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1666 Mark Allen

1. Introduction

In this paper we study an equation that arises as a limit of solutions to
the fractional obstacle problem. The obstacle problem consists roughly of
finding the least superharmonic solution u in a domain Ω subject to the
constraint u lying above some obstacle ψ. Similarly, the fractional obsta-
cle problem also consists of finding the least superharmonic solution u with
u ≥ ψ, but the operator is the fractional Laplacian (−∆)s. An initial study
of the fractional obstacle problem began in [19]. Optimal regularity of so-
lutions to the fractional obstacle problem as well as regularity results of
the free boundary were given in [9]. The two-phase fractional obstacle prob-
lem was studied in [3] where results were proven regarding when the posi-
tive and negative phases could touch. The fractional obstacle problem has
various applications including in mathematical finance. When s = 1/2 the
fractional obstacle problem corresponds to the scalar time-independent Sig-
norini problem which has applications in physics and biology [18]. The work
in [5] considered the fractional obstacle problem over a random collection of
small balls. The authors in [5] showed that under appropriate assumptions
a limiting function satisfies

(1.1) (−∆)su = λ(u− φ)−.

In this paper we study (1.1) when φ ≡ γ a constant.
The existence of the limiting function satisfying (1.1) shown in [5] is

actually an extension to the fractional values s ∈ (0, 1) of a result in [7]. The
authors in [7] showed the limit of a random homogenization of the obstacle
problem converges to

−∆u = λu− + f

in Ω with u = 0 on ∂Ω. The above equation bears resemblance to a problem
arising from plasma physics. A mathematical model for the region inhabited
by plasma in a Tokamak machine is given by the two dimensional equation

2∑
i=1

∂

∂xi

(
1

x1

∂u

∂xi

)
= −u+

in a bounded domain Ω where u+ is the positive part of the function u. The
region inhabited by the plasma is given by {u > 0}. Properties of solutions
to this and similar problems was studied in [21] and [4]. The simplified model
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A fractional free boundary problem 1667

with solutions to

(1.2) −∆u = λu+

was studied in [22]. The physical applications of the simplified model (1.2)
are for two dimensions; however, one may study (1.2) in higher dimensions.
Of particular interest is the free boundary ∂{u > 0}, and regularity of the
free boundary ∂{u > 0} for all dimensions was studied in [17].

It is clear that the study of (1.2) is the same as the study of ∆u =
λu− simply by negating the solution. It is not immediately clear, however,
that for constants γ1, γ2 the study of the problem (−∆)su = λ(u− γ1)−
should be the same as the study of (−∆)su = λ(u− γ2)+. By means of
the extension operator, see section 2, the nonlocal equation (−∆)s can be
localized and by subtracting a constant the study of the two equations will be
equivalent (under negation of both the solution and λ) to studying the local
equation (2.5). In fact, the localization technique via the extension operator
was utilized to locally prove the main result in [5]. The equation we study
is the following: for a bounded domain Ω in Rn we consider solutions to the
equation

(1.3)
(−∆)su = λ(u− γ)+ in Ω

u = 0 on ∂Ω

for 0 < s < 1 with u ≡ 0 on ∂Ω and γ a constant. One may consider (1.3) as
the fractional analogue of the simplified plasma model given by (1.2). In this
paper we are primarily interested with the local properties of solutions to
(1.3). The main aim of this paper is to study properties of the free boundary
∂{u > γ}. Our main result is Theorem 7.1 which gives a Hausdorff dimen-
sional bound on the set of singular points of the subset ∂{u < γ} of the free
boundary. In order to prove the main result, the set of points in ∂{u < γ}
where the gradient vanishes is classified. A modified Almgren-type frequency
function aids in this classification.

1.1. Outline

The outline of the paper is as follows: In Section 2 we establish certain
properties of the fractional Laplacian that will be needed in our paper. We
also discuss the notion of the extension operator that allows one to “localize”
the fractional Laplacian. In Section 3 we prove existence of solutions to
(1.3). In Section 4 we prove interior regularity for solutions. In Section 5
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we begin the study of the free boundary. We prove topological properties of
the free boundary and show how they may differ from the free boundary of
solutions to the original local plasma problem (1.2). In Section 6 we use an
Almgren’s type frequency function to classify so-called blowup solutions. The
classification of blowups allows us a classification of the free boundary points.
We then give a regularity result for the regular set of the free boundary. In
Section 7 we define the singular set and prove a Hausdorff dimensional bound
for the singular set which shows that the singular set is “small”.

1.2. Notation

The notation for this paper will be as follows. Throughout the paper 2s =
1− a and −1 < a < 1 and s will always refer to the order of the fractional
Laplacian (−∆)s. The set Ω will always be a smooth bounded domain in
Rn, and V will always be an open subset of Ω. Throughout the paper we will
make use of an extension operator and will therefore often consider functions
in Rn+1. The variables x and y will be used to denote (x, y) ∈ Rn+1 with
x ∈ Rn and y ∈ R. For a set U ∈ Rn+1,

• L2(a, U) := {f : f |y|a/2 ∈ L2(U)}.

• L2(a, ∂U) := {f :f |y|a/2∈L2(∂U)} with respect to Hn Hausdorff mea-
sure.

• H1(a, U) := {f : f,∇f ∈ L2(a, U)}.

• U ′ := {x ∈ Rn : (x, 0) ∈ U}.

• U+ := {(x, y) ∈ U : y > 0}.

We refer to Rn × {0} as the thin space, and use the following notations for
balls in Rn+1

• Br := {(x, y) ∈ Rn+1 : |(x, y)| < 1}.

Finally, f± denote the positive and negative parts of f respectively so that
f = f+ − f−.

2. Fractional Laplacian

We define the fractional Laplacian through the spectral decomposition. For
a bounded domain Ω ⊆ Rn let 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · and {φk} be
the eigenvalues and corresponding orthonormalized eigenfunctions for the
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A fractional free boundary problem 1669

Laplacian with dirichlet zero boundary data. For f ∈ L2(Ω) we write

(2.1) f =
∑
k=1

akφk.

Then the fractional Laplacian is given by

(2.2) (−∆)sf(x) =
∑
k=1

λskakφk(x).

We note that∫
Ω
f(x)(−∆)sf(x) =

∫
Ω

∑
k=1

λska
2
kφ

2
k(x) =

∑
k=1

λska
2
k,

and define the space

Hs
0(Ω) :=

{
f =

∑
akφk :

∑
λska

2
k <∞

}
.

The fractional Laplacian can also be given as a Dirichlet to Neumann
boundary data map by the use of an extension operator. In the case when
(−∆)s is defined on all of Rn instead of on a bounded domain this equiva-
lency was given in the paper [6]. For a bounded domain there is an analogu-
ous extension operator [20] which we now explain. We look at the solution
to the following weighted elliptic problem in an extra dimension

div(ya∇u) = 0 in Ω× R+

u(x, 0) = f(x)

u(x, y) = 0 for (x, y) ∈ ∂Ω× R+

u(x, y)→ 0 as y →∞

where a = 1− 2s. The fractional Laplacian is a Dirichlet to Neumann bound-
ary data map:

(2.3) ca lim
y→0

yauy(x, y) = (−∆)sf(x).

where ca is a negative constant depending on a and dimension n. For the
remainder of the paper we will work with the unique extension, so that
if u ∈ L2(Ω), the function u(x, y) is the unique a-harmonic extension of
u to Ω× (0,∞). When referring to u as a function on Ω, we will write
either u(x, 0) or u( · , 0). If there is no need to reference the extension (for
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example in both the statement and proof of Proposition 5.2), then we simply
write u(x). The other exception is when integrating u(x, 0) on B′r such as in
Section 6.

If w is a solution to (1.3), and we subtract the constant γ from the
extension to obtain u(x, y) = w(x, y)− γ, then u(x, y) will satisfy

ca lim
y→0

yauy(x, y) = λu+(x, 0) for every x ∈ Ω.

Absorbing the negative constant ca into the right hand side, we have

(2.4)

div(ya∇u(x, y)) = 0 in Ω× (0,∞)

lim
y→0

yauy(x, y) = −λu+(x, 0) for every x ∈ Ω

u(x, y) = −γ on ∂Ω× (0,∞)

uy(x, y) ≤ 0 in Ω× (0,∞).

where λ > 0 is a new constant, and the last condition is proven below in
Proposition 2.1. In this paper we will consider solutions to a more general
equation. If U ⊆ Rn+1, one may consider solutions to

(2.5)
div(ya∇u(x, y)) = 0 in U+

lim
y→0

yauy(x, y) = −λu+(x, 0) for x ∈ U ′.

Any solution to (2.4) is a solution to (2.5) if U ⊆ Ω× (0,∞) and U ′ 6= ∅.
Many of the results in this paper will apply to the more general class of
solutions to (2.5). For instance, using the extension operator, many of the
results apply to solutions of

(−∆)sRnu = λ(u− c)+,

where (−∆)sRn is the fractional Laplacian defined on all of Rn. Often it will
be necessary to assume in addition to (2.5) the last condition in (2.4) that

(2.6) uy(x, y) ≤ 0 in U+.

We now show that (2.6) is true for the extension of a solution w to (1.3) and
therefore also for the solution u = w − γ to (2.4).

Proposition 2.1. Let w be a solution to (1.3). Let w(x, y) be the a-harmonic
extension of w to Ω× (0,∞), then

wy ≤ 0 in Ω× (0,∞).
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A fractional free boundary problem 1671

Proof. Let wM solve
div(ya∇wM ) = 0 in Ω× (0,M)

wM (x, y) = 0 if x ∈ ∂Ω

wM (x,M) = 0 if x ∈ Ω

wM (x, 0) = w(x, 0) if x ∈ Ω.

We point out that 0 ≤ wM (x, y) ≤ w(x, y) and wM ↗ w uniformly on com-
pact sets as M →∞. If v = w − wM , then v is a-harmonic in Ω× (0,M)
and v(x, 0) = 0. If v is reflected across the thin space by odd reflection, then
v is a-harmonic in Ω× (−M,M). From the power series representation of v
(see [2]) and since v(x, y) ≥ 0 for y > 0 it follows that

lim
y→0

ya∂yv(x, y) ≥ 0 for x ∈ Ω.

Then

0 ≥ lim
y→0

ya∂yw(x, y) ≥ lim
y→0

ya∂ywM (x, y).

Since ya∂ywM (x, y) ≤ 0 on ∂Ω× [0,M ] and Ω× {M}, then ya∂ywM (x, y) ≤
0 on ∂(Ω× (0,M)). Since ya∂ywM is −a-harmonic on Ω× (0,M), it follows
from the maximum principle that ya∂ywM < 0 in Ω× (0,M). Since wM →
w as M →∞ on compact subsets of Ω× (0,∞), it follows from uniform
convergence of −a-harmonic functions that ya∂ywM → ya∂yw uniformly on
sets compactly contained in Ω× (0,∞), so that yawy ≤ 0 and in particular
wy ≤ 0 in Ω× (0,∞). �

We will utilize the following notion of trace for the weight ya (see [3]).

Proposition 2.2. Let U ⊆ Rn+1 an open Lipschitz domain. Then there
exists two compact operators

T1 : H1(a, U) ↪→ L2(a, ∂U)

T2 : H1(a, U) ↪→ L2(U ′),

Such that
T1(ψ) = ψ |∂U
T2(ψ) = ψ |U ′ ,

for ψ smooth on U .

By utilizing rescaling and Proposition 2.2 on B1 we obtain the following
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Corollary 2.3. Let v ∈ H1(a,B+
r ). Then there exists a constant C =

C(n, a) such that∫
B′
r

u2dHn ≤ C

(
r1−a

∫
B+
r

ya|∇u|2 + r−a
∫

(∂Br)+
yau2dHn

)
(2.7) ∫

(∂Br)+
yau2dHn ≤ C

(
r

∫
B+
r

ya|∇u|2 + ra
∫
B′

1

u2dHn
)

(2.8)

Proof. We note that since L2(a,B+
1 ), L2(B′1), L2(a, (∂B1)+) are all com-

pactly contained in H1(a,B+
1 ) (the first from the work in [16], see for in-

stance Proposition 2.1 in [1], and the latter two from Proposition 2.2), then
one may use a compactness argument as in the proof of Poincare’s inequality
in [11] to show there exists a constant C depending on n and s such that
for any v ∈ H1(a,B+

1 ), we have

‖v‖L2(B′
1) + ‖v‖L2(a,B+

1 ) ≤ C
(
‖∇v‖L2(a,B+

1 ) + ‖v‖L2(a,(∂B1)+)

)
(2.9)

‖v‖L2(a,(∂B1)+) + ‖v‖L2(a,B+
1 ) ≤ C

(
‖∇v‖L2(a,B+

1 ) + ‖v‖L2(B′
1)

)
.(2.10)

Then (2.7, 2.8) follow from (2.9, 2.10) and scaling. �

We will also need the following Hopf type Lemma

Lemma 2.4. Let v be non-constant and a-harmonic in B+
r for some r > 0.

Assume v achieves its minimum at (x0, 0) ∈ B′r. Then

lim
y→0

v(x0, y)

y1−a > 0.

Proof. By subtracting a constant we may assume v(x0, 0) = 0 and there-
fore v ≥ 0. Let w (not identically zero) be an a-harmonic function satisfy-
ing w(x, 0) = 0 and 0 ≤ w ≤ v on (∂Br)

+ (and hence also on B+
r ). By the

Boundary Harnack Principle for a-harmonic functions stated in [8] we have
for ρ <dist(x0, ∂Br)/2 that

sup
Bρ(x0,0)

w

y1−a ≤ C(r) inf
Bρ(x0,0)

w

y1−a .

Then

inf
Bρ(x0,0)

w(x, y)

y1−a > 0,
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and so

lim
y→0

v(x0, y)

y1−a ≥ lim
y→0

w(x0, y)

y1−a > 0.
�

Theorem 2.5. Assume u is not identically zero and obtains a minimum
(maximum) at x0 ∈ Ω. If 0 < s < 1 and (−∆)su is continuous in a neigh-
borhood of x0, then (−∆)su < 0 in a sufficiently small neighborhood of x0.

Proof. We utilize the a-harmonic extension u(x, y). Now yau(x, y) is −a-
harmonic and satisfies

lim
y→0

yau(x, y) = c−1
a (−∆)su(x, 0).

By assumption there exists a neighborhood V1 ⊆ Ω of x0 in which
c−1
a (−∆)su(x, 0) is continuous. We take a smooth cut-off function ψ with

values 1 in a neighborhood of x0 and which vanishes before reaching the
boundary of V1. Then c−1

a ψ(x)(−∆)s u(x, 0) is a bounded continuous func-
tion on Rn. We take v(x, y) to be the −a-harmonic extension in Rn × R+

with boundary data v(x, 0) = c−1
a ψ(x)(−∆)su(x, 0). By using the Poisson

kernel for a-harmonic functions [6], one may use the same basic proof as for
harmonic functions (see for instance Theorem 14 in [11]) to show that v(x, y)
is continuous up to the boundary Rn × {0}. Then v(x, y)− yau(x, y) is −a-
harmonic and has zero boundary data in a neighborhood V2 ⊆ V1 containing
x0. By using odd reflection v(x, y)− yau(x, y) is −a-harmonic in V2 × R and
therefore continuous. Since both v(x, y) and v(x, y)− yau(x, y) are continu-
ous up to the boundary V2 × {0}, it follows that yau(x, y) is continuous up
to the boundary V2 × {0}. From Lemma 2.4

0 < lim
y→0

u(x0, y)− u(x0, 0)

y1−a = lim
y→0

yau(x0, y) = c−1
a (−∆)su(x0, 0).

Recalling that ca < 0, we have that (−∆)su(x0) < 0. Since (−∆)su(x) is
continuous, we conclude that there exists a neighborhood V3 of x0 such that
(−∆)su(x) < 0 for x ∈ V3.

If x0 is a maximum for u we simply apply the result to −u. �

We obtain as an immediate consequence a maximum principle for the
fractional Laplacian.

Corollary 2.6. Assume u(x0) is a minimum (maximum) for u in Ω. If
(−∆)su is continuous in a neighborhood of x0 and (−∆)su ≥ 0 (≤ 0), then
u ≡ 0 in Ω.
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This last result will also be useful.

Lemma 2.7. Let u be a solution to div(ya∇u) = 0 in U+ with{
u(x, 0) = c on B′r
limy→0 y

auy(x, y) = 0 for x ∈ B′r

where c is a constant and B+
r ⊆ U+. Then u ≡ c on all of U+.

Proof. This result is well known to be true for harmonic functions when a =
0. We assume a 6= 0 and let v = u− c. We suppose by way of contradiction
that v is not identically zero. Although the exact statement of Lemma 2.7
is not contained in [2], the proof of Lemma 2.7 is a consequence of the ideas
of a blowup vr and Almgren’s frequency function N(r, v) used to prove a
power series-type representation for a-harmonic functions in [2]. The reader
is also referred to (6.1) and (6.6) in Section 6 where blowups and Almgren’s
frequency function are defined and used for solutions to (2.5). All of the
following claims are shown in [2].

If we take a blowup vr at (0, 0) to obtain v0, then v0 will be a-harmonic
and satisfy for any x ∈ Rn

v0(x, 0) = 0

lim
y→0

ya∂yv0(x, y) = 0.

Since we supposed v is not identically zero, v0 is not identically zero and
homogeneous of degree N(0, v) > 0. From the first boundary condition for
v0 above, we may use odd reflection across the thin space Rn × {0} so that
v0 is a-harmonic in all of Rn+1 and odd in the y variable. From Proposition
2.3.1 in [2], the degree of homogeneity satisfies N(0, v) = k − a for some
k ∈ N. From the second boundary condition we may reflect v0 evenly across
the thin space, so that from Proposition 2.3.1 in [2], we have N(0, v) ∈ N.
Then v0 ≡ 0. This is a contradiction, so we conclude that v ≡ 0 in B+

r . Since
v is real analytic away from the thin space Rn × {0}, we conclude by unique
continuation that v ≡ 0 in U+, so that u ≡ c in U+. �

3. Existence

In order to show that the set of solutions to (1.3) is nonempty, we give
a short proof of existence of solutions to (1.3) for certain values of λ. In
[22] existence for the local problem −∆u = λu+ is shown for any λ > λ1,
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where λ1 is the first eigenvalue of the Laplacian for the domain Ω. It would
be of interest to show existence for any λ > λs1 for this fractional problem
as well. However, since the focus of this paper is on properties of the free
boundary, we have chosen to only give a quick proof for some values λ > 0
to demonstrate that our class of solutions we study is nonempty.

To obtain an eigenfunction we consider minimizing the fractional energy

(3.1) D(v) :=

∫
Ω
v(−∆)sv

for v ∈ Hs
0(Ω) subject to the constraint

(3.2) G(v) :=

∫
Ω

(v − γ)2
+ = c

where c, γ > 0 are two fixed constants. Using the extension mentioned in
Section 2, this is equivalent to minimizing

(3.3)

∫∫
Ω×R+

ya|∇g|2 dx dy,

for g ∈ H1(a,Ω× (0,∞)) with g(x, y) = 0 on ∂Ω× (0,∞) and g(x, 0) sub-
ject to the constraint (3.2). This is because for any function φ on Ω, the
unique a-harmonic extension of φ minimizes (3.3) subject to the constraint
φ(x) = g(x, 0). Furthermore, we have the identity∫

Ω
v(x, 0)(−∆)sv(x, 0) dx = ca

∫
Ω
v(x, 0) lim

y→0
yavy(x, y) dx

= −ca
∫

Ω×(0,∞)
ya|∇v(x, y)|2 dx dy.

We now show the existence.

Lemma 3.1. There exists a minimizer of (3.1) subject to the constraint
(3.2).

Proof. Minimizing (3.1) subject to the constraint (3.2) is equivalent to min-
imizing ∫∫

Ω×R+

ya|∇v|2 dx dy
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for v ∈ H1(a,Ω× (0,∞)) with v(x, y) = 0 for x ∈ ∂Ω, and v(x, 0) satisfying
(3.2). Corollary 2.3 states that L2(Ω) is compactly contained in H1(a,Ω×
R+). The existence of a minimizer then immediately follows. �

We note that the extension is not necessary to prove a compactness
theorem. Using only the spectral decomposition there is an elementary proof
using power series that if a sequence uk, is bounded in Hs

0(Ω), then there
exists u0 and a subsequence such that uk ⇀ u0 in Hs

0(Ω) and uk → u0 in
L2(Ω).

Theorem 3.2. For a domain Ω and fixed constant γ there exists a solution
to (1.3) for some λ > 0.

Proof. Since the functionals D : Hs
0 → R and G : Hs

0 → R have the Frechet
derivatives

D′(u) = 2(−∆)su G′(u) := 2(u− γ)+

then there exists λ > 0 such that for a minimizer of D(u) subject to the
constraint G(u) = c satisfies

D′(u) = λG′(u).

See [23] for a discussion of Lagrange Multipliers with Frechet derivatives. �

4. Interior regularity of solutions

In this section we obtain the interior regularity of solutions which will enable
us to obtain regularity of the free boundary where the gradient does not van-
ish. Since we are dealing with an eigenvalue equation, we use a bootstrap
technique. Obtaining regularity for u(x, 0) passes the same regularity to
λu+(x, 0) up to Lipschitz regularity. Regularity for λu+(x, 0) = (−∆)su(x, 0)
allows us to obtain higher regularity for u(x, 0). To use the bootstrap tech-
nique we utilize the following Proposition from [19] which is proven for the
fractional Laplacian (−∆)sRn defined on all of Rn.

Proposition 4.1. Let w = (−∆)sRnu. Assume w ∈ C0,α(Rn) and u ∈ L∞
for α ∈ (0, 1) and s > 0. Then

If α+ 2s ≤ 1 then u ∈ C0,α+2s(Rn),

If α+ 2s > 1 then u ∈ C1,α+2s−1(Rn).
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We will use a smooth cut-off function ψ : B′1 7→ [0,∞) with ψ ≡ 1 on
B1/2 and ψ ≡ 0 on B3/4. We let the variable z = (z′, zn+1) ∈ Rn × [0,∞)
and define

(4.1) Φ(z) := cn,s

∫
Rn

λψ(x)u+(x, 0)

|x− z|n−2s
dx.

Proposition 4.2. For Φ as defined in (4.1) we have the following properties

(I) Φ(z) is a-harmonic in Rn × (0,∞).

(II) u(z)− Φ(z) is a-harmonic in B1/2 if reflected evenly in the y variable.

(III) 0 ≤ Φ(z) ≤ Φ((z′, 0)).

(IV) ‖Φ(z′, 0)‖Lq(Rn) ≤ C(n, s, p, q)‖λu+(x, 0)‖Lp(B′
1) if 1/p− 1/q < 2s/n.

(V) ‖Φ‖L2(a,B+
R) ≤ C(R,n, s)‖λu+(x, 0)‖L2(B′

1).

(VI) ‖u− Φ‖Ck,αx (B1/4) ≤ C(n, s, k)
(
‖u‖L2(a,B1/2) + ‖λu+(x, 0)‖L2(B′

1)

)
.

Proof. Property (I) and (II) are from the definition of Φ. Property (III) is
immediate. Property (IV ) is a consequence of the Hardy-Littlewood-Sobolev
inequality. We now show property (V ).

‖Φ‖2
L2(a,B+

R)
≤
∫ R

0

∫
B′
R

|Φ(z′, 0)|2dz′zan+1dzn+1 by property (III)

≤ C
∫ R

0

∫
B′
R

|λu+(z′, 0)|2dz′zan+1dzn+1 by property (IV )

= C(R,n, s)‖λu+(x, 0)‖L2(B′
1).

Property (V I) is a consequence of property (II), Corollary 2.5 in [9], and
property (V ). �

Using Propositions 4.1 and 4.2 we are able to obtain the following interior
regularity result.

Theorem 4.3. Let u be a solution to (2.5) in U ⊆ Rn+1. Then for any
K b U ′

If s < 1/2, then u(x, 0) ∈ C1,2s(K),

If s = 1/2, then u(x, 0) ∈ C1,α(K) for every α < 1,

If s > 1/2, then u(x, 0) ∈ C2,2s−1(K).
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Furthermore, there exists a constant C depending on n, s such that if B1 b
U , then the norms of u(x, 0) in the above spaces on B′1/2 are bounded by

(4.2) C
(
‖u‖L2(a,B+

1 ) + ‖λu+(x, 0)‖L2(B′
1)

)
.

Proof. In this proof C(n, s, k) is allowed to change line by line in the proof
and is a constant depending only on dimension n, s, and k which is the
order of the derivative in the x direction. We take Φ as defined in (4.1), and
evenly reflect u− Φ across the thin space. From property (V I) we have

‖u− Φ‖Lp(B′
1/4) ≤ ‖u− Φ‖Ck,αx (B1/4)

≤ C(n, s, k)
(
‖u‖L2(a,B1/2) + ‖λu+(x, 0)‖L2(B′

1)

)
.

Now using property (IV ) we have

‖u‖Lp(B′
1/4) ≤ C(n, s, k)

(
‖u‖L2(a,B+

1/2) + ‖λu+(x, 0)‖L2(B′
1)

)
,

as long as 1/2− 1/p < 2s/n. By using a standard rescaling and covering
argument we obtain

‖u‖Lp(B′
3/4) ≤ C(n, s, k)

(
‖u‖L2(a,B+

1
+ ‖λu+(x, 0)‖L2(B′

1)

)
,

with a new constant C. Using again properties (V I) and (V I), after finitely
many iterations (depending on s), we obtain

‖u‖L∞(B′
3/4) ≤ C(n, s, k)

(
‖u‖L2(a,B+

1
+ ‖λu+(x, 0)‖L2(B′

1)

)
.

Since the same inequality holds for λu+(x, 0), then from [19] we obtain that

Φ(x, 0) ∈ C0,α(Rn) if α < 2s ≤ 1

Φ(x, 0) ∈ C1,α(Rn) if α < 2s− 1 and 2s > 1

The regularity of Φ is passed to u as before. After finitely many iterations
(again depending on s) we obtain the conclusion of the theorem. Lipschitz
regularity is the most we can know for u+(x, 0), and this is when the iteration
process stops. To obtain the critical exponent 2s and 2s− 1 respectively
when s 6= 1/2, we use Theorem 6.4 from [3] which shows that for s 6= 1/2,
if both u(x, 0), (−∆)su(x, 0) ∈ L∞, then on a compact subdomain u(x, 0) ∈
C0,2s (C1,2s−1) for s < 1/2 (s > 1/2).

To obtain the result for any K b Ω a standard rescaling and covering
argument applies. �
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Remark 4.4. In general it is not true that if φ ∈ L∞(Ω) and (−∆)1/2φ ∈
C0,1(Ω), then φ ∈ C1,1(Ω). However, it would be interesting to answer if
solutions to (1.3) are in C1,1 when s = 1/2.

Remark 4.5. If λ ≤ 1, then by using (2.9) all of the norms in the statement
of Theorem 4.3 are bounded by

C
(
‖∇v‖L2(a,B+

1 ) + ‖v‖L2(a,(∂B1)+)

)
.

where C is a constant depending on n and s.

Since a-harmonic functions are real analytic off the thin space, one can
expect that for a solution u(x, y) to (2.5), to transfer the local regularity of
u(x, 0) to u(x, y) for y > 0. For the purposes of this paper we will not need
such a result; however, we will need at least uniform Hölder continuity up
to the thin space as given in the following Theorem.

Theorem 4.6. Let u be a solution to (2.5) in B1. Then there exists 0 <
α < 1 depending on s and a constant C depending on n and s such that

(4.3) ‖u‖
C0,α(B+

1/2)
≤ C

(
‖∇v‖L2(a,B+

1 ) + ‖v‖L2(a,(∂B1)+)

)
.

Proof. From Theorem 4.3 and Remark 4.5, u(x, 0) ∈ C0,1(B′3/4) with the

right hand side bound as given in (4.3). Then u+(x, 0) ∈ C0,1(B′3/4). From

the Poisson kernel representation of Φ in [6], one may use the same proof as
for harmonic functions to show

‖Φ‖C0,α1 (B+
1/2) ≤ C‖λψu+(x, 0)‖C0,1(B′

3/4),

provided that α1 < 1− a. From Proposition 2.1 in [9] which is a result from
[13], there exists 0 < α2 < 1 such that

‖u− Φ‖C0,α2 (B1/4) ≤ ‖u− Φ‖L2(a,B1/2).

Choosing α = min{α1, α2}, combining the above two inequalities, applying
(2.9), and using a standard covering and rescaling argument, we obtain
(4.3). �
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5. Topology of the free boundary

For solutions to (1.2), the original local plasma problem studied in [17], the
free boundary is exactly

∂{u > 0} = ∂{u < 0} = {u = 0}.

That these two boundaries are the same follows from the maximum and
minimum principle since ∆u = 0 in {u < 0} and ∆u ≤ 0 everywhere. The
situation is different in the nonlocal/fractional case: we cannot apply the
same local minimum principle to a solution u of{

div(ya∇u) = 0

limy→0 y
auy(x, y) ≤ 0

since it is possible for u(x, 0) to have a local minimum at x0 ∈ Ω and still
satisfy the above equation at x0. It may be possible to construct solutions
to (2.5) that satisfy

∂{u( · , 0) < 0} ( ∂{u( · , 0) > 0}.

We are mostly interested in the portion of the free boundary ∂{u( · , 0) < 0}.
This next proposition gives an inclusion when we assume additionally (2.6).

Proposition 5.1. Let u be a solution to (2.5) and assume also (2.6), then

∂{u( · , 0) < 0} ⊆ ∂{u( · , 0) > 0}.

In particular, if w is a solution to (1.3), then ∂{w < γ} ⊆ ∂{w > γ}.

Proof. If u is constant, then both ∂{u( · , 0) < 0} and ∂{u( · , 0) > 0} are
empty and the inclusion is vacuously true. Assume therefore that u is not
constant. Suppose there exists (x0, 0) ∈ (∂{u( · , 0) < 0} \ ∂{u( · , 0) > 0}).
Then there exists V an open subset compactly contained in U ′ and such that
x0 ∈ V ⊆ {u( · , 0) ≤ 0}. We note that (x0, 0) is a maximum for u on V . From
(2.6), the point (x0, 0) is then also a maximum for u on V × [0, ε] for ε > 0
and small. Now limy→0 y

auy(x, y) = 0 for x ∈ V . If we evenly reflect in the
y-variable, then u is a-harmonic on the domain V × (−ε, ε) for ε > 0. Since
u achieves an interior maximum at (x0, 0), it follows from the maximum
principle for a-harmonic functions [12] that u is constant in V × (0, ε). Since
u is real analytic away from the thin space, it follows that u is constant in
U+. However, this contradicts our assumption that u is not constant. �
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This next Proposition shows that if u is a solution to (1.3) and 1/2 <
s < 1, then u is strictly subharmonic, in the classical sense for the Laplacian
(not fractional Laplacian) on the thin space Rn, across the free boundary
∂{u > γ}. This is not true when s = 1. This illustrates why one cannot
hope for a strong minimum principle in {u > γ}. The assumption s > 1/2
is necessary to insure that u ∈ C2 and hence ∆u is a continuous function.

Proposition 5.2. Let u be a solution to (1.3) with 1/2 < s < 1. Then there
exists an open set V ⊆ Ω containing {u = γ} such that

∆u(x) > 0 for every x ∈ U,

where ∆ is the classical n-dimensional Laplacian on the thin space Rn.

Proof. Since s > 1/2, from Theorem 4.3 we know u is C2 on the thin space
Rn, so ∆u exists in the classical sense. Now

(5.1) (−∆)u = (−∆)1−s(−∆)su = (−∆)1−sλ(u− γ)+.

Now λ(u− γ)+ ≥ 0. If u(x0) = γ, then λ(u(x0)− γ) = 0. We apply Theo-
rem 2.5 to λ(u− γ)+ to conclude that there exists an open set V of x0

such that (−∆)1−sλ(u− γ)+(x) < 0 for any x ∈ V . Then by (5.1) we have
−∆u(x) < 0 for any x ∈ V . �

In the next Lemma, we show that certain symmetries of Ω are inher-
ited by solutions of (1.3) that arise as minimizers of (3.1) subject to the
constraint (3.2).

Lemma 5.3. Let u be a solution to (1.3) that arises as a minimizer of
(3.1) subject to the constraint (3.2). Assume Ω is invariant under Steiner
symmetrization in the direction ν. Then the level sets of u are also invariant
under Steiner symmetrization in the same coordinate direction.

Proof. We utilize the a-harmonic extension u(x, y) in Ω× (0,∞) with u− γ
satisfying (2.4). We pick our coordinates so that ν = (1, 0, . . . , 0). We re-
call that u(x, 0) minimizing (3.1) subject to the constraint (3.2) is equiv-
alent to the extension u(x, y) minimizing the energy functional (3.3) for
v ∈ H1(a,Ω× (0,∞)) with v(x, y) = 0 for x ∈ ∂Ω and subject to the con-
straint (3.2). We also recall from the discussion immediately following (3.3)
that a competitor v does not need to be a-harmonic in Ω× (0,∞).

The basic idea of the proof is that if u is not Steiner symmetric in the
x1 variable, then we Steiner symmetrize u to obtain a competitor u∗ with
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less energy for (3.3) and with u∗ still satsifying (3.2). (See Lemma B.4 in [1]
where this idea was used for a ball.) Now since Ω is invariant under Steiner
symmetrization in the x1 variable, and since u(x, y) = 0 for x ∈ ∂Ω× (0,∞),
if we Steiner symmetrize [15] in the x1 direction (which is orthogonal to y)
to obtain u∗, and if 0 < T1 < T2 <∞, then

(5.2)

∫∫
Ω×[T1,T2]

ya|∇u∗|2 ≤
∫∫

Ω×[T1,T2]

ya|∇u|2.

Equality is achieved if and only if u is already Steiner symmetric in the
x1 direction. The case of equality holds from the result in [15] since u is
a-harmonic and therefore real analytic away from Ω× {0}. That is why
initially we restrict ourselves to T1 > 0. Now we let T1 → 0 and T2 →∞ to
obtain ∫∫

Ω×R+

ya|∇u∗|2 ≤
∫∫

Ω×R+

ya|∇u|2

If u is not already Steiner symmetric in the x1 direction when y = 0, then
by continuity u will not be Steiner symmetric at some time T > 0, and so
by (5.2) the energy of u∗ will be less on an interval Ω× [T1, T2] and hence
also on Ω× R+. Notice that the constraint (3.2) is preserved for u∗, so u∗ is
a valid competitor. Then if u is a minimizer of (3.1), it must be symmetric
in the x1 direction. �

This next Theorem gives a sufficient condition on the shape of the do-
main Ω under which ∂{w > γ} = ∂{w < γ} for solutions of (1.3) that arise
as minimizers. A good question would be what conditions are necessary on
Ω in order to ensure ∂{w > γ} = ∂{w < γ} for solutions of (1.3).

Theorem 5.4. Let u be as in Lemma 5.3, and assume Ω is invariant under
Steiner symmetrization with respect to xi for 1 ≤ i ≤ n. Then

∂{u( · , 0) < γ} = ∂{u( · , 0) > γ}.

Proof. According to the constraint (3.2), we have {u( · , 0) > γ} 6= ∅. From
Lemma 5.3, the solution u is Steiner symmetric in each xi variable. Suppose
there exists z = (z1, z2, . . . , zn, 0) ∈ ∂{u( · , 0) > γ} and z /∈ ∂{u( · , 0) < γ}.
By the symmetry of u we can assume zi > 0 for each i. Also, from the
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symmetry of u we have

∂u

∂xi
(z) ≤ 0.

If z /∈ ∂{u( · , 0) < γ}, then by continuity there exists an open region V ⊆
{u( · , 0) = γ}. Then since u satisfies

u(x, 0) = γ

lim
y→0

yauy(x, y) = 0,

for every x ∈ V , by Lemma 2.7, we conclude u ≡ γ in Ω× [0,∞) which
contradicts the fact that u(x, 0) satisfies the constraint (3.2). �

6. Regularity of the free boundary

In this section we look at the regularity of the free boundary. All of the
results in this section except for Theorem 6.7 apply to solutions of (2.5)
without assuming (2.6). Theorem 6.7 does, however, have the assumption
(2.6). We now state a Lemma that will allow us to utilize Almgren’s fre-
quency function. For solutions of (2.5) Almgren’s frequency function will
not be monotone. However, we will prove that the limit at the origin exists
and use this result to put a bound on the dimension of the singular set of
free boundary points. We define

D(r, u) :=

∫
B+
r

ya|∇u|2, H(r, u) :=

∫
(∂Br)+

yau2,(6.1)

N(r, u) := r
D(r, u)

H(r, u)
.

When the function u is understood we will simply write N(r), D(r), H(r).
Since r > 0, the operation limr→0 will always be understood as the limit as
r goes to 0 from the right.

Lemma 6.1. Let u be a nonconstant solution to (2.5) in B+
1 , and assume

u(0, 0) = 0. Then lim
r→0

N(r) exists and

0 < lim
r→0

N(r) <∞
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Proof. For solutions of (2.5), the frequency N(r) will not necessarily be
monotone. We therefore begin by considering the modified function

Ñ(r) := r
D(r)− λ

∫
B′
r
u2

+

H(r)
.

Both N(r), Ñ(r) are absolutely continuous and hence differentiable for al-
most every r. By the same computations as in [6] and using that u is a
solution to (2.5) (along with the accompanying C1,α regularity) we obtain
the following Rellich-type identity

(6.2) D′(r) =
n− 1 + a

r
D(r) + 2

∫
(∂Br)+

yau2
ν +

λ

r

∫
B′
r

〈x,∇u2
+〉.

We also have by routine computations

(6.3)

H ′(r) =
n+ a

r
H(r) + 2

∫
(∂Br)+

yauuν

d

dr

[∫
B′
r

u2
+

]
=

∫
∂B′

r

u2
+∫

B′
r

〈x,∇u2
+〉 = r

∫
∂B′

r

u2
+ − n

∫
B′
r

u2
+.

Combining (6.2) and (6.3) we have

d

dr
log Ñ(r) =

1

r
+
n− 1 + a

r

D(r)

D(r)− λ
∫
B′
r
u2

+

− n+ a

r

+ 2

∫
(∂Br)+

yau2
ν

D(r)− λ
∫
B′
r
u2

+

− 2

∫
(∂Br)+

yauuν∫
(∂Br)+

yau2

+
nλ

r

∫
B′
r
u2

+

D(r)− λ
∫
B′
r
u2

+

Using integration by parts and that u is a solution to (2.5) we have

D(r)− λ
∫
B′
r

u2
+ =

∫
(∂Br)+

yauuν .
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Then

d

dr
log Ñ(r) =

1− a
r

[
1− D(r)

D(r) + λ
∫
B′
r
u2

+

]

+ 2

( ∫
(∂Br)+

yau2
ν∫

(∂Br)+
yauuν

−

∫
(∂Br)+

yauuν∫
(∂Br)+

yau2

)
.

The first term is clearly nonnegative, and the second term is nonnegative by
the Cauchy-Schwarz inequality. From (2.7) and the fact that N(r) ≥ 0 we
obtain for small enough r,

(6.4) N(r) ≥ Ñ(r) ≥ (1− Cλr1−a)N(r)− Cr1−a ≥ −Cr1−a.

Since Ñ(r) is monotone and bounded below, the limit as r → 0 exists, and

(6.5) 0 ≤ lim
r→0

Ñ(r) <∞.

From (6.4) it follows that

lim sup
r→0

N(r) ≤ Ñ(0) and lim inf
r→0

N(r) ≥ Ñ(0),

and therefore limr→0N(r) exists and equals Ñ(0). To show that N(0) > 0,
we note the following rescaling property N(r, u) = N(1, ur) where

(6.6) ur :=
u(rx, ry)(

1
rn+a

∫
(∂Br)+

yau2
)1/2

.

From the rescaling and since N(r) is bounded we have

‖ur‖L2(a,(∂B1)+) = 1 and ‖ur‖H1(a,B+
1 ) ≤M

where M is a constant depending on u. Then from Proposition 2.2 and
Theorem 4.6 we have that there exists a sequence rk → 0 and a function u0

such that urk → u0

urk ⇀ u0 in H1(a,B+
1 )

urk → u0 in L2(a, (∂B1)+) and C0,α(B+
1/2).

We note also that ∫
B+

1

ya|∇u0|2 = N(0),
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and ∫
(∂B1)+

yau2
0 = 1.

so u0 is not identically zero. Since u0(0) = 0 by the uniform convergence, the
gradient is not identically zero, and hence we conclude that N(0) > 0. �

Corollary 6.2. Let u be a solution to (2.5) and assume u(0, 0) = 0. Let
ur be defined as in (6.6). Then for every sequence rk → 0, there exists a
subsequence and a function u0 not identically zero so that

urk ⇀ u0 in H1(a,B+
1 ).

Furthermore, N(u, 0) = N(u0, r) for every 0 < r < 1 and if we evenly reflect
u0 in y, then u0 is a-harmonic and homogeneous of degree N(0, u).

Proof. The weak convergence of a subsequence was established in the proof
of Lemma 6.1. Now for t > 0

N(t, u0) = lim
r→0

N(t, ur) = lim
r→0

N(tr, u) = N(u, 0),

so N(r, u0) ≡ N(0). From the rescaling we have the property

lim
y→0

ya∂yur(x, y) = −rλ(ur)+(x, 0).

If we let ψ ∈ C2
0 (B1), then

lim
rk→0

∫
B+

1

ya〈∇ψ,∇urk〉 = rkλ

∫
B′

1

(urk)+ψ → 0.

The right hand side goes to zero by utilizing Proposition 2.2. Then if we
extend u evenly in the y variable, u is a-harmonic in B1. Since N(r, u0) =
N(0, u) for every r > 0, then u0 is homogeneous of degree N(0, u) from
Theorem 6.1 in [6]. �

From Corollary 6.2 if rk → 0 and rj → 0 are two different subsequences,
and urk → u1 and urk → u2, then u1 and u2 will both be homogeneous of
degree N(0, u). It is not immediate however that u1 ≡ u2. In order to obtain
a unique blowup solution we follow the ideas in [14] and consider blowups
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of the form

(6.7) u(k)
r :=

u(rx)

rk
.

The following three results as well as the proofs are analogous to those in
[14].

Lemma 6.3. Let u be a solution to (2.5) in B+
1 with u(0, 0) = 0 and such

that N(0, u) = k . Then there exists C depending on u such that

sup
B+
r

u ≤ Crk.

for r ≤ 1/2.

Proof. From (6.3) we have

(6.8)
H ′(r)

H(r)
=
n+ a+ 2Ñ(r)

r
,

so that

log

(
H(1)

H(r)

)
≥ (n+ a+ 2k) log(1/r),

from which it follows that

H(r) ≤ H(1)rn+a+2k.

NowN(1, u
(k)
r ) = N(r, u) ≤ C, so thatD(1, u

(k)
r ) ≤ CH(1, u

(k)
r ) ≤ CH(1, u).

The conclusion now follows from Theorem 4.6. �

For this next Lemma we define the Weiss energy for k > 0 as

Wk(r, u) :=
1

rn−1+a+2k

∫
B+
r

|∇u|2ya − k

rn+a+2k

∫
(∂Br)+

u2ya.

We have the following

Lemma 6.4. Let pk be a homogeneous a-harmonic polynomial of degree
k ∈ N, and let u be as in Lemma 6.3. If we define

Mk(r, u, pk) :=
1

rn+a+2k

∫
(∂Br)+

(u− pk)2ya

then lim
r→0

Mk(r, u, pk) exists.
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Proof. Now

Wk(r, u) =
H(r)

rn+a+2k
(N(r, u)− k) ≥ 0.

We recall that since pk is homogeneous of degree k ∈ N, then from Proposi-
tion 2.3.1 in [2], pk is even in the y variable, so that Wk(r, pk) = 0. We let
w = u− pk. Then

rn+a+2kWk(r, u) = rn+a+2k (Wk(r, u)−Wk(r, pk))

=
1

r

∫
B+
r

(|∇w|2 + 2〈∇w,∇pk〉)ya − k
∫

(∂Br)+
(w2 + 2wpk)y

a

=
1

r

∫
B+
r

|∇w|2ya +

∫
(∂Br)+

−kw2ya + 2w(〈x,∇pk〉 − kpk)ya

=
1

r

∫
B+
r

|∇w|2ya − k
∫

(∂Br)+
w2ya

=
1

r

∫
B′
r

λu+(u− w) +
1

r

∫
(∂Br)+

wwνy
a − k

∫
(∂Br)+

w2ya.

We also have with the change of variable rz = (rz′, rzn+1) = (x, y) that

d

dr

(
1

rn+a+2k

∫
(∂Br)+

w2ya

)
=

d

dr

∫
(∂B1)+

w2(rz)zan+1

r2k

=

∫
(∂B1)+

2w(rz)(〈rz,∇w(rz)− kw(rz))

r2k+1zan+1

=
2

rn+2k+a

∫
(∂Br)+

w(〈x,∇w〉 − kw)ya.

Then recalling that Wk(r, u) ≥ 0, and |u| ≤ Crk from Lemma 6.3, and pk is
homogeneous of degree k, we have

d

dr

(
1

rn+a+2k

∫
(∂Br)+

w2ya

)
= 2Wk(r, u)− 2

rn−1+a+2k

∫
B′
r

λu+(u− w)

≥ −2Cr1−a.

Then lim
r→0

Mk(r, u, pk) exists. �

Corollary 6.5. Let u be as in Lemma 6.3. Then there exists a constant c
depending on u such that

sup
B+
r

|u| ≥ crk.

for r < 1.
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Proof. We claim that limr→0Mk(r, u, 0) > 0. Suppose by way of contradic-
tion that limr→0Mk(r, u, 0) = 0. Let urj be a blowup of type (6.6) with
urj → pk with pk homogeneous of degree k, a-harmonic, and not identically
zero by Corollary 6.2. We now put a bound on the derivative of Mk(r, uρ, pk).
We note that uρ is a solution to (2.5) with eigenvalue λρ. Now for r < ρ < 1
we have

λρ

rn−1+a+2k

∫
B′
r

(uρ)
2
+ =

λρ1+a

rn−1+a+2k

(∫
B′
rρ
u2

+

H(rρ)

)
·
(
H(rρ)

H(ρ)

)

≤ λρ1+ar

(∫
B′
rρ
u2

+

H(rρ)

)
from (6.8)

≤ λρ1+arC(rρ)−a[N(rρ) + 1] from (2.7)

≤ λρr1−aC[N(1) + 1] for rρ small enough.

Then recalling the derivative for Mk(r, uρ, pk) we have

d

dr
Mk(r, uρ, pk) = − 2

rn−1+a+2k

∫
B′
r

λ(uρ)+pk(6.9)

≥ − 1

rn−1+a+2k

(∫
B′
r

λ(uρ)
2
+

)1/2(∫
B′
r

p2
k

)1/2

≥ −
√
λρr1−aC[N(1) + 1],

where C also depends on C1 with |pk(x)| ≤ C1|x|k, but C is independent of

ρ and r. For fixed 0 < ρ < 1, by our assumption we have that Mk(r, u
(k)
ρ ) =

Mk(rρ, u, 0)→ 0 as r → 0. Then Mk(r, uρ, pk)→Mk(1, 0, pk) > 0 as r → 0
since the polynomial pk will dominate. For the subsequence ρj → 0 we have
that Mk(1, uρj , pk)→ 0 since uρj → pk in L2(a, (∂B1)+). Now from (6.9) we
have that

Mk(1, 0, pk) = lim
r→0

Mk(r, uρj , pk)

≤Mk(1, uρj , pk)−
∫ 1

0

d

dr
Mk(r, uρj , pk) dr

≤Mk(1, uρj , pk) + C
√
ρ.

Letting ρ→ 0 we obtain that Mk(1, 0, pk) = 0 which is a contradiction. Then
our claim that limr→0Mk(r, u, 0) > 0 is true, and as in the proof of Lemma
6.3 the conclusion follows from Theorem 4.6. �
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Corollary 6.6. Let u be as in 6.3. Then there exists a unique a-harmonic
polynomial pk homogeneous of degree k such that if

u(k)
rj :=

u(rjx, rjy)

rkj

then u(k)
rj ⇀ pk in H1(a,B+

ρ ) for ρ < 1 and any sequence rj → 0. Further-
more,

(6.10) u(x, y) = pk(x, y) + o(rk).

Proof. From Lemma 6.3 and Corollary 6.5 we have that there exist two
constants c, C such that

(6.11) c ≤ 1

rn+a+2k

∫
(∂Br)+

u2ya ≤ C

We choose rj = 2−j and perform a blowup of type (6.7) such that u
(k)
rj ⇀ u0

in H1(a,B+
1 ). Since limy→0 ∂yu0(x, y) = 0, we may reflect u0 evenly across

the thin space. Then u0 is a-harmonic in Rn+1, even in the y variable,
and satisfies (6.11) for any r ∈ (0,∞). Then from Lemma 2.7 in [9], u0 is
a polynomial of degree k. From the bound below in (6.11) it follows that
u0 is homogeneous of degree k. Now limrj→0Mk(rj , u, u0) = 0. But then
limri→0Mk(ri, u, u0) = 0 for any subsequence ri → 0 and

0 = lim
ri→0

Mk(ri, u, u0) = lim
ri→0

Mk(1, u
(k)
ri , u0).

From the uniform convergence that follows from Theorem 4.6, we obtain
(6.10). �

We now show that by assuming (2.6) we may classify what types of
homogeneous a-harmonic polynomials may arise as blowups.

Theorem 6.7. Let u be a solution to (2.5) in B+
1 with u(x0, 0) = 0. Assume

also uy ≤ 0 in B+
1 . Let ur → v be a blow-up of u at x0. If ∇xu(x0) 6= 0, then

v is a linear function. If ∇xu(x0) = 0 we have the following alternative,
either (I): v is homogeneous of degree 2 and of the form

(6.12) v(x, y) = p(x)− cy2

where p(x) is homogeneous of degree 2 in the x-variable and c ≥ 0, or (II):
vy ≡ 0 and ∆v( · , 0) = 0 and u is homogeneous of degree k ∈ N with k > 2.
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Proof. By translation in the x variable we may assume that (x0, 0) = (0, 0).

If ∇xu(0, 0) 6= 0, then N(0, u) = 1, and u
(1)
r → ∇xu(0, 0) · x by the uniform

convergence of derivatives that follows from Theorem 4.3.

Assume now that∇u(0, 0) = 0. Since ya∂yu
(k)
r (x, y) ≤ 0 for all (x, y), this

inequality is preserved in the limit for v. Then yavy is −a-harmonic, non-
positive for y > 0, and has zero dirichlet data when y = 0 (since v is even).
From the Boundary Harnack Principle [9], it follows that yavy is comparable
to y1+a, or identically zero. Assume first that vy is not identically zero. Since
v is homogeneous, then yavy is also homogeneous, and since yavy is com-
parable to y1+a, then yavy is homogeneous of degree 1 + a. Consequently,
v must be homogeneous of degree 2, and v = p(x) + l(x)y − cy2 where l(x)
is a linear function of x. Since l(x)− cy = vy(x, y) ≤ 0 for y > 0 and all x,
it follows that l(x) ≡ 0, so that v must be of the form (6.12). Thus, if vy is
not identically zero, v is in alternative (I). If vy ≡ 0, then since v satisfies
div(ya∇v) = 0, it follows that ∆xv = 0. Since ∇u(0, 0) = 0 we also have in
the limit (from the interior C1,α convergence that follows from Theorem
4.3) that ∇xv(0, 0) = 0. Since v is also homogeneous it follows that v is a
homogeneous harmonic polynomial of order k ≥ 2. If k = 2, then v falls in
alternative (I) with c = 0. If k > 2, then v falls in alternative (II). �

We now define the regular set of the free boundary. Let u be a solution
to (2.5).

Ru := {x : u(x, 0) = 0 and ∇xu(x, 0) 6= 0}.

From the implicit function theorem and Theorem 4.3 we have the following
regularity result for Ru.

Theorem 6.8. Let u be a solution to (2.5). If u(x0, 0) = 0 and (x0, 0) ∈ Ru,
then in a neighborhood V of x0, {u(x, 0) = 0} is a C1,α (C2,α) graph for
s ≤ 1/2 (> 1/2) and α as in Theorem 4.3.

It is common in free boundary problems for the free boundary to be
more regular than the solution. For instance around regular points for the
original local plasma problem (1.2) the free boundary is real analytic [17]. A
question of interest would be to prove higher regularity of the free boundary
for solutions of (2.5).

7. The singular set

In this section we consider solutions to (2.5) with the additional assumption
(2.6). This is the case for instance for the unique extension of solutions to
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(1.3). The main result of this section is to give a Hausdorff dimensional
bound for the singular set of solutions u to (2.5) defined as

Su := {(x, 0) ∈ ∂{u( · , 0) < 0} : ∇xu(x, 0) = 0}.

Notice that we do not consider the set (x, 0) ∈ (∂{u( · , 0) > 0} \ ∂{u( · , 0) <
0}). The main result of this section is

Theorem 7.1. Let u be a solution to (2.5) in Ω. Then the Hausdorff di-
mension

Hτ (Su) = 0

for τ > n− 2.

To prove Theorem 7.1 we follow Federer’s method of dimension reduction
utilized in [10]. The Theorem is an immediate consequence of the following
two Lemmas which are analogous to Lemmas 5.7 and 5.8 in [10].

Lemma 7.2. Assume that Hτ (Sv) = 0 for all functions v which arise as
blowups of type (6.7) of solutions to (2.5) also satisfying (2.6). Then Hτ (Su ∩
V ) = 0 for all solutions u to (2.5) and also satisfying (2.6) with V b U ′.

Proof. We first show the following Property (P ): for every x ∈ Su there
exists dx > 0 such that for all δ ≤ dx any subset D of Su ∩B′δ(x) can be
covered by a finite number of balls B′ri(xi) with xi ∈ D such that∑

i

rτi ≤
δτ

2
.

We show (P ) using a compactness argument. Suppose by way of contradic-
tion the conclusion is not true for a sequence δj → 0. By picking a subse-

quence if necessary we perform a blow-up u
(k)
δj
→ u0 at x. By assumption

there exists finitely many B′ri/4(xi) such that

Su0
⊆ ∪B′ri/4 and

∑
i

rτi ≤
1

2
.

Since u
(k)
δj
→ u0 in C1,β it follows that there exists j0 such that if j > j0,

then

Suδj ∩B
′
1 ⊆ ∪B′ri/4.

Then rescaling backward u satisfies the conclusion for all large j in B′δj and
we reach a contradiction.



i
i

“1-Allen” — 2020/1/6 — 15:20 — page 1693 — #29 i
i

i
i

i
i

A fractional free boundary problem 1693

We now denote Dj := {y ∈ Su : dx ≥ 1/j}. Fix x0 ∈ Dj . By Property
(P ) we can cover Dj ∩B′r0(x0) where r0 = 1/j with a finite number of balls
B′ri(xi) with xi ∈ Dj and ∑

i

rτi ≤
rτ0
2
.

Now we repeat the same argument for each B′ri(xi) and cover it with balls
B′rij (xij) to obtain ∑

j

rτij ≤
rτi
2
.

Repeating this argument m times we obtain Hτ (Dj ∩B′r0(x0)) = 0. Then
Hτ (Dj) = 0. We then let j →∞ to conclude the Lemma. �

Lemma 7.3. Let u be a solution to (2.5) satisfying (2.6) and x0 ∈ Su. Let
u0 be a blowup of u of type (6.7) at x0. Then

Hτ (Su0
) = 0 for τ > n− 2.

Proof. We begin by considering the problem in dimension n = 1, and sup-
pose there exists x0 ∈ Su. From Theorem 6.7, we have either u0 = bx2 − cy2

for two constants b and c, or ∆xu0(x, 0) = 0 with u0(x, 0) homogeneous of
degree greater than 2. Since n = 1, all harmonic functions are linear, so that
the latter option is not possible. Since x0 ∈ ∂{u(x, 0) < 0}, it follows from
(6.10) that 0 ∈ ∂{u0(x, 0) < 0}. Since c ≤ 0 we have a ≥ 0, and we obtain a
contradiction since then x0 /∈ ∂{u(x, 0) < 0}. Then Su = ∅ if n = 1. The re-
sult now follows by using the standard argument of Federer for homogeneous
solutions. In dimension n = 2 if 0 6= x0 ∈ Su0

, then performing a blow-up at
x0 and using the homogeneity of u0 we obtain a blow-up limit u00 in n = 1
with 0 ∈ Su00

which is a contradiction. Then for n = 2, Su consists of at
most a single point, so that Hτ (Su0

) = 0 for τ > 0. To proceed in Federer’s
dimension reduction argument we claim that if for all blowup solutions in
dimension n we have Hτ (Su0

) = 0, then for all blowup solutions v0 in di-
mension n+ 1 we have Hτ+1(Sv0) = 0. Since v0 is homogeneous, it is only
necessary to show

(7.1) Hτ (Sv0 ∩ ∂(B′1)) = 0.

Since we assume Hτ (Su0
) = 0 for all blowup solutions in dimension n, we

can deduce as in Lemma 7.2 that Sv0 ∩ ∂(B′1) satisfies Property (P ) as in
Lemma 7.2, so that using the same argument as in Lemma 7.2 we conclude
(7.1). �
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We first remark that using the same arguments one can show
Hτ (∂{u(x, 0) > 0}) = 0 for τ > n− 1, so that the full free boundary is of
Hausdorff dimension n− 1.

When λ = 0 the Hausdorff dimension of the singular set can be ex-
actly n− 2 as shown by the homogeneous solution u(x1, x2, . . . , xn, y) =
x2

1 − 4x2
2 − 3/(a+ 1)y2. More interesting would be to construct a solution u

to (2.5) or (1.3) with λ > 0 such that Su has Hausdorff dimension n− 2.
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