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The Chern-Gauss-Bonnet formula
for singular non-compact
four-dimensional manifolds

RETO BUuzANO AND HUY THE NGUYEN

We generalise the classical Chern-Gauss-Bonnet formula to a class
of 4-dimensional manifolds with finitely many conformally flat ends
and singular points. This extends results of Chang-Qing-Yang in
the smooth case. Under the assumptions of finite total () curvature
and positive scalar curvature at the ends and at the singularities,
we obtain a new Chern-Gauss-Bonnet formula with error terms
that can be expressed as isoperimetric deficits. This is the first such
formula in a dimension higher than two which allows the underlying
manifold to have isolated branch points or conical singularities.
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Relating the local geometry and global topology of manifolds constitutes
one of the main aims of differential geometry. One of the most fundamental

1697



1698 R. Buzano and H. T. Nguyen

results is the Gauss-Bonnet formula
/ K,dVy = 2mx (M),
M

which gives a link between the topology of a closed surface (M, g) and its
Gauss curvature. In particular, this formula yields topological obstructions
to the existence of certain metrics, for example no torus 72 = St x S! (with
Euler characteristic zero) carries a metric g of positive Gauss curvature
K, > 0. It is well known that for complete non-compact surfaces or sur-
faces with singularities the Gauss-Bonnet formula requires additional terms
known as isoperimetric deficit, which infinitesimally measure the deviation
from flat Euclidean space. Such formulas have been extensively studied over
the last eighty years, see for example [9, 1T}, 12 T5HI8| 2T, 24} 25] for some
of the most important results.

A generalisation of the Gauss-Bonnet theorem to higher-dimensional
compact Riemannian manifolds was discovered by Chern [10]. In particular,

in the case of a compact 4-dimensional manifold, the Chern-Gauss-Bonnet
formula states that

(1.1) 3272\ (M) = /M (IRmg[7 — 4|Req g + R7)dV,,
= [ (W +5Qy)av,

where Rmy, Rcy, Ry and W, denote the Riemannian, Ricci, scalar and
Weyl curvature of (M4, g), respectively, and

(1.2) Qg = —15(AgRg — RZ + 3|Rey[?)

is the Paneitz @ curvature introduced by Branson [3]. Under a conformal
change g = e?%gg, this scalar quantity transforms by

(13) P90w+2Q90 = 2Qge4w’

where P, denotes the Paneitz operator, introduced in [22] and defined
by

(1.4) Py(p) == Agap + divg(%Rgg — 2Rcy)dp, p e C(M).
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Under the same conformal change as above, the Paneitz operator trans-
forms by

(1.5) P,=e¢*P,.

These transformation laws are the higher-dimensional equivalents of the
classical formulas for surfaces, stating that for g = e?*gy we have

—Dgow + Ky = Kge**, Ng=e 2N,

For more details on the properties of the Paneitz operator and the @
curvature, we refer the reader to [3-5] 22].

If M is non-compact or singular, very little is known about how the
Chern-Gauss-Bonnet formula should look like. In the smooth case, besides
the classical results of Cheeger-Gromov on manifolds with bounded geome-
try [8] and the results of Greene-Wu on complete four-manifolds with pos-
itive sectional curvature [I4], the most general results are due to Chang-
Qing-Yang [6l, [7]. (See also [I3],20] for higher-dimensional versions of similar
results.) In the singular case, this problem has only been studied in the spe-
cial case of so-called edge-cone singularities [I], [19] or V-manifolds [23], but
no results seem to be known that allow the underlying manifold to have
isolated singular points.

The goal of this article is to develop a formula for a large class of mani-
folds M which are diffeomorphic to a compact manifold with finitely many
points removed, allowing in particular both complete ends and finite area
interior branch points. For the reader’s convenience and simplicity of ex-
position, we first state the result in the simple situation of a conformal
metric e??|dz|?> on R*\ {0} having one complete end at infinity and one
finite area singular point at the origin (see Theorem for the precise as-
sumptions). This is a model case for the more general situation of manifolds
with many conformally flat ends and singular points, see Definition [I.5 and
Theorem [1.6]

Theorem 1.1 (Chern-Gauss-Bonnet formula for singular metrics
conformal to R?). Let g = e?¥|dx|? be a metric on R\ {0} which is com-
plete at infinity and has finite area over the origin. If g has finite total Q)
curvature

(1.6) / Qg dV, :/ Qg €' dz < oo,
R4 R4
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and non-negative scalar curvature at infinity and at the origin, i.e.

(1.7) inf Rg(x) >0, inf Ry(x) >0,

R*\B,(0) B, (0)

for some 0 < r1 < ry < 00, then we have

(1.8) W®) - 15 [ Qettae=v—n

472
where

vol, (0B, (0))4/3
r(0)’

— 1.

vi= b i,

(B
vol, (8B,(0))*/3
120 4(272)3vol, (B, (0))

(1.9)

The simplest and at the same time fundamental example that illustrates
this result and that is not covered by previously known Chern-Gauss-Bonnet
type formulas is the following conical metric.

Example 1.2. Let us consider the manifold (R*\ {0}, g%), where the met-
ric g® is defined by gf; = 6;; + ™32 for some —1 < a < oo. Here, r? = |z|?,
where |z| denotes the Euclidean norm. If o = 0, this is simply Euclidean
space. More generally, the metric g is a conformal deformation of the Eu-
clidean metric, as can be seen as follows. First note that in spherical co-
ordinates, the metric may be written as

= (1+ a)dr?* + rdoss.

Hence, we can reparametrise with s = Vv Ha 50 that

2(——A——1
dr? = —Jas (7= )d82, ré = §vVita

and the metric becomes
gt = sl (d52 + 52d0'53) = 52(v11+a_1)gR4.

Hence g% is a complete metric conformal to gg+ with conformal factor

eQw(r) = 7'2( \/ﬁil)
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so that w(r) = (—--—= — 1) logr. Computing, we see that

Vita
4/3
»— lim voly (0Br(0)) _ 1 o= 1 1
r—oo 4(272)1/3vol,(B,(0)) 1+« 1+«
We note that for this cone in dimension four,
6ae—2w(r) 12a26—4w(r)
Ruzi R(120:7 AaRuzo
g (1+a)r?’ [Rege g (1+a)2rt’ g

so that Q4o = 0. Hence in this case

= x(R") _4772/ Qge dVge = v — pi.

Theorem [[.T] above shows that the deficit in the Chern-Gauss-Bonnet
formula is given by the limits of some isoperimetric ratios. In contrast
to the situation on surfaces, there are several different isoperimetric ratios in
higher dimensions. Recall that for €2 a convex domain in R” and 1 < m < n,
the mixed volumes V,,,(€2), as defined by Trudinger [26], are given by

(1.10) V(@) = — 1 / Hiy1 [09] d3HC™,
[2J9)

where Hj, [0€] denotes the k-th symmetric polynomial in the principal
curvatures of 9 and H"~! is the (n — 1)-dimensional Hausdorff measure.
In particular, if Q = B,(0) is a ball in R* centred at the origin, we obtain
the following mixed volumes and isoperimetric ratios.

Definition 1.3. We define the volumes Vj(r) by

V4(7"):/B(O) e de,

V=g [ o),
(L.11) 1 9B,(0)
Va(r) = — Hy &3 do(z),
12 JaB,(0)
1
Vi(r) = 12 Hy e do(z).
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The isoperimetric ratios Cj ¢(r) are then defined by

V4/3(r)
C3,4<7") = (7_(_2/23)1/3 V4(7‘)7
_ Va(r)
(1.12) Cas(r) = (ﬂz/z)lis V32/3(7“)7
V3 (r)
) Gy

and
Coulr) = Cyli(r) - G35 (r),
(1.13) Cys(r) = ;{;w - ci/;"(r),
Cralr) = 3 (1) - 3R (r) - CL5 (7).

Our second result says that asymptotically, all these isoperimetric vol-
ume ratios agree in our setting.

Theorem 1.4 (Isoperimetric volume ratios agree asymptotically).
Let g be a metric as in Theorem and let p be defined as in (1.9). If

1
1 o 4w
T3 /R4Qge dx >0
then the Chern-Gauss-Bonnet formula (1.8]) holds for v given by
(1.14) v:= lim Cj(r),
r—00

for any choice of 1 < k < £ < 4. Alternatively, if v is defined as in (1.9) and
satisfies

1 4w
1_V+47r2/R4Q96 dx >0
then the Chern-Gauss-Bonnet formula (1.8]) holds for u given by
(1.15) po= ll_r}(l) Chre(r) — 1.
for any choice of 1 < k < { < 4.

Remark. Of course, picking ¥k =3 and ¢ =4 in (1.14) or , we ob-
tain (T.9).
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In order to state the main result, generalising Theorem to the case of
4-manifolds with finitely many ends and singular points, let us first explain
which type of manifolds we are exactly considering here.

Definition 1.5. We say (M, g) is a 4-manifold with finitely many confor-
mally flat complete ends and finite-area singular points, if

k ¢
MZNU(UEZ)U US]
i=1 j=1

where (N, g) is a compact Riemannian manifold with boundary

k £
ON = (U 8EZ-> u | lJos;
i=1 j=1

and the E;, S; satisfy the following properties. Each Ej; is a conformally flat
simple end, meaning that

(1.16) (i g) = (R'\ B, e*|dz]?)

for some function e;(x), where B is the unit ball in R* and the metric is
complete at infinity. Each S; on the other hand is a conformally flat region
with finite area and with a point-singularity at some p;, meaning that

(1.17) (S5 \ {ps},9) = (B\{0},¢*|da]?)
for some function s;(x), where B again denotes the unit ball in R%.
The main result of this article states the following.

Theorem 1.6 (Chern-Gauss-Bonnet formula for singular non-com-
pact 4-manifolds). Let (M, g) be as in Definition[1.5 and assume that g
has finite total Q curvature

(1.18) /M|Qg|dvg < 09,

and non-negative scalar curvature at every singular point and at infinity at
each end. Then we have

k y4
1
T 3972 /M (‘Wg’?; +8Qg)dVy = ZVi - Zﬂja

i=1 j=1

(1.19) xX(M)
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where
i(®) o 4/3
(1.20) v = lim (o, 0 (@) S i=1,... .k
r—00 4(27‘(2 1/ fB (O\B 64€i(x)dx
and

€351 (%) 1o 4/3
(1.21) 1 o= lim Uss, 0 @) 1,  j=1,...,0
r—0 4(27‘( 1/3f e4s.j($)d$

Remark. In the case of smooth metrics satisfying and the condition
of positive scalar curvature at each end, Theorem [I.6]reduces to the results of
Chang-Qing-Yang [0, [7]. Moreover, under these assumptions, Wang obtained
interesting isoperimetric inequalities, see [27], 28]. It would be interesting to
try to adopt her results to our situation of manifolds with singularities.

The paper is organised as follows. In the Sections we prove the The-
orems and in three steps as follows. First, note that for a conformal
metric g = e**|dz|? on R*\ {0}, the definition of the Paneitz operator
together with the Paneitz equation imply

(1.22) A?w = 2Qqe™,

where /A denotes the Euclidean Laplacian. In the special case where
w = w(r) is a radial function on R*\ {0}, this equation reduces to an ODE.
In Section 2] by solving explicitly for the non-linearity in this ODE, we prove
the two theorems for the special case of rotationally symmetric metrics.
Then, we introduce a new notion of generalised normal metrics, namely
metrics of the form g = **|dx|> where

1 | 4
(1.23) w(x) = w3 /]12{4 log <|x = y|> Q(y) e** W dy + alog|z| + C.
In Section [3| we prove Theorem and Theorem for this type of
metrics by comparing w satisfying (1.23)) with the averaged conformal factor

0 : L w(x)do(x
(1.24) w(r) := 0B, Jos. 0 w(z) do(x)

and reducing this case to the already established rotationally symmetric
one. Next, in Section 4}, we show that every metric g = e**|dz|? on R*\ {0}
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which is complete at infinity and has finite area over the origin and satisfies
(1.6) and (|1.7)) is a generalised normal metric. This finishes the proofs of
Theorem [I.1] and Theorem [1.4]in the general case. Finally, in Section [5] we

localise Theoremto metrics as in ([1.16]) and ((1.17)) and prove Theorem

by gluing together all the pieces.

2. Rotationally symmetric metrics
In this section, we assume that g = e?“|dz|? is a conformal metric on R*\
{0} and w = w(r) is a radial function. Using spherical coordinates and writ-

. . _ 2 .
ing |z| = 7 = !, one obtains Aw = e~*(Z; + 22 )w, and hence, using also

the Paneitz equation ((1.22)),

2 2
(2.1) Aw=eH (;2 - 288t) <§t2 + 2;) w = 2Qge, —oco<t< .

Note that t = logr satisfies A%t = 0. Therefore, it makes sense to denote
w + t by v, which solves

(2.2) V" — 4" =2Que", —oo <t < 0.

The goal of the first part of this section is to compute the limits of v'(t)
for t — £o00. In order to do so, following [6], we denote F := 2Q e’ and
construct an explicit solution f(¢) of the equation

(2'3) f//// . 4f// - r

It will turn out that we do not need f(t) itself, but only its derivatives.
Before explaining the construction of f(¢), let us prove a technical lemma.

Lemma 2.1. For F = 2Qge4” as above, we have

t——o0

o0
K := lim e%/ F(x)e **dz = 0,
t

¢
K5 := lim e_zt/ F(z)e**dz = 0,

—0o0
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Proof. First note that

(2.4) / |F(2)|dz :/ 2/Q,le™ da
2 y 1
= ‘S3|/R4|nge4 dr = 7T2/R4|Qg|dVg < 00

by assumption. We then have for t < T < oo

oo T 00
th/ F(z)e *dx| < e* </ |F(x)]e " dx +/ |F(x)\e2xdx>
t t T

T 00
< / |F(2)|dz + 2¢-T) / \F(2)|dz.

Setting T = t/2 (for negative t) and letting ¢ tend to —oo, we obtain K; = 0.
Similarly, we have for —oo < T <t

t T t
e_Zt/ F(z)e*®dz| < e (/ |F(x)|e*dx +/ |F(l’)|€2$d$>
o —c0 T
< 21 / |F(z)|dx + / |F(z)|da.
—00 T

Hence, setting T' = t/2 (for positive t) and letting ¢ tend to oo, we obtain
Ky =0. O

A consequence of this lemma (which could also be seen more directly)
is that

o0
K3 := lim e4t/ F(z)e % dz = 0,
t

t——o00

In order to find f(t), we make the ansatz f”(t) = C(t)e~2. Plugging this
into (2.3) yields
(C'(t)e™") = F(t)e™,

which can be solved for C(t) as follows:

C(t) = / ( / F(y 2yaly>d

1 1
= 4t/ F(x)e **dx — / F(x)e**dx,
1, 1)
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where the second line is obtained using integration by parts and K3 = 0.
We thus find

1 o 1 ¢
() = —th/ F(z)e *®dx — e_Qt/ F(z)e**dx.
i) 4 .
By Lemma we have

(2.5) lim f”(t) = lim f"(t) = 0.

t——o0 t—o00

Another integration by parts, using K1 = Ko = 0, yields

b1
fiit) = —/ Ze% (/ _dey> dz
+/ 26721 < 2ydy> dx
t
1 2t > —2z !
=——e¢ F(z)e “"dx — F(z)dzx
8¢, 8 .

t 1 o]
+ e_Qt/ F(z)e*®dx + 8/ F(x)dx.
—0o0 t

Using Lemma once more, we obtain

(2.6) lim f/(t) = ;/OO F(z)dx, lim f/'(t) = —é /OO F(z)dx.

t——o0 oo t—o0 oo

We could now obtain an explicit f(¢) by a further integration and re-
quiring for instance f(0) = 0. However, we only need the derivatives of f(t),
hence we skip this step. Our v(¢) is now of the form

(2.7) v(t) = co + 1t + cae ™2 4 cze? + f(1)

for some constants ¢y, c1, c2, and c3. We first prove that the assumption of
asymptotically non-negative scalar curvature implies that co and c3 vanish.

Lemma 2.2. Assume that g = e**|dz|?> has non-negative scalar curvature
at infinity and at the origin, i.e.

inf R, >0 f R
R4\%1T2(0) g(.%') - Blrrll(O) ( ) 7

for some 0 <1y <19 <o00. Then co = c3 =0 in (2.7).
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Proof. The transformation law for scalar curvature under a conformal change
g = €2 gg on an n-dimensional manifold is
n n—2

R, = e 2w (Rgo — 4(::21)6_ ;%;Agoe 2 w) )

In our case, where gg is the Euclidean metric and n = 4, this becomes

IR % = —e VAW = —e 2V 29 + 8—2 e’
679 ot o2 ’

or equivalently
(2.8) IRge®® = /(1) — (v/(1))* + L.

By our assumption of asymptotically non-negative scalar curvature at in-
finity and at the origin, the left hand side of becomes non-negative if
t — %00. On the other hand, we know by and that f”(t) and f'(t)
stay bounded as t — 400, thus the dominating term on the right hand side
of is —4|c3|?e* as t — oo, respectively —4|ca|?e4 as t — —oo. Hence
the right hand side of can only be non-negative if co = c3 = 0. O

Remark. The proof shows that it is sufficient to assume that the term
Rge?’ = |z|Rgye?" is bounded from below, rather than assuming the stronger
condition that Ry > 0 near infinity and the origin. On the other hand, our
assumption cannot be replaced by the weaker assumption Ry — 0 as
t = log|x| — #00. This is for example illustrated by the metric g = e**|dx|?,
which is complete at infinity, satisfies Q4 = 0 and

Ry(r) = —48¢7 %" — 24r%¢ %" 50 (as T — 00),
but has c3 = 1.

A direct consequence of Lemma [2.2] is that under the assumptions as
above, we have

t—o00 t——o0 4

e 1
lim v/(t) — lim 2/(t) = —/ F(z)dx = —42/ Qg e*Vdz.
7 R4

This follows from ¢ = ¢3 = 0, which implies v(t) = ¢o + c1t + f(t) and
thus v/(t) = ¢1 + f/(t), and the computations of the limits of f/(¢) in (2.6]).
We have thus proved the following.
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Corollary 2.3. Under the assumptions as above, we have

X(RY) /Qg gy =y p,

472

where
li = i "(t) — 1.
= Hp e, = i, )
To finish the proofs of both Theorem and Theorem in the ro-
tationally symmetric case, we only need to prove (1.14)) and (|1.15)), i.e. we
need to relate v/(t) to the isoperimetric volume ratios.

Lemma 2.4. We have

lim v/(¢) = lim Cj4(e"), lim o'(t) = . lim Cy (e,
——00

t—o00 t—o0 ’ t——00

for any choice of 1 < k < { <4,

Proof. Letting Hy, Hs denote the first and second symmetric polynomial in
the principal curvatures of 0B, (0) as in ([1.11]), a short computation yields

1 1 2
T T L A A
r or r or

wm:i/{mrm) (Hff:) e do(z),

1 1 ow\®
‘/1(7")4/83T(0) <’I"+a’f‘> e da(x)

Substituting r = €' (which implies dz = €4tdtd0'§3 as well as do(z) = e3tdogs
on 0B,(0)) and v = w + ¢, we obtain from (L.11)) and (2.9)

V4( / / 4v(s) dagsds _ ‘S3|/ 4v(s
S3

V3(r) = Vs(e') = 1 /53 VO dogs = |S3|63”
Va(r) = Va(e') = 1/83 Ul(t)e% t

| e

SS

4
1
4

and hence

(2.9)

(2.10)
dogs = 1|S3|v’(t)e2v<t>,

(1
1
Vi(r) = Vi(e') = e Odogs = - |8%|(v/ (1)),
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It now follows directly from Definition [I.3] that
(211) 0273(6t) = Cl’g(et) = C’l’g(et) = U/(t).

This proves the lemma for all cases where £ # 4. We thus turn to study
Cs4(et). As g = €?¥|dx|? is complete at infinity by assumption, we conclude
that limg_,o ¢/(t) > 0. If this limit is strictly positive, then both Vj(e!) and
V3(e!) tend to infinity as t — oo and we obtain from L’Hopital’s rule

4011Q31,30()\1/3 . 31Q31/ (1) 030(t)
. n o 3(gISe )R g[S (e
Jim Csale’) = Jim (12/2)1/3[S3 [t (® = fim v'(2).
On the other hand, if limy . v'(t) =0, and Vj(e') stays bounded as
t — 00, then limy_ oo €2*® = 0, which implies limy_ o0 €3*® =0 and thus
lim;_,o0 V3(e") = 0. Hence we have again lim;_,o C3 4(e") = 0 = limy_,00 v/ (%).

Similarly, if ¢ — —oo, then Vj(e!) and V3(e’) both approach zero, which
can be seen as follows. Since Vj(r) is a finite integral (i.e. ¢**(") is in L' when
integrating over the origin), V4 (r) must tend to zero if r — 0, or equivalently
Vi(e?) tends to zero as t — —oo. Then, from formula , we obtain that
e converges to 0 as t — —oo (as otherwise Vj(e!) would be infinite). Thus,
again by (2.10)), we obtain also V3(e') — 0 as ¢ — —oc. The result then fol-
lows also in this case from L’Hopital’s rule as above.

We have thus proved Lemma for C54(e') and thus, using (1.13)
and (2.11), for all the remaining cases. O

3. Generalised normal metrics

In this section, we will define generalised normal metrics on R*\ {0} as a
generalisation of 2-dimensional complete normal metrics given by Finn [12].
In [21I] a correspondence between finite area singular points and complete
ends was discovered. We use this duality to define a finite area singular
point.

Definition 3.1 (Generalised normal metrics). Suppose that e**|dz|?
is a metric on R*\ {0} with finite total Paneitz ) curvature

/ 1Qgle*"dx < cc.
R4
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We call g a generalised normal metric, if w has the expansion

_ L vl su(y)
(3.1) w(z) = 2 /R4 log <|x = y|) Qq(y)e dy + alog|z| + C

for some constants a, C € R. For such a generalised normal metric, we then
define the averaged metric g = e*®|dx|? by

U = w(x)do(x :; w(x)do(x
(32 ) "]gm ©)do) = gy o W) do@)

Clearly, g is a rotationally symmetric metric.

Remark 3.2. Note that if we have a finite area metric, that is if

/ W dy < oo,
Br(0)

this implies that o > —1.
The main theorem of this section is the following.

Theorem 3.3. Let g be a generalised normal metric on R\ {0} with av-
eraged metric g and define the mized volumes Vi, (with respect to g) and Vy,
(with respect to g) as in Definition . Then

(3.3) Va(r) = Va(r)(1+(r)),
(3.4) #Va(r) = FVa(r) (1 +e(r),

where £(r) — 0 if either r — 0 or r — oco. Moreover, if the two limits

lim {1+ ra—w and lim {1+ ra—w
r—0 or r—00 or
both exist and are positive, then we have in addition that

(35) Vi(r) = Valr)(1 + (1),

(3.6) Va(r) = Va(r)(1 + (r)),
where again €(r) — 0 if r — 0 or r — oo.

In order to prove this theorem, we start with the following technical
lemma.
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Lemma 3.4. Suppose that the metric e**|dz|?> on R*\ {0} is a generalised
normal metric. Then for any number k > 0 we have that

(3.7) ][ M do(z) = o)
9B,(0)

where o(1) — 0 as r — 0 and as r — 0.

Proof. The proof for r — oo was essentially covered in [6, Lemma 3.2]. Note
that there the formula is proved for normal metrics which differ from
our definition of generalised normal metrics by our additional term « log|z| in
. But this additional term, the fundamental solution of the bi-Laplacian,
is rotationally symmetric and thus in equation , e@loglzl appears on both
sides and hence cancels. For this reason, we only need to prove the lemma
for r — 0.

Suppose that e*?|dz|? is a generalised normal metric. As in the last
section, we denote F(y) = 2Qg(y)e4w(y) which by assumption is in L'. Then,
splitting up R* into three regions, we have

wie) = 8% /B,/Q(o) o2 <!$|€|y|> Floly
! log ( i > F(y)dy

_|_ -
872 R\ Bs)|/2(0) |z -yl

1
+ 2/ log < 1 ) F(y)dy + alog|z| + C
8m Bsjz1/2(0)\ Bz ,2(0) ‘LL“ - y‘

= w1(z) + wa(x) + w3(z) + aloglz| + C.

As above, alog|z|+ C' is rotationally symmetric and thus in equation
, eloglzl+C appears on both sides and hence cancels. Therefore, we need
only concentrate on wi(x), wa(x) and ws(z). We first consider w; (x), which
we can rewrite as follows

1 [yl

+ log ( F(y)dy
872 Jiy|<|al/2 [z -yl

= f(lz]) + wi ().
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As f(|z|) is another rotationally symmetric term, we need to study only

0

w?(z). In order to do this, let n < 3, and estimate

log

hﬁ@»sc<[Kl

+ /
x| <|y|<3 ||

For the first integral, note that |y| < n|z| implies

log

A =n)|z| < |z| = |yl < |z —y| < 2|+ [y < (1 +n)|z|,

and hence

This yields

=log ——.

| 1
%1—n 1—n

9

o1
oL
&1y

log i < max
|z =y

In order to estimate the second integral, we use the bound |y| < 1|z|, which

by an analogous argument as above yields

= log 2.

] !
< log —
=y l1-3

log i

Combining these estimates and using [p.|F(y)|dy < co, we obtain
+ 10g2/ |F(y)|dy.
x| <ly|<3 ||

For |z|] - 0 and 7 — 0, both terms above tend to zero, using again

1
0 <C1
wd(a)| < Clog —

Jzi|F(y)|dy < oc. This proves that

as |z| — 0.

’U}(l)((L') = 0(1)7

(3.8)
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As a second step, we estimate wy(z) by an argument which is dual to
what we have just done. For n > %, we write

()] < c( /
ly|>n]z|
v/
nlz|>y|>2|z|

To bound the first term, we notice that the inequality |y| > n|x| implies

|y
|z —yl

log 1Y/ \ |F<y>|dy>.

log

1Py

|z — |

(1= 1) Iyl < lol —lol <o —wl < ol + ol < (14 2) o,

so that
1 1
141~ Ix@yl ST
n n
This gives
|y ' { U U U
log < max < |log , |log = log——.
' |z =y n—1 n+1 n—1

Similarly, we estimate the second term, with n now replaced by %, which
gives

Combining these estimates and using [p.|F (y)|dy < oo, we obtain

n
7 +10g3/ |F(y)|dy.
n- nlz|>|y|>2|z|

For |z| — 0, we then send 17 — oo slow enough such that n|z| — 0, in which
case both terms above tend to zero, using again [p.|F(y)|dy < co. This
proves that

|wa(z)| < Clog

(3.9) wa(z) = o(1), as |z| — 0.
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As a third step, we consider the term

1 ][ |yl
= — log do(x) | F(y)dy
872 Jr gy <o ( oB,(0) 1Tyl (@) | F)
o oy TOF WA

We claim that the inner integral

][ log |y[ do(x)
0B.(0) |7 =Yl

1

= 10B:(0)] Jop. 0\ fa:fo— yl<ilyl}
1

\BB (0)] OB, ()N {z:|z—y|< :|y|}
=Ii(y) + I2(y)

[(y)| =

is uniformly bounded on the annular region 5 < |y| < 2. To estimate I3 (y),
note that on the region over which we integrate we have

1
glyl <lz -yl <lz[+ [yl < 3yl

giving % < |x|3|y| < 3 and hence I(y) < log3. For the second integral, we

have

do(z).

log ’7?,

<
‘aB | 83 () {:B’xfﬁ‘<é} r — m|

Now, as 5 < |y| < %r, we have % <z ol | 2. Thus, as log ) — is integrable,

we see that I2(y) is uniformly bounded as well, and hence |I(y)| is uni-
formly bounded for § < |y| < 5 3" as claimed. The assumption of finite total
Q) curvature then implies

(3.10) ]ég | usNo@) = olt), asr o
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Using (3.8), (3.9) and (3.10) as well as Jensen’s inequality, we obtain for

r—0

311) & ]é g M) = ]é 1 1 H0) () @) +o)

= log <][ ek(w(x)_w3(x))da(x)> +o(1).
8B,(0)

Finally as a fourth and last step, we estimate the term

][ (@) _ 1)do(z) = ][ (€0%) _ 1)do(z).
9B,.(0) 8B (0)

Following [12], this can be done by estimating Ey; = {0 € S3 : |wz(ro)| >
M}, Similar to the above, we have

M - |Ep| §/ |ws|do
Eyn

1
<L ([ Jpow 2| ao) ircay
872 JByy (0B, 2(0) \JEw | 7T — Y
1
= — J(y)|F(y)|dy.
7 . e OIS
As above, we have to estimate the inner integral
J(y) z/ ‘log y }da
EM\{U:\TJ—y\g%l} |7"O‘ - y‘

+/ ‘log
EMﬁ{o:|rafy|§|%‘} ‘TU - y’
= J1(y) + J2(y).

Clearly we have the estimate Ji(y) <log3:|Ey|. We estimate the term
Ja(y) as follows. Observe that if we have |ro — y| < % then

Y|

log}a—f
[ro —y|

r

log —| +

log log’ay"glog?)Jr
T 2

yw

<
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We can thus bound Ja(y) by the situation where Ej; is a 3-dimensional disc
centred at £ orthogonal to y, in which case we obtain

Jo(y) < C|Ear| + C|Ep|log —— < C ( tlog ) |Enl.
|Eu| |En|
Combining these estimates, we get
M <o(1 )<1+Iog ! )
| Enm]
where o(1) — 0 as 7 — 0. This implies

|Ey| < Ce—M/O(l)’

and thus

(3.12)

][ (e"s@) _ 1)do ()
0B, (o)

\8B1 |/ D|Ewm|dM = o(1),

as  — 0. Combining the estimates (3.11)) and (3.12)), we have

w(r) = w(z)do(z) = lo F @) g (2 o
k() ’“JéBT@) (2)do () 1g<]£3r(0) d<>>+<l>,

which is equivalent to (3.7]), thus finishing the proof of Lemma O

We continue with a second technical lemma.

Lemma 3.5. Suppose that e**|dx|? is a generalised normal metric on R* \
{0}. Then, we have that

(3.13) ][ <8w)kd() 0(1) fork=1,2,3
. g\xr) = — y (] =1,4,9,
oB,(0) \ Or rk

and

(3.14) ]és,,.(m <21:>2 do(z) = (%Z))Q(r) to (:2) |

forr — 0 as well as for r — oco.
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Proof. The case r — oo was essentially covered by Chang-Qing-Yang [0,
Lemma 3.4], where the result is proved for normal metrics whose conformal
factor w(x) differs from ours — as above — by our additional term «log|z| in
(3.1). However, it is easy to extend their result to our situation, noting that
alog|z| is rotationally symmetric with derivative 0, (alog|z|) = %. We thus
have to prove the lemma only for r — 0.

First, observe that we have

ow ][ ow
—(r) = —do(x).
(97'( ) 83,«(0) 87‘ ( )

Using our definition of generalised normal metrics, we see that

ow o
5(55) =/, —K(z,y)F(y)dy + -

where K (z,y) = 8%& log|z — y| and F(y) = 2Q,(y)e*™®) as before. Recall
that F(y) is integrable over R* by our assumption on finite total Q curvature.
Computing K (z,y), we get that

- togly —y| = — (Velz =9l =
"8n2 OB Y82 |z —y| |z

_ 1 /ey oz 1Py
8w \fw—y? |/ 872 fallr —yl?

Then, we have that

w k
fo () o
< c( [.(f BT(O)|K<m,y>|’fdo<w>) |F<y>\dy) < / 4|F<y>|dy> bl

Hence, it suffices to prove that for £ = 1,2, 3,

1
][ K (2, y)|Fdo(z) = O <k> ,  VyeR.
9B,.(0) r

In order to verify this estimate, we use the following

(3.15) 2(|2* — - y) = o —yl” + [2]* — [yI*.
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Then we need only verify that for all y € R*

2 0213
(3.16) ][ Mda(x) <C
oB.(0) |7 — Yl

for some constant independent of y. Using the homogeneity of the integrand,
we only need to consider this integral for » = 1. Hence, assuming |z| = 1, if
we suppose for 6 > 0 that |[y| <1—4d or|y| > 1 — 4 then ||z| — |y|| < |z — y]
implies

1 1
<
lz —y| — |1 -yl

so that ) ) )
2> = JyP> _ =1yl _ 1+l
R S 3
|z —y| 1=1yll® = 1=yl
This yields (3.16]) for these y. Moreover, for |y| € (1 —4,1)U (1,1+9), we
have the calculus inequality

/ do(z) C
5 S 3
2B, (0) [T — Yl 11— lyl|

which yields (3.16]) also for the remaining cases and hence establishes (3.13)).

< C(5).

To prove (3.14)), we note that —— is the Green’s function of the Lapla-

4 lz—yl
cian on R*, so

1

If |y| < r, this implies

1 1
/ Or—do(z) = / A——mdr = / Céy(x)dx = C.
oB,(0) | —l B.(0) lr—yl B.(0)

Thus, we see that

1 1 C C
ar][ 1 @ :][ O do(z) = __c
2B,(0) |7 — y[? (=) oB.(0) | —y[? (@) 0B,(0)] 2723

Therefore, we must have

1 C
" do(g)=—-——— 4D,
]éBT(O) |z —y|? (=) Am2r?
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for some constants C' and D. As we have |y| < r, we may let y = 0, which
implies that

1 C
~-__%Y 4D
r2 4A2p2 +

hence D = 0 and —% = 1. Similarly, if |y| > r we have that

1

9B,.(0) |z —y|?

O do(z) =0

and hence

2B, (0) [T — Yl

We may then let |z| — 0 to conclude C' = ‘y% Altogether, we have proved

1 L, iyl <,
(3.17) ][ —~ _do(2) :{ :
0B,

) |z — yl? if |y| > r.

It follows that we can write

ow

IOy = | —R(z,y)F(y)d

ar(r) /R (z,y)F(y)dy
where ([3.15)) yields

. |22 -z -y 1 ][ r? — Jy[?
K(z,y —][ — " do(x) = ——— 1+ —Zdo(x).
@0 =7 0 8l —yE W = 62 Jop o)t T ey

For |y| <r, we then obtain from (3.17))

> 1 r? — |y|? 1 ly|?
Kzy) = —— (1 - o WY
(@) 16727 ( + r2 16727 r2

Moreover, for |y| > r, (3.17) yields

_ 1 r? —|y|? 1 2
Ky = — (1 - T
(,y) 1672y ( + |ly|? 16727 \ |y|2

Together, we have

) 1 2—@), iyl <
(3.18) K(z,y) = 16”< " vl <
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We can then estimate

Fuol) - (52)
dB,.(0) or or
|
R4

< [irwlar- [ ({1560 - K Paoe) ) ol

do(z)

using

|K(z,y) — K(z,y)| =9 ‘W—@ y\x‘yylz WE it Jy| > |

1| (yP=l=) (z—yP=|=]*) :
{16r2|m|‘ oyl [ if fyl <z,

Note first that
% 2 1 1/2
|K(z,y) — K(x,y)|"do(r) =0 ( =5 |, as|z]— 0and |y| < |z|/=.
9B,.(0) 2]

Moreover, if [y| > |z|'/2, which implies that |y| > || if || — 0, we get that

_ 1 1 1
K(z,y) — K(z,9)| < Cla| | ——— — — —
| (CB y) (aj y)|— |$| |x—y|2 |.Z‘|2 _167T2|33| | _y‘Q
< L 1-— !
~ 1672|x] y

2
51—l

()

The last step follows from the fact that |y| > |z|'/? implies |z|'/? > E—; — 0
as |z| — 0. Finally, combining the various estimates, we have that

Foo () - (G2
- /y|<W 0 (1) 1Py + /|y|>x|~2 o) IFwlan=o (15 ).

O

do(x)

Using the two technical lemmas, we can now prove Theorem

Proof of Theorem [3.3. The formulas (3.3) and (3.4]) follow immediately from
Lemma It thus remains to prove (3.5) and (3.6)). From (2.9)), we know
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that

hence

Applying the previous Lemmas [3.4] and [3.5] we see that

N2 1/2
Valr) = Va(r) = Va(r)o(1) + ( | ) (5-9) d(f(x))

1/2
2V 20N2 05
x (/8&(0; Yo >>

= TVa(r)o(1) + |0B,(0)] - = - e*¥0(1),

S| =

which implies (3.6) under the assumption that lim,_o(1+ T%) >0 or
lim, 00 (1 + 7’%—1:) > 0, respectively. Similarly, using again (2.9)), we have that

1 1 ow)?
== S+ 20 vy
ACEE /aBT(0)<r+ar> & do (),
and thus

Vilr) ~ Valr) = § (1 + 86“’) /8 IRGEE

1 ow 0w\, o
ETANCE JCEREE

1 ow\” ow\*\ .
- gwy (e do ().
* 4/6&(0) (<3T> (87”) ) ¢"do(x)
Applying the Holder inequality and the Lemmas [3.4] and we get that

Vilr) ~ Va(r) = i(r)o(1) + [0B,(0)] e o(1),

which implies (3.5) under the assumption that limr_m(l—i—r%) >0 or
lim, o (1 + r%—f) > 0, respectively. Hence the Theorem is proved. O
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Another direct consequence of Lemma (with k& = 4) is the following.

Corollary 3.6. Suppose that e**|dz|? is a complete generalised normal
metric on R*\ {0} with finite area over the origin. Then its averaged metric
T)|d$\2 s also a complete metric with finite area over the origin.

Before proving our main theorems for generalised normal metrics, we
need one more estimate. We note that in Lemma the condition of non-
negative scalar curvature could be replaced with v”(t) = O(1) as t — £oo.
We prove the corresponding estimate for a generalised normal metric and
its symmetrisation.

Lemma 3.7. Let e2¥|dx|? be a generalised normal metric on R*\ {0}.
Then we have

_ C
Aw(r) < 2
for some constant C € R.
Proof. We note that
Ao =t w@)do(z) = ][ Aw(z)do ().
8B, (0) 8B,.(0)

Thus as g is a generalised normal metric, we obtain

by~ L ! %
Aw(r)_4ﬂ2/n§4<2]£3 o ())Qg() Dy +

By equation (3.17)), we see that

_ 1 dw 200 _ C
800) < 5z [ e+ 3 <

using the assumption of finite total () curvature in the last step. This estab-
lishes the lemma. U
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Now, we write w(r) = w(e!) and v(t) = w(e) + ¢ as in the previous sec-
tion. Remember that we verified there that

v"”(t) o 41)”(15) _ 2][ Qge‘h’do- =F(t), —oo<t< oo,
9B,.(0)

/ F(t)dt = |S3\/ Qe dr = 7T2/ Qe dr < oo
—00 R4 R4

& 1
/ |F'(t)|dt < 2/ 1Qgle*"dx < cc.
™ R4

—00

with

and

We then get a proof of our main theorems for generalised normal metrics.

Proof of Theorem and [ for generalised normal metrics. Let g be a
generalised normal metric and write its averaged metric g = €2®(")|dz|? in
spherical co-ordinates. Then, as we have seen in the previous section,

1 _
. ’ T / _ 4w
(3.19) th_glov (t) t_lir_rtov (t) ypo) /R4 Qge™dx.
Note that g = €??|dz|? is conformally flat and w(r faB )W (x)do(x), so

that
2Q4e*" (r) = A?w(r) = ]{)B ( )AQw(x)da(x) = ]éB o 2Q e do ().

This then implies

(3.20) QgeA‘wdx :/ Qge4wdaz.
R4 Ré
Applying the asymptotic estimates of V3 and Vj, we get that
( [ B e )>4/3

o( 314/3 w4

(3.21) lim ~22 S i il
=0 fB e*dx r—=0  Vi(r)
as well as
3w g 4/3 )

(3.22) lim <faB’”(”) ‘ U(x)> _ i St

r—00 fBT(O) etwdy r—00 V4('r)
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Plugging (3.20)—(3.22)) into (3.19), using also Lemma[2.4] we obtain a proof

of Theorem in the special case of generalised normal metrics. The same
reasoning proves Theorem for this type of metrics, using Theorem

with equations (3.5)), (3.6]). O

4. Singularity removal theorem

We show that every metric g = e2*|dz|?> on R*\ {0} which is complete at
infinity and has finite area over the origin and satisfies and is a
generalised normal metric as in Definition [3.1} Therefore, by the previous
section, the generalised Chern-Gauss-Bonnet formula (Theorem as well
as Theorem holds for any such metric.

Theorem 4.1. Suppose that the metric (R*\ {0}, e**|dx|?) is a complete fi-
nite area metric with finite total Q@ curvature, fR4|Qg|e4wdaj < 00, and scalar
curvature non-negative at infinity and at the origin. Then it is a generalised
normal metric.

Proof. First, let us denote

1
v(x) = 2 /R4 log |yy Qg(y)e4w(y)dy,

and define ¢(z) = w(x) — v(x). We then note that A% =0 on R*\ {0}.
In particular, we see that At is harmonic on R*\ {0}. The transformation
formula for the scalar curvature gives

R
Aw + |Vw|* = —?9621“,

where R, is the scalar curvature for the metric g = e**|dz|®. As Ay is
harmonic on R*\ {0}, by the mean value equality

Aep(g) = ][ Ap()do(z)

8Br,-($0)

= —][ (]Vw|2 + Rg) do(x) —][ Av(z)do(x),
OB, (wo) 6 OB, (o)

if 9B, (z¢) C R*\ {0}. Hence, for sufficiently large and sufficiently small |z,
we see that R, > 0 and therefore the first term is non-positive. For the second
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term, by an argument similar to the one from Lemma [3.7] we have that

1 1
Av(z)do(x)| = / ][ B — e A g
[, arteinte) QﬂRigmmm+m_W )g@ y

< - W(Y) Jq.
— 27T2T2 /]R‘*|Qg(y)|e dy

Hence taking r = @, we see that

C
Ap(xp) < ENd

for all zo € R*\ {0} and hence
C
A P(zo) + §log|1:0| <0.
This means that (¢/(z) + § log|z|) is a sub-harmonic and biharmonic func-

tion on R*\ {0}, i.e. A (¢ () + ¢ log|z|) is harmonic and non-positive. Then
by Bocher’s Theorem, see [2, Thm 3.9], it follows that

A <w(x) + C;log]ac]) = ﬂ;|2 + b(x)

where 3 < 0 and b(x) is a harmonic function on R*. Hence, we find that

hz) = d(z) + S0

loglz| = w — v — alog|z|

is a biharmonic function on R* and hence smooth. We now show that h is
in fact constant. As Ah is harmonic, we get by the mean value theorem

(4.1)  Ah(xz) = ]{3 o Ah(z)do(z) = — ]é . <|Vw|2 + R69> do

- Av(z)do(z) — —.
]{)Br(zg) ) ( r?

By an argument as above, we obtain
Ah(l‘o) < 0,

which shows that Ah = Cjy for some non-positive constant by Liouville’s
theorem for harmonic functions. Therefore any partial derivative of h is
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harmonic, Ah,, = 0. Using once more the mean value equality, we get

][ he. do
8B7v (Io)

We also have the estimate

2

< V| 2do.
0B, (70)? JaB, ()

|, (20)[* =

402 2R
= 4G — L 4 AV +

|Vh|? < 4|Vw|* + 4|Vo|* +
|z| 3

R

and

vt <o ([ - 1,2|@ge4wy) ([ @sletay)

<[ i@ty

Hence, we can conclude that for each zo € R*
‘hxi‘Q < —4Cy

and, again by Liouville’s theorem, the derivatives of h are constant which
implies that Ah = Cy = 0. Finally, this implies that the partial derivatives
of h vanish and h is a constant. U

5. Localised versions and the manifold case

The goal of this section is to prove our main result, Theorem This is
achieved by localising the result from Theorem see Theorem and
Theorem [5.2] below.

Recall from Chang-Qing [5] that on a smooth and compact manifold
with boundary, the 4-dimensional Chern-Gauss-Bonnet formula ([1.1)) has to
be corrected with an additional boundary term. It reads

1 L 1o 1
60 xO0) =5 [ G+ QY+ g5 [ (L4 Ty,

where analogous to the Weyl term, L, do is a point-wise conformal invariant
vanishing on Euclidean space and T} is the boundary curvature invariant
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given by

1 1 1 5 1 5 1%

Tg = —EaNRg + éRgH — RoppkAap + §H — gtI‘A + gAH,
where A and H denote the second fundamental form and the mean cur-
vature of the boundary, respectively, dy denotes the unit inward normal
derivative and A the boundary Laplacian. In [7], Chang-Qing-Yang proved
the following Theorem.

Theorem 5.1 (Local Chern-Gauss-Bonnet formula for an end, The-
orem 1 in [7]). Suppose (E,g) = (R*\ B, e?¥|dz|?) is a complete confor-
mal metric with non-negative scalar curvature at infinity and finite total Q)
curvature. Then

1 3w 1 4w
(5.2) ) /8B Tye?do(x) — o s Qqe™"dx
. voly(8B,(0))%/3

1= 4(212)1/3v0ly (B, (0) \ B)’

Localising our Theorem we prove the following dual result for finite
area singular points.

Theorem 5.2 (Local Chern-Gauss-Bonnet formula for a singular re-
gion). Suppose that (S \ {p},g) = (B\ {0}, e**|dz|?) has finite area, non-
negative scalar curvature near the origin, and finite total @ curvature. Then

1 1 ) voly (0B, (0))*/3
) - T 3w - 4w -1 g .
(5:3) 472 /8B ge " do(w) + 472 /BQge de 50 4(2m2)1/3voly(B,(0))

Remark. Note that in the above two theorems we work with the identical
expression for Ty, i.e. not reversing the orientation of the boundary and the
normal N. For a conformal metric g = ¢*|dz|? on R*\ {0}, we obtain (T.8))

by subtracting (5.3) from ([5.2)).

To prove Theorem we slightly modify the three steps of the proof
of Theorem . First, assume that w is a radial function on R*\ B, and
denote, as in Section [2| |x| = r = e! and v = w + t. Then we have

(5.4) " — 4" = 2Qge4” = F, —o00 <t <0.



Chern-Gauss-Bonnet for singular 4-manifolds 1729

Following Section [2| almost verbatim (but changing integration boundaries
from +o0o to 0), we obtain an explicit solution f(¢) of this ODE, satisfying

0
lim f'(t) = 1/ F(z)dx

t——o0 8 o
and
1 _ n .
As in (2.7)), v(t) is of the form
v(t) = co + c1t + coe” 2 4 c3e® + £(2)

and (as in Lemma, under the condition of non-negative scalar curvature
near the origin, we obtain cg = 0 and thus in particular

(5.5) lim "(t) = 0.

t——o0

n [5, Remark 3.1], Chang-Qing proved that in this special rotationally sym-
metric situation the boundary curvature 7}, satisfies

1
Tge?’” = —Ev/" + 2.

Plugging this into the Chern-Gauss-Bonnet formula with boundary, we have

1 4v 1 3 1 3
= — d T Ydo — —= T,e’d
12 /§t<oQg J;+4 3 etdo — 3 ye ldo
1 4v 3 3 < 1 /// >
= — edr + — Te”da——S + 20 .
72 ), i 87 (50" (s) +2/(5)

Taking the limit as s — —oo and using (5.5]), we obtain

1
(5.6) 47T2/63T 3o (x 4 2/Qge4wd:n: lim o'(¢).

t——o0

The fact that

VO 4/3
(57 Jim () = lim Csy(e’) = lim 4(27721)52505 () ) B,(0))

then follows again exactly as in Lemma which plugged into ([5.6)) proves
Theorem for the case of rotationally symmetric metrics g.
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Next, we localise Definition [3.1] and introduce a notion of generalised
normal metrics on the punctured ball.

Definition 5.3 (Generalised normal metrics on the punctured ball).

Let g = ¢**|dz|?> be a metric on B\ {0}, where B is the unit ball in R*.
Assume that g has finite total @) curvature,

/ 1Qgle*dzx < oo.
B

We say that g is a generalised normal metric, if w has the expansion

(5.8) w(z) 1 /Blog < 9] ) Qq(y) e*W) gy + alog|x| + h(x)

an? ERE

for some constants a € R and a biharmonic function h on B. (We would like
to emphasise here that A is defined and biharmonic on all of B, in particular
also over the origin!) For such a generalised normal metric, we then define
the averaged metric as before by g = ¢*?|dx|?, where

w(r) = ]{93T(0) w(z)do(x).

Lemma 5.4. Suppose that the metric €**|dz|? on B\ {0} is a generalised
normal metric in the sense of Definition [5.3. Then for any number k > 0
we have that

(5.9) ][ " do(z) = o)
8B,(0)
where o(1) — 0 as 7 — 0.

Proof. This is analogous to Lemma [3.4] and the proof of Lemma [3.4] goes
through almost verbatim. We only need to modify the domains of integration
(essentially changing R* to B) and take care of the additional function h(z).
However, as h(z) is biharmonic (and thus smooth) over the origin, we have

lim @) o (z) = M0 = Jim kP,
r=0./9B,(0) r—0

We leave the remaining minor modifications to the reader. O
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As a direct consequence, analogous to the first part of Theorem we
then see that the mixed volumes taken with respect to the two metrics ¢
and g satisfy

(5.10) Va(r) = Va(r)(1+(r)),
(5.11) & Va(r) = GVa(r)(1 +e(r),

where €(r) — 0 as r — 0. Moreover, as in Corollary if g is a finite area
metric on B\ {0}, then so is the averaged metric g. Finally, g is clearly ro-
tationally symmetric by definition. Thus, v = w + ¢ satisfies (5.6|) and (5.7 .,
that is

1 3w 4w
(5.12) 47T2/8 Tge*do(x 4 2/ Qge™dx
4/3
o iy V3" (r)
= dim v(t) = lim (2/2)3 Vy(r)’
As
4w Lo
Qge™"(r) :][ —A*wdo(x)
0B,.(0) 2
:][ lA2w do(x) :][ Qe do(x)
9B,(0) 2 9B..(0)
as well as

T;e*”(r) = Pyw = Pyw :][ Tye*Vdo(z),
8B.,(0)

where P3 denotes the boundary operator associated to the Paneitz operator
(see e.g. [T]), we can drop all the bars on the left hand side of (5.12). Due to
(5.10) and (5.11]), we can also drop the bars on the right hand side of (5.12).
Hence, we have proved Theorem for the special case of generalised nor-
mal metrics on the punctured ball.

Finally, Theorem [5.2]follows from the above combined with the following
lemma.

Lemma 5.5. Suppose that (S \ {p},g) = (B \ {0}, e**|dx|?) has finite area,
non-negative scalar curvature near the origin, and finite total Q@ curvature.
Then g is a generalised normal metric as in Definition [5.3.
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Proof. The proof of this lemma is very similar to the first part of the proof
of Theorem [4.1] We first denote

_ 1 |y‘ 4w)
o) = 173 [ 1oa Qe Vi,

and define ¢(z) = w(z) — v(x). We then note that A% =0 on B\ {0}. In
particular, we see that A is harmonic on B\ {0} and thus by the mean
value equality

Aip(wo) = ]éB( QRS

= —][ <\Vw\2 + Rg) do(x) —][ Av(z)do(x),
OB, (o) 6 9B, (o)

if 0B, (o) C B\ {0}. Here we used the transformation formula for the scalar
curvature

R
Aw + |Vw|? = —?9621”.

For sufficiently small |zg|, we know that Ry, > 0 by assumption. Moreover,
by an argument similar to the one from Lemma [3.7] we have that

1 1
Av(z)do(z :/ ][ o du(y) g
/BBT(:co) (2)do(2)| = 572 B < 0B, (0) |70 + 20 — Y|? )Qg( Je Y

1 s
< w(y)
< 5z | Qe

|zo]

Hence, taking for example r = 5*, we see that

A’lp(.%‘o) <

= Jaol?

for some constant C' and all 29 € B\ {0} and hence

A <¢($0) + 210g|$0\> <0

This means that (¢(z ) + % log|z|) is a sub-harmonic and biharmonic func-
tion on B\ {0}, i.e. A (¢(z) + & 5 log|z|) is harmonic and non-positive and
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thus by Bocher’s Theorem, see [2] Thm 3.9], we conclude

C 1
& (wlo)+ § toglal) = 51 + 000
where 5 < 0 and b(z) is a harmonic function on B (including over the origin).
Hence we find that

C+B
2

h(z) =(x) + log|z| = w — v — alog|z|
is a biharmonic function on B. We have thus proved (3.1 for w, meaning
that w is a generalised normal metric in the sense of Definition [5.3 U

It is now easy to prove our main theorem.

Proof of Theorem[1.6. According to Definition a manifold as in Theo-
rem can be split up into a compact manifold N with boundary and a
finite number of ends and singular regions,

k

M=NU <UE> U JQSj

i=1

Applying the Chern-Gauss-Bonnet formula for manifolds with boundary,
given in (5.1) to N, as well as using Theorem for each of the ends
and Theorem [5.2] for each of the singular regions, we immediately obtain
the claimed Chern-Gauss-Bonnet type formula ((1.19)), noticing that all the
boundary terms cancel each other out (as they obviously all appear twice
with opposite signs). This finishes the proof of the theorem. O

Acknowledgements

Parts of this work were carried out during two visits of HN at Queen Mary
University of London. He would like to thank the university for its hospital-
ity. These visits have been financially supported by RB’s Research in Pairs
Grant from the London Mathematical Society as well as HN’s AK Head
Travelling Scholarship from the Australian Academy of Science. RB would
also like to thank the EPSRC for partially funding his research under grant
number EP/M011224/1.



1734 R. Buzano and H. T. Nguyen

1]
2]
[3]

[4]

[5]

[9]

[10]

[11]

[13]

[14]

References

M. Atiyah and C. LeBrun, Curvature, cones and characteristic numbers,
Math. Proc. Camb. Phil. Soc. 155 (2013), 13-37.

S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Grad-
uate Text in Mathematics 137, Springer-Verlag, New York, (2001).

T. P. Branson, Differential operators canonically associated to a con-
formal structure, Math. Scand. 57 (1985), 293-345.

T. Branson, S.-Y. A. Chang, and P. C. Yang, Estimates and extremals
for the zeta functional determinant on four-manifolds, Comm. Math.
Phys. 149 (1992), 241-262.

S.-Y. A. Chang and J. Qing. The zeta functional determinants on man-
ifolds with boundary I: The formula, J. Funct. Anal. 147 (1997), 327—
362.

S.-Y. A. Chang, J. Qing, and P. C. Yang, On the Chern—Gauss—Bonnet
integral for conformal metrics on R*, Duke Math. J. 103 (2000), no. 3,
523-544.

S.-Y. A. Chang, J. Qing, and P. C. Yang, Compactification of a class
of conformally flat 4-manifold, Invent. Math. 142 (2000), 65-93.

J. Cheeger and M. Gromov, On the characteristic numbers of complete
manifolds of bounded curvature and finite volume, in: Differential Ge-
ometry and Complex Analysis, Springer, Berlin (1985), 115-154.

W. Chen and C. Li, What kinds of singular surfaces can admit constant
curvature? Duke Math. J. 78 (1995), 437-451.

S.-S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for
closed Riemannian manifolds, Ann. of Math. 45 (1943), 747-752.

S. Cohn-Vossen, Kiirzeste Wege und Totalkrimmung auf Flachen, Com-
positio Math. 2 (1935), 69-133.

R. Finn, On a class of conformal metrics, with applications to differen-
tial geometry in the large, Comment. Math. Helv. 40 (1965), 1-30.

F. Fang, On a conformal Gauss-Bonnet-Chern inequality for LCF man-
ifolds and related topics, Calc. Var. 23 (2005), 469-496.

R. Greene and H. Wu, C*° convex functions and manifolds of positive
curvature, Acta Math. 137 (1976), 209-245.



Chern-Gauss-Bonnet for singular 4-manifolds 1735

[15] P. Hartmann, Geodesic parallel coordinates in the large, Amer. J. Math.
86 (1964), 705-727.

[16] A. Huber, On subharmonic functions and differential geometry in the
large, Comment. Math. Helv. 32 (1957), 13-72.

[17] L. P. Jorge and W. H. Meeks III, The topology of complete minimal
surfaces of finite total Gaussian curvature, Topology 22 (1983), 203—
221.

[18] P. Li and L.-F. Tam, Complete surfaces with finite total curvature, J.
Diff. Geom. 33 (1991), 139-168.

[19] Z.-D. Liu and Z. Shen, Riemannian geometry of conical singular sets,
Ann. Global Anal. Geom. 16 (1998), no. 1, 29-62.

[20] C. B. Ndiaye and J. Xiao, An upper bound of the total Q-curvature
and its isoperimetric deficit for higher-dimensional conformal Euclidean
metrics, Calc. Var. 38 (2010), no. 3, 1-27.

[21] H. T. Nguyen, Geometric rigidity for analytic estimates of Miiller-
Sverdk, Math. Z. 272 (2012), no. 3, 1059-1074.

[22] S. Paneitz, A quartic conformally covariant differential operator for ar-
bitrary pseudo-Riemannian manifolds, preprint, (1983).

[23] 1. Satake, The Gauss-Bonnet theorem for V-manifolds J. Math. Soc.
Japan 9 (1957), 464-492.

[24] K. Shiohama, Total curvatures and minimal area of complete open sur-
faces, Proc. Amer. Math. Soc. 94 (1985), 310-316.

[25] M. Troyanov, Prescribing curvature on compact surfaces with conical
singularities, Trans. Amer. Math. Soc. 324 (1991), 793-821.

[26] N. S. Trudinger, On new isoperimetric inequalities and symmetrization,
J. Reine Angew. Math. 488 (1997), 203-220.

[27] Y. Wang, The isoperimetric inequality and quasiconformal maps on
manifolds with finite total Q-curvature, Int. Math. Res. Not. IMRN
2012, no. 2, 394-422.

(28] Y. Wang, Isoperimetric inequality, Q-curvature and A, weights, Adv.
Math. 281 (2015), 823-844.



1736 R. Buzano and H. T. Nguyen

SCHOOL OF MATHEMATICAL SCIENCES
QUEEN MARY UNIVERSITY OF LONDON
LonpoN E1 4NS, UK

E-mail address: r.buzano@qmul .ac.uk
E-mail address: h.nguyen@qmul . ac.uk

RECEIVED FEBRUARY 22, 2017
AcceEpPTED AugustT 31, 2017



	Introduction
	Rotationally symmetric metrics
	Generalised normal metrics
	Singularity removal theorem
	Localised versions and the manifold case
	References

