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We generalise the classical Chern-Gauss-Bonnet formula to a class
of 4-dimensional manifolds with finitely many conformally flat ends
and singular points. This extends results of Chang-Qing-Yang in
the smooth case. Under the assumptions of finite total Q curvature
and positive scalar curvature at the ends and at the singularities,
we obtain a new Chern-Gauss-Bonnet formula with error terms
that can be expressed as isoperimetric deficits. This is the first such
formula in a dimension higher than two which allows the underlying
manifold to have isolated branch points or conical singularities.
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1. Introduction

Relating the local geometry and global topology of manifolds constitutes
one of the main aims of differential geometry. One of the most fundamental
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results is the Gauss-Bonnet formula∫
M
KgdVg = 2πχ(M),

which gives a link between the topology of a closed surface (M, g) and its
Gauss curvature. In particular, this formula yields topological obstructions
to the existence of certain metrics, for example no torus T 2 = S1 × S1 (with
Euler characteristic zero) carries a metric g of positive Gauss curvature
Kg > 0. It is well known that for complete non-compact surfaces or sur-
faces with singularities the Gauss-Bonnet formula requires additional terms
known as isoperimetric deficit, which infinitesimally measure the deviation
from flat Euclidean space. Such formulas have been extensively studied over
the last eighty years, see for example [9, 11, 12, 15–18, 21, 24, 25] for some
of the most important results.

A generalisation of the Gauss-Bonnet theorem to higher-dimensional
compact Riemannian manifolds was discovered by Chern [10]. In particular,
in the case of a compact 4-dimensional manifold, the Chern-Gauss-Bonnet
formula states that

32π2χ(M) =

∫
M

(
|Rmg|2g − 4|Rcg|2g + R2

g

)
dVg(1.1)

=

∫
M

(
|Wg|2g + 8Qg

)
dVg,

where Rmg, Rcg, Rg and Wg denote the Riemannian, Ricci, scalar and
Weyl curvature of (M4, g), respectively, and

(1.2) Qg := − 1
12

(
4gRg − R2

g + 3|Rcg|2g
)

is the Paneitz Q curvature introduced by Branson [3]. Under a conformal
change g = e2wg0, this scalar quantity transforms by

(1.3) Pg0w + 2Qg0 = 2Qge
4w,

where Pg denotes the Paneitz operator, introduced in [22] and defined
by

(1.4) Pg(ϕ) := 42
gϕ+ divg

(
2
3Rgg − 2Rcg

)
dϕ, ϕ ∈ C∞(M).
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Chern-Gauss-Bonnet for singular 4-manifolds 1699

Under the same conformal change as above, the Paneitz operator trans-
forms by

(1.5) Pg = e−4wPg0 .

These transformation laws are the higher-dimensional equivalents of the
classical formulas for surfaces, stating that for g = e2wg0 we have

−4g0w +Kg0 = Kge
2w, 4g = e−2w4g0 .

For more details on the properties of the Paneitz operator and the Q
curvature, we refer the reader to [3–5, 22].

If M is non-compact or singular, very little is known about how the
Chern-Gauss-Bonnet formula should look like. In the smooth case, besides
the classical results of Cheeger-Gromov on manifolds with bounded geome-
try [8] and the results of Greene-Wu on complete four-manifolds with pos-
itive sectional curvature [14], the most general results are due to Chang-
Qing-Yang [6, 7]. (See also [13, 20] for higher-dimensional versions of similar
results.) In the singular case, this problem has only been studied in the spe-
cial case of so-called edge-cone singularities [1, 19] or V -manifolds [23], but
no results seem to be known that allow the underlying manifold to have
isolated singular points.

The goal of this article is to develop a formula for a large class of mani-
folds M which are diffeomorphic to a compact manifold with finitely many
points removed, allowing in particular both complete ends and finite area
interior branch points. For the reader’s convenience and simplicity of ex-
position, we first state the result in the simple situation of a conformal
metric e2w|dx|2 on R4 \ {0} having one complete end at infinity and one
finite area singular point at the origin (see Theorem 1.1 for the precise as-
sumptions). This is a model case for the more general situation of manifolds
with many conformally flat ends and singular points, see Definition 1.5 and
Theorem 1.6.

Theorem 1.1 (Chern-Gauss-Bonnet formula for singular metrics
conformal to R4). Let g = e2w|dx|2 be a metric on R4 \ {0} which is com-
plete at infinity and has finite area over the origin. If g has finite total Q
curvature

(1.6)

∫
R4

|Qg| dVg =

∫
R4

|Qg| e4w dx <∞,
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and non-negative scalar curvature at infinity and at the origin, i.e.

(1.7) inf
R4\Br2 (0)

Rg(x) ≥ 0, inf
Br1 (0)

Rg(x) ≥ 0,

for some 0 < r1 ≤ r2 <∞, then we have

(1.8) χ(R4)− 1

4π2

∫
R4

Qge
4w dx = ν − µ,

where

(1.9)

ν := lim
r→∞

volg(∂Br(0))4/3

4(2π2)1/3volg(Br(0))
,

µ := lim
r→0

volg(∂Br(0))4/3

4(2π2)1/3volg(Br(0))
− 1.

The simplest and at the same time fundamental example that illustrates
this result and that is not covered by previously known Chern-Gauss-Bonnet
type formulas is the following conical metric.

Example 1.2. Let us consider the manifold (R4 \ {0}, gα), where the met-
ric gα is defined by gαij = δij + αxixjr2 for some −1 < α <∞. Here, r2 = |x|2,
where |x| denotes the Euclidean norm. If α = 0, this is simply Euclidean
space. More generally, the metric gα is a conformal deformation of the Eu-
clidean metric, as can be seen as follows. First note that in spherical co-
ordinates, the metric may be written as

gα = (1 + α)dr2 + r2dσS3 .

Hence, we can reparametrise with s = r
√

1+α so that

dr2 = 1
1+αs

2( 1√
1+α
−1)ds2, r2 = s

2√
1+α

and the metric becomes

gα = s2( 1√
1+α
−1) (ds2 + s2dσS3

)
= s2( 1√

1+α
−1)gR4 .

Hence gα is a complete metric conformal to gR4 with conformal factor

e2w(r) = r2( 1√
1+α
−1)



i
i

“2-Buzano” — 2020/1/16 — 0:14 — page 1701 — #5 i
i

i
i

i
i

Chern-Gauss-Bonnet for singular 4-manifolds 1701

so that w(r) = ( 1√
1+α
− 1) log r. Computing, we see that

ν = lim
r→∞

volg(∂Br(0))4/3

4(2π2)1/3volg(Br(0))
=

1√
1 + α

, µ =
1√

1 + α
− 1.

We note that for this cone in dimension four,

Rgα =
6αe−2w(r)

(1 + α)r2
, |Rcgα |2gα =

12α2e−4w(r)

(1 + α)2r4
, 4gαRgα = 0.

so that Qgα = 0. Hence in this case

1 = χ(R4)− 1

4π2

∫
R4

Qgα dVgα = ν − µ.

Theorem 1.1 above shows that the deficit in the Chern-Gauss-Bonnet
formula (1.8) is given by the limits of some isoperimetric ratios. In contrast
to the situation on surfaces, there are several different isoperimetric ratios in
higher dimensions. Recall that for Ω a convex domain in Rn and 1 ≤ m < n,
the mixed volumes Vm(Ω), as defined by Trudinger [26], are given by

(1.10) Vm(Ω) =
1

n
(
n−1
m

) ∫
∂Ω
Hn−1−m [∂Ω] dHn−1,

where Hk [∂Ω] denotes the k-th symmetric polynomial in the principal
curvatures of ∂Ω and Hn−1 is the (n− 1)-dimensional Hausdorff measure.
In particular, if Ω = Br(0) is a ball in R4 centred at the origin, we obtain
the following mixed volumes and isoperimetric ratios.

Definition 1.3. We define the volumes Vk(r) by

(1.11)

V4(r) =

∫
Br(0)

e4w dx,

V3(r) =
1

4

∫
∂Br(0)

e3w dσ(x),

V2(r) =
1

12

∫
∂Br(0)

H1 e
3w dσ(x),

V1(r) =
1

12

∫
∂Br(0)

H2 e
3w dσ(x).
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The isoperimetric ratios Ck,`(r) are then defined by

(1.12)

C3,4(r) =
V

4/3
3 (r)

(π2/2)1/3 V4(r)
,

C2,3(r) =
V2(r)

(π2/2)1/3 V
2/3

3 (r)
,

C1,2(r) =
V

2/3
1 (r)

(π2/2)1/3 V
1/3

2 (r)
,

and

(1.13)

C2,4(r) = C
1/3
3,4 (r) · C2/3

2,3 (r),

C1,3(r) = C
1/4
2,3 (r) · C3/4

1,2 (r),

C1,4(r) = C
1/9
3,4 (r) · C2/9

2,3 (r) · C2/3
1,2 (r).

Our second result says that asymptotically, all these isoperimetric vol-
ume ratios agree in our setting.

Theorem 1.4 (Isoperimetric volume ratios agree asymptotically).
Let g be a metric as in Theorem 1.1, and let µ be defined as in (1.9). If

1 + µ− 1

4π2

∫
R4

Qge
4wdx > 0

then the Chern-Gauss-Bonnet formula (1.8) holds for ν given by

(1.14) ν := lim
r→∞

Ck,`(r),

for any choice of 1 ≤ k < ` ≤ 4. Alternatively, if ν is defined as in (1.9) and
satisfies

1− ν +
1

4π2

∫
R4

Qge
4wdx > 0

then the Chern-Gauss-Bonnet formula (1.8) holds for µ given by

(1.15) µ := lim
r→0

Ck,`(r)− 1.

for any choice of 1 ≤ k < ` ≤ 4.

Remark. Of course, picking k = 3 and ` = 4 in (1.14) or (1.15), we ob-
tain (1.9).
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In order to state the main result, generalising Theorem 1.1 to the case of
4-manifolds with finitely many ends and singular points, let us first explain
which type of manifolds we are exactly considering here.

Definition 1.5. We say (M, g) is a 4-manifold with finitely many confor-
mally flat complete ends and finite-area singular points, if

M = N ∪

(
k⋃
i=1

Ei

)
∪

⋃̀
j=1

Sj


where (N, g) is a compact Riemannian manifold with boundary

∂N =

(
k⋃
i=1

∂Ei

)
∪

⋃̀
j=1

∂Sj


and the Ei, Sj satisfy the following properties. Each Ei is a conformally flat
simple end, meaning that

(1.16) (Ei, g) = (R4 \B, e2ei |dx|2)

for some function ei(x), where B is the unit ball in R4 and the metric is
complete at infinity. Each Sj on the other hand is a conformally flat region
with finite area and with a point-singularity at some pj , meaning that

(1.17) (Sj \ {pj}, g) = (B \ {0}, e2sj |dx|2)

for some function sj(x), where B again denotes the unit ball in R4.

The main result of this article states the following.

Theorem 1.6 (Chern-Gauss-Bonnet formula for singular non-com-
pact 4-manifolds). Let (M, g) be as in Definition 1.5 and assume that g
has finite total Q curvature

(1.18)

∫
M
|Qg| dVg <∞,

and non-negative scalar curvature at every singular point and at infinity at
each end. Then we have

(1.19) χ(M)− 1

32π2

∫
M

(
|Wg|2g + 8Qg

)
dVg =

k∑
i=1

νi −
∑̀
j=1

µj ,
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where

(1.20) νi := lim
r→∞

( ∫
∂Br(0) e

3ei(x)dσ(x)
)4/3

4(2π2)1/3
∫
Br(0)\B e

4ei(x)dx
, i = 1, . . . , k,

and

(1.21) µj := lim
r→0

( ∫
∂Br(0) e

3sj(x)dσ(x)
)4/3

4(2π2)1/3
∫
Br(0) e

4sj(x)dx
− 1, j = 1, . . . , `.

Remark. In the case of smooth metrics satisfying (1.18) and the condition
of positive scalar curvature at each end, Theorem 1.6 reduces to the results of
Chang-Qing-Yang [6, 7]. Moreover, under these assumptions, Wang obtained
interesting isoperimetric inequalities, see [27, 28]. It would be interesting to
try to adopt her results to our situation of manifolds with singularities.

The paper is organised as follows. In the Sections 2–4, we prove the The-
orems 1.1 and 1.4 in three steps as follows. First, note that for a conformal
metric g = e2w|dx|2 on R4 \ {0}, the definition of the Paneitz operator (1.4)
together with the Paneitz equation (1.3) imply

(1.22) 42w = 2Qge
4w,

where 4 denotes the Euclidean Laplacian. In the special case where
w = w(r) is a radial function on R4 \ {0}, this equation reduces to an ODE.
In Section 2, by solving explicitly for the non-linearity in this ODE, we prove
the two theorems for the special case of rotationally symmetric metrics.
Then, we introduce a new notion of generalised normal metrics, namely
metrics of the form g = e2w|dx|2 where

(1.23) w(x) =
1

4π2

∫
R4

log

(
|y|
|x− y|

)
Q(y) e4w(y) dy + α log|x|+ C.

In Section 3, we prove Theorem 1.1 and Theorem 1.4 for this type of
metrics by comparing w satisfying (1.23) with the averaged conformal factor

(1.24) w̄(r) :=
1

|∂Br(0)|

∫
∂Br(0)

w(x) dσ(x)

and reducing this case to the already established rotationally symmetric
one. Next, in Section 4, we show that every metric g = e2w|dx|2 on R4 \ {0}
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which is complete at infinity and has finite area over the origin and satisfies
(1.6) and (1.7) is a generalised normal metric. This finishes the proofs of
Theorem 1.1 and Theorem 1.4 in the general case. Finally, in Section 5, we
localise Theorem 1.1 to metrics as in (1.16) and (1.17) and prove Theorem 1.6
by gluing together all the pieces.

2. Rotationally symmetric metrics

In this section, we assume that g = e2w|dx|2 is a conformal metric on R4 \
{0} and w = w(r) is a radial function. Using spherical coordinates and writ-
ing |x| = r = et, one obtains 4w = e−2t( ∂

2

∂t2 + 2 ∂
∂t)w, and hence, using also

the Paneitz equation (1.22),

(2.1) 42w = e−4t

(
∂2

∂t2
− 2

∂

∂t

)(
∂2

∂t2
+ 2

∂

∂t

)
w = 2Qge

4w, −∞<t<∞.

Note that t = log r satisfies 42t = 0. Therefore, it makes sense to denote
w + t by v, which solves

(2.2) v′′′′ − 4v′′ = 2Qge
4v, −∞ < t <∞.

The goal of the first part of this section is to compute the limits of v′(t)
for t→ ±∞. In order to do so, following [6], we denote F := 2Qge

4v and
construct an explicit solution f(t) of the equation

(2.3) f ′′′′ − 4f ′′ = F.

It will turn out that we do not need f(t) itself, but only its derivatives.
Before explaining the construction of f(t), let us prove a technical lemma.

Lemma 2.1. For F = 2Qge
4v as above, we have

K1 := lim
t→−∞

e2t

∫ ∞
t

F (x)e−2xdx = 0,

K2 := lim
t→∞

e−2t

∫ t

−∞
F (x)e2xdx = 0,
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Proof. First note that∫ ∞
−∞
|F (x)|dx =

∫ ∞
−∞

2|Qg|e4vdx(2.4)

=
2

|S3|

∫
R4

|Qg|e4wdx =
1

π2

∫
R4

|Qg|dVg <∞

by assumption. We then have for t < T <∞∣∣∣∣e2t

∫ ∞
t

F (x)e−2xdx

∣∣∣∣ ≤ e2t

(∫ T

t
|F (x)|e−2xdx+

∫ ∞
T
|F (x)|e−2xdx

)
≤
∫ T

−∞
|F (x)|dx+ e2(t−T )

∫ ∞
−∞
|F (x)|dx.

Setting T = t/2 (for negative t) and letting t tend to −∞, we obtain K1 = 0.
Similarly, we have for −∞ < T < t∣∣∣∣e−2t

∫ t

−∞
F (x)e2xdx

∣∣∣∣ ≤ e−2t

(∫ T

−∞
|F (x)|e2xdx+

∫ t

T
|F (x)|e2xdx

)
≤ e2(T−t)

∫ ∞
−∞
|F (x)|dx+

∫ ∞
T
|F (x)|dx.

Hence, setting T = t/2 (for positive t) and letting t tend to ∞, we obtain
K2 = 0. �

A consequence of this lemma (which could also be seen more directly)
is that

K3 := lim
t→−∞

e4t

∫ ∞
t

F (x)e−2xdx = 0,

In order to find f(t), we make the ansatz f ′′(t) = C(t)e−2t. Plugging this
into (2.3) yields

(C ′(t)e−4t)′ = F (t)e−2t,

which can be solved for C(t) as follows:

C(t) = −
∫ t

−∞
e4x

(∫ ∞
x

F (y)e−2ydy

)
dx

= −1

4
e4t

∫ ∞
t

F (x)e−2xdx− 1

4

∫ t

−∞
F (x)e2xdx,
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where the second line is obtained using integration by parts and K3 = 0.
We thus find

f ′′(t) = −1

4
e2t

∫ ∞
t

F (x)e−2xdx− 1

4
e−2t

∫ t

−∞
F (x)e2xdx.

By Lemma 2.1, we have

(2.5) lim
t→−∞

f ′′(t) = lim
t→∞

f ′′(t) = 0.

Another integration by parts, using K1 = K2 = 0, yields

f ′(t) = −
∫ t

−∞

1

4
e2x

(∫ ∞
x

F (y)e−2ydy

)
dx

+

∫ ∞
t

1

4
e−2x

(∫ x

−∞
F (y)e2ydy

)
dx

= −1

8
e2t

∫ ∞
t

F (x)e−2xdx− 1

8

∫ t

−∞
F (x)dx

+
1

8
e−2t

∫ t

−∞
F (x)e2xdx+

1

8

∫ ∞
t

F (x)dx.

Using Lemma 2.1 once more, we obtain

(2.6) lim
t→−∞

f ′(t) =
1

8

∫ ∞
−∞

F (x)dx, lim
t→∞

f ′(t) = −1

8

∫ ∞
−∞

F (x)dx.

We could now obtain an explicit f(t) by a further integration and re-
quiring for instance f(0) = 0. However, we only need the derivatives of f(t),
hence we skip this step. Our v(t) is now of the form

(2.7) v(t) = c0 + c1t+ c2e
−2t + c3e

2t + f(t)

for some constants c0, c1, c2, and c3. We first prove that the assumption of
asymptotically non-negative scalar curvature implies that c2 and c3 vanish.

Lemma 2.2. Assume that g = e2w|dx|2 has non-negative scalar curvature
at infinity and at the origin, i.e.

inf
R4\Br2 (0)

Rg(x) ≥ 0, inf
Br1 (0)

Rg(x) ≥ 0,

for some 0 < r1 ≤ r2 <∞. Then c2 = c3 = 0 in (2.7).
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Proof. The transformation law for scalar curvature under a conformal change
g = e2wg0 on an n-dimensional manifold is

Rg = e−2w
(

Rg0 −
4(n−1)
n−2 e−

n−2

2
w4g0e

n−2

2
w
)
.

In our case, where g0 is the Euclidean metric and n = 4, this becomes

1
6Rge

2w = −e−w4ew = −e−2te−w
(

2
∂

∂t
+
∂2

∂t2

)
ew,

or equivalently

(2.8) 1
6Rge

2v(t) = −v′′(t)− (v′(t))2 + 1.

By our assumption of asymptotically non-negative scalar curvature at in-
finity and at the origin, the left hand side of (2.8) becomes non-negative if
t→ ±∞. On the other hand, we know by (2.5) and (2.6) that f ′′(t) and f ′(t)
stay bounded as t→ ±∞, thus the dominating term on the right hand side
of (2.8) is −4|c3|2e4t as t→∞, respectively −4|c2|2e−4t as t→ −∞. Hence
the right hand side of (2.8) can only be non-negative if c2 = c3 = 0. �

Remark. The proof shows that it is sufficient to assume that the term
Rge

2v = |x|Rge
2w is bounded from below, rather than assuming the stronger

condition that Rg ≥ 0 near infinity and the origin. On the other hand, our
assumption (1.7) cannot be replaced by the weaker assumption Rg → 0 as
t = log|x| → ±∞. This is for example illustrated by the metric g = e2r2 |dx|2,
which is complete at infinity, satisfies Qg ≡ 0 and

Rg(r) = −48e−2r2 − 24r2e−2r2 → 0 (as r →∞),

but has c3 = 1.

A direct consequence of Lemma 2.2 is that under the assumptions as
above, we have

lim
t→∞

v′(t)− lim
t→−∞

v′(t) = −1

4

∫ ∞
−∞

F (x)dx = − 1

4π2

∫
R4

Qge
4wdx.

This follows from c2 = c3 = 0, which implies v(t) = c0 + c1t+ f(t) and
thus v′(t) = c1 + f ′(t), and the computations of the limits of f ′(t) in (2.6).
We have thus proved the following.
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Corollary 2.3. Under the assumptions as above, we have

χ(R4)− 1

4π2

∫
R4

Qge
4w dx = ν − µ,

where

ν := lim
t→∞

v′(t), µ := lim
t→−∞

v′(t)− 1.

To finish the proofs of both Theorem 1.1 and Theorem 1.4 in the ro-
tationally symmetric case, we only need to prove (1.14) and (1.15), i.e. we
need to relate v′(t) to the isoperimetric volume ratios.

Lemma 2.4. We have

lim
t→∞

v′(t) = lim
t→∞

Ck,`(e
t), lim

t→−∞
v′(t) = lim

t→−∞
Ck,`(e

t),

for any choice of 1 ≤ k < ` ≤ 4.

Proof. Letting H1, H2 denote the first and second symmetric polynomial in
the principal curvatures of ∂Br(0) as in (1.11), a short computation yields

H1 = 3e−w
(

1

r
+
∂w

∂r

)
, H2 = 3e−2w

(
1

r
+
∂w

∂r

)2

,

and hence

(2.9)

V2(r) =
1

4

∫
∂Br(0)

(
1

r
+
∂w

∂r

)
e2w dσ(x),

V1(r) =
1

4

∫
∂Br(0)

(
1

r
+
∂w

∂r

)2

ew dσ(x).

Substituting r = et (which implies dx = e4tdtdσS3 as well as dσ(x) = e3tdσS3

on ∂Br(0)) and v = w + t, we obtain from (1.11) and (2.9)

(2.10)

V4(r) = V4(et) =

∫ t

−∞

∫
S3

e4v(s)dσS3ds = |S3|
∫ t

−∞
e4v(s)ds,

V3(r) = V3(et) =
1

4

∫
S3

e3v(t)dσS3 =
1

4
|S3|e3v(t),

V2(r) = V2(et) =
1

4

∫
S3

v′(t)e2v(t)dσS3 =
1

4
|S3|v′(t)e2v(t),

V1(r) = V1(et) =
1

4

∫
S3

(v′(t))2ev(t)dσS3 =
1

4
|S3|(v′(t))2ev(t).
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It now follows directly from Definition 1.3 that

(2.11) C2,3(et) = C1,2(et) = C1,3(et) = v′(t).

This proves the lemma for all cases where ` 6= 4. We thus turn to study
C3,4(et). As g = e2w|dx|2 is complete at infinity by assumption, we conclude
that limt→∞ v

′(t) ≥ 0. If this limit is strictly positive, then both V4(et) and
V3(et) tend to infinity as t→∞ and we obtain from L’Hôpital’s rule

lim
t→∞

C3,4(et) = lim
t→∞

4
3(1

4 |S
3|e3v(t))1/3 · 3

4 |S
3|v′(t)e3v(t)

(π2/2)1/3|S3|e4v(t)
= lim

t→∞
v′(t).

On the other hand, if limt→∞ v
′(t) = 0, and V4(et) stays bounded as

t→∞, then limt→∞ e
4v(t) = 0, which implies limt→∞ e

3v(t) = 0 and thus
limt→∞ V3(et) = 0. Hence we have again limt→∞C3,4(et) = 0 = limt→∞ v

′(t).

Similarly, if t→ −∞, then V4(et) and V3(et) both approach zero, which
can be seen as follows. Since V4(r) is a finite integral (i.e. e4w(r) is in L1 when
integrating over the origin), V4(r) must tend to zero if r → 0, or equivalently
V4(et) tends to zero as t→ −∞. Then, from formula (2.10), we obtain that
ev(t) converges to 0 as t→ −∞ (as otherwise V4(et) would be infinite). Thus,
again by (2.10), we obtain also V3(et)→ 0 as t→ −∞. The result then fol-
lows also in this case from L’Hôpital’s rule as above.

We have thus proved Lemma 2.4 for C3,4(et) and thus, using (1.13)
and (2.11), for all the remaining cases. �

3. Generalised normal metrics

In this section, we will define generalised normal metrics on R4 \ {0} as a
generalisation of 2-dimensional complete normal metrics given by Finn [12].
In [21] a correspondence between finite area singular points and complete
ends was discovered. We use this duality to define a finite area singular
point.

Definition 3.1 (Generalised normal metrics). Suppose that e2w|dx|2
is a metric on R4 \ {0} with finite total Paneitz Q curvature∫

R4

|Qg|e4wdx <∞.
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We call g a generalised normal metric, if w has the expansion

(3.1) w(x) =
1

4π2

∫
R4

log

(
|y|
|x− y|

)
Qg(y) e4w(y) dy + α log|x|+ C

for some constants α,C ∈ R. For such a generalised normal metric, we then
define the averaged metric ḡ = e2w̄|dx|2 by

(3.2) w̄(r) := −
∫
∂Br(0)

w(x) dσ(x) =
1

|∂Br(0)|

∫
∂Br(0)

w(x) dσ(x).

Clearly, ḡ is a rotationally symmetric metric.

Remark 3.2. Note that if we have a finite area metric, that is if∫
BR(0)

e4w(y)dy <∞,

this implies that α > −1.

The main theorem of this section is the following.

Theorem 3.3. Let g be a generalised normal metric on R4 \ {0} with av-
eraged metric ḡ and define the mixed volumes Vk (with respect to g) and V̄k
(with respect to ḡ) as in Definition 1.3. Then

V3(r) = V̄3(r)(1 + ε(r)),(3.3)
d
drV4(r) = d

dr V̄4(r)(1 + ε(r)),(3.4)

where ε(r)→ 0 if either r → 0 or r →∞. Moreover, if the two limits

lim
r→0

(
1 + r

∂w̄

∂r

)
and lim

r→∞

(
1 + r

∂w̄

∂r

)
both exist and are positive, then we have in addition that

V1(r) = V̄1(r)(1 + ε(r)),(3.5)

V2(r) = V̄2(r)(1 + ε(r)),(3.6)

where again ε(r)→ 0 if r → 0 or r →∞.

In order to prove this theorem, we start with the following technical
lemma.
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Lemma 3.4. Suppose that the metric e2w|dx|2 on R4 \ {0} is a generalised
normal metric. Then for any number k > 0 we have that

−
∫
∂Br(0)

ekwdσ(x) = ekw̄(r)eo(1)(3.7)

where o(1)→ 0 as r → 0 and as r →∞.

Proof. The proof for r →∞ was essentially covered in [6, Lemma 3.2]. Note
that there the formula (3.7) is proved for normal metrics which differ from
our definition of generalised normal metrics by our additional term α log|x| in
(3.1). But this additional term, the fundamental solution of the bi-Laplacian,
is rotationally symmetric and thus in equation (3.7), eα log|x| appears on both
sides and hence cancels. For this reason, we only need to prove the lemma
for r → 0.

Suppose that e2w|dx|2 is a generalised normal metric. As in the last
section, we denote F (y) = 2Qg(y)e4w(y) which by assumption is in L1. Then,
splitting up R4 into three regions, we have

w(x) =
1

8π2

∫
B|x|/2(0)

log

(
|y|
|x− y|

)
F (y)dy

+
1

8π2

∫
R4\B3|x|/2(0)

log

(
|y|
|x− y|

)
F (y)dy

+
1

8π2

∫
B3|x|/2(0)\B|x|/2(0)

log

(
|y|
|x− y|

)
F (y)dy + α log|x|+ C

= w1(x) + w2(x) + w3(x) + α log|x|+ C.

As above, α log|x|+ C is rotationally symmetric and thus in equation
(3.7), eα log|x|+C appears on both sides and hence cancels. Therefore, we need
only concentrate on w1(x), w2(x) and w3(x). We first consider w1(x), which
we can rewrite as follows

w1(x) =
1

8π2

∫
|y|≤|x|/2

log

(
|y|
|x|

)
F (y)dy

+
1

8π2

∫
|y|≤|x|/2

log

(
|x|
|x− y|

)
F (y)dy

= f(|x|) + w0
1(x).
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As f(|x|) is another rotationally symmetric term, we need to study only
w0

1(x). In order to do this, let η < 1
2 , and estimate

|w0
1(x)| ≤ C

(∫
|y|≤η|x|

∣∣∣∣log
|x|
|x− y|

∣∣∣∣ |F (y)|dy

+

∫
η|x|≤|y|≤ 1

2
|x|

∣∣∣∣log
|x|
|x− y|

∣∣∣∣ |F (y)|dy

)
.

For the first integral, note that |y| ≤ η|x| implies

(1− η)|x| ≤ |x| − |y| ≤ |x− y| ≤ |x|+ |y| ≤ (1 + η)|x|,

and hence

1

1 + η
≤ |x|
|x− y|

≤ 1

1− η
.

This yields∣∣∣∣log
|x|
|x− y|

∣∣∣∣ ≤ max

{∣∣∣∣log
1

1 + η

∣∣∣∣ , ∣∣∣∣log
1

1− η

∣∣∣∣} = log
1

1− η
.

In order to estimate the second integral, we use the bound |y| ≤ 1
2 |x|, which

by an analogous argument as above yields∣∣∣∣log
|x|
|x− y|

∣∣∣∣ ≤ log
1

1− 1
2

= log 2.

Combining these estimates and using
∫
R4 |F (y)|dy <∞, we obtain

|w0
1(x)| ≤ C log

1

1− η
+ log 2

∫
η|x|≤|y|≤ 1

2
|x|
|F (y)|dy.

For |x| → 0 and η → 0, both terms above tend to zero, using again∫
R4 |F (y)|dy <∞. This proves that

(3.8) w0
1(x) = o(1), as |x| → 0.
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As a second step, we estimate w2(x) by an argument which is dual to
what we have just done. For η > 3

2 , we write

|w2(x)| ≤ C

(∫
|y|≥η|x|

∣∣∣∣log
|y|
|x− y|

∣∣∣∣ |F (y)|dy

+

∫
η|x|≥|y|≥ 3

2
|x|

∣∣∣∣log
|y|
|x− y|

∣∣∣∣ |F (y)|dy

)
.

To bound the first term, we notice that the inequality |y| ≥ η|x| implies(
1− 1

η

)
|y| ≤ |y| − |x| ≤ |x− y| ≤ |y|+ |x| ≤

(
1 + 1

η

)
|y|,

so that

1

1 + 1
η

≤ |y|
|x− y|

≤ 1

1− 1
η

.

This gives∣∣∣∣log
|y|
|x− y|

∣∣∣∣ ≤ max

{∣∣∣∣log
η

η − 1

∣∣∣∣ , ∣∣∣∣log
η

η + 1

∣∣∣∣} = log
η

η − 1
.

Similarly, we estimate the second term, with η now replaced by 3
2 , which

gives ∣∣∣∣log
|y|
|x− y|

∣∣∣∣ ≤ log
3
2

3
2 − 1

= log 3.

Combining these estimates and using
∫
R4 |F (y)|dy <∞, we obtain

|w2(x)| ≤ C log
η

η − 1
+ log 3

∫
η|x|≥|y|≥ 3

2
|x|
|F (y)|dy.

For |x| → 0, we then send η →∞ slow enough such that η|x| → 0, in which
case both terms above tend to zero, using again

∫
R4 |F (y)|dy <∞. This

proves that

(3.9) w2(x) = o(1), as |x| → 0.
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As a third step, we consider the term

w̄3(r) = −
∫
∂Br(0)

w3(x)dσ(x)

=
1

8π2

∫
r

2
≤|y|≤ 3r

2

(
−
∫
∂Br(0)

log
|y|
|x− y|

dσ(x)

)
F (y)dy

=
1

8π2

∫
r

2
≤|y|≤ 3r

2

I(y)F (y)dy

We claim that the inner integral

|I(y)| =

∣∣∣∣∣−
∫
∂Br(0)

log
|y|
|x− y|

dσ(x)

∣∣∣∣∣
≤ 1

|∂Br(0)|

∫
∂Br(0)\{x:|x−y|< 1

3
|y|}

∣∣∣∣log
|y|
|x− y|

∣∣∣∣ dσ(x)

+
1

|∂Br(0)|

∫
∂Br(0)∩{x:|x−y|< 1

3
|y|}

∣∣∣∣log
|y|
|x− y|

∣∣∣∣ dσ(x)

= I1(y) + I2(y)

is uniformly bounded on the annular region r
2 ≤ |y| ≤

3r
2 . To estimate I1(y),

note that on the region over which we integrate we have

1

3
|y| ≤ |x− y| ≤ |x|+ |y| ≤ 3|y|,

giving 1
3 ≤

|y|
|x−y| ≤ 3 and hence I1(y) ≤ log 3. For the second integral, we

have

I2(y) ≤ 1∣∣∂B r

|y|
(0)
∣∣ ∫

∂B r
|y|

(0)∩
{
x:
∣∣∣x− y

|y|

∣∣∣< 1

3

}
∣∣∣∣∣log

1

|x− y
|y| |

∣∣∣∣∣ dσ(x).

Now, as r
2 ≤ |y| ≤

3
2r, we have 2

3 ≤
r
|y| ≤ 2. Thus, as log 1∣∣∣x− y

|y|

∣∣∣ is integrable,

we see that I2(y) is uniformly bounded as well, and hence |I(y)| is uni-
formly bounded for r

2 ≤ |y| ≤
3r
2 as claimed. The assumption of finite total

Q curvature then implies

(3.10) −
∫
∂Br(0)

w3(x)dσ(x) = o(1), as r → 0.
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Using (3.8), (3.9) and (3.10) as well as Jensen’s inequality, we obtain for
r → 0

k−
∫
∂Br(0)

w(x)dσ(x) = −
∫
∂Br(0)

k
(
w(x)− w3(x)

)
dσ(x) + o(1)(3.11)

= log

(
−
∫
∂Br(0)

ek(w(x)−w3(x))dσ(x)

)
+ o(1).

Finally as a fourth and last step, we estimate the term

−
∫
∂Br(0)

(ew3(x) − 1)dσ(x) = −
∫
∂B1(0)

(ew3(rx) − 1)dσ(x).

Following [12], this can be done by estimating EM = {σ ∈ S3 : |w3(rσ)| >
M}. Similar to the above, we have

M · |EM | ≤
∫
EM

|w3|dσ

≤ 1

8π2

∫
B3r/2(0)\Br/2(0)

(∫
EM

∣∣∣∣log
|y|

|rσ − y|

∣∣∣∣ dσ) |F (y)|dy

=
1

8π2

∫
r

2
≤|y|≤ 3r

2

J(y)|F (y)|dy.

As above, we have to estimate the inner integral

J(y) =

∫
EM\{σ:|rσ−y|≤ |y|

3 }

∣∣∣∣log
|y|

|rσ − y|

∣∣∣∣ dσ
+

∫
EM∩{σ:|rσ−y|≤ |y|

3 }

∣∣∣∣log
|y|

|rσ − y|

∣∣∣∣ dσ
= J1(y) + J2(y).

Clearly we have the estimate J1(y) ≤ log 3 · |EM |. We estimate the term

J2(y) as follows. Observe that if we have |rσ − y| ≤ |y|3 then

log

∣∣∣∣ |y|
|rσ − y|

∣∣∣∣ ≤ ∣∣∣∣ log
|y|
r

∣∣∣∣+

∣∣∣∣ log
∣∣∣σ − y

r

∣∣∣∣∣∣∣ ≤ log
3

2
+

∣∣∣∣ log
∣∣∣σ − y

r

∣∣∣∣∣∣∣.
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We can thus bound J2(y) by the situation where EM is a 3-dimensional disc
centred at y

r orthogonal to y, in which case we obtain

J2(y) ≤ C|EM |+ C|EM | log
1

|EM |
≤ C

(
1 + log

1

|EM |

)
|EM |.

Combining these estimates, we get

M ≤ o(1)

(
1 + log

1

|EM |

)
,

where o(1)→ 0 as r → 0. This implies

|EM | ≤ Ce−M/o(1),

and thus ∣∣∣∣∣−
∫
∂Br(0)

(ekw3(x) − 1)dσ(x)

∣∣∣∣∣(3.12)

=
k

|∂B1(0)|

∫ +∞

−∞
(ekM − 1)|EM |dM = o(1),

as r → 0. Combining the estimates (3.11) and (3.12), we have

kw̄(r) = k −
∫
∂Br(0)

w(x)dσ(x) = log

(
−
∫
∂Br(0)

ekw(x)dσ(x)

)
+ o(1),

which is equivalent to (3.7), thus finishing the proof of Lemma 3.4 �

We continue with a second technical lemma.

Lemma 3.5. Suppose that e2w|dx|2 is a generalised normal metric on R4 \
{0}. Then, we have that

−
∫
∂Br(0)

(
∂w

∂r

)k
dσ(x) = O

(
1

rk

)
, for k = 1, 2, 3,(3.13)

and

−
∫
∂Br(0)

(
∂w

∂r

)2

dσ(x) =

(
∂w̄

∂r

)2

(r) + o

(
1

r2

)
,(3.14)

for r → 0 as well as for r →∞.
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Proof. The case r →∞ was essentially covered by Chang-Qing-Yang [6,
Lemma 3.4], where the result is proved for normal metrics whose conformal
factor w(x) differs from ours – as above – by our additional term α log|x| in
(3.1). However, it is easy to extend their result to our situation, noting that
α log|x| is rotationally symmetric with derivative ∂r(α log|x|) = α

r . We thus
have to prove the lemma only for r → 0.

First, observe that we have

∂w̄

∂r
(r) = −

∫
∂Br(0)

∂w

∂r
dσ(x).

Using our definition of generalised normal metrics, we see that

∂w

∂r
(x) =

∫
R4

−K(x, y)F (y)dy +
α

r

where K(x, y) = 1
8π2∂r log|x− y| and F (y) = 2Qg(y)e4w(y) as before. Recall

that F (y) is integrable over R4 by our assumption on finite totalQ curvature.
Computing K(x, y), we get that

∂r
1

8π2
log|x− y| = 1

8π2

〈
∇x|x− y|
|x− y|

,
x

|x|

〉
=

1

8π2

〈
x− y
|x− y|2

,
x

|x|

〉
=

1

8π2

|x|2 − x · y
|x||x− y|2

.

Then, we have that∣∣∣∣−∫
∂Br(0)

(
∂w

∂r

)k
dσ(x)

∣∣∣∣
≤ C

(∫
R4

(
−
∫
∂Br(0)

|K(x, y)|kdσ(x)

)
|F (y)|dy

)(∫
R4

|F (y)|dy

)k−1

+ C
|α|k

rk
.

Hence, it suffices to prove that for k = 1, 2, 3,

−
∫
∂Br(0)

|K(x, y)|kdσ(x) = O

(
1

rk

)
, ∀y ∈ R4.

In order to verify this estimate, we use the following

(3.15) 2(|x|2 − x · y) = |x− y|2 + |x|2 − |y|2.
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Then we need only verify that for all y ∈ R4

(3.16) −
∫
∂Br(0)

∣∣|x|2 − |y|2∣∣3
|x− y|6

dσ(x) ≤ C

for some constant independent of y. Using the homogeneity of the integrand,
we only need to consider this integral for r = 1. Hence, assuming |x| = 1, if
we suppose for δ > 0 that |y| ≤ 1− δ or |y| ≥ 1− δ then ||x| − |y|| ≤ |x− y|
implies

1

|x− y|
≤ 1

|1− |y||

so that
||x|2 − |y|2|3

|x− y|6
≤ |1− |y|

2|3

|1− |y||6
≤ |1 + |y||3

|1− |y||3
≤ C(δ).

This yields (3.16) for these y. Moreover, for |y| ∈ (1− δ, 1) ∪ (1, 1 + δ), we
have the calculus inequality∫

∂B1(0)

dσ(x)

|x− y|6
≤ C

|1− |y||3
,

which yields (3.16) also for the remaining cases and hence establishes (3.13).

To prove (3.14), we note that 1
|x−y|2 is the Green’s function of the Lapla-

cian on R4, so

4 1

|x− y|2
= Cδy(x).

If |y| ≤ r, this implies∫
∂Br(0)

∂r
1

|x− y|2
dσ(x) =

∫
Br(0)

4 1

|x− y|2
dx =

∫
Br(0)

Cδy(x)dx = C.

Thus, we see that

∂r −
∫
∂Br(0)

1

|x− y|2
dσ(x) = −

∫
∂Br(0)

∂r
1

|x− y|2
dσ(x) =

C

|∂Br(0)|
=

C

2π2r3
.

Therefore, we must have

−
∫
∂Br(0)

1

|x− y|2
dσ(x) = − C

4π2r2
+D,
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for some constants C and D. As we have |y| ≤ r, we may let y = 0, which
implies that

1

r2
= − C

4π2r2
+D,

hence D = 0 and − C
4π2 = 1. Similarly, if |y| ≥ r we have that

∂r −
∫
∂Br(0)

1

|x− y|2
dσ(x) = 0

and hence

−
∫
∂Br(0)

1

|x− y|2
dσ(x) = C.

We may then let |x| → 0 to conclude C = 1
|y|2 . Altogether, we have proved

(3.17) −
∫
∂Br(0)

1

|x− y|2
dσ(x) =

{
1
r2 , if |y| ≤ r,
1
|y|2 , if |y| > r.

It follows that we can write

∂w̄

∂r
(r) =

∫
R4

−K̄(x, y)F (y)dy

where (3.15) yields

K̄(x, y) = −
∫
∂Br(0)

|x|2 − x · y
8π2|x||x− y|2

dσ(x) =
1

16π2r
−
∫
∂Br(0)

1 +
r2 − |y|2

|x− y|2
dσ(x).

For |y| ≤ r, we then obtain from (3.17)

K̄(x, y) =
1

16π2r

(
1 +

r2 − |y|2

r2

)
=

1

16π2r

(
2− |y|

2

r2

)
.

Moreover, for |y| > r, (3.17) yields

K̄(x, y) =
1

16π2r

(
1 +

r2 − |y|2

|y|2

)
=

1

16π2r

(
r2

|y|2

)
.

Together, we have

(3.18) K̄(x, y) =

 1
16π2r

(
2− |y|

2

r2

)
, if |y| ≤ r,

r
16π2|y|2 , if |y| > r.
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We can then estimate

−
∫
∂Br(0)

∣∣∣∣∣
(
∂w

∂r

)2

−
(
∂w̄

∂r

)2
∣∣∣∣∣ dσ(x)

≤
∫
R4

|F (y)|dy ·
∫
R4

(
−
∫
∂Br

|K(x, y)− K̄(x, y)|2dσ(x)

)
|F (y)|dy

using

|K(x, y)− K̄(x, y)| =

{
1

16π2|x|
∣∣ (|y|2−|x|2)(|x−y|2−|x|2)

|x−y|2|x|2
∣∣, if |y| < |x|,

1
16π2|x|

∣∣ (|y|2−|x|2)(|x−y|2−|y|2)
|x−y|2|y|2

∣∣, if |y| > |x|.

Note first that

−
∫
∂Br(0)

|K(x, y)− K̄(x, y)|2dσ(x) = O

(
1

|x|2

)
, as |x| → 0 and |y| ≤ |x|1/2.

Moreover, if |y| ≥ |x|1/2, which implies that |y| > |x| if |x| → 0, we get that

|K(x, y)− K̄(x, y)| ≤ C|x|
∣∣∣∣ 1

|x− y|2
− 1

|x|2

∣∣∣∣ ≤ 1

16π2|x|
|y|2

∣∣∣∣ 1

|y|2
− 1

|x− y|2

∣∣∣∣
≤ 1

16π2|x|

∣∣∣∣∣∣1− 1∣∣ x
|y| −

y
|y|
∣∣2
∣∣∣∣∣∣

= o

(
1

|x|

)
.

The last step follows from the fact that |y| ≥ |x|1/2 implies |x|1/2 ≥ |x||y| → 0

as |x| → 0. Finally, combining the various estimates, we have that

−
∫
∂Br(0)

∣∣∣∣∣
(
∂w

∂r

)2

−
(
∂w̄

∂r

)2
∣∣∣∣∣ dσ(x)

=

∫
|y|≤|x|1/2

O

(
1

|x|2

)
|F (y)|dy +

∫
|y|≥|x|1/2

o

(
1

|x|2

)
|F (y)|dy = o

(
1

|x|2

)
.

�

Using the two technical lemmas, we can now prove Theorem 3.3.

Proof of Theorem 3.3. The formulas (3.3) and (3.4) follow immediately from
Lemma 3.4. It thus remains to prove (3.5) and (3.6). From (2.9), we know
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that

V2(r) =
1

4

∫
∂Br(0)

(
1

r
+
∂w

∂r

)
e2w dσ(x),

hence

V2(r)− V̄2(r) =
1

4

(
1

r
+
∂w̄

∂r

)∫
∂Br(0)

(e2w − e2w̄)dσ(x)

+
1

4

∫
∂Br(0)

(
∂w

∂r
− ∂w̄

∂r

)
(e2w − e2w̄)dσ(x).

Applying the previous Lemmas 3.4 and 3.5 we see that

V2(r)− V̄2(r) = V̄2(r)o(1) +

(∫
∂Br(0)

(
∂w

∂r
− ∂w̄

∂r

)2

dσ(x)

)1/2

×

(∫
∂Br(0)

(e2w − e2w̄)2dσ(x)

)1/2

= V̄2(r)o(1) + |∂Br(0)| · 1

r
· e2w̄o(1),

which implies (3.6) under the assumption that limr→0(1 + r ∂w̄∂r ) > 0 or
limr→∞(1 + r ∂w̄∂r ) > 0, respectively. Similarly, using again (2.9), we have that

V1(r) =
1

4

∫
∂Br(0)

(
1

r
+
∂w

∂r

)2

ew dσ(x),

and thus

V1(r)− V̄1(r) =
1

4

(
1

r
+
∂w̄

∂r

)2 ∫
∂Br(0)

(ew − ew̄)dσ(x)

+
1

2r

∫
∂Br(0)

(
∂w

∂r
− ∂w̄

∂r

)
(ew − ew̄)dσ(x)

+
1

4

∫
∂Br(0)

((
∂w

∂r

)2

−
(
∂w̄

∂r

)2
)
ewdσ(x).

Applying the Hölder inequality and the Lemmas 3.4 and 3.5, we get that

V1(r)− V̄1(r) = V̄1(r)o(1) + |∂Br(0)| 1
r2
ew̄o(1),

which implies (3.5) under the assumption that limr→0(1 + r ∂w̄∂r ) > 0 or
limr→∞(1 + r ∂w̄∂r ) > 0, respectively. Hence the Theorem is proved. �
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Another direct consequence of Lemma 3.4 (with k = 4) is the following.

Corollary 3.6. Suppose that e2w|dx|2 is a complete generalised normal
metric on R4 \ {0} with finite area over the origin. Then its averaged metric
e2w̄(r)|dx|2 is also a complete metric with finite area over the origin.

Before proving our main theorems for generalised normal metrics, we
need one more estimate. We note that in Lemma 2.2, the condition of non-
negative scalar curvature could be replaced with v′′(t) = O(1) as t→ ±∞.
We prove the corresponding estimate for a generalised normal metric and
its symmetrisation.

Lemma 3.7. Let e2w|dx|2 be a generalised normal metric on R4 \ {0}.
Then we have

4w̄(r) ≤ C

r2

for some constant C ∈ R.

Proof. We note that

4w̄(r) = 4−
∫
∂Br(0)

w(x)dσ(x) = −
∫
∂Br(0)

4w(x)dσ(x).

Thus as g is a generalised normal metric, we obtain

4w̄(r) =
1

4π2

∫
R4

(
2 −
∫
∂Br(0)

1

|x− y|2
dσ(x)

)
Qg(y)e4w(y)dy +

2α

r2
.

By equation (3.17), we see that

4w̄(r) ≤ 1

2π2r2

∫
R4

|Qg(y)|e4w(y)dy +
2α

r2
≤ C

r2
,

using the assumption of finite total Q curvature in the last step. This estab-
lishes the lemma. �
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Now, we write w̄(r) = w̄(et) and v(t) = w̄(et) + t as in the previous sec-
tion. Remember that we verified there that

v′′′′(t)− 4v′′(t) = 2 −
∫
∂Br(0)

Qge
4vdσ = F (t), −∞ < t <∞,

with ∫ ∞
−∞

F (t)dt =
2

|S3|

∫
R4

Qge
4wdx =

1

π2

∫
R4

Qge
4wdx <∞

and ∫ ∞
−∞
|F (t)|dt ≤ 1

π2

∫
R4

|Qg|e4wdx <∞.

We then get a proof of our main theorems for generalised normal metrics.

Proof of Theorem 1.1 and 1.4 for generalised normal metrics. Let g be a
generalised normal metric and write its averaged metric ḡ = e2w̄(r)|dx|2 in
spherical co-ordinates. Then, as we have seen in the previous section,

(3.19) lim
t→∞

v′(t)− lim
t→−∞

v′(t) = − 1

4π2

∫
R4

Qḡe
4w̄dx.

Note that ḡ = e2w̄|dx|2 is conformally flat and w̄(r) = −
∫
∂Br(0)w(x)dσ(x), so

that

2Qḡe
4w̄(r) = 42w̄(r) = −

∫
∂Br(0)

42w(x)dσ(x) = −
∫
∂Br(0)

2Qge
4wdσ(x).

This then implies

(3.20)

∫
R4

Qḡe
4w̄dx =

∫
R4

Qge
4wdx.

Applying the asymptotic estimates of V3 and V4, we get that

(3.21) lim
r→0

(∫
∂Br(0) e

3wdσ(x)
)4/3∫

Br(0) e
4wdx

= lim
r→0

|S3|4/3e4w̄r4

V4(r)

as well as

(3.22) lim
r→∞

(∫
∂Br(0) e

3wdσ(x)
)4/3∫

Br(0) e
4wdx

= lim
r→∞

|S3|4/3e4w̄r4

V4(r)
.
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Plugging (3.20)–(3.22) into (3.19), using also Lemma 2.4, we obtain a proof
of Theorem 1.1 in the special case of generalised normal metrics. The same
reasoning proves Theorem 1.4 for this type of metrics, using Theorem 3.3
with equations (3.5), (3.6). �

4. Singularity removal theorem

We show that every metric g = e2w|dx|2 on R4 \ {0} which is complete at
infinity and has finite area over the origin and satisfies (1.6) and (1.7) is a
generalised normal metric as in Definition 3.1. Therefore, by the previous
section, the generalised Chern-Gauss-Bonnet formula (Theorem 1.1) as well
as Theorem 1.4 holds for any such metric.

Theorem 4.1. Suppose that the metric (R4 \ {0}, e2w|dx|2) is a complete fi-
nite area metric with finite total Q curvature,

∫
R4 |Qg|e4wdx <∞, and scalar

curvature non-negative at infinity and at the origin. Then it is a generalised
normal metric.

Proof. First, let us denote

v(x) =
1

4π2

∫
R4

log
|y|
|x− y|

Qg(y)e4w(y)dy,

and define ψ(x) = w(x)− v(x). We then note that 42ψ = 0 on R4 \ {0}.
In particular, we see that 4ψ is harmonic on R4 \ {0}. The transformation
formula for the scalar curvature gives

4w + |∇w|2 = −Rg

6
e2w,

where Rg is the scalar curvature for the metric g = e2w|dx|2. As 4ψ is
harmonic on R4 \ {0}, by the mean value equality

4ψ(x0) = −
∫
∂Br(x0)

4ψ(x)dσ(x)

= − −
∫
∂Br(x0)

(
|∇w|2 +

Rg

6

)
dσ(x)−−

∫
∂Br(x0)

4v(x)dσ(x),

if ∂Br(x0) ⊂ R4 \ {0}. Hence, for sufficiently large and sufficiently small |x0|,
we see that Rg ≥ 0 and therefore the first term is non-positive. For the second
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term, by an argument similar to the one from Lemma 3.7, we have that∣∣∣∣∣
∫
∂Br(x0)

4v(x)dσ(x)

∣∣∣∣∣ =
1

2π2

∫
R4

(
−
∫
∂B1(0)

1

|rσ + x0 − y|2
dσ

)
Qg(y)e4w(y)dy

≤ 1

2π2r2

∫
R4

|Qg(y)|e4w(y)dy.

Hence taking r = |x0|
2 , we see that

4ψ(x0) ≤ C

|x0|2

for all x0 ∈ R4 \ {0} and hence

4
(
ψ(x0) +

C

2
log|x0|

)
≤ 0.

This means that
(
ψ(x) + C

2 log|x|
)

is a sub-harmonic and biharmonic func-
tion on R4 \ {0}, i.e.4

(
ψ(x) + C

2 log|x|
)

is harmonic and non-positive. Then
by Bôcher’s Theorem, see [2, Thm 3.9], it follows that

4
(
ψ(x) +

C

2
log|x|

)
= β

1

|x|2
+ b(x)

where β ≤ 0 and b(x) is a harmonic function on R4. Hence, we find that

h(x) = ψ(x) +
C + β

2
log|x| = w − v − α log|x|

is a biharmonic function on R4 and hence smooth. We now show that h is
in fact constant. As 4h is harmonic, we get by the mean value theorem

4h(x0) = −
∫
∂Br(x0)

4h(x)dσ(x) = − −
∫
∂Br(x0)

(
|∇w|2 +

Rg

6

)
dσ(4.1)

−−
∫
∂Br(x0)

4v(x)dσ(x)− 2α

r2
.

By an argument as above, we obtain

4h(x0) ≤ 0,

which shows that 4h = C0 for some non-positive constant by Liouville’s
theorem for harmonic functions. Therefore any partial derivative of h is
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harmonic, 4hxi = 0. Using once more the mean value equality, we get

|hxi(x0)|2 =

∣∣∣∣∣−
∫
∂Br(x0)

hxidσ

∣∣∣∣∣
2

≤ 1

|∂Br(x0)|2

∫
∂Br(x0)

|∇h|2dσ.

We also have the estimate

|∇h|2 ≤ 4|∇w|2 + 4|∇v|2 +
4α2

|x|2
= −4C0 −

2Rg

3
e2w + 4|∇v|2 +

C

|x|2

and

|∇v|2 ≤ C
(∫

R4

1

|x− y|2
|Qg|e4wdy

)(∫
R4

|Qg|e4wdy

)
≤ C

∫
R4

1

|x− y|2
|Qg|e4wdy.

Hence, we can conclude that for each x0 ∈ R4

|hxi |2 ≤ −4C0

and, again by Liouville’s theorem, the derivatives of h are constant which
implies that 4h = C0 = 0. Finally, this implies that the partial derivatives
of h vanish and h is a constant. �

5. Localised versions and the manifold case

The goal of this section is to prove our main result, Theorem 1.6. This is
achieved by localising the result from Theorem 1.1, see Theorem 5.1 and
Theorem 5.2 below.

Recall from Chang-Qing [5] that on a smooth and compact manifold
with boundary, the 4-dimensional Chern-Gauss-Bonnet formula (1.1) has to
be corrected with an additional boundary term. It reads

(5.1) χ(M) =
1

4π2

∫
M

(
1
8 |Wg|2g +Qg

)
dVg +

1

4π2

∫
∂M

(
Lg + Tg)dσg,

where analogous to the Weyl term, Lg dσg is a point-wise conformal invariant
vanishing on Euclidean space and Tg is the boundary curvature invariant



i
i

“2-Buzano” — 2020/1/16 — 0:14 — page 1728 — #32 i
i

i
i

i
i

1728 R. Buzano and H. T. Nguyen

given by

Tg := − 1

12
∂NRg +

1

6
RgH −RakbkAab +

1

9
H3 − 1

3
trA3 +

1

3
4̃H,

where A and H denote the second fundamental form and the mean cur-
vature of the boundary, respectively, ∂N denotes the unit inward normal
derivative and 4̃ the boundary Laplacian. In [7], Chang-Qing-Yang proved
the following Theorem.

Theorem 5.1 (Local Chern-Gauss-Bonnet formula for an end, The-
orem 1 in [7]). Suppose (E, g) = (R4 \B, e2w|dx|2) is a complete confor-
mal metric with non-negative scalar curvature at infinity and finite total Q
curvature. Then

1

4π2

∫
∂B
Tge

3wdσ(x)− 1

4π2

∫
R4\B

Qge
4wdx(5.2)

= lim
r→∞

volg(∂Br(0))4/3

4(2π2)1/3volg(Br(0) \B)
.

Localising our Theorem 1.1, we prove the following dual result for finite
area singular points.

Theorem 5.2 (Local Chern-Gauss-Bonnet formula for a singular re-
gion). Suppose that (S \ {p}, g) = (B \ {0}, e2w|dx|2) has finite area, non-
negative scalar curvature near the origin, and finite total Q curvature. Then

(5.3)
1

4π2

∫
∂B
Tge

3wdσ(x) +
1

4π2

∫
B
Qge

4wdx = lim
r→0

volg(∂Br(0))4/3

4(2π2)1/3volg(Br(0))
.

Remark. Note that in the above two theorems we work with the identical
expression for Tg, i.e. not reversing the orientation of the boundary and the
normal N . For a conformal metric g = e2w|dx|2 on R4 \ {0}, we obtain (1.8)
by subtracting (5.3) from (5.2).

To prove Theorem 5.2 we slightly modify the three steps of the proof
of Theorem 1.1. First, assume that w is a radial function on R4 \B, and
denote, as in Section 2, |x| = r = et and v = w + t. Then we have

(5.4) v′′′′ − 4v′′ = 2Qge
4v =: F, −∞ < t ≤ 0.
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Following Section 2 almost verbatim (but changing integration boundaries
from +∞ to 0), we obtain an explicit solution f(t) of this ODE, satisfying

lim
t→−∞

f ′(t) =
1

8

∫ 0

−∞
F (x)dx

and

lim
t→−∞

f ′′(t) = lim
t→−∞

f ′′′(t) = 0.

As in (2.7), v(t) is of the form

v(t) = c0 + c1t+ c2e
−2t + c3e

2t + f(t)

and (as in Lemma 2.2), under the condition of non-negative scalar curvature
near the origin, we obtain c2 = 0 and thus in particular

(5.5) lim
t→−∞

v′′′(t) = 0.

In [5, Remark 3.1], Chang-Qing proved that in this special rotationally sym-
metric situation the boundary curvature Tg satisfies

Tge
3v = −1

2
v′′′ + 2v′.

Plugging this into the Chern-Gauss-Bonnet formula with boundary, we have

0 =
1

4π2

∫
s≤t≤0

Qge
4vdx+

1

4π2

∫
t=0

Tge
3vdσ − 1

4π2

∫
t=s

Tge
3vdσ

=
1

4π2

∫
s≤t≤0

Qge
4vdx+

1

4π2

∫
t=0

Tge
3vdσ − 1

4π2
|S3|

(
−1

2
v′′′(s) + 2v′(s)

)
.

Taking the limit as s→ −∞ and using (5.5), we obtain

(5.6)
1

4π2

∫
∂B
Tge

3wdσ(x) +
1

4π2

∫
B
Qge

4wdx = lim
t→−∞

v′(t).

The fact that

(5.7) lim
t→−∞

v′(t) = lim
t→−∞

C3,4(et) = lim
r→0

volg(∂Br(0))4/3

4(2π2)1/3volg(Br(0))

then follows again exactly as in Lemma 2.4, which plugged into (5.6) proves
Theorem 5.2 for the case of rotationally symmetric metrics g.
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Next, we localise Definition 3.1 and introduce a notion of generalised
normal metrics on the punctured ball.

Definition 5.3 (Generalised normal metrics on the punctured ball).
Let g = e2w|dx|2 be a metric on B \ {0}, where B is the unit ball in R4.
Assume that g has finite total Q curvature,∫

B
|Qg|e4wdx <∞.

We say that g is a generalised normal metric, if w has the expansion

(5.8) w(x) =
1

4π2

∫
B

log

(
|y|
|x− y|

)
Qg(y) e4w(y) dy + α log|x|+ h(x)

for some constants α ∈ R and a biharmonic function h on B. (We would like
to emphasise here that h is defined and biharmonic on all of B, in particular
also over the origin!) For such a generalised normal metric, we then define
the averaged metric as before by ḡ = e2w̄|dx|2, where

w̄(r) := −
∫
∂Br(0)

w(x) dσ(x).

Lemma 5.4. Suppose that the metric e2w|dx|2 on B \ {0} is a generalised
normal metric in the sense of Definition 5.3. Then for any number k > 0
we have that

−
∫
∂Br(0)

ekwdσ(x) = ekw̄(r)eo(1)(5.9)

where o(1)→ 0 as r → 0.

Proof. This is analogous to Lemma 3.4 and the proof of Lemma 3.4 goes
through almost verbatim. We only need to modify the domains of integration
(essentially changing R4 to B) and take care of the additional function h(x).
However, as h(x) is biharmonic (and thus smooth) over the origin, we have

lim
r→0
−
∫
∂Br(0)

ekh(x)dσ(x) = ekh̄(0) = lim
r→0

ekh̄(r).

We leave the remaining minor modifications to the reader. �
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As a direct consequence, analogous to the first part of Theorem 3.3, we
then see that the mixed volumes taken with respect to the two metrics g
and ḡ satisfy

V3(r) = V̄3(r)(1 + ε(r)),(5.10)
d
drV4(r) = d

dr V̄4(r)(1 + ε(r)),(5.11)

where ε(r)→ 0 as r → 0. Moreover, as in Corollary 3.6, if g is a finite area
metric on B \ {0}, then so is the averaged metric ḡ. Finally, ḡ is clearly ro-
tationally symmetric by definition. Thus, v = w̄ + t satisfies (5.6) and (5.7),
that is

1

4π2

∫
∂B
Tḡe

3w̄dσ(x) +
1

4π2

∫
B
Qḡe

4w̄dx(5.12)

= lim
t→−∞

v̄′(t) = lim
r→0

V̄
4/3

3 (r)

(π2/2)1/3 V̄4(r)
.

As

Qḡe
4w̄(r) = −

∫
∂Br(0)

1

2
42w̄ dσ(x)

= −
∫
∂Br(0)

1

2
42w dσ(x) = −

∫
∂Br(0)

Qge
4wdσ(x)

as well as

Tḡe
3w̄(r) = P3w̄ = P3w = −

∫
∂Br(0)

Tge
3wdσ(x),

where P3 denotes the boundary operator associated to the Paneitz operator
(see e.g. [7]), we can drop all the bars on the left hand side of (5.12). Due to
(5.10) and (5.11), we can also drop the bars on the right hand side of (5.12).
Hence, we have proved Theorem 5.2 for the special case of generalised nor-
mal metrics on the punctured ball.

Finally, Theorem 5.2 follows from the above combined with the following
lemma.

Lemma 5.5. Suppose that (S \ {p}, g) = (B \ {0}, e2w|dx|2) has finite area,
non-negative scalar curvature near the origin, and finite total Q curvature.
Then g is a generalised normal metric as in Definition 5.3.
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Proof. The proof of this lemma is very similar to the first part of the proof
of Theorem 4.1. We first denote

v(x) =
1

4π2

∫
B

log
|y|
|x− y|

Qg(y)e4w(y)dy,

and define ψ(x) = w(x)− v(x). We then note that 42ψ = 0 on B \ {0}. In
particular, we see that 4ψ is harmonic on B \ {0} and thus by the mean
value equality

4ψ(x0) = −
∫
∂Br(x0)

4ψ(x)dσ(x)

= − −
∫
∂Br(x0)

(
|∇w|2 +

Rg

6

)
dσ(x)−−

∫
∂Br(x0)

4v(x)dσ(x),

if ∂Br(x0) ⊂ B \ {0}. Here we used the transformation formula for the scalar
curvature

4w + |∇w|2 = −Rg

6
e2w.

For sufficiently small |x0|, we know that Rg ≥ 0 by assumption. Moreover,
by an argument similar to the one from Lemma 3.7, we have that∣∣∣∣∣
∫
∂Br(x0)

4v(x)dσ(x)

∣∣∣∣∣ =
1

2π2

∫
B

(
−
∫
∂B1(0)

1

|rσ + x0 − y|2
dσ

)
Qg(y)e4w(y)dy

≤ 1

2π2r2

∫
B
|Qg(y)|e4w(y)dy.

Hence, taking for example r = |x0|
2 , we see that

4ψ(x0) ≤ C

|x0|2

for some constant C and all x0 ∈ B \ {0} and hence

4
(
ψ(x0) +

C

2
log|x0|

)
≤ 0.

This means that
(
ψ(x) + C

2 log|x|
)

is a sub-harmonic and biharmonic func-
tion on B \ {0}, i.e. 4

(
ψ(x) + C

2 log|x|
)

is harmonic and non-positive and



i
i

“2-Buzano” — 2020/1/16 — 0:14 — page 1733 — #37 i
i

i
i

i
i

Chern-Gauss-Bonnet for singular 4-manifolds 1733

thus by Bôcher’s Theorem, see [2, Thm 3.9], we conclude

4
(
ψ(x) +

C

2
log|x|

)
= β

1

|x|2
+ b(x)

where β ≤ 0 and b(x) is a harmonic function on B (including over the origin).
Hence we find that

h(x) = ψ(x) +
C + β

2
log|x| = w − v − α log|x|

is a biharmonic function on B. We have thus proved (3.1) for w, meaning
that w is a generalised normal metric in the sense of Definition 5.3. �

It is now easy to prove our main theorem.

Proof of Theorem 1.6. According to Definition 1.5, a manifold as in Theo-
rem 1.6 can be split up into a compact manifold N with boundary and a
finite number of ends and singular regions,

M = N ∪

(
k⋃
i=1

Ei

)
∪

⋃̀
j=1

Sj

 .

Applying the Chern-Gauss-Bonnet formula for manifolds with boundary,
given in (5.1) to N , as well as using Theorem 5.1 for each of the ends
and Theorem 5.2 for each of the singular regions, we immediately obtain
the claimed Chern-Gauss-Bonnet type formula (1.19), noticing that all the
boundary terms cancel each other out (as they obviously all appear twice
with opposite signs). This finishes the proof of the theorem. �
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