will be proved in Proposition 3.5 below.

(iii) We denote by Wβ,K(x, t) = (t− T )αhβ,K(x(t− T )β), t ∈ (T,∞) and
K > 0, a two parameter family of radially symmetric forward self-
similar solutions with profile function hβ,K satisfying (1.19) and (1.20)
with DK a constant depending on K. In [36] Vazquez proved the ex-
istence of these solutions starting with the initial data Wβ,K(x, T ) =
K |x|−α/β.

Remark 2.1. In (i) and (ii) above we parametrize the self-similar profiles
fβ,B and gβ,B by the constant B that appears in second-order asymptotics
of the corresponding self-similar solutions (see (1.14) and (1.15)).
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2.1. Geometric properties of Yamabe solitons

We summarize below some of the geometric properties of the Yamabe soli-
tons that were introduced above.

• The Yamabe soliton defined by g = U
4

N+2

β,B dx2, where Uβ,B is described
in (i) above is a complete conformally flat radially symmetric Yamabe
shrinker on RN satisfying equation (R− 1)gij = ∇i∇jPu for a radially
symmetric potential function Pu. This soliton behaves as a cylinder at
infinity. In [18] we showed that for β ≥ β1 they have positive sectional
curvature.

• The Yamabe soliton defined by g = V
4

N+2

β,B dx2, where Vβ,B is described
in (ii) above is a complete locally conformally flat radially symmetric
Yamabe shrinker on RN\{0} satisfying equation (R− 1)gij = ∇i∇jPv
for a radially symmetric function Pv. This soliton also behaves as a
cylinder at infinity. It is singular at the origin and therefore by the
classification and rigidity result in [11] it has to have somewhere neg-
ative Ricci curvature (since it is not flat, not locally isometric to a
cylinder, not globally conformally flat and not conformal to a spheri-
cal spaceform; the last is true because our soliton is not compact). It
is easy to check the completeness of our solution at the origin where
Vβ,B ∼ |x|−α/β as |x| → 0. The completeness follows from

distg(x, 0) ≥ C
∫ x

0
|y|−

2β+1

2β dy = +∞

since β > 0, implying that the distance to the origin is infinity. This
soliton has 2 ends.

• The Yamabe soliton defined by g = W
4

N+2

β,K dx2, where Wβ,K is de-
scribed in (iii) above is a complete locally conformally flat radially sym-
metric Yamabe expander on RN\{0} satisfying equation (R+ 1)gij =
∇i∇jPw for a radially symmetric potential function Pw. This soliton
admits the spherical behavior at infinity, which means it is compact on
one end. It behaves at the origin like the previously discussed Yamabe
shrinker on RN\{0}, which means it is complete at the origin (one can
also check that the area around the origin is infinite). This soliton met-
ric has only one end and by the same arguments as for the previously
discussed Yamabe shrinker has somewhere negative Ricci curvature.
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2.2. Scaling and monotonicity of self-similar solutions

In this section we will use the maximum principle and the scaling properties
of equation (1.9) to establish the monotonicity of the self-similar solutions
Uβ,B and Vβ,B with respect to the parameter B and with respect to the
radial variable η = |y|.

We begin by noting the relation between the parameter B in the self-
similar profiles fβ,B and gβ,B (that satisfy (1.14) and (1.15) respectively)
and the behavior of those profiles at the origin. To this end, let

Uβ,B0
(y, t) = (T − t)αfβ,B0

(x (T − t)β) and

Vβ,B̄0
(y, t) = (T − t)αgβ,B̄0

(x (T − t)β)

denote the self-similar solutions with

fβ,B0
(0) = 1 and lim

|y|→0
|y|α/βgβ,B̄0

(y) = 1

respectively. Clearly, B0 = B0(β,N) > 0 and B̄0 = B̄0(β,N) > 0. Both pro-
files satisfy (1.14) and (1.15) respectively, which in particular imply that

(2.1) lim
|y|→+∞

|y|2/nfβ,B0
(y) = lim

|y|→+∞
|y|2/ngβ,B̄0

(y) = C∗.

The rescaled solutions of equation (1.9) that preserve (2.1) are given by

fλβ,B0
(y) := λ2/n fβ,B0

(λy) and gλβ,B̄0
(y) := λ2/n gβ,B̄0

(λy)

and satisfy

(2.2) fλβ,B0
(0) = λ2/n and lim

|y|→0
|y|α/βgλβ,B̄0

(y) = λ−1/(nβ).

It follows that fλβ,B0
= fβ,Bλ and gλ

β,B̄0
= gβ,B̄λ where fβ,Bλ and gβ,Bλ sat-

isfy (1.14) and (1.15) respectively with Bλ = B0λ
−γ and B̄λ = B̄0λ

−γ . To
simplify the notation in what follows we set fλ(η) := fλβ,B0

(y) and gλ(η) :=

gλ
β,B̄0

(y), η = |y|.

Lemma 2.2. Assume that Nβ ≥ α (or equivalently, β ≥ β1). If 0 < λ1 <
λ2, then

(2.3) fλ1
< fλ2

and gλ1
> gλ2

.
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Proof. We observe that in the case Nβ ≥ α radially symmetric weak solu-
tions of equation (1.9) cannot cross: if they coincide at a point η0 = |y0| they
must be the same. This follows by the simple observation that uniqueness of
weak solutions of equation (1.9) holds on Br0(0) when Nβ > α. Assuming
that λ1 < λ2, it then follows from (2.2) that (2.3) hold. �

As a consequence of the previous lemma, we have the following.

Proposition 2.3. Assume that Nβ ≥ α (or equivalently, β ≥ β1). For any
0 < B1 < B2 we have

Uβ,B2
< Uβ,B1

< C < Vβ,B1
< Vβ,B2

with C denoting the cylindrical solution given by (1.5). In addition, if η = |y|

(2.4)
d

dη

(
η2/nfβ,B(η)

)
> 0 and

d

dη

(
η2/ngβ,B(η)

)
< 0

holds for any B > 0.

Proof. Similarly to the proof of the previous lemma, any two solutions from
the fβ,Bi and gβ,Bi , i = 1, 2, of (1.9) cannot cross each other when Nβ >
α. Hence, for any 0 < B1 < B2 the monotonicity Uβ,B2

< Uβ,B1
< Vβ,B1

<
Vβ,B2

readily follows from the behavior of those solutions at infinity. In
addition, the monotonicity of the profiles fλ and gλ, noted in the previous
lemma, readily implies that (2.4) holds. This in particular implies that, for
any B1, B2 > 0, we have Uβ,B1

< C < Vβ,B2
and the proof of the proposition

is complete. �

3. Precise asymptotics of self-similar solutions

We will establish in this section the precise asymptotics, up to second order,
of the smooth self-similar solutions Uβ,B and the singular self-similar solu-
tions Vβ,B, both of which have been discussed in the previous section. More
precisely, we will prove Theorems 1.1 and 1.2.

It will be convenient to work in cylindrical coordinates. Consider for
the moment any solution u of fast-diffusion equation (1.7) that is defined
on RN × (−∞, T ), T > 0 and vanishes at time T . Assuming that u(r, t) is
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radial, set

(3.1)
v(s, τ) = (T − t)−1/(p−1)r2/(p−1) um(r, t),

r = es, τ = − log (T − t),

where we recall that p := 1/m = (N + 2)/(N − 2). Equation (1.2) is equiv-
alent to

(vp)τ = vss + α vp − ᾱ v, ᾱ =
(N − 2)2

4
, α =

p

p− 1
=
N + 2

4

or equivalently

ᾱ−1(vp)τ = ᾱ−1vss + α ᾱ−1 vp − v.
Setting v = λv̄, we find (after multiplying the above equation by λ−1) that

ᾱ−1λp−1 (v̄p)τ = ᾱ−1vss + αλp−1 ᾱ−1 vp − v.

Choosing λ so that αλp−1 ᾱ−1 = 1 we finally conclude the following equation
for v̄ (which we denote again by v)

(3.2) α−1( vp)τ = ᾱ−1vss + vp − v.

A self-similar solution U(r, t) of (1.2) given by (1.8) corresponds to a
traveling wave solution V := v(x− βτ) of (3.2). It follows that v satisfies
the differential equation

(3.3) ᾱ−1vss + β (p− 1) vp−1vs + vp − v = 0.

We notice that the cylindrical solution C of equation (1.2) given by (1.5) now
corresponds to the constant solution v = 1 of equation (3.3). To linearize
(3.3) around the constant solution v = 1, we set v := 1 + w and we find that
w satisfies the differential equation

(3.4) ᾱ−1wss + β (p− 1) (1 + w)p−1ws + (1 + w)p − (1 + w) = 0

or equivalently, since (p− 1)ᾱ = N − 2,

(3.5) wss + β (N − 2) (1 + w)p−1ws +
N − 2

p− 1
[(1 + w)p − (1 + w)] = 0.

The linearized operator of (3.4) around w = 0 is

(3.6) Lβw := wss + β (N − 2)ws + (N − 2)w = 0.



i
i

“4-Sesum” — 2020/1/8 — 0:46 — page 1774 — #18 i
i

i
i

i
i

1774 P. Daskalopoulos, J. King, and N. Sesum

We may write (3.5) as

(3.7) wss + β (N − 2)ws + (N − 2)w = f

with

(3.8) f := −(N − 2)

(
β [(1 + w)p−1 − 1]ws +

1

p− 1
[(1 + w)p − 1− pw]

)
.

Observe that

f = −(N − 2)

p

(
β φ′(s) +

p

p− 1
φ(s)

)
,

where

(3.9) φ(w) := (1 + w)p − 1− pw = cpw
2 +O(w3), as w → 0.

Since 1 + w ≥ 0, we have w ≥ −1 always. We observe that φ(w) is a convex
function of w, since p > 1, and that its only local minimum on [−1,+∞) is
attained at w = 0 where φ(0) = 0. Hence,

φ(w) ≥ 0 for all w ∈ [−1,+∞).

We next look for solutions of (3.6) of the form w(s) = C e−γs. It follows
that γ satisfies equation (1.12) and its roots γi, i = 1, 2 are given by (1.13).
The roots γi are real (which give non-oscillating solutions w) iff

β2(N − 2)2 − 4(N − 2) ≥ 0 or β ≥ β0 :=
2√
N − 2

.

Notice that

β1 :=
N + 2

2(N − 2)
≥ β0 :=

2√
N − 2

for all N ≥ 3 and that β1 = β0 iff N = 6. Also, if β ≥ β0, then γ2 ≥ γ1 and
γ2 = γ1 iff β = β0.

3.1. Second-order asymptotics of the smooth self-similar
solutions Uβ,B

Our goal in this subsection is to prove Theorem 1.1. Assume from now on
that β > β0, so that γ2 > γ1. Perform the cylindrical change of coordinates
(3.1) for Uβ,B and denote by w(s) as above the perturbation of our solution in
cylindrical coordinates from the cylinder v(s) ≡ 1 when s→ +∞. Note that
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the smoothness of our radial solution Uβ,B at the origin implies w(s) ∼ −1
as s→ −∞. We may express the solution w of (3.5) using the variation of
parameters formula as

w(s) = −e−γ1s
∫ s

−∞

e−γ2t

W (t)
f(t) dt+ e−γ2s

∫ s

−∞

e−γ1t

W (t)
f(t) dt

were W (t) denotes the Wronskian determinant of the solutions e−γ1t, e−γ2t

of the homogeneous equation and is equal to W (t) = (γ1 − γ2) e−(γ1+γ2)t. It
follows that

w(s) =
1

γ2 − γ1

(
e−γ1s

∫ s

−∞
eγ1t f(t) dt− e−γ2s

∫ s

−∞
eγ2t f(t) dt

)
.

We conclude that
(3.10)

w(s) = −CN
(
A1 e

−γ1s
∫ s

−∞
eγ1t φ(t) dt−A2 e

−γ2s
∫ s

−∞
eγ2t φ(t) dt

)
,

with
(3.11)

Ai :=
p

p− 1
− β γi, i = 1, 2, C = C(β,N), CN :=

(N − 2)

p(γ2 − γ1)
> 0.

Set

Ii(s) :=

∫ s

−∞
eγit φ(t) dt and Ii =

∫ +∞

−∞
eγit φ(t) dt ≤ +∞,

and recall that (3.9) holds.

Lemma 3.1. The following hold:

• A1 > A2 for γ2 > γ1 and A1 = A2 iff γ1 = γ2 (or equivalently iff β =
β0).

• For β > β1, we have A2 < 0 < A1.

• For β = β1, we have A1 = 0, A2 < 0 if N < 6 and A1 > 0, A2 = 0 if
N > 6 and A1 = A2 = 0 if N = 6 (in this case γ1 = γ2).

• For β0 < β < β1 we have: A1 > A2 > 0, if N > 6 and A2 < A1 < 0, if
N < 6.
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Proof. We have

Ai(β) =
N − 2

2

(
p

2
−
(
β2 ∓ β

√
β2 − 4

N − 2

))
, i = 1, 2

hence by direct calculation

A′i(β) = ±N − 2

2

(
β ∓

√
β2 − 4

N−2

)2√
β2 − 4

N−2

.

Hence, A1(β) is increasing and A2(β) is decreasing. Also, A1(β1) > 0 if N >
6 and A1(β1) = 0 if N ≤ 6. Similarly, A2(β1) = 0 if N ≥ 6 and A2(β1) < 0
if N < 6. Also, Ai(β0) > 0 if N > 6 and Ai(β0) = 0 if N = 6 and Ai(β0) < 0
if N < 6. Hence:

• If β > β1, then A1(β) > A1(β1) ≥ 0 and A2(β) < A2(β1) ≤ 0.

• If N > 6, β0 < β < β1, we have A1(β) > A1(β0) > 0, A2(β) >
A2(β1) = 0.

• If N < 6, β0 < β < β1, we have A1(β) < A1(β1) = 0 and A2(β) <
A2(β0) < 0.

• If N = 6, β0 = β1 and A1 = A2 = 0, if β = β1 = β0. �

Lemma 3.2. Assume β > β0. We have

(3.12) |w(s)| ≤ C e−γ1s, for all s ≥ s0

for some constant C depending on N and β. Moreover, if N ≤ 6 and β0 <
β < β1 there exists an s0 such that w(s) ≥ 0 for all s ≥ s0. In all other cases
w(s) < 0 for all s ∈ R.

Proof. By (3.10) and (3.9) we have

w(s) = −CN
(
A1 e

−γ1s I1(s)−A2 e
−γ2s I2(s)

)
,

as s→ +∞, where Ai are given by (3.11), CN > 0 and lims→+∞w(s) = 0.
The case A1 = 0 happens only when β = β1 and the solution is then explicit
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(Barenblatt solution). Therefore, we may assume from now on that

A1 6= 0.

As s→∞,

(3.13) w(s) = −CN
(∫ s

−∞

(
A1e

−γ1 (s−t) −A2 e
−γ2(s−t))φ(t) dt

)
Moreover,

φ(t) ≥ 0, ∀t and e−γ1(s−t) ≥ e−γ2(s−t), ∀t ≤ s.

Recall that A2 < A1 always when β > β0. Note that A1 > 0 in all cases
except when N ≤ 6 and β0 < β ≤ β1. Since A2 < A1, it follows from (3.13)
that when A1 > 0 we have w < 0 for all s and

(3.14) M1

∫ s

−∞
eγ1t φ(t) dt ≤ eγ1s |w(s)| ≤M2

∫ s

−∞
eγ1t φ(t) dt,

with M1 := A1 − |A2| > 0 and M2 := A1 + |A2| <∞.
We claim that in the case when N ≤ 6 and β0 < β < β1 there exists

an s0 such that w(s) ≥ 0, for all s ≥ s0. In order to see that, we multiply
equation (3.7) by eγ1s and integrate it over (−∞, s]. After integration by
parts, using that −γ1 is a solution to the characteristic equation for (3.6)
and that γ1 + γ2 = β(N − 2), we obtain

(3.15) ws + γ2w = −CN e−γ1sA1

∫ s

−∞
φ(t) eγ1t dt− CN φ.

Since A1 < 0 in this case and CN φ ≤ cw2 for s ≥ s0 (by (3.9)) we conclude

(3.16) ws + γ2w ≥ CN |A1|e−γ1sI1(s)− cw2

for s ≥ s0. The above yields that if ever w(s0) = 0 for some s0, then ws|s=s0 ≥
0, implying that w(s) ≥ 0 for all s ≥ s0. Therefore we have two possibilities,
either there exists an s0 such that w(s) ≥ 0 for all s ≥ s0, or w(s) < 0 for
all s. In the latter case, using that lims→∞w(s) = 0, we can choose a tiny
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ε > 0 so that for s ≥ s0

ws + (γ2 − ε)w ≥ 0,

implying

(we(γ2−ε)s)s ≥ 0.

Since γ2 > γ1 we conclude

|w(s)| ≤ Ce−γ1s, s ≥ s0.

This would immediately imply that (3.12) holds. Since A1 < 0 this would
mean w(s) > 0 for s sufficiently large, which contradicts our assumption
that w(s) ≤ 0 for all s. We conclude that the first possibility always holds,
namely w(s) ≥ 0 for all s ≥ s0. Since A2 < A1 < 0, it follows from (3.13)
that

(3.17) eγ1s |w| ≤ CN |A1|
∫ s

−∞
φ(t) eγ1t dt.

We will now show that in all cases (3.12) holds. By (3.14) (holding when
A1 > 0) and (3.17) (holding when A1 < 0) it is sufficient to prove that

I1 :=

∫ +∞

−∞
eγ1t φ(t) dt < +∞.

Indeed, assume that I1 = +∞ and choose s0 sufficiently large that both (3.9)
and ∫ s0

−∞
eγ1t φ(t) dt ≤

∫ s

s0

eγ1t φ(t) dt for s >> 1

hold. By (3.14) and (3.17),

|w(s)| ≤ C e−γ1s
∫ s

s0

eγ1tw2(t) dt for s >> 1

for some positive constant C > 0. We conclude that Js0(s) :=
∫ s
s0
eγ1t φ(t) dt

satisfies

J ′s0(s) ≤ 2C e−γ1s Js0(s)
2 for s >> 1

from which, after we integrate on [s,+∞) and use that

Js0 := lim
s→∞

Js0(s) = +∞,
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we obtain the lower bound

Js0(s) ≥ c eγ1s

for some absolute c > 0. Since for s >> 1 we either have w ≤ 0 and A1 > 0
or w ≥ 0 and A1 < 0, this lower bound and (3.15) imply

|ws|+ (γ2 + ε)|w| ≥ CNe−γ1s|A1| Js0(s) ≥ c > 0

yielding a contradiction since lims→∞w(s) = 0.

We will finish by showing that w(s) < 0 for all s ∈ R in the cases stated
in the lemma. As shown in (3.11), the constant CN in front of φ(s) in (3.10)
is positive. In the case when β > β1 and N ≥ 3 we have A2 < 0 < A1 and
therefore (3.10) implies that w(s) < 0 for all s. In the case β0 ≤ β < β1 and
N ≥ 6, since A1 > A2 > 0 and γ1 < γ2, we have A1e

−γ1(s−t) −A2e
−γ2(s−t) >

0. Equation (3.10) implies again that w(s) < 0 for all s. �

Lemma 3.3. If A1 6= 0, then

(3.18) w(s) = −CN A1 I1 e
−γ1s(1 + o(1))

with I1 :=
∫ +∞
−∞ eγ1t φ(t) dt satisfying 0 < I1 <∞.

Proof. We will use (3.13). We first observe that by (3.9) and (3.12) we have

e−γ2s I2(s) ≤ e−γ2s I2(s0) + 2cp e
−γ2s

∫ s

s0

eγ2tw2(t) dt

≤ e−γ2s I2(s0) + C e−2γ1s.

Since I1 6= 0 and γ2 > γ1, it follows from (3.13) that as s→∞, (3.18) holds.
�

The above discussion leads to the following Proposition.

Proposition 3.4. Let m = (N − 2)/(N + 2), N ≥ 3, β0 := 2/
√
N − 2 and

β1 = 1/(2m). We have the following:

• For N ≥ 6 and β > β0 or 2 < N < 6 and β > β1 the solution to (3.5)
admits the slow behavior w(s) = −B e−γ1s(1 + o(1)) with B > 0.

• For 2 < N < 6 and β0 < β < β1 the solution to (3.5) admits the slow
behavior w(s) = B e−γ1s(1 + o(1)) with B > 0.
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• For 2 < N ≤ 6 and β = β1, the solution to (3.5) admits the fast be-
havior w(s) = −B e−γ2s(1 + o(1)), with γ2 = γ2(β1) = 2, B > 0.

Proof. In the cases where A1 6= 0, the Proposition follows from (3.18). In
the cases where A1 = 0, we have β = β1 and the solution is given in closed
form (Barenblatt solution) and admits the fast behavior w(s) = −B e−2s(1 +
o(1)). �

Proof of Theorem 1.1. The proof of Theorem 1.1 immediately follows from
Proposition 3.4 once we write v(s) = 1 + w(s) and express everything in
polar coordinates on RN . �

3.2. Asymptotics of the singular self-similar solutions Vβ,B

Our goal in this subsection is to prove Theorem 1.2. Before showing the
precise asymptotics of those singular self-similar solutions at infinity we will
first briefly comment on their existence. Since this is pretty standard we will
omit the details and give the references in which the details can be found.

Lemma 3.5. For every β > β1 and T > 0, there exists one parameter fam-
ily of self-similar solutions Vβ,B(x, t) = (T − t)αgβ,B(x(T − t)β) with profile
function gβ,B(y) satisfying (1.16) with B > 0 and KB > 0 (depending on B)
so that

(3.19) g(y) =

(
C∗

|y|2

)1/n

(1 + o(1)), as |y| → +∞

Proof. We will show the existence of a radial solution gβ,B(r), r = |y| of
equation (1.9) on RN such that gβ,B(r) satisfies (1.16) and (3.19). Omit for
simplicity the subscripts β,B in the proof of this Lemma, but keep in mind
that β > 0 has been fixed. Rewrite the equation (1.9) in the following form

(3.20)
1

m
r1−N (rN−1g(r)m−1g′(r))′ + βyg′(r) + αg(r) = 0.

As in [36] we introduce the following change of variables

y = es, X(s) :=
rg′

g
, Y (s) = y2g1−m.

Then (3.20) is equivalent to the following autonomous system of ODEs

Ẋ = (2−N)X −mX2 −m(α+ βX)Y

Ẏ = (2 + (1−m)X)Y.
(3.21)
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Set θ := −α/β. This autonomous system has a local solution with

X(−∞) = −θ, Y (s) ∼ es(−θ(1−m)+2), as s→ −∞.

These are equivalent to saying that initial data satisfy g(r) ∼ r−θ as y → 0.
Take any self-similar profile fβ,B of a smooth self-similar solution Uβ,B (as
in Theorem 1.1). Then limr→0 g(r) > fβ,B(0). We claim this implies

(3.22) g(r) > fβ,B(r)

for all r as long as the solution g exists. Indeed, if that were not true,
there would exist an r0 so that (since our solutions are radially symmetric)
g(r0) = fβ,B(r0). Since both, g and fβ,B are weak solutions of the same
elliptic equation (1.9), by the uniqueness of the Dirichlet problem on the
ball Br0(0) (which holds since β > β1) we would have g ≡ fβ,B on the same
ball. This is impossible since fβ,B is a smooth solution at the origin unlike
the singular solution g.

On the other hand the Aronson Benilán inequality ([1]), applied to the
ancient solution Vβ,B implies ∆V m

β,B ≤ 0. This means that ∆gm ≤ 0, which

(if |y| = r) is equivalent to (rN−1(gm)r)r ≤ 0. After integrating this inequal-
ity twice from some fixed r0 > 0 to r we get

(3.23) gm(r) ≤ C(1 + r2−N
0 ).

Combining the estimates (3.22) and (3.23) yields that our solution g remains
strictly positive and bounded for all r > 0 and therefore it defines the global
solution to (3.20).

Almost the same phase-plane analysis as in [36] (see chapter 5) implies
that by choosing the right orbit the solution g admits the cylindrical behav-
ior g(r) = (C∗|r|−2)1/n(1 + o(1)), as r → +∞. To see that we find that the
critical points of our system (3.21) are

E := (0, 0), C := (−(N + 2), 0), D := (−2/(1−m), (N − 2)/m).

The only difference from the analysis in [36] is that we need to exclude the
case that the orbit ends at the critical point C. If that were to happen,
as in [36] we would get that our solution had the spherical behavior at
infinity and therefore was in L1(RN ). We argue by contradiction that this is
not possible. Assume Vβ,B(x, t) = (T − t)αgβ,B(x(T − t)β) and gβ,B satisfies
(1.16) and g(y) ∼ |y|−(N+2) as |y| → ∞. Let Us(x, t) := (T − t)αfs(x(T −
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t)β) be the spherical solution that becomes extinct at time T as well. By the
L1 contraction principle we have∫

RN
|Vβ,B(x, t)− Us(x, t)| dx ≤

∫
RN
|Vβ,B(x, 0)− Us(x, 0)| dx ≤ C <∞,

where C > 0 is a uniform constant. This implies that∫
RN
|gβ,B(y)− fs(y)| dy ≤ C(T − t)βN−α → 0,

as t→ T , forcing gβ,B ≡ fs, which is impossible. We have used here our
assumption that β > β1 (or equivalently βN > α). Similarly as in [36] we
conclude the orbit must end at D, hence as s→∞ we must have X → −2/n,
which implies the asymptotic behavior (3.19). �

By Lemma 3.5 we already know the existence of the singular self-similar
solutions Vβ,B for which their profile gβ,B satisfies (1.16) and (3.19). To
complete the proof of Theorem 1.2 it is therefore enough to show (1.15). For
this purpose assume β ≥ β1.

Proof of Theorem 1.2. We adopt the same notation as in Subsection 3.1.
Using the variation of parameters formula we can write w as

w(s) =
1

γ2 − γ1

(
e−γ1s

∫ s

s0

eγ1tf(t) dt− e−γ2s
∫ s

s0

eγ2tf(t) dt

)
.

Note that we are not able to integrate from −∞ as in the proof of Theo-
rem 1.1 but instead do so from some finite s0, the reason being that the
singular behavior of Vβ,B at the origin implies that the above integrals are
near −∞. Integration by parts yields

w(s) = CN

(
e−γ1s

(
βφ(s0)eγ1s0 −A1

∫ s

s0

eγ1tφ(t) dt
)

− e−γ2s
(
βφ(s0)eγ2s0 +A2

∫ s

s0

eγ2tφ(t) dt
))
.

Recall that for β ≥ β1 we have A2 ≤ 0 ≤ A1. By Corollary 2.3 we have
w(s) > 0 for all s ∈ (−∞,∞) in the considered case. This, together with
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φ ≥ 0 (as we showed in the proof of Lemma 3.2), implies

(3.24) 0 ≤ w(s) ≤ C(s0)e−γ1s for all s.

As in the proof of Lemma 3.3 we can now argue that, if I(s0) 6= 0 for some
s0 ∈ R, then

w(s) = CN I(s0)e−γ1s(1 + o(1)),

where I(s0) := βφ(s0) eγ1s0 −A1

∫∞
s0
eγ1tφ(t) dt. Since w > 0 it follows that

I(s0) ≥ 0. If I(s0) > 0 for some s0 we are done. Otherwise, we must have

βeγ1sφ(s) = A1

∫ ∞
s

eγ1tφdt, ∀s ∈ (−∞,+∞)

implying that

(3.25) φ(s) = Ce−
(
γ1+

A1
β

)
s.

On the other hand, φ(s) ∼ wp(s) as s→ −∞ and, by using the change be-
tween radial and cylindrical coordinates and the behavior gβ,B(y) ∼ |y|−α/β

as |y| → 0, we obtain w(s) ∼ e−
(
α

β
− 1

p−1

)
s

as s→ −∞. This together with
(3.25) and the definition of A1 would imply that(

α

β
− 1

p− 1

)
p = γ1 +

A1

β
=

p

(p− 1)β
.

A direct calculation shows that this is equivalent to b = −4/(N + 6), which
is impossible since b is always positive. This means that I(s0) 6= 0 for some
s0 finishing our proof. �

4. Cylindrical Behavior of evolving metrics at infinity

Recall that the cylindrical self-similar solution to (1.7) is given by (1.5) and
becomes extinct at time T . Both self similar solutions Uβ,B and Vβ,B whose
second-order asymptotics have been discussed in Section 3 have cylindrical
behavior at infinity and they both become extinct at the time when their
cylindrical tails become extinct. These suggest that the cylindrical tail of
any solution u that satisfies (1.3) will become extinct at time T , as shown
in the following proposition.
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Proposition 4.1. Let u be a nonnegative weak solution of (1.2) with initial
data u0 ∈ L∞(RN ) satisfying (1.5) with C∗ given by (1.4) and n = 1−m.
Then, for every t ∈ [0, T ) we have

u(x, t) =

(
C∗(T − t)
|x|2

) 1

n

(1 + o(1)).

Before we prove this Proposition we will show that the extinction time of
any solution u with initial data u0 ∈ L1

loc(RN ) satisfying (1.5) is at least T .

Lemma 4.2. Let u be a solution of (1.2) as in Proposition 4.1. Then, its
extinction time T ∗ satisfies T ∗ ≥ T .

Proof. It is well known that bounded solutions to (1.2) with u0 ≥ 0 are C∞

smooth and strictly positive up to their extinction time T ∗. Hence, we may
assume without loss of generality, that the initial data u0 are strictly positive
and continuous on RN . Let ε > 0 be an arbitrarily small positive number.
By the asymptotics given by (1.5) and the positivity and continuity of u0,
it follows that we can choose k > 0 to imply that

u0(x) ≥
(
C∗(T − ε)
|x|2 + k2

)1/n

∀x ∈ RN .

By comparison with the Barenblatt solutions (1.11) we have

(4.1) u(x, t) ≥
(

C∗(T − ε− t)
|x|2 + k2(T − ε− t)−2β1

)1/n

∀(x, t) ∈ RN × [0, T − ε)

where β1 := (N + 2)/(2(N − 2)). This implies that the extinction time

T ∗ ≥ T − ε.

Since ε > 0 is arbitrary, let ε→ 0 above to conclude the proof of the Lemma.
�

Proof of Proposition 4.1. Let ε > 0 be arbitary. By (4.1) we have

|x|2/n u(x, t) ≥
(

C∗ (T − ε− t) |x|2

|x|2 + k2(T − ε− t)−2β1

)1/n

.
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If we let |x| → ∞ above we get lim inf |x|→∞ |x|2/n u(x, t) ≥
(
C∗ (T − ε−

t)
)1/n

and by letting ε→ 0 we obtain

(4.2) lim inf
|x|→∞

|x|2/n u(x, t) ≥
(
C∗ (T − t)

)1/n
.

On the other hand, it is easy to check that the function

Bk−(x, t) :=

(
C∗(T − t)

|x|2 − k2(T − t)−2β1

)1/n

solves the equation (1.7) on {|x| > k(T − t)−β1} × [0, T ). Let ε > 0. By our
assumption on u0 there exists an r0 so that for all |x| ≥ r0 we have

(4.3) u0(x) ≤
(
C∗(T + ε)

|x|2

)1/n

≤
(

C∗(T + ε)

|x|2 − k2(T + ε)−2β1

)1/n

.

Choose k sufficiently large that k (T + ε)−β1 ≥ r0 and set

Bε
k−(x, t) :=

(
C∗(T + ε− t)

|x|2 − k2(T + ε− t)−2β1

)1/n

,

which solves equation (1.7) for (x, t) ∈ {|x| > k (T + ε− t)−β1} × [0, T ). The
rescaled functions

ũ(y, t) := u((T + ε− t)−β1 y, t) and B̃ε
k−(y, t) := Bε

k−((T + ε− t)−β1 y, t)

satisfy the equation

(4.4) ũt = (T + ε− t)2β1∆ũm + β1 (T + ε− t)−1 y · ∇ũ

on Qk := {|y| > k} × [0, T ) and ũ(y, 0) ≤ B̃ε
k−(y, 0) for all |y| > k, from (4.3)

and the choice k (T + ε)−β1 ≥ r0. Note also that for every t ∈ [0, T ) and for
every y0 with |y0| = k

lim
y→y0

ũ(y, t) ≤ lim
y→y0

B̃ε
k−(y, t),

since the right hand side is infinite. The comparison principle applied
to (4.4) on Qk yields that ũ(y, t) ≤ B̃ε

k−(y, t) on Qk, or equivalently
u(x, t) ≤ Bε

k−(x, t) on {|x| > k (T + ε− t)−β1} × [0, T ) implying the bound
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lim sup|x|→∞ |x|2/n u(x, t) ≤ (C∗ (T + ε− t))1/n . Letting ε→ 0 yields

lim sup
|x|→∞

|x|2/n u(x, t) ≤ (C∗ (T − t))1/n ,

which together with (4.2) implies the statement of the proposition. �

5. Extinction profile of solutions to the Yamabe flow

We assume in this section that

• either N ≥ 3 and β ≥ β1 := 1/(2m), or

• N ≥ 6 and β < β1 := 1/(2m) with β > β0 := 2/
√
N − 2.

Our main goal is to prove Theorems 1.4 and 1.5.
The assumption u(x, 0) ≤ Uβ,B1

(x, 0), for some B1 > 0, which is assumed
to hold in both Theorems, and the comparison principle imply the upper
bound

(5.1) u(x, t) ≤ Uβ,B1
(x, t) on RN × (0, T ).

In particular, u vanishes at time T . The rescaled function ū given by (1.21)
satisfies the rescaled equation (1.23).

5.1. The case β ≥ β1

In this section we will give the proof of Theorem 1.4. We begin by stating
the L1-contraction property for solutions to (1.2), whose proof can be found
in [27, 36].

Lemma 5.1 (L1-contraction [27], [36]). For any two non-negative so-
lutions u1 and u2 of (1.2) with initial data in L1

loc(RN ), defined on a time
interval [0, T ), and any two times t1 and t2 such that 0 ≤ t1 ≤ t2 < T , we
have ∫

RN
|u1(x, t2)− u2(x, t2)| dx ≤

∫
RN
|u1(x, t1)− u2(x, t1)| dx.
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Observing that∫
RN
|u(x, t)− v(x, t)| dx = e(βN−α)τ

∫
RN
|ū(y, τ)− v̄(y, τ)| dy,

the contraction property implies the following decay estimate.

Corollary 5.2. Let u(·, t), v(·, t) be two solutions to (1.2) and let ū(·, τ),
v̄(·, τ) be their rescalings, respectively. Then

(5.2)

∫
RN
|ū(y, τ)− v̄(y, τ)| dy ≤ e−(βN−α) τ

∫
RN
|ū(y, 0)− v̄(y, 0)| dy

for all τ ∈ (0,∞).

Proof of Theorem 1.4. By (5.1) and (1.8) we have

ū(y, τ) ≤ fβ,B1
(y) ≤ fβ,B1

(0) (y, τ) ∈ RN × (0,∞)

since the profile fβ,B1
is decreasing in |y|. It follows that for any sequence

τi →∞, the sequence of solutions ūi(y, τ) := ū(y, τi + τ) is uniformly
bounded and hence it is equicontinuous on compact subsets of RN ×
(−∞,+∞) by well-known equicontinuity result for solutions to fast diffusion
equations (see in [16]). Hence, by the Arzela-Ascoli theorem there exists a
subsequence (still denoted by τi) such that ūi → ū∞ as i→∞, uniformly
on compact subsets of Rn × (−∞,∞).

We will next show that, because of our assumption (1.24), we have ū∞ ≡
fβ,B, with fβ,B denoting the profile function of the self-similar solution Uβ,B
defined by (1.8). To this end we apply (5.2) to our solution ūi(y, τ) and to
the rescaled self-similar solution fβ,B(y) to obtain

(5.3)

∫
RN
|ūi(y, τ)− fβ,B(y)| dy ≤ e−(βN−α)(τi+τ)

∫
RN
|ū0(y)− fβ,B(y)| dy.

Note that because of (1.24), we have
∫
RN |ū0(x)− fβ,B(x)| dx <∞. Let i→

∞ in (5.3) to conclude∫
RN
|ū∞(y, τ)− fβ,B(y)| dy ≤ lim

i→∞

∫
RN
|ūi(y, τ)− fβ,B(y)| dy = 0.

This implies ū∞ ≡ fβ,B.
We conclude that ū(y, τ) converges, as τ →∞, uniformly on compact

subsets of RN and also in the L1(RN ) norm to the self-similar profile fβ,B.
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The latter convergence is exponential and the exponential rate of conver-
gence is at least e−(Nβ−α)τ . �

5.2. The case β0 < β < β1 and N ≥ 6

In this section we will give the proof of Theorem 1.5. Let η ∈ C∞0 (R) be a
cut off function such that η(y) = 1/2 for |y| < 1/2 and η(y) = 0 for |y| >
1. Let ηR(y) := η(y/R), ηε := η(y/ε) and ηR,ε := ηR(y) + ηε(y). Note that
|∆ηR,ε|+ |∇ηR,ε|2 ≤ C ε−2 for ε/2 ≤ |y| ≤ ε and |∆ηR,ε|+ |∇ηR,ε|2 ≤ C R−2

for R/2 ≤ |y| ≤ R.
We start with the following weighted contraction result. We recall the

weighted L1 space given by (1.25) with p0 ∈ (0, 2m).

Lemma 5.3. Let ū, v̄ be any solutions to (1.21), with initial data ū0, v̄0

respectively, satisfying ū0, v̄0 ≤ fβ,B1
. If maxRN |ū0 − v̄0| 6= 0 then

‖(ū− v̄0)(·, τ)C̄p0‖L1(RN ) < ‖(ū0 − C̄)C̄p0‖L1(RN ) ∀τ ≥ 0.

Proof. The condition ū0, v̄0 ≤ fβ,B1
implies that ū(·, τ), v̄(·, τ) ≤ fβ,B1

for all
τ ≥ 0, since fβ,B1

is a steady state of the rescaled equation (1.21). Recall
also that in the case N ≥ 6 we have shown in Lemma 3.2 that w(s) < 0 for
all s ∈ R, which is equivalent to

(5.4) fβ,B1
(y) < C̄(y) ∀x ∈ RN

where C̄(y) =
(
C∗|y|−2

)1/n
with C∗ the constant in (1.4) corresponding to

the cylindrical metric.
Set q := |ū− v̄|. A standard application of Kato’s inequality implies that

(5.5) qτ ≤ ∆(aq) + β div (y q) + (α−Nβ) q

in the distributional sense, where

(5.6) a(y, τ) :=

∫ 1

0

mdθ

(θC̄ + (1− θ)v̄)n
.

By the bound v̄ ≤ fβ,B1
and (5.4) we have

(5.7) a(y, τ) >
m

C̄n
=
m |y|2

C∗
.
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Let ηR,ε be the cut off function introduced above. Equation (5.5) and inte-
gration by parts yield

d

dτ

∫
RN

q ηR,ε C̄p0 dy ≤
∫
RN

[
a∆C̄p0 − β∇C̄p0 · y + (α−Nβ) C̄p0

]
q ηR,ε dy

+

∫
RN

[
∆ηR,εC̄p0a+ 2a∇ηR,ε · ∇C̄p0 − βy · ∇ηR,εC̄p0

]
q dy.

A direct calculation shows that

∆C̄p0 =
1

4
(N + 2)(C∗)p0/n p0

(
N (p0 − 2) + 2(p0 + 2)

)
|x|−2−(N+2)p0/2.

We see that ∆C̄p0 < 0 for p ∈ (0, 2m). Hence by (5.7)

(5.8) a∆C̄p0 < N − 2

4C∗
p0

(
N(p0 − 2) + 2(p0 + 2)

)
C̄p0 .

Furthermore,

− β∇C̄p0 · y + (α−Nβ) C̄p0(5.9)

=
1

4
C̄p0(2 +N + 2β (2−N + 2β(2−N + (2 +N) p0)).

Estimates (5.8) and (5.9) imply

a∆C̄p0 − β∇C̄p0 · x+ (α−Nβ)C̄p0 < KN C̄p0

with

KN :=
−4− 2β(N − 2)2 +N2 + 2(−1 + β)(N2 − 4)p0 + (N + 2)2p2

0

4(N − 2)
.

We see that

(5.10) a∆C̄p0 − β y · ∇C̄p0 + (α−Nβ) C̄p0 < 0, if p0 ∈ [p1, p2]

with p1 := m
(
1− β −

√
β2 − 4

N−2

)
and p2 := m

(
1− β +

√
β2 − 4

N−2

)
. We

will choose p0 := p2. Since β < β1 and N ≥ 6, it is easy to check that p1 > 0
and p2 < 2m, so that p0 ∈ (0, 2m). With this choice of p0 we conclude from
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the above discussion that

d

dτ

∫
RN

q ηR,ε C̄p0 dy(5.11)

≤
∫
RN

[
∆ηR,ε C̄p0a+ 2a∇ηR,ε · ∇C̄p0 − βy · ∇ηR,ε C̄p0

]
q dy

+

∫
RN

[
a∆C̄p0 − β y · ∇C̄p0 + (α−Nβ) C̄p0

]
q ηR,ε dy

=

∫
|x|≤ε

[
∆ηR,ε C̄p0a+ 2a∇ηR,ε · ∇C̄p0 − βy · ∇ηR,ε C̄p0

]
q dy

+

∫
R/2≤|x|≤R

[
∆ηR,ε C̄p0a+ 2a∇ηR,ε · ∇C̄p0 − βy · ∇ηR,ε C̄p0

]
q dy

+

∫
RN

[
a∆C̄p0 − β y · ∇C̄p0 + (α−Nβ) C̄p0

]
q ηR,ε dy.

Observe that since p0 < 2m

∫
|x|≤ε

[
a∆ηR,εC̄p0 + 2a∇ηR,ε · ∇C̄p0 − βy · ∇ηR,εC̄p0

]
q dy(5.12)

≤ C ε−(n+2

2
p0+2) |Bε(0)| ≤ C εn−(p0

n+2

2
+2) → 0 as ε→ 0.

If we let ε→ 0 in (5.11), then since the limε→0 ηR,ε = ηR, where ηR is a
smooth function with compact support in R/2 ≤ |y| ≤ R, we obtain

d

dτ

∫
RN

q ηR C̄p0 dy(5.13)

≤
∫
R/2≤|x|≤R

[
∆ηRC̄p0a+ 2a∇ηR · ∇C̄p0 − βy · ∇ηRC̄p0

]
q dy

+

∫
RN

[
a∆C̄p0 − β y · ∇C̄p0 + (α−Nβ) C̄p0

]
q ηR dy.

We claim next that if ū0 − v̄0 ∈ L1(C̄p0 ,RN ) then ū(·, s)− v̄(·, s) ∈
L1(C̄p0 ,RN ) for s ∈ [0, τ ] uniformly in s. Indeed recalling that we have cho-
sen p0 = p2 and integrating the previous estimate over [0, s] (with s ∈ [0, τ ])
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also using (5.10) we get

∫
RN

q(x, s) ηR dy −
∫
RN

q(x, 0) ηR dy

(5.14)

≤
∫ s

0

∫
R/2≤|y|≤R

[
∆ηR C̄p0a+ 2a∇ηR · ∇C̄p0 − βy · ∇ηRC̄p0

]
q dy ds̄

≤ C(τ)

∫ τ

0

∫
R/2≤|y|≤R

|y|−
(

2(1+p0)

1−m +γ
)
dy ds̄ ≤ C(τ).

From the uniform integrability of q(·, s) ∈ L1(C̄p0 ,RN ) on s ∈ [0, τ ], we con-
clude that for any fixed τ > 0, we have

(5.15) lim
R→∞

∫ τ

0

∫
R/2≤|y|≤R

q(x, s) C̄p0 dy ds = 0.

On the other hand, since |∆ηR| ≤ C/R2, |∇ηR| ≤ C/R, a(y, τ) ≤ C |y|2 and
|∇C̄p0 | ≤ C |y| C̄p0 , (5.13) implies

d

dτ

∫
RN

q ηR C̄
p0 dy ≤

∫
RN

[
a∆C̄p0 − β y · ∇C̄p0 + (α−Nβ) C̄p0

]
q ηR dy

+ C

∫
R/2≤|y|≤R

q C̄p0dy.

Integrating the above differential inequality over [0, τ ] and letting R→∞,
while using (5.15) and (5.10), gives∫

RN
|ū− v̄| C̄p0 dy <

∫
RN
|ū0 − v̄0| C̄p0 dy,

finishing the proof of the lemma. �

Proof of Theorem 1.5. Once we have Lemma 5.3, which is the analogue of
Lemma 4.1 in [19] we finish the proof of Theorem 1.5 in the same way as
the proof of Theorem 1.2 in [17]. �

6. Solutions that live longer

In Proposition 4.1 we showed how the cylindrical tail shrinks in solutions
that start as being asymptotic to a cylinder at infinity. In Theorems 1.4
and 1.5 we dealt with the extinction profile of the class of solutions that
become extinct at the time that their cylindrical tail disappears. In this
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section we give the proof of Theorem 1.8 that describes the precise extinction
profile of a class of solutions that live longer than their cylindrical tail.

Proof of Theorem 1.8. We claim that given our initial conditions there exists
a B1 > 0 such that

u0 ≤ Vβ,B1
(·, 0) on RN .

To show the claim first note that by our assumption (1.28) there exist B1 > 0
and r0 ≥ 1 sufficiently large so that

u0(x) ≤ Vβ,B1
(x, 0) for |x| ≥ r0.

Recall that Vβ,B1
(x, t) = (T − t)αgB1

(x(T − t)β) for (x, t) ∈ RN × (−∞, T )
and the behavior of gB1

has been discussed in Theorem 1.2. On the other
hand recall that in Section 2.2 we defined gBλ(y) := λ2/ngB0

(λy) where B0

is chosen so that the limy→0 |y|α/βgB0
(y) = 1. Recall that α = (2β + 1)/n.

We also have Bλ = B0λ
−γ . Using that limλ→0(λ|y|)α/βgB0

(λy) = 1 we have

lim
λ→0

gBλ(y) = |y|−α/β lim
λ→0

λ2/n−α/β = |y|−α/β lim
λ→0

λ−1/(nβ) = +∞.

This convergence is uniform in y on the set {|y| ≤ r0}. This means that by
choosing λ sufficiently small (which corresponds to Bλ sufficiently large) and
increasing the previously chosen B1, if necessary, so that B1 ≥ Bλ we have

u0(x) ≤ Vβ,B1
(x) for |x| ≤ r0.

This concludes the proof of the claim.
Let Wβ,K1

be the corresponding forward solution defined by (1.18) so
that

lim
t→T−

Vβ,B1
(x, t) = lim

t→T+
Wβ,K1

(x, t) = K1 |x|−α/β.

Notice that the above convergence is uniform on compact subsets of RN \ {0}
and also in L1

loc(RN ). Since u0 ≤ Vβ,B1
(·, 0), it follows by the comparison

principle that

(6.1) u(x, t) ≤ Vβ,B1
(x, t) for (x, t) ∈ RN × [0, T ].

In particular, u(x, T ) ≤ limt→T− Vβ,B1
(x, t) = K1 |x|−α/β, so again by the

comparison principle we have

(6.2) u(x, t) ≤Wβ,K1
(x, t) for x ∈ RN , t > T.
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Note that since u(·, t), Vβ,B(·, t) ∈ L1
loc(RN ) for all t ∈ [0, T ), we can apply

Corollary 5.2 to show that the rescaled solution ū as in (1.21) satisfies∫
RN
|ū(y, τ)− gβ,B(y)| dy ≤ e−(βN−α) τ

∫
RN
|ū0(y)− gβ,B(y)| dy.

Our assumption u0 − Vβ,B(·, 0) ∈ L1(RN ) implies that ū0 − gβ,B ∈ L1(RN )
and by (6.1) we have

ū(y, τ) ≤ gβ,B1
(y), for (y, τ) ∈ RN × [0, T ].

The same arguments as in the proof of Theorem 1.4 imply that ū(·, τ) con-
verges as τ →∞ uniformly on compact sets of Rn \ {0}, and also in the L1

norm, to the singular self similar profile gβ,B(x). Moreover, since βN > α
the L1 convergence is exponential.

We recall that limt→T− Vβ,B(x, t) = K |x|−α/β for some K > 0. Let Wβ,K

be the corresponding forward solution as in (1.18) so that the limt→T+ Wβ,K

= K |x|α/β. By the L1 contraction property applied to u(·, t)−Wβ,K(·, t) we
have for t > T ,∫

RN
|u(x, t)−Wβ,K(x, t)| dx ≤ lim

t→T+

∫
RN
|u(x, t)−Wβ,K(x, t)| dx(6.3)

= lim
t→T−

∫
RN
|u(x, t)− Vβ,B(x, t)| dx

≤
∫
RN
|u0(x)− Vβ,B(x, 0)| dx ≤ C.

Under the rescaling defined by (1.22) the previous estimate becomes

(6.4)

∫
RN
|û(y, τ)− hβ,K1

(y)| dy ≤ Ce(nβ−α) τ

for τ ∈ (−∞, τ∗) with τ∗ := log(T ∗/T ). Moreover the bound (6.2) becomes

0 ≤ û(y, τ) ≤ hβ,K1
(y) forall (y, τ) ∈ RN × (−∞, τ∗).

This together with (6.4) yields the convergence of the rescaled solutions
û(·, τ) as τ → −∞ uniformly on compact sets of RN\{0} and exponentially
in the L1 norm to the singular self-similar profile hβ,K1

. This in particular
shows that u(·, T ) > 0. Finally, since gβ,K1

(y) = O(|y|−(N+2), as |y| → ∞,
the same must hold for u(·, t) for t > T since Wβ,K1

dominates u. �
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As a consequence of the proofs of the Theorems 1.4, 1.5 and 1.8 we have
the following Corollary that in particular gives other examples of solutions
that live longer than the extinction time of their cylindrical tail.

Corollary 6.1. Let u : RN × [0, T )→ R be a solution to (1.2) with the
initial data u0 ∈ L∞loc(RN ) satisfying

(6.5) u0(x) =

(
C∗T

|x|2

)1/n

(1−B |x|−γ + o(|x|−γ) as |x| → ∞

where B > 0 and γ := γ1.

(i) If β ≥ β1 and N ≥ 3 and u0 − Uβ,B(·, 0) ∈ L1(RN ) for some B > 0,
then we have the same conclusion as in Theorem 1.4 (just replace the
C0 convergence on compact subsets of RN by the uniform C0 conver-
gence on compact subsets away from the origin).

(i) If β0 < β < β1 and N ≥ 6 and u0 − Uβ,B(·, 0) ∈ L1(RN , Cp0) for some
B > 0 and p0 as in Theorem 1.5, the same conclusion as in Theo-
rem 1.5 holds (just replace the C0 convergence on compact subsets of
RN by the uniform C0 convergence on compact subsets away from the
origin).

Proof. By the same arguments as in the proof of Theorem 1.8 there exists
a B1 > 0 so that u0 ≤ Vβ,B1

(·, 0) on RN . By the comparison principle we
have u(x, t) ≤ Vβ,B1

(x, t) for all (x, t) ∈ RN × [0, T ). If we apply the rescaling
(1.21) to u this bound reads as ū(y, τ) ≤ gβ,B1

(y) for all (y, t) ∈ RN × [0,∞).
We can now apply the proofs of Theorems 1.4 and 1.5 to get the convergence
statements in (i) and (ii) respectively. The only difference is that, since gβ,B1

is singular at the origin, we only have uniform convergence on compact
subsets of RN\{0}, i.e. away from the origin. �

Remark 6.2. One easily checks that γ := γ1 < (N + 2)/2. Consider initial
data of the form

u0(x) := Uβ,B(x) + f(a x)

for some a > 0, where f ∈ L∞(RN ) and f(x) = o(|x|−(N+2) as |x| → ∞.
Then γ < (N + 2)/2 implies that

u0(x) =

(
C∗T

|x|2

)2/n (
1−B |x|−γ + o(|x|−γ

)
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where B > 0. As in [18] choose a sufficiently small that the vanishing time of
the solution u to (1.2) starting at u0 is T ∗ > T while by Proposition 3.4 the
cylindrical tail of u becomes extinct at T . We still have u0(x)− Uβ,B(x) ∈
L1(RN ) so Corollary 6.1 applies to our solution. The same proof of Theorem
1.4 in [18] yields that for t > T

u(x, t) ≤ c(t) |x|−(N+2) as |x| → +∞.
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