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critical parameter 16π

Zhijie Chen, Ting-Jung Kuo, and Chang-Shou Lin

It is known from [17] that the solvability of the mean field equation
∆u+ eu = 8nπδ0 with n ∈ N≥1 on a flat torus Eτ essentially de-
pends on the geometry of Eτ . A conjecture is the non-existence of
solutions for this equation if Eτ is a rectangular torus, which was
proved for n = 1 in [17]. For any n ∈ N≥2, this conjecture seems
challenging from the viewpoint of PDE theory. In this paper, we
prove this conjecture for n = 2 (i.e. at critical parameter 16π).

1. Introduction

Let Eτ := C/Λτ be a flat torus on the plane, where Λτ = Z + Zτ , τ ∈ H =
{τ | Im τ > 0}. Consider the following mean field equation with a parameter
ρ > 0:

(1.1) ∆u+ eu = ρ · δ0 on Eτ ,

where δ0 is the Dirac measure at the origin 0. Equation (1.1) has a geo-
metric origin (cf. [6]). In conformal geometry, for a solution u(x), the new
metric ds2 = eu(x)|dx|2 has positive constant curvature. Since the RHS has
singularities, ds2 is a metric with conic singularity. The existence problem
of such metrics with finitely many conical singularities on compact Rie-
mann surfaces has been widely studied in the last several decades; see e.g.
[2, 7, 8, 10, 13, 20, 22, 23] and references therein. Equation (1.1) also ap-
pears in statistical physics as the equation for the mean field limit of the
Euler flow in Onsager’s vortex model (cf. [5]), hence its name. Recently
equation (1.1) was shown to be related to the self-dual condensates of the
Chern-Simons-Higgs equation in superconductivity. We refer the readers to
[9, 12, 14, 15, 19, 21] and references therein for recent developments of re-
lated subjects of equation (1.1).
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When ρ 6∈ 8πN, it can be proved that solutions of (1.1) have uniform
a priori bounds in C2

loc(Eτ\{0}) and hence the topological Leray-Schauder
degree dρ is well-defined; see [3, 7]. Recently, Chen and the third author
[8] proved that dρ = m for any m ∈ N≥1 and ρ ∈ (8π(m− 1), 8πm). Conse-
quently, equation (1.1) always has solutions when ρ 6∈ 8πN, no matter with
the geometry of the torus Eτ .

However when ρ ∈ 8πN≥1, a priori bounds for solutions of (1.1) must not
exist (see [6] or Section 2 below for details), and the existence of solutions
becomes an intricate question. In this paper, we consider this mean field
equation at critical parameters ρ = 8nπ ([6, 17, 18]):

(1.2) ∆u+ eu = 8nπδ0 on Eτ ,

where n ∈ N≥1. The case n = 1 was first studied by Wang and the third
author [17], where they discovered that the solvability of equation (1.2) es-
sentially depends on the moduli τ of the torus Eτ , a surprising phenomena
which does not appear for non-critical parameter ρ’s. For example, they
proved that when τ ∈ iR+ (i.e. Eτ is a rectangular torus), equation (1.2)

with n = 1 has no solution; while for τ = 1
2 +

√
3

2 i (i.e. Eτ is a rhombus
torus), equation (1.2) with n = 1 has solutions. Later, the case n = 1 was
thoroughly investigated in [11].

To settle this challenging problem for n ≥ 2, Chai-Lin-Wang [6] and sub-
sequently Lin-Wang [18] studied it from the viewpoint of algebraic geometry.
They developed a theory to connect this PDE problem with hyper-elliptic
curves and modular forms. Among other things, they proposed the following
conjecture.

Conjecture. [18] When τ ∈ iR+, i.e. Eτ is a rectangular torus, equation
(1.2) has no solutions for any n ≥ 2.

In conformal geometry, this conjecture is equivalent to assert that the
rectangular torus admits no conformal metric with constant curvature 1
and a conical singularity with angle 2π(1 + 2n). It is also related to the
non-existence of certain meromorphic 1-forms on Eτ ; see [10] for details.

This paper is the first in our project devoted to studying the existence
(or non-existence) problem of equation (1.2) for n ≥ 2. The purpose of this
paper is to confirm the conjecture for n = 2.

Theorem 1.1. Suppose τ ∈ iR+, i.e. Eτ is a rectangular torus. Then equa-
tion (1.2) with n = 2 on Eτ has no solutions.
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Theorem 1.1 has important applications. In a forthcoming paper, we will
apply Theorem 1.1 (together with the modular form theory established in
[18]) to prove the following existence result on rhombus tori.

Theorem A. Let τ = 1
2 + ib with b > 0. Then there exists b∗ ∈ (

√
3

2 ,
6
5) such

that for any b > b∗, equation (1.2) with n = 2 on Eτ has a solution.

Remark that Theorem A is almost optimal in the sense that if τ = 1
2 +√

3
2 i, then equation (1.2) with n = 2 on Eτ has no solutions (as mentioned

before, (1.2) with n = 1 on this Eτ has solutions. This shows why we need
to discuss different n’s separately). See Theorem 3.1 in Section 3.

In PDE theory, a standard method of proving non-existence results is to
apply the Pohozaev identity; see [4] for example. Obviously, this method by
Pohozaev identity does not work here. Our proof is based on the fact that
equation (1.2) can be viewed as an integrable system [6].

The paper is organized as follows. In Section 2, we give a short review of
equation (1.2) from the aspect of integrable system. This point of view can
reduce our existence problem to a couple equations involving with Weier-
strass elliptic functions. In Section 3, we prove this couple equations have no
solutions if τ ∈ iR+. Our proof is elementary in the sense that only the ba-
sic theory of Weierstrass elliptic functions covered by the standard textbook
(cf. [1]) are used. This gives the proof of Theorem 1.1.

2. Overview of (1.2) as an integrable system

In this section, we provide some basic facts about equation (1.2) from the
viewpoint of integrable system; see [6] for a complete discussion. Throughout
the paper, we use the notations: ω0 = 0, ω1 = 1, ω2 = τ , ω3 = 1 + τ .

The Liouville theorem says that for any solution u(z) to (1.2), there is
a meromorphic function f(z) defined in C such that

(2.1) u(z) = log
8|f ′(z)|2

(1 + |f(z)|2)2
.

This f(z) is called a developing map. Although u is a doubly periodic func-
tion, f(z) is not an elliptic function. By differentiating (2.1), we have

(2.2) uzz −
1

2
u2
z = {f ; z} :=

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Conventionally, the RHS of this identity is called the Schwarzian derivative
of f(z), denoted by {f ; z}. By the classical Schwarzian theory, any two



i
i

“3-Chen” — 2020/1/8 — 17:11 — page 1740 — #4 i
i

i
i

i
i

1740 Z.-J. Chen, T.-J. Kuo, and C.-S. Lin

developing maps f1 and f2 of the same solution u must satisfy

(2.3) f2(z) = γ · f1(z) :=
af1(z) + b

cf1(z) + d

for some γ =

(
a b
c d

)
∈ SL(2,C). Furthermore, by substituting (2.3) into

(2.1), a direct computation shows γ ∈ SU(2), i.e.

(2.4) d = ā, c = −b̄ and |a|2 + |b|2 = 1.

As we mentioned above, f(z) is not doubly periodic. But f(z + w1) and
f(z + w2) are also developing maps of the same u(z) and then (2.3) implies
the existence of γi ∈ SU(2) such that

(2.5) f(z + ω1) = γ1 · f(z) and f(z + ω2) = γ2 · f(z).

After normalizing f(z) by the action of some γ ∈ SU(2), (2.5) can be sim-
plified by

(2.6) f(z + ωj) = e2πiθjf(z), j = 1, 2,

for some θj ∈ R. We call a developing map f satisfying (2.6) a normalized
developing map.

A simple observation is that once f satisfies (2.6), then for any β ∈ R,
eβf(z) also satisfies (2.6). Therefore, once we have a solution u(z), then we
get a 1-parameter family of solutions:

uβ(z) := log
8e2β|f ′(z)|2

(1 + e2β|f(z)|2)2
.

Clearly uβ(z) blow up as β → ±∞. More precisely, uβ(z) blow up at and
only at any zeros of f(z) as β → +∞, and uβ(z) blow up at and only at
any poles of f(z) as β → −∞. For (1.2), the blowup set of a sequence of
solutions uβ consists of n distinct points in Eτ . Hence f(z) has zeros at z =
ai ∈ Eτ , i = 1, . . . , n, and poles at z = bi ∈ Eτ , i = 1, . . . , n. Furthermore,
{a1, . . . , an} = {−b1, . . . ,−bn} in Eτ ; see [6]. Since {ai} and {bi} are the
zeros and poles of a meromorphic function, we have

(2.7) ai 6= aj for any i 6= j ; ai 6= −aj for any i, j.

In the sequel, we always assume n = 2 in (1.2). So uβ has exactly two
blowup points as β → +∞, say a and b. Then (2.7) and the well known
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Mean field equations on tori 1741

Pohozaev identity imply that a and b satisfy

(2.8) 2Gz(a) = Gz(a− b), 2Gz(b) = Gz(b− a), a /∈ {−a,±b}.

where G(z) = G(z|τ) is the Green function of −∆ on the torus Eτ . See [7, 8]
for the Pohozaev identity. Since the Green function G(z) is even, Gz(z) is
odd and (2.8) is equivalent to

(2.9) Gz(a) +Gz(b) = 0, Gz(a)−Gz(b)−Gz(a− b) = 0, a /∈ {−a,±b}.

On the other hand, the Green function G(z) can be written in terms of
Weierstrass elliptic functions, see [17]. In particular, we have

−4πGz(z) = ζ(z|τ)− η1(τ)z +
2πi Im z

Im τ
(2.10)

= ζ(z|τ)− rη1(τ)− sη2(τ),

where z = r + sτ with r, s ∈ R. Here we recall that ℘(z) = ℘(z|τ) is the
Weierstrass elliptic function with periods ω1 = 1 and ω2 = τ , defined by

℘(z|τ) :=
1

z2
+

∑
ω∈Λτ\{0}

(
1

(z − ω)2
− 1

ω2

)
,

and ζ(z) = ζ(z|τ) := −
∫ z
℘(ξ|τ)dξ is the Weierstrass zeta function, which

is an odd meromorphic function with two quasi-periods ηj(z) (cf. [16]):

(2.11) ζ(z + 1|τ) = ζ(z|τ) + η1(τ), ζ(z + τ |τ) = ζ(z|τ) + η2(τ).

In view of (2.10), the second equation in (2.9) can be changed to

(2.12) ζ(a)− ζ(b)− ζ(a− b) = 0.

Next, we should apply the classical addition formula (cf. [16]):

ζ(u+ v)− ζ(u)− ζ(v) =
1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)

by taking (u, v) = (a,−b). Then (2.12) becomes

℘′(a) + ℘′(b) = 0.

Therefore, the Pohozaev identity (2.9) is equivalent to

(2.13) Gz(a) +Gz(b) = 0 and ℘′(a) + ℘′(b) = 0, a /∈ {−a,±b}.
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Thus, we summarize the main result in this short overview as follows: Sup-
pose the mean field equation (1.2) with n = 2 has a solution u, then there
exist a, b ∈ Eτ such that (2.13) holds true.

3. Non-existence for τ ∈ iR+

In this section, we want to prove the non-existence of solutions to

(3.1) ∆u+ eu = 16πδ0 on Eτ ,

if τ ∈ iR+, i.e. Eτ is a rectangular torus. In the sequel, we always use nota-
tions ω1 = 1, ω2 = τ and ω3 = 1 + τ .

As discussed in Section 2, to prove this non-existence result, it suffices
to show that there are no pair (a, b) in Eτ such that (2.13) holds. The proof
for τ ∈ iR+ is really non-trivial, however, it is much simpler if τ = e

πi

3 .

Theorem 3.1. Let ρ := eπi/3 = 1
2 +

√
3

2 i. Then equation

(3.2) ∆u+ eu = 16πδ0 on Eρ

has no solutions.

Proof. Assume by contradiction that (3.2) has a solution. Then there exist
a, b ∈ Eρ such that (2.13) holds, i.e.

Gz(a|ρ) +Gz(b|ρ) = 0, ℘′(a|ρ) + ℘′(b|ρ) = 0 and a /∈ {−a,±b}.

It is known (cf. [17]) that g2(ρ) = 0 (see (3.4) for g2) and ℘(z|ρ) = ρ2℘(ρz|ρ).
Then by ℘′(a|ρ)2 = ℘′(b|ρ)2 and (3.4) below, we obtain ℘(a|ρ)3 = ℘(b|ρ)3,
which implies

either b = ±ρa or b = ±ρ2a.

On the other hand, G(ρz|ρ) = G(z|ρ) gives ρGz(ρz|ρ) = Gz(z|ρ). Hence,

0 = Gz(a|ρ) +Gz(b|ρ) =
(
1± ρ−j

)
Gz(a|ρ) for some j ∈ {1, 2},

which implies that a is a critical point of G(z|ρ) and so does b. Recall from
[17] that G(z|ρ) has exactly five critical points {1

2ω1,
1
2ω2,

1
2ω3,±1

3ω3}. So
a, b ∈ {1

2ω1,
1
2ω2,

1
2ω3,±1

3ω3}, a contradiction with ℘′(a|ρ) + ℘′(b|ρ) = 0 and
a /∈ {−a,±b}. Therefore, (3.2) has no solutions. �
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From now on, we assume that τ ∈ iR+, i.e. Eτ is a rectangular torus.
Under this assumption, we will prove Theorem 1.1. By making abuse of
the notation, we also use the same notation Eτ to denote its fundamental
parallelogram centered at 0, i.e. Eτ is a rectangle centered at the origin and
so ∂Eτ is well-defined in this sense.

To prove Theorem 1.1, we will show that if (a, b) is a solution of (2.13),
then both a and b lie in the same half plane, and then we exclude this
possibility by using the elementary properties of the Green function G.

Our proof is elementary in the sense that only the basic theory of ℘(z|τ)
covered by the standard textbook (cf. [1]) are used. For example, the follow-
ing lemma only uses some properties of ℘(z|τ) on rectangles.

Lemma 3.2. Let ω2 = τ ∈ iR+. Then ℘ is one to one from (0, 1
2ω1] ∪

[1
2ω1,

1
2ω3] ∪ [1

2ω3,
1
2ω2] ∪ [1

2ω2, 0) onto (−∞,+∞). Here [z1, z2] = {z : z =
tz2 + (1− t)z1, 0 ≤ t ≤ 1}, and [z1, z2), (z1, z2], (z1, z2) are defined simi-
larly.

Proof. By τ ∈ iR+ and the definition of ℘(z):

(3.3) ℘(z) =
1

z2
+

∑
(m,n)6=(0,0)

(
1

(z −m− nτ)2
− 1

(m+ nτ)2

)
,

it is easy to see that ℘(z) = ℘(z̄). Since z̄ = z if z ∈ (0, 1
2 ], z̄ = −z if z ∈

(0, τ2 ], z̄ = 1− z if z ∈ [1
2 ,

1+τ
2 ], z̄ = z − τ if z ∈ [1+τ

2 , τ2 ], so ℘ is real-valued
in (0, τ2 ] ∪ [ τ2 ,

1+τ
2 ] ∪ [1+τ

2 , 1
2 ] ∪ [1

2 , 0).
On the other hand, since ℘(z) = ℘(−z) and the degree of ℘(z) is two,

we conclude that ℘(z) is one to one in (0, τ2 ] ∪ [ τ2 ,
1+τ

2 ] ∪ [1+τ
2 , 1

2 ] ∪ [1
2 , 0).

Moreover, since the second term in the RHS of (3.3) is bounded as z → 0,
we conclude

lim
[ 1
2
,0)3z→0

℘(z) = +∞, lim
(0, τ

2
]3z→0

℘(z) = −∞.

The proof is complete. �

Remark 3.3. In this paper, we always write z = x1 + ix2 with x1, x2 ∈ R.
Let ek = ℘(ωk2 ), k = 1, 2, 3. We recall that ℘(z) satisfies the cubic equation:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 = 4

3∏
k=1

(℘(z)− ek),(3.4)

and ℘′′(z) = 6℘(z)2 − g2/2.
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Thus e1 + e2 + e3 = 0. From Lemma 3.2, we have ej ∈ R, e2 < e3 < e1 and

e2 < 0 < e1, also ℘′(z) = ∂℘(z)
∂x1
∈ R if z ∈ (0, 1

2ω1] ∪ (1
2ω2,

1
2ω3], and ℘′(z) =

−i∂℘(z)
∂x2
∈ iR if z ∈ (0, 1

2ω2] ∪ (1
2ω1,

1
2ω3]. Lemma 3.2 also implies ζ(z) ∈ R

for z ∈ (0, 1
2ω1] and so η1 ∈ R. In the following, we use q± to denote the

solution of ℘(q±) = ±
√
g2/12, i.e. ℘′′(q±) = 0.

Recall our assumption that Eτ is a rectangle centered at the origin. We
first discuss (2.13) by assuming a ∈ ∂Eτ . To prove Theorem 1.1 in this case,
we will solve the second equation in (2.13) to obtain a branch b = b(a), and
then insert b = b(a) in the first equation of (2.13) to find a contradiction.
For this purpose, we now discuss the second equation in (2.13) with a 6= −b.
We have the following lemma.

Lemma 3.4. The equation ℘′′(a) = 0 has exactly four distinct solutions
±q±, which all belong to ∂Eτ with q+ ∈ (1

2ω1,
1
2ω3) and q− ∈ (1

2ω2,
1
2ω3).

Moreover, for any a ∈ Eτ \ {±q±,±2q±}, there are two distinct solutions
b’s to the equation

℘′(a) + ℘′(b) = 0, a 6= −b.

Proof. From (3.4), ℘′′(z) = 0 has 4 zeros at ±q+,±q−, where ℘(q±) =
±
√
g2/12, and

(3.5) e1 + e2 + e3 = 0, e1e2 + e1e3 + e2e3 = −g2

4
, e1e2e3 =

g3

4
,

which implies g2 = 2(e2
1 + e2

2 + e2
3) > 0. So ℘(q±) ∈ R. We claim

(3.6) e2 < −
√
g2/12 < e3 <

√
g2/12 < e1.

Then it follows that q+ ∈ (1
2ω1,

1
2ω3) and q− ∈ (1

2ω2,
1
2ω3), i.e. ±q± ∈ ∂Eτ .

Since e1 + e2 + e3 = 0 and e2 < e3 < e1 by Remark 3.3, we have e2 < 0,
e1 > 0 and |e3| < min{|e2|, e1}. Thus, for i = 1 or i = 2,

g2 = 2(e2
1 + e2

2 + e2
3) = 4(e2

i + eie3 + e2
3) < 12e2

i ,

namely e2 < −
√
g2/12 and e1 >

√
g2/12. If e3 ≤ 0, then g2 = 4(e2

2 + e2e3 +
e2

3) > 12e2
3; if e3 > 0, then g2 = 4(e2

1 + e1e3 + e2
3) > 12e2

3. Therefore, |e3| <√
g2/12, namely (3.6) holds.

For any a ∈ Eτ , ℘′(z) = −℘′(a) has three solutions, because the degree
of the map ℘′ from Eτ to C ∪ {∞} is three. Note that ℘′′(z) = 0 if and only
if z = ±q±. Thus ℘′(a) + ℘′(b) = 0 has three distinct solutions b’s except for
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those a’s such that ℘′(a) + ℘′(±q±) = 0 for some ±q±. To find such a, we
note that

℘′(a)2 = ℘′(b)2, for some b ∈ {±q+,±q−}.

It suffices to consider the case a /∈ {±q±}. Then ℘(a) 6= ℘(b). By using

(3.7) ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

at z = a and z = b, we have

(3.8) ℘(a)2 + ℘(a)℘(b) + ℘(b)2 − g2

4
= 0.

Recalling ℘(b) = ±
√
g2/12 for b ∈ {±q±}, we get

(3.9) ℘(a) =
−℘(b)±

√
g2 − 3℘(b)2

2
=
−℘(b)± 3℘(b)

2
.

This, together with ℘(a) 6= ℘(b), gives ℘(a) = −2℘(b). From the addition for-

mula ℘(2z) = 1
4(℘

′′(z)
℘′(z) )2 − 2℘(z) and ℘′′(b) = 0 for b ∈ {±q±}, we get ℘(a) =

℘(2b). Therefore, a ∈ {±2q±}. This completes the proof. �

Remark 3.5. We have proved q+ ∈ (1
2ω1,

1
2ω3) and q− ∈ (1

2ω2,
1
2ω3). From

e1 + e2 + e3 = 0, we have g2 = 2(e2
1 + e2

2 + e2
3) > 3 max{e2

1, e
2
2}, which im-

plies ℘(2q+) = −2℘(q+) = −
√
g2/3 < e2 and ℘(2q−) = −2℘(q−) =

√
g2/3 >

e1. Hence 2q+ ∈ (0, ω2

2 ) ∪ (−ω2

2 , 0) and 2q− ∈ (0, ω1

2 ) ∪ (−ω1

2 , 0). We will prove
in Lemma 3.7 that 2q+ ∈ (0, ω2

2 ).

Lemma 3.6. There is no pair (a, b) with a or b ∈ ∂Eτ , such that (2.13)
holds.

Proof. Assume by contradiction that such (a, b) exists. Since the degree of
℘(z) is two and ℘(−z) = ℘(z), we know that ℘(a) 6= ℘(b) because of a 6= ±b.
Then just as in Lemma 3.4, it follows from ℘′(a) + ℘′(b) = 0 that (3.8) holds
for (℘(a), ℘(b)).

Without loss of generality, we assume a ∈ ∂Eτ . From (3.8), we find

(3.10) ℘(b) =
−℘(a)±

√
g2 − 3℘(a)2

2
.

We claim

(3.11) g2 − 3℘(a)2 > 0 for any a ∈ ∂Eτ .
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From ℘(−z) = ℘(z) and ℘(z + ωj) = ℘(z), j = 1, 2, we only need to prove
the claim for a ∈ [1

2ω2,
1
2ω3] ∪ [1

2ω1,
1
2ω3]. Let us assume a ∈ [1

2ω1,
1
2ω3]. Then

e3 ≤ ℘(a) ≤ e1. If ℘(a) ≤ 0, then from (3.5) and e1e2 < 0, we have

(3.12) g2 = −4(e1e2 + e3(e1 + e2)) = 4(e2
3 − e1e2) > 4e2

3 > 3℘(a)2.

On the other hand, if ℘(a) > 0, by e2
1 − 4e2e3 = (e2 − e3)2 > 0, we have

(3.13) g2 = 4(e2
1 − e2e3) > 3e2

1 ≥ 3℘(a)2.

Suppose now a ∈ [1
2ω2,

1
2ω3]. Then e2 ≤ ℘(a) ≤ e3. If ℘(a) > 0, then (3.12)

gives g2 > 3℘(a)2. If ℘(a) ≤ 0, then similar to (3.13), we have

g2 = 4(e2
2 − e1e3) > 3e2

2 ≥ 3℘(a)2.

So, the claim (3.11) follows. Since ℘(a) ∈ R, by the claim and (3.10) we also
have ℘(b) ∈ R.

To prove Lemma 3.7, let us argue for the case a ∈
(

1
2(ω1 − ω2), 1

2ω1

)
∪(

1
2ω1,

1
2ω3

)
, which are two intervals on the line 1

2ω1 + iR. Without loss of
generality, we may assume a ∈ [1

2ω1,
1
2ω3]. Lemma 3.4 and Remark 3.6 tell

us that there are three branch solutions bi(a), i = 1, 2, 3, of ℘′(a) + ℘′(b) = 0
for a ∈ [1

2ω1,
1
2ω3]\{q+}, where we assign b1(a) = −a for any a. To continue

our proof, we need two lemmas to study the basic properties of the other
two branches.

Lemma 3.7. For a ∈ [1
2w1,

1
2w3], there are two analytic branches b2(a) and

b3(a) of solutions to ℘′(a) + ℘′(b) = 0 such that b2(1
2ω1) = −1

2ω3, b2(q+) =
−q+ and b2(1

2ω3) = −1
2ω1, b3(1

2ω1) = 1
2ω2, b3(q+) = 2q+ and b3(1

2ω3) = 1
2ω2.

Furthermore, b2(a) ∈ [−1
2ω3,−1

2ω1] and b3(a) ∈ [2q+,
1
2ω2], 2q+ ∈ (0, 1

2ω2).

Proof. For a ∈ [1
2ω1, q+), there exist two analytic branch solutions b2(a)

and b3(a) for ℘′(a) + ℘′(b) = 0. Since ℘′(1
2ω1) = 0, we have ℘′(b(1

2ω1)) =
0. Hence, b(1

2ω1) = 1
2ω2 or b(1

2ω1) = −1
2ω3 since a 6= ±b. Here, we assume

b2(1
2ω1) = −1

2ω3 and b3(1
2ω1) = 1

2ω2. By Lemma 3.2, ℘(a) is decreasing in
[1
2ω1,

1
2ω3], we find ℘′(a) ∈ iR+ for a ∈ (1

2ω1,
1
2ω3), which gives ℘′(bi(a)) ∈

iR−. By (3.10), g2 − 3℘(a)2 > 0 and Lemma 3.2, we find ℘(bi(a)) ∈ R. To-
gether with Remark 3.3, we conclude that

b2 : [1
2ω1, q+)→ −1

2ω3 + iR+,

and

b3 : [1
2ω1, q+)→ [1

2ω2, 0).
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First, we note that b2 is one-to-one for a ∈ [1
2ω1, q+), because if b2(a) =

b2(ã) for some a, ã∈ [1
2ω1, q+), then ℘′(a)=−℘′(b2(a))=−℘′(b2(ã))=℘′(ã),

which implies a = ã, since ℘′′ 6= 0 on [1
2ω1, q+). Similarly, b3 is one-to-one

for a ∈ [1
2ω1, q+). By one-to-one, b2(a) is increasing from b2(1

2ω1) = −1
2ω3

to b2(q+) = lima→q+ b2(a) as a varies from 1
2ω1 to q+. The previous proof

of Lemma 3.6 shows that (3.8) holds for a ∈ [1
2ω1, q+) and b2(a). By letting

a→ q+, we also have that (q+, b2(q+)) satisfies (3.8). Then similarly to (3.9),
we obtain

℘(b2(q+)) =
−℘(q+)± 3℘(q+)

2
,

namely either ℘(b2(q+)) = ℘(q+) or ℘(b2(q+)) = −2℘(q+) = ℘(2q+) because
℘′′(q+) = 0. Since b2(q+) ∈ −1

2ω3 + iR+ and 2q+ ∈ ω1 + iR = iR in the torus
Eτ , we conclude that b2(q+) = −q+.

The above argument also shows ℘(b3(q+)) = −2℘(q+) = ℘(2q+). So we
have either b3(q+) = 2q+ or b3(q+) = −2q+. We claim

(3.14) b3(q+) = 2q+.

Recalling b3(1
2ω1) = 1

2ω2, (3.14) is equivalent to 2q+ ∈ (0, 1
2ω2). So it

suffices to prove q+ ∈ (1
2ω1,

1
2ω1 + 1

4ω2) or equivalently, to show ℘(q+) >
℘(1

2ω1 + 1
4ω2). We use the following addition formula to prove this inequal-

ity:

(3.15) ℘(2z) + 2℘(z) =
1

4

(
℘′′(z)

℘′(z)

)2

.

Because 0 6= ℘′(1
2ω1 + 1

4ω2) ∈ iR and ℘′′(1
2ω1 + 1

4ω2) ∈ R, (3.15) gives

2℘(1
2ω1 + 1

4ω2) ≤ −℘(1
2ω2) = −e2 < 2℘(q+),

where the last inequality follows from Remark 3.5. Hence (3.14) is proved.
It is easy to see that these two branches b2(a) and b3(a) can be extended

from [1
2ω1, q+] to [1

2ω1,
1
2ω3] such that for a ∈ (q+,

1
2ω3], b2(a) ∈ (−q+,−1

2ω1]
and b3(a) ∈ (2q+,

1
2ω2]. This completes the proof. �

Lemma 3.8. For a ∈ [1
2ω1,

1
2ω3], the following statements hold:

(i) −e2 ≤ ℘(a) + ℘(b2(a)) ≤ 2℘(q+);

(ii) −e1 ≤ ℘(a) + ℘(b3(a)) ≤ −e3.
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Proof. We define fi(a) := ℘(a) + ℘(bi(a)), i = 2, 3. Then for a ∈ (1
2ω1,

1
2ω3),

f ′i(a) = ℘′(a) + ℘′(bi(a))b′i(a) = ℘′(a)(1− b′i(a)).

Note that ℘′(a) 6= 0 for a ∈ (1
2ω1,

1
2ω3). Assume that ā ∈ (1

2ω1,
1
2ω3) is a

critical point of fi. Then b′i(ā) = 1. By the arguments in the proof of
Lemma 3.7, we know that (3.8) holds for (℘(a), ℘(bi(a))). Differentiating
over (3.8), we easily conclude that

[℘(a) + 2℘(bi(a))]b′i(a) = 2℘(a) + ℘(bi(a)).

Recalling (3.10), we have ℘(a) + 2℘(bi(a)) = ±
√
g2 − 3℘(a)2 6= 0. Thus,

(3.16) b′i(a) =
2℘(a) + ℘(bi(a))

℘(a) + 2℘(bi(a))
.

Letting a = ā in (3.16), we obtain ℘(bi(ā)) = ℘(ā). This, together with (3.10),
gives

℘(ā) = ℘(bi(ā)) =
−℘(ā)±

√
g2 − 3℘2(ā)

2
,

which implies ℘(bi(ā)) = ℘(ā) = ±
√
g2/12. Thus, ā = q+ and so bi(q+) =

−q+. Therefore, q+ is the only critical point of f2 in (1
2ω1,

1
2ω3), while

f3 has no critical points in (1
2ω1,

1
2ω3), namely f3 is strictly monotone in

[1
2ω1,

1
2ω3]. By Lemma 3.7, f2(1

2ω1) = f2(1
2ω3) = e1 + e3 = −e2 <

√
g2/3 =

2℘(q+) = f2(q+), hence (i) holds. Besides, f3(1
2ω1) = e1 + e2 = −e3 and

f3(1
2ω3) = e3 + e2 = −e1, we see that (ii) holds. �

Now we go back to the proof of Lemma 3.6. First let us consider b2(a).
Since b2(q+) = −q+, ∇G(q+) +∇G(b2(q+)) = 0 due to the anti-symmetry
of ∇G. We will show that ∇G(a) +∇G(b2(a)) 6= 0 for all a ∈ (1

2ω1,
1
2ω3) \

{q+}. For this purpose, we consider the following real-valued function on
a ∈ I = [1

2ω1,
1
2ω3]:

H2(a) := Gx2
(a) +Gx2

(b2(a)).

Since b2(1
2ω1) = −1

2ω3 and b2(1
2ω3) = −1

2ω1, we have H2(a) = 0 if a ∈
{1

2ω3,
1
2ω1, q+}. We want to show that there is no other zeros of H2(a) = 0 in

[1
2ω1,

1
2ω3]. Note that H ′2(a) = 0 has at least two solutions because H2(a) = 0

at 1
2ω1, 1

2ω3 and q+. If we can prove that H ′2(a) = 0 has only two solutions
in
(

1
2ω1,

1
2ω3

)
, then except the three points 1

2ω1, 1
2ω3 and q+, H2(a) has no

other zeros in [1
2ω1,

1
2ω3].
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Let us compute H ′2(a). Note that Gx2x2
(a) and Gx2x2

(b2(a)) can be de-
rived as follows. From (2.10), we have(

4πGz(z) +
2πix2

Im τ

)′
=
(
−ζ(z) + η1z

)′
= ℘(z) + η1.

But (
4πGz(z) +

2πix2

Im τ

)′
=

∂

∂x1

(
4πGz(z) +

2πix2

Im τ

)
= 4π

∂Gz(z)

∂x1

= 2πGx1x1
− 2πiGx1x2

= −2πGx2x2
− 2πiGx1x2

+
2π

Im τ
.

Thus we obtain

2πGx1x1
(z) = Re(η1 + ℘(z)),(3.17)

2πGx1x2
(z) = − Im(η1 + ℘(z)),(3.18)

2πGx2x2
(z) =

2π

Im τ
− Re(η1 + ℘(z)).(3.19)

Since ℘(z) is real for z = a or b2(a), we have

2πiH ′2(a) = 2πGx2x2
(a) + 2πGx2x2

(b2(a))b′2(a)(3.20)

=
2π

Im τ
− η1 − ℘(a) +

(
2π

Im τ
− η1 − ℘(b2(a))

)
b′2(a).

For a ∈ 1
2ω1 + iR, H ′2(a) ∈ iR. Recalling (3.16) and denoting η̃1 = η1 − 2π

Im τ
for convenience, we see that H ′2(a) = 0 is equivalent to

η̃1 + ℘(a) + (η̃1 + ℘(b2(a)))
2℘(a) + ℘(b2(a))

℘(a) + 2℘(b2(a))
= 0.

By direct computations, we get

(3.21) 3η̃1(℘(a) + ℘(b2(a))) + 2℘(a)℘(b2(a)) + [℘(a) + ℘(b2(a))]2 = 0.

By (3.8), ℘(a)℘(b2(a)) = [℘(a) + ℘(b2(a))]2 − g2/4. Insert this into (3.21),
we obtain

[℘(a) + ℘(b2(a))]2 + η̃1(℘(a) + ℘(b2(a)))− g2

6
= 0.
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Thus,

(3.22) f2(a) = ℘(a) + ℘(b2(a)) =
1

2

(
−η̃1 ±

√
η̃2

1 + 2g2/3

)
:= B±.

Clearly B+ > 0 > B−. By Lemma 3.8, we have

(3.23) f2(a) = B+ ≥ −e2 > 0.

Combining this with (3.21), we conclude that

℘(a) + ℘(b2(a)) = B+ and ℘(a)℘(b2(a)) = −
B2

+ + 3η̃1B+

2
=: A+,

and so

℘(a) =
B+ ±

√
B2

+ − 4A+

2
,

whenever H ′2(a) = 0. Since ℘ is one-to-one on [1
2ω1,

1
2ω3], there are two dis-

tinct points a+ and a− such that ℘(a±) =
B+±
√
B2

+−4A+

2 . Hence, we have
proved that H ′2(a) = 0 has exactly two zero points in (1

2ω1, q+) ∪ (q+,
1
2ω3),

which implies thatH(a) 6= 0 for any a ∈ (1
2ω1, q+) ∪ (q+,

1
2ω3). In conclusion,

for any a ∈ [1
2ω1,

1
2ω3], (a, b2(a)) can not satisfy (2.13).

Next we consider b3(a). We also define

H3(a) = Gx2
(a) +Gx2

(b3(a)).

The difference is that H3(q+) 6= 0 since b3(q+) = 2q+ ∈ (0, 1
2ω2) ⊂ iR+.

Thus, we have to show that H3(a) has only two zeros at 1
2ω1 and 1

2ω3, namely
we need to prove H ′3(a) = 0 has only one zero point. The computation of
H ′3(a) is completely the same as H ′2(a). Hence, H ′3(a) = 0 implies (see (3.22))

f3(a) = ℘(a) + ℘(b3(a)) =
1

2

(
−η̃1 ±

√
η̃2

1 + 2g2/3

)
= B±.

We note that this B± is the same one in (3.22). Recall from Lemma 3.8 that
f3 is strict monotone in [1

2ω1,
1
2ω3] and −e1 ≤ f3 ≤ −e3. Since B+ ≥ −e2 >

−e3 by (3.23), it follows that f3(a) = B− whenever H ′3(a) = 0. By the mono-
tonicity of f3, the a satisfying f3(a) = B− is unique. Thus H ′3(a) = 0 has
only one solution in [1

2ω1,
1
2ω3], and then H3(a) 6= 0 for any a ∈ (1

2ω1,
1
2ω3).

In conclusion, for any a ∈ [1
2ω1,

1
2ω3], (a, b3(a)) can not satisfy (2.13). This

completes the proof of Lemma 3.6. �
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Lemma 3.9. Let (a, b) be a solution of (2.13). Then neither a nor b can
be on the coordinate axes.

Proof. Suppose that a is on the x1 axis. Note from a 6= −a that a /∈ {0,±ω1

2 }.
Without loss of generality, we may assume a > 0, i.e. a ∈ (0, ω1

2 ). Then (cf.
[9, Lemma 2.1])

Gx1
(a) < 0, Gx2

(a) = 0.

As a result, Gx2
(b) = −Gx2

(a) = 0. It is known (cf. [9, Lemma 2.1]) that G
satisfies

Gx2
(z) 6= 0, if z ∈ Eτ \ (R ∪

(
±1

2ω2 + R
)
).

So b ∈ R ∪
(
±1

2ω2 + R
)
. By Lemma 3.6, b /∈ ±1

2ω2 + R. Hence, b ∈ R and
℘′(b) = −℘′(a) > 0. This gives b ∈ (−ω1

2 , 0) = (−1
2 , 0).

Note that limz→0,z<0 ℘
′′(z) = +∞ and ℘′′(z) = 0 has solutions only on

∂Eτ . So ℘′′(x1) > 0 for x1 ∈ (−1
2 , 0). This implies that x1 = −a is the only

solution of ℘′(x1) = −℘′(a) for x1 ∈ (−1
2 , 0). Thus, b = −a, a contradiction.

The other case that a is on the x2 axis can be proved similarly. �

Lemma 3.10. Let (a0, b0) be a solution of (2.13). Then either the x1 co-
ordinates or the x2 coordinates of a0 and b0 take the same sign.

Proof. By Lemma 3.6, both a0 and b0 6= ±a0 are in the interior of Eτ . Sup-
pose that this lemma fails. Define

Tt :=
{
a : |xj(a)| ≤ t|xj(a0)|, j = 1, 2

}
, t > 0.

Here we use xj(z) to denote the jth coordinate of z. We say the sign con-
dition holds for t if for any pair (a, b(a)), a ∈ Tt, either x1(a)x1(b) ≥ 0 or
x2(a)x2(b) ≥ 0, where b(a) is the branch of solutions of ℘′(a) + ℘′(b) = 0
satisfying b(a0) = b0. By our assumption, the sign condition fails for T1.

On the other hand, if |z| is small, then ℘′(z) = − 2
z3 +O(|z|). So if t is

small and a ∈ Tt, then we can deduce from ℘′(a) + ℘′(b(a)) = 0 and b(a) 6=
−a that

b(a) = e±πi/3a(1 +O(|a|)).

Thus, the sign condition holds for Tt provided that t is small.
Let t0 ∈ (0, 1] be the smallest t so that for any small ε > 0, the sign condi-

tion fails for Tt0+ε. So there is aε ∈ Tt0+ε such that both x1(aε)x1(b(aε)) < 0
and x2(aε)x2(b(aε)) < 0. We may assume (aε, b(aε))→ (ā0, b̄0) as ε→ 0 up
to a subsequence. Clearly ℘′(ā0) + ℘′(b̄0) = 0 and xj(ā0)xj(b̄0) ≤ 0 for j =
1, 2. By the choice of t0, ā0 ∈ ∂Tt0 . Since ℘′′(z) = 0 implies z ∈ ∂Eτ , we have



i
i

“3-Chen” — 2020/1/8 — 17:11 — page 1752 — #16 i
i

i
i

i
i

1752 Z.-J. Chen, T.-J. Kuo, and C.-S. Lin

℘′′(−ā0) 6= 0, which implies that −ā0 is a simple root of ℘′(ā0) + ℘′(b) = 0.
This, together with b(aε) 6= −aε, gives b̄0 = b(ā0) 6= −ā0.

To yield a contradiction, we first show that one of ā0 or b̄0 must lie
on the coordinate axis. If not, then xj(ā0)xj(b̄0) < 0 for j = 1, 2. We could
choose aδ := (1− δ)ā0, bδ := b(aδ), such that (aδ, bδ)→ (ā0, b̄0) as δ → 0 and
aδ ∈ T(1−δ)t0 for δ small. Clearly, the sign condition fails for (aδ, bδ) provided
δ is small, which yields a contradiction to the smallness of t0.

Without loss of generality, we assume that one of ā0 and b̄0 is on the
imaginary axis. Since ℘′(ā0) + ℘′(b̄0) = 0, we have both ℘′(ā0) and ℘′(b̄0)
are pure imaginary. Without loss of generality, we assume ℘′(ā0) = iξ for
some real number ξ > 0. We can prove the following fact about the curve
{z : ℘′(z) ∈ iR+}. For |z| small, ℘′(z) = − 2

z3 +O(|z|) ∈ iR+ if and only if
z = reiθi(1 +O(r)), where θi = π

6 , 5π
6 , or 3π

2 . Hence, for small δ,

(3.24) {|z| ≤ δ} ∩ {z : ℘′(z) ∈ iR+} \ iR− ⊂ {z : z = (x1, x2), x2 > 0}.

Since ℘′(z) ∈ R for z ∈ R, (3.24) implies

(3.25) {z : ℘′(z) ∈ iR+} \ iR− ⊂ {z : z = (x1, x2), x2 > 0}.

Similarly, we have

(3.26) {℘′(z) : ℘′(z) ∈ iR−} \ iR+ ⊂ {z : z = (x1, x2), x2 < 0}.

Now we go back to (ā0, b̄0). Recall that we have assumed that one of
ā0 and b̄0 is on the imaginary axis and ℘′(ā0) ∈ iR+. Suppose that ā0 is on
the imaginary axis. Since ℘(tω2) is increasing for t ∈ (0, 1

2 ], we have ℘′(z) ∈
iR− for z ∈ (0, 1

2ω2]. By our assumption ℘′(ā0) ∈ iR+, we find that ā0 ∈
iR−. Since x2(ā0)x2(b̄0) ≤ 0, we find x2(b̄0) > 0. From ℘′(b̄0) = −℘′(ā0) ∈
iR− and (3.26), we have b̄0 ∈ iR+. But ℘′(b̄0) = −℘′(ā0) = ℘′(−ā0) and both
−ā0 and b̄0 are on the line iR+, which implies b̄0 = −ā0 because ℘′′(z) 6= 0
for z ∈ (0, 1

2ω2). This is a contradiction. Thus we have proved that ā0 is not
on the imaginary axis, which implies that b̄0 is on the imaginary axis. Since
℘′(b̄0) ∈ iR−, we have b̄0 ∈ iR+. Then (3.25) gives

ā0 ∈ {z : ℘′(z) ∈ iR+} ⊂ iR− ∪ {z : x2 > 0}.

Since ā0 /∈ iR−, we have x2(ā0) > 0 and then x2(ā0)x2(b̄0) > 0. This is a
contradiction to x2(ā0)x2(b̄0) ≤ 0. �

Now we are in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. We just need to prove that (2.13) has no solutions
for τ ∈ iR+, i.e. Eτ is a rectangle.

Assume by contradiction that (a, b) is a solution of (2.13). By Lem-
mas 3.6 and 3.9, both a and b are in the interior of Eτ , and neither a nor b is
on the coordinate axes. On the other hand, it is well known (cf. [9, Lemma
2.1]) that the Green function G in the rectangle Eτ satisfies

Gx1
(x1, x2) < 0 if x1 ∈ (0, 1

2) and x2 ∈
(
− |τ |2 ,

|τ |
2

)
;

Gx1
(x1, x2) > 0 if x1 ∈ (−1

2 , 0) and x2 ∈
(
− |τ |2 ,

|τ |
2

)
;

Gx2
(x1, x2) < 0 if x2 ∈ (0, |τ |2 ) and x1 ∈

(
−1

2 ,
1
2

)
;

Gx2
(x1, x2) > 0 if x2 ∈ (− |τ |2 , 0) and x1 ∈

(
−1

2 ,
1
2

)
.

Together with Lemma 3.10, we conclude that Gz(a) +Gz(b) 6= 0, which
yields a contradiction with (2.13). This completes the proof. �
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