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3-manifolds admitting locally large

distance 2 Heegaard splittings

Ruifeng Qiu and Yanqing Zou

It is known that every closed, orientable 3-manifold admits a Hee-
gaard splitting. By Thurston’s Geometrization conjecture, proved
by Perelman, a 3-manifold admitting a Heegaard splitting of dis-
tance at least 3 is hyperbolic. So what about 3-manifolds admitting
distance at most 2 Heegaard splittings?

Inspired by the construction of hyperbolic 3-manifolds in [Qiu,
Zou and Guo, Pacific J. Math. 275 (2015), no. 1, 231-255], we intro-
duce the definition of a locally large geodesic in curve complex and
also a locally large distance 2 Heegaard splitting. Then we prove
that if a 3-manifold admits a locally large distance 2 Heegaard split-
ting, then it is either a hyperbolic 3-manifold or an amalgamation
of a hyperbolic 3-manifold and a small Seifert fiber space along an
incompressible torus. After examining those non hyperbolic cases,
we give a sufficient and necessary condition to determine a hy-
perbolic 3-manifold admitting a locally large distance 2 Heegaard
splitting.

1. Introduction

In 1898, Heegaard [8] introduced a Heegaard splitting for a closed, orientable,
triangulated 3-manifold, i.e., there is a closed, orientable surface cutting this
manifold into two handlebodies. Later, Moise [16] proved that every closed,
orientable 3-manifold admits a triangulation. So each closed orientable 3-
manifold admits a Heegaard splitting.

For a closed orientable 3-manifold M , Kneser and Milnor proved that it
is the connected sum of a unique collection of finitely many irreducible 3-
manifolds and S2 × S1. It is known that Heegaard splittings of S2 × S1 are
standard. Therefore we only concern Heegaard splittings of an irreducible
3-manifold.

One astonishing result by Haken [4] is that every Heegaard splitting of
a reducible 3-manifold is reducible, i.e., there is an essential simple closed
curve in Heegaard surface bounding two essential disks for both of these
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two sides simultaneously. So if all Heegaard splittings of a 3-manifold are
reducible, then this manifold is reducible. Therefore for any irreducible 3-
manifold, there is at least one irreducible Heegaard splitting. Later, Casson
and Gordon [1] defined a weakly reducible Heegaard splitting and proved
that if a 3-manifold admits a weakly reducible and irreducible Heegaard
splitting, then there is a closed incompressible surface in it, i.e., it is Haken.
Both of these two phenomena drive people to think how Heegaard splittings
reflect 3-manifolds.

For classifying 3-manifolds, Thurston [28] introduced the Geometriza-
tion conjecture ( the Haken version proved by Thurston [28] and the full
version proved by Perelman [19–21]) as follows. For any closed, irreducible,
orientable 3-manifold, there are finitely many ( possibly zero) disjoint, non
isotopic essential tori so that after cutting it along those tori, each piece
has one of eight geometries (among all of those eight geometries, one is
hyperbolic, another one is solvable and the left six pieces are realized by
Seifert fiber spaces ). In those eight geometries, Seifert fiber spaces have
been completely classified. Moreover all of their irreducible Heegaard split-
tings are either vertical or horizontal, see [17]. Cooper and Scharlemann [2]
studied all irreducible Heegaard splittings of a solvmanifold. And there are
some works on Heegaard splittings of some typical 3-manifolds, such as Lens
space, surface ×S1 etc.

With the curve complex defined by Harvey [6], Hempel [9] introduced
an index-Heegaard distance for studying a Heegaard splitting. Mainly Hee-
gaard distance is defined to be the length of a shortest geodesic in the curve
complex which connects two vertices representing the boundary curves of
two essential disks from different sides. Then he proved that all Heegaard
splittings of a Seifert fiber space have distance at most two; if a 3-manifold
contains an essential torus, then its all Heegaard splittings have distance
at most two. This result is also proved and extended by Hartshorn [5] and
Scharlemann [24]. Then by the Geometrization theorem, if a 3-manifold ad-
mits a Heegaard splitting with Heegaard distance at least three, then it is
hyperbolic. So a question arises.

Question 1.1. What dose a 3-manifold look like if it only admits distance
at most two Heegaard splittings?

Before stating some results related to Question 1.1, let us introduce a
remark.

Remark 1.2. By the definition, for a distance two Heegaard splitting,
there are an essential simple closed curve and a pair of essential disks from



i
i

“6-Zou” — 2019/12/13 — 1:17 — page 1357 — #3 i
i

i
i

i
i

3-manifolds admitting locally large distance 1357

different handlebodies so that this curve is disjoint from those two essential
disks’ boundary curves. It seems that this Heegaard splitting is simple and
so is the 3-manifold. However, things for distance two Heegaard splittings
are complicated because a 3-manifold admitting a distance two Heegaard
splitting could be a Seifert fiber space or hyperbolic or contains an essential
torus, see [9, 22, 23, 27].

Thompson [27] studied all distance at most two and genus two Heegaard
splittings and found that even for genus two Heegaard splittings, those 3-
manifolds could be very complicated. Later, Rubinstein and Thompson [23]
extended this result to genus at least three cases. In [22, 29], the authors
studied the curve complex and introduced the definition of a locally large
geodesic. In the proof of Theorem 1.3 in [22], they found that the locally
large property of a geodesic forces every realizing Heegaard distance geodesic
to share some vertex γ in common. So if the resulted 3-manifold contains an
essential torus T 2, then T 2 intersects this Heegaard surface in some essential
simple closed curves, which are all isotopic to γ. Thus T 2 intersects that
Heegaard surface in fixed essential simple closed curves. If the resulted 3-
manifold contains no essential torus, by Geometrization theorem, it is either
a small Seifert fiber space or a hyperbolic 3-manifold. Since a small Seifert
fiber space is well understood and so are all of its Heegaard splittings, we
may understand this 3-manifold. Under this circumstance, it seems it is
not hard to understand the corresponding 3-manifold. So we introduce the
definition of a locally large distance two Heegaard splitting.

We denote a length two geodesic in the curve complex realizing Hee-
gaard distance by G = {α, γ, β}, where both α and β bound essential disks
from two sides of the Heegaard surface and γ is disjoint from both α and
β. It is known that there is a nonseparating essential simple closed curve
disjoint from α and β. So we may assume γ is represented by a nonseparat-
ing essential simple closed curve. Suppose that S is the Heegaard surface.
Then the geodesic G is locally large if in Sγ = S − γ, dSγ (a, b) ≥ 11, for any
pair of a and b disjoint from γ, where both a and b bound essential disks
in different sides of S respectively. Moreover, a Heegaard splitting is locally
large if there is a locally large geodesic realizing its Heegaard distance. With
the definition of a locally large Heegaard splitting, we have the following
result.

Theorem 1.3. If a closed orientable 3-manifold M admits a locally large
distance two Heegaard splitting V ∪S W , then M is either a hyperbolic 3-
manifold or an amalgamation of a hyperbolic 3-manifold and a small Seifert
fiber space along an incompressible torus.
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Note 1.4. A 3-manifold is small if there is no embedded essential closed
orientable surface in it.

The following facts are well-known to experts (see, for example [26]).
(1) a Seifert fiber space does not admit a complete hyperbolic structure;
(2) a solvmanifold does not admit a complete hyperbolic structure;
(3) an amalgamation of a complete hyperbolic 3-manifold and a small

Seifert fiber space along a torus is not one of those eight geometries.
Thus by Theorem 1.3,

Corollary 1.5. Neither a solvmanifold nor a Seifert fiber space admits a
locally large distance two Heegaard splitting.

The most important geometry in the Geometrization Theorem is hyper-
bolic geometry. Thus giving a sufficient condition for a hyperbolic 3-manifold
is critical in studying its Heegaard splittings. Although the example in Sec-
tion 3 shows that there is a case where the manifold M in Theorem 1.3
contains an essential torus, to give a sufficient condition for a hyperbolic
3-manifold, we only need to eliminate all possible essential tori in it. For
this purpose, we introduce two definitions.

An essential simple closed curve γ in ∂+V is a co-core if there is an
essential disk in V so that its boundary curve intersects γ in one point. A
once punctured torus in S is called a torus domain in V (resp. W ) if it is
essential in S and its boundary curve bounds a disk in V (resp. W ). The
proof of Theorem 1.3 implies that under the locally large condition of γ, the
non hyperbolic case happens if γ is not only contained in two torus domains
in both V and W but also not a co-core for both of these two sides of S.
Then there is a theorem as follows.

Theorem 1.6. Suppose that a closed orientable 3-manifold M has a locally
large distance two Heegaard splitting V ∪S W . Let γ be an essential simple
closed curve disjoint from two boundary curves of a pair of essential disks
from different sides of S. Then M is hyperbolic if and only if either there is
no torus domain containing γ in at least one of V and W or γ is a co-core
for one side of S.

We introduce some results of curve complex and Seifert fiber spaces in
Section 2, construct a non hyperbolic 3-manifold in Section 3 and prove
Theorem 1.3 and 1.6 in Sections 4 and 5.

Acknowledgement. The authors would like to thank Tao Li for careful
checking our early version of this manuscript, pointing out the genus two
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case of Theorem 1.3 and many helpful conversations, thank referees for many
suggestions. This work was partially supported by NSFC (No.11571110,
11601065, 11726609, 11726610) and Science and Technology Commission
of Shanghai Municipality (STCSM), grant No. 18dz2271000.

2. Heegaard splittings of Seifert fiber spaces

Before studying Heegaard splittings of Seifert fiber spaces, we introduce
some definitions and results of the curve complex.

Let S be a compact orientable surface of genus at least 1. A simple closed
curve c in S is essential if c bounds no disk in S and is not parallel to ∂S. c
also represents the isotopy class of an essential simple closed curve in S. For
simplicity, without any further notation, we don’t distinguish an essential
simple closed curve c and its isotopy class.

Harvey [6] defined the curve complex C(S) as follows: the vertices of
C(S) are the isotopy classes of essential simple closed curves on S, and k + 1
distinct vertices x0, x1, . . . , xk determine a k-simplex of C(S) if and only
if they are represented by pairwise disjoint essential simple closed curves.
For any two vertices x and y of C(S), the distance of x and y, denoted by
dC(S)(x, y), is defined to be the minimal number of 1-simplexes in a simplicial
path joining x to y. In other words, dC(S)(x, y) is the smallest integer n ≥ 0
so that there is a sequence of vertices x0 = x, . . . , xn = y where xi−1 and
xi are represented by two disjoint essential simple closed curves on S for
each 1 ≤ i ≤ n. Therefore for any two sets of vertices in C(S), say X and Y ,
dC(S)(X,Y ) is defined to be min

{
dC(S)(x, y)‖ x ∈ X, y ∈ Y

}
. When S is a

torus or once punctured torus, there is a slight change on the definition of
curve complex. Masur and Minsky [13] define C(S) as follows. The vertices
of C(S) are the isotopy classes of essential simple closed curves on S, and
k + 1 distinct vertices x0, x1, . . . , xk determine a k-simplex of C(S) if and
only if xi and xj are represented by two simple closed curves ci and cj on S
such that ci intersects cj in one point for each 0 ≤ i 6= j ≤ k. The following
lemma is well known, see [12–14].

Lemma 2.1. C(S) is connected and the diameter of C(S) is infinite.

A collection G = {a0, a1, . . . , an} is a geodesic in C(S) if ai ∈ C0(S) and

dC(S)(ai, aj) = |i− j|,

for any 0 ≤ i, j ≤ n. And the length of G denoted by L(G) is defined to be
n. By Lemma 2.1, for any two vertices α and β, there is a shortest path in
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C1(S) connecting them. For any two simplicial sub-complex X,Y ⊂ C(S),
we call a geodesic G realizing the distance between X and Y if G connects
an element α ∈ X and an element β ∈ Y so that L(G) = dC(S)(X,Y ).

If ∂S 6= ∅, then there are essential properly embedded simple arcs. Sim-
ilar to the definition of the curve complex C(S), we define the arc and curve
complex AC(S) as follows. Each vertex of AC(S) is the isotopy class of an
essential simple closed curve or an essential properly embedded arc in S, and
a set of vertices forms a simplex of AC(S) if these vertices are represented
by pairwise disjoint arcs or curves in S. For any two disjoint vertices, we
place an edge between them. All the vertices and edges form 1-skeleton of
AC(S), denoted by AC1(S). And for each edge, we assign it length 1. Thus
for any two vertices α and β in AC1(S), the distance dAC(S)(α, β) is defined

to be the minimal length of paths in AC1(S) connecting them.

Let F be a subsurface of S, not an annulus, a pair of pants or 4-holed
sphere. F is essential in S if the induced map of the inclusion from π1(F )
to π1(S) is injective. Moreover, F is a proper essential subsurface of S if F
is essential in S and at least one boundary component of F is not ∂-parellel
in S. It is known that each essential simple closed curve in F is essential
in S. So there is some connection between the AC(F ) and C(S). In other
words, for any α ∈ C0(S), there is an essential simple closed curve αgeo that
represents α so that the intersection number i(αgeo, ∂F ) is minimal. Hence
each component of αgeo ∩ F (resp. αgeo ∩ F ) is essential in F (resp. S − F ).
Let κF (α) be isotopy classes of the essential components of αgeo ∩ F . For
any γ ∈ AC(F ), σF (γ) is the collection of all essential boundary curves of a
closed regular neighborhood of γ ∪ ∂F in F . Then let πF = σF ◦ κF . So πF
is the subsurface projection defined in [14].

We say that α ∈ C0(S) cuts F if πF (α) 6= ∅. If α, β ∈ C0(S) both cut F ,
then dC(F )(α, β) is defined to be diamC(F )(πF (α), πF (β)). So if dC(S)(α, β) =
1, then

dAC(F )(α, β) ≤ 1; dC(F )(α, β) ≤ 2.

The following lemma immediately follows from the above observation.

Lemma 2.2. Let F and S be as above. If G = {α0, . . . , αk} is a geodesic of
C(S) such that αj cuts F for each 0 ≤ i ≤ k, then dC(F )(α0, αk) ≤ 2k.

For essential curves α, β in S, let |α ∩ β| be the minimal geometric
intersection number. We call α and β intersect efficiently if the number of
α ∩ β is equal to |α ∩ β|.
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One tool for studying the intersection between essential simple closed
curves and arcs in S is the bigon criterion.

Lemma 2.3. [3] Let surface S be as above. Then for any two essential
curves α, β in S, α and β intersects efficiently if and only if α ∪ β ∪ ∂S
bounds no bigon or half-bigon in S.

Assume that V is a non-trivial compression body, i.e., not the product
I-bundle of a closed surface. Then there is an essential simple closed curve in
∂+V = S bounding an essential disk in V . Let F be an essential subsurface
in S. We call F is a hole for V if for any essential disk D ⊂ V , πF (∂D) 6= ∅.
Furthermore, we call an essential subsurface F ⊂ S is an incompressible hole
for V if F is not only a hole for V but also incompressible in V . Otherwise, F
is a compressible hole for V . Masur and Schleimer[15] studied the subsurface
projection of an essential disk and proved that:

Lemma 2.4. Let V be a non-trivial compression body and F a compressible
hole for V . Then for an essential disk D in V , there are two essential disks
D1 and D2 satisfying:
· ∂D, ∂D1 and ∂F intersect efficiently;
· ∂D2 ⊂ F ;
· A component of ∂D ∩ F is disjoint from a component of ∂D1 ∩ F and

∂D1 ∩ ∂D2 = ∅. Furthermore, dAC(F )(πF (∂D), ∂D2) ≤ 3.

Proof. See the proof of Lemma 11.5 and Lemma 11.7 [15]. �

Let {x1, x2, . . . , xn} be a collection of different points in S. In the 3-
manifold S × S1, SC = {xi × S1, i = 1, . . . , n} is a collection of essential sim-
ple closed curves. A closed orientable 3-manifold is a Seifert fiber space if
it is obtained by doing Dehn surgeries along SC. More precisely, we re-
move a open regular neighborhood of xi × S1 and attach a solid torus back
where the meridian curve coincides with some βi/αi slope, where αi 6= 0. If
βi/αi 6= 0 and |αi| > 1, then this slope is called exceptional. It is known that
if all of those exceptional slopes are removed, then M − ∪N(βi/αi) is F ×
S1. So there is another representation of M = {S, β1/α1, . . . , βn/αn}, where
S is called the base surface. Furthermore this representation is unique with
some permutations in order, see [7].

Of all irreducible Heegaard splittings of a Seifert fiber space M , there
are two standard ones named vertical and horizontal Heegaard splittings.
To be clear, for M = {S, β1/α1, . . . , βn/αn} with projection f : M → S, let
S = D ∪ E ∪ F be a cell decomposition where each component of D or F
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contains at most one singular point in its interior and each component of
E is a square with one pair of opposite edges in D and the other one in
F , where both D ∪ E and E ∪ F are connected. Then the union of H1 =
f−1(D) ∪ E × [0, 12 ] is a handlebody and H2, the complement of H1 in M ,
is also a handlebody which is homeomorphic to f−1(F ) ∪ E × [12 , 1], where
S1 = [0, 1]/ ∼. So H1 ∪∂H2

H2 is a Heegaard splitting of M , called a vertical
Heegaard splitting. So by the construction of a vertical Heegaard splitting,
every Seifert fiber space M admits a vertical Heegaard splitting. Knowing
that fact, people wonder that whether there is any different type Heegaard
splitting for a Seifert manifold in general or not. However, there is no other
type Heegaard splitting in general because in [17], Moriah and Schultens
proved that except some special cases, every irreducible Heegaard splitting
of almost all of Seifert fiber spaces is vertical. For special cases, they [17]
defined so called horizontal Heegaard splittings as follows. Taking a surface
bundle M1 = F × I/(x, 0) ∼ (ψ(x), 1), where χ(F ) ≤ 0 with one boundary
component and ψ : F → F is a periodic homeomorphism and fixes ∂F point
by point. Let M be a Dehn filling of M1 ∪D × S1, where the longitude goes
to ∂F . Then ∂F × {0, 12} bounds an annulus A in D × S1 which cuts out
an I-bundle of A. It is not hard to see that F × {0, 12} ∪ A cuts M into two
handlebodies, where both of these two handlebodies are compact surfaces
product I-bundles. So it gives a Heegaard splitting of M , called a horizontal
Heegaard splitting. A result in [17] says thatM admits a horizontal Heegaard
splitting if and only if its euler number is zero; each irreducible Heegaard
splitting of M is either vertical or horizontal.

If the base surface of M has a genus at least one or is S2 but with at
least 4 exceptional slopes, then it contains an essential torus T 2. So for any
strongly irreducible Heegaard splitting H1 ∪∂H1

H2, there are two essential
annuli A1 ⊂ H1 and A2 ⊂ H2 with ∂A1 ∩ ∂A2 = ∅. If M has S2 as its base
surface with at most three exceptional slopes, then

Lemma 2.5. (1) for a vertical Heegaard splitting, there are essential disks
D1 and D2 from two sides of Heegaard surface so that their boundaries
intersects in at most two points;

(2) for a horizontal Heegaard splitting, there is an essential simple closed
curve C and two essential annuli A1 = C × [0, 12 ] in H1 and A2 = C × [12 , 1]
in H2 so that C × {0} ∩ C × {1} contains at most one point.

Proof. The proof of second part is contained in the proof of Theorem 3.5 in
[9]. So all we need to do is to prove the first part. Since a weakly reducible
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Heegaard splitting satisfies the conclusion, we only consider all strongly ir-
reducible vertical Heegaard splittings. If this vertical Heegaard splitting has
genus at least 3, Corollary 3.3 in [9] says that it has distance at most 1.
Hence there are two essential disks satisfying the conclusion of Lemma 2.5.
If this vertical Heegaard splitting has genus 2, by the definition, one handle-
body H1 is the union of two closed neighborhood of exceptional fibers and
a rectangle ×[0, 12 ] and the other one H2 is homeomorphic to an I-bundle of
one-holed torus with a non trivial Dehn surgery. It is not hard to see that
removing these two exceptional fibers reduces M into a torus × I with a non
trivial Dehn surgery, where we do the Dehn surgery along a simple closed
curve C and the union of a longitude and C bounds an embedded annulus.
The rectangle ×[0, 12 ] is isotopic to the closed neighborhood of an prop-
erly embedded unknotted arc which connects these two boundaries. After
removing a rectangle ×[0, 12 ], it is changed into the handlebody H2.

Let a be an properly embedded arc in this rectangle where it connects a
pair of opposite edges. Then a× [0, 12 ] bounds an essential disk D1 in H2. Let
b be an properly embedded essential arc in the once punctured torus which
intersects the longitude empty. Then b× [12 , 1] bounds an essential disk D2

in H2. It is not hard to see that ∂D1 intersects ∂D2 in two points. �

By the proof of Lemma 2.5, if a vertical Heegaard splitting V ∪S W
of a small Seifert fiber space is strongly irreducible, then it has genus 2.
Conversely, for a genus 2 strongly irreducible and vertical Heegaard splitting
V ∪S W of a Seifert fiber space, Hempel [9] proved that its genus is equal
to the sum of the number of rectangles and 1. So it means that this Seifert
fiber space is a small Seifert fiber space with S2 as its base surface and three
exceptional fibers. Then there is an interesting result as follows.

Corollary 2.6. Let V ∪S W be a genus 2 strongly irreducible and vertical
Heegaard splitting of a Seifert fiber space. Then there are two essential disks
D1 (resp. D2) for V (resp. W ) and two disjoint but non isotopy essential
simple closed curve C1 and C2 in S so that both C1 and C2 are disjoint from
∂D1 ∪ ∂D2.

Proof. Let D1 and D2 be as in Lemma 2.5. It is known that H2 is a
once punctured torus I-bundle with a non trivial Dehn surgery, i.e., H2 =
[T 2 −B × I](βα) for some β

α 6= 0. Let C1 be a longitude of T 2 −B × {0}
while C2 is a longitude of T 2 −B × {1}. Then both of these two curves are
disjoint from ∂D1 ∪ ∂D2. �
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3. A non hyperbolic 3-manifold with a locally large distance
2 Heegaard splitting

In this section, we construct a non hyperbolic 3-manifold, which admits a
locally large distance 2 Heegaard splitting.

Let M be a genus 2g − 1 compression body, where g ≥ 2, with ∂−M a
torus. Then there are two nonseparating spanning annuli A1 and A2, i.e.,
the boundary of an essential annulus lies in different components of ∂M ,
such that M −A1 ∪A2 are two handlebodies V1 and V2 with same genera,
see Figure 1.

A1

A2V1 V2

Figure 1: Annuli in M .

From Figure 1, ∂V1 (resp. ∂V2) consists of S1 and an annulus A1
1-the

left two dotted line (resp. S2 and an annulus A1
2 -the right two dotted line).

Since S1 and S2 are homeomorphic, there is a orientation reversing homeo-
morphism f : S1 → S2 such that f(∂A1

1 ∩ S1) = ∂A1
2 ∩ S2.

Since S1 is a genus g − 1 ≥ 1 surface with two boundary curves, the
Projective Measured Lamination space of S1

PML(S1) ∼= S6g−9

is not an empty set. It is known that the isotopy class of the boundary of
an essential disk in V1 together with a counting measure is an element of
PML(S1). Then the collection of all essential simple closed curves bounding
disks is a subset of PML(S1). It is known that the intersection function
on ML(S) defines a weak∗-topology on ML(S), see [18]. Then there is
a topology defined on PML(S) induced by the projection P :ML(S)→
PML(S). Under this topology, let DS1 ⊂ PML(S1) be the closure of the
set consisting of all essential simple closed curves in S1 which bound disks
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in V1. So is DS2. By the symmetry of these two handlebodies V1 and V2,
there is an automorphism of h : S1 → S1 such that h ◦ f(DS2) ⊂ DS1.

Fact 3.1. DS1 is nowhere dense.

Note 3.2. The proof is based on and contained in the proof of Theorem 1.2
[11]. For the integrity of this paper, we use the theory of Measured Lamina-
tion Space to rewrite it here.

Before proving Fact 3.1, let us introduce a definition here. For any es-
sential simple closed curve α ⊂ S1 bounding an essential disk in V1, there is
a disk system Γ in S1 so that

(1) one of its vertices is α;
(2) all of its vertices are the isotopy classes of the boundary curves of

pairwise disjoint non-isotopic essential disks in V1;
(3) it splits S1 into a collection of pairs of pants.

Proof. All we need to prove is DS1 contains no open set in PML(S1).
Choosing an element α ∈ DS1 represented by an essential non-separating

simple closed curve in S1, by the above argument, there is a disk system Γ in
S1. For any element β ∈ DS1 represented by an essential simple closed curve
in S1, by Lemma 2.3, we can isotope β such that β intersects Γ efficiently.
If β ∩ Γ 6= ∅, then there is a wave w corresponding to the outermost disk
component in the complement of Γ in S1. Since ∂S1 bounds no essential disk
in V1, the wave w is contained in a pair of pants bounded by the boundaries
of essential disks. If β intersects Γ empty, then β ∈ Γ.

From Penner and Harer [18], there is a birecurrent maximal train track
τ in S1 such that it intersects all the wave like w for the disk system Γ. Then
there is a minimal filling measured lamination L carried by τ intersecting
all the wave like w so that its complement in S1 is a disk or a one-holed disk
with a finite points removed from its boundary, where the one-holed disk
contains a boundary component of S1. Moreover, L is not in DS1 because
it intersects each element in DS1 nontrivially.

It is known that the collection of essential simple closed curves in S1 is
dense in PML(S1). Then there is a sequence {c1, . . . , cn, . . .} converging to
L in PML(S1), where ci is represented by an essential simple closed curve.
Hence there is a number N such that cN+1 intersects all the waves like w
for the disk system Γ. So there is a neighborhood U of cN+1 in PML(S1)
disjoint from DS1 in PML(S1).
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Now suppose that there is an open subset U
′ ⊂ DS1. Then there is

an automorphism f : S1 → S1, where f(DS1) = DS1, and a nonseparat-
ing essential curve α1 ∈ U

′
bounding a disk in V1 such that f(α1) = α and

f(U
′
) ⊂ DS1 is an open neighborhood of α in PML(S1).

For each essential simple closed curve c ⊂ S1 which intersects α, let τα
be the Dehn twist along α in S1. It is known that τnα (c) is closed to α in
PML(S1) as n goes to the infinity. Then τnα (cN+1)) ⊂ f(U

′
) for n large

enough. Hence there is an open subset U1 ⊂ U such that τnα (U1) ⊂ f(U
′
). It

means that f−1 ◦ τnα (U1) ⊂ U
′
. Then τ−nα ◦ f(DS1) is not contained in DS1.

But since α bounds an essential disk in V1, both of these two maps τα and τ−1α
map DS1 into DS1. Hence τ−nα ◦ f maps DS1 into DS1, a contradiction. �

By Fact 3.1, DS1 is not equal to PML(S1). Since the collection of those
stable and unstable laminations of all pseudo anosov automorphisms in S1
is dense in PML(S1), there is a pseudo anosov map g in S1 such that the
stable lamination are not in DS1. By the proof of Theorem 2.7 [9], if n is
large enough, then dC(S1)(g

n(α), h ◦ f(β)) ≥ 11 for any α and β bounding
two essential disks in V1 and V2 respectively.

For constructing a non hyperbolic 3-manifold, we set M1 be V2 ∪g−n◦h◦f
V1 along S2 and S = ∂V1 in M1. After pushing S a little into the interior
of M , S splits M1 into a handlebody V and a compression body W , see
Figure 2 (S is colored in green while S1 is colored in red, where S is parallel
to the union of S1 and an annulus A ⊂ ∂M1).

S1

S
V

W

Figure 2: Heegaard surface S.

A Heegaard splitting is weakly reducible if there is a pair of essential
disks from different sides of the Heegaard surface so that their boundary
curves are disjoint. Otherwise, the Heegaard splitting is strongly irreducible.

Fact 3.3. The Heegaard splitting V ∪S W is strongly irreducible.
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Proof. Suppose V ∪S W is weakly reducible. Then there is a pair of essential
disks D ⊂ V and E ⊂W so that ∂D ∩ ∂E = ∅. From the construction of M1,
A is incompressible in M1. Let S1,1 ⊂ S1 be S1 −N(∂S1), where N(∂S1) is a
regular neighborhood of ∂S1 in S1. After pushing the closure of A ∪N(∂S1)
a little into M1 so that it is disjoint from S1,1, A ∪N(∂S1) is turned into
an embedded annulus A1,1. Then S is isotopic to S1,1 ∪A1,1. It is not hard
to see that every essential disk of V (resp. W ) has the property that its
boundary curve cuts S1,1. It means that S1,1 is a hole for both V and W . By
the construction of V ∪S W , there is an essential disk in V (resp. W ) with
its boundary in S1,1. Then S1,1 is a compressible hole for both V and W .

By Lemma 2.4, for the essential disk D, there is an essential disk D1 ⊂ V
such that

(1) ∂D1 ⊂ S1,1;
(2) there is a component a ⊂ ∂D ∩ S1,1 such that dC(S1,1)(πS1,1

(a), ∂D1)
≤ 3;

Similarly for the essential disk E, there is an essential disk E1 ⊂W such
that

(1) ∂E1 ⊂ S1,1;
(2) there is a component b ⊂ ∂E ∩ S1 such that dC(S1,1)(πS1,1

(b), ∂E1) ≤
3;

Since ∂D ∩ ∂E = ∅, by Lemma 2.2, dC(S1,1)(πS1,1
(a), πS1,1

(b)) ≤ 2. By tri-
angle inequality,

dC(S1,1)(∂D1, ∂E1) ≤ 8.

Since S1,1 is an essential subsurface of S1, every essential simple closed curve
in S1,1 is also an essential simple closed curve in S1. Then

dC(S1)(∂D1, ∂E1) ≤ 8.

Since S1 ⊂ ∂V1, it is not hard to see that D1 is also an essential disk in V1.
So is the disk E1. Then the inequality above implies that

dC(S1)(g
n(α), h ◦ f(β)) ≤ 8,

for a pair of α and β bounding two essential disks in V1 and V2 respectively.
It contradicts the assumption of M1. �

It is known that every Heegaard splitting of a boundary reducible 3-
manifold is weakly reducible. Then the torus boundary T 2

1 of M1 = V1 ∪f◦gn
V2 is incompressible.

Let ST1 and ST2 be two solid tori. Let A2
1 ⊂ ∂(ST1) be an incompressible

annulus so that the core circle of A2
1 intersects the meridian circle in at least
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two points up to isotopy. Similarly, choose an annulus A2
2 in the boundary

of ST2. After gluing ST1 and ST2 together by a homeomorphism from A2
1

to A2
2, the resulted 3-manifold M2 is a small Seifert fiber space with a torus

boundary T 2
2 , where T 2

2 is incompressible.
Let h1 : T 2

1 → T 2
2 be a homeomorphism such that h1(∂S1) = ∂A2

1. Then
M∗ = M1 ∪h1

M2 is closed and T 2
2 is incompressible in M∗.

Let S∗ = S1 ∪A2
1. Then S∗ splits M∗ into two 3-manifolds, denoted by

V ∗ and W ∗ respectively. In this case, V ∗ is an amalgamation of V1 and a
solid torus ST1 along the annulus ∂V1 − S1. Then there are finitely many
disjoint essential disks cutting V ∗ into some 3-balls. So V ∗ is a genus g
handlebody. Similarly, W ∗ is a genus g handlebody too. Hence V ∗ ∪S∗ W ∗
is a Heegaard splitting of M∗.

Fact 3.4. V ∗ ∪S∗ W ∗ is a distance 2 genus g Heegaard splitting.

Proof. Since ∂S1 is essential in S∗, every compression disk of S1 in M1 is
an essential disk of S∗. Since there are compression disks of S1 in two sides,
there are essential disks in V ∗ and W ∗ disjoint from ∂A2

1 in S∗. Hence the
Heegaard splitting V ∗ ∪S∗ W ∗ has the distance at most two.

Suppose the Heegaard splitting V ∗ ∪S∗ W ∗ has distance at most one.
Then there are two essential disksD ⊂ V ∗ and E ⊂W ∗ so that ∂D is disjoint
from ∂E. It is not hard to see S1 is a compressible hole for both V ∗ and W ∗.
By Lemma 2.4, for the essential disk D, there is an essential disk D1 ⊂ V ∗
such that

(1) ∂D1 ⊂ S1;
(2) there is a component a ⊂ ∂D ∩ S1 such that dC(S1)(πS1

(a), ∂D1) ≤ 3;
Since ∂S1 bounds an essential annulus in V ∗, after some isotopy, D1 is

a compressing disk for S1 in M1.
Similarly for the essential disk E, there is an essential disk E1 ⊂W ∗

such that
(1) ∂E1 ⊂ S1;
(2) there is a component b ⊂ ∂E ∩ S1 such that dC(S1)(πS1

(b), ∂E1) ≤ 3;
(3) E1 is a compression disk for S1 in M1.
Since ∂D ∩ ∂E = ∅, by Lemma 2.2, dC(S1)(πS1

(a), πS1
(b)) ≤ 2. By trian-

gle inequality,

dC(S1)(∂D1, ∂E1) ≤ 8.

It contradicts the assumption of M1. �
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By Fact 3.4, M∗ admits a distance 2, genus g Heegaard splitting. Fur-
thermore, it contains an essential torus. Then there is a free abelian subgroup
Z2 in its fundamental group. So M∗ is non hyperbolic.

4. Proof of Theorem 1.3

Before proving Theorem 1.3, we introduce some results, which are Facts 4.1,
4.2 and 4.3.

Let M be a closed orientable 3-manifold admitting a distance 2 Heegaard
splitting V ∪S W . By the definition of Heegaard distance, there are three
essential simple closed curves {α, γ, β} so that α ∩ γ = ∅, γ ∩ β = ∅ and α
(resp. β) bounds an essential disk in V (resp. W ). Set

G = {α, γ, β}.

Then it is a geodesic in C(S) realizing the distance of V ∪S W .
By the Geometrization theorem, there are finitely many (possible no)

essential pairwise disjoint and nonisotopic tori in M so that cutting M
along these tori, each component is either hyperbolic, Seifert or solvable.
Thus to understand the geometry of M , it is necessary to study the essential
torus contained in M . Since M admits a distance 2 Heegaard splitting, by
Schultens’ Lemma [25], they can be isotoped into a general position so that
T 2 ∩ S consists of essential simple closed curves in both S and T 2. After
pushing the possible ∂-parallel annulus to the other side, we assume that
each component of T 2 ∩ V (resp. T 2 ∩W ) is an essential annulus in V (resp.
W ). As those two boundary curves of an essential annulus in V , for example,
presents too many possibilities, we want to reduce it into finitely many cases
so that we can exam all these intersection curves.

For doing this, let us recall the non hyperbolic example in Section 3. It
says that there is an essential nonseparating simple closed curve γ so that for
any pair of essential simple closed curves α and β disjoint from γ bounding
essential disks in V and W respectively, dC(Sγ)(α, β) ≥ 11, or equivalently,
this Heegaard splitting is locally large. Then it implies that

Fact 4.1. every geodesic realizing the distance of V ∪S W has γ as its
vertex.

Proof. Suppose the conclusion is false. Then there is a geodesic

G1 = {α1, γ1, β1}
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so that
(1) it realizes the Heegaard distance;
(2) γ1 is not isotopic to γ.
Let Sγ = S −N(γ). Since the nonseparating essential simple closed curve

γ bounds no essential disk in V or W , Sγ is a compressible hole for both
of these two disk complexes of V and W . By Lemma 2.4, for α1 (resp. β1),
there is an essential disk D (E) so that

(1) ∂D (resp. ∂E) is disjoint from γ;
(2) there is an essential disk D1 (resp. E1) which is disjoint from D (resp.

E);
(3) a component a of α1 ∩ Sγ (resp. b of β1 ∩ Sγ) is disjoint from a

component of ∂D1 ∩ Sγ (resp. ∂E1 ∩ Sγ).
Then by Lemma 2.2,

dC(Sγ)(πSγ (a), ∂D) ≤ 3 and dC(Sγ)(πSγ (b), ∂E) ≤ 3.

Since each component of γ1 ∩ Sγ is disjoint from a and b and not isotopic
to γ, by Lemma 2.2,

dC(Sγ)(πSγ (a), πSγ (b)) ≤ 4.

Then by triangle inequality, dC(Sγ)(∂D, ∂E) ≤ 10. It contradicts the assump-
tion of γ. �

The condition that the Heegaard splitting V ∪S W is locally large is
natural because for a geodesic realizing Heegaard distance, we always want
to study its local behavior. With the locally large property of the Heegaard
splitting, each component of T 2 ∩ S is isotopic to γ. Because, on one hand,
for each component C of T 2 ∩ S, it is a boundary component of both an
essential annulus A1 of T 2 ∩ V and an essential annulus A2 of T 2 ∩W .
Doing a boundary compression on A1 (resp. A2) in V (resp. W ) produces
an essential disk D (resp. W ). Then C is disjoint from both ∂D and ∂E.
So the geodesic G = {∂D,C, ∂E} realizes the Heegaard distance of V ∪S W .
On the other hand, by Fact 4.1, G has γ as a vertex. So C is isotopic to γ.
Hence each component of T 2 ∩ S is isotopic to γ.

Doing a boundary compression on T 2 ∩ V results an essential separating
disk D. Then D is disjoint from T 2 ∩ V . Moreover,

(1) D cuts out a solid torus ST in V ;
(2) each component of T 2 ∩ V lies in this solid torus ST .
Since T 2 ∩ V (resp. T 2 ∩W ) are contained in ST , all components of T 2 ∩

V (resp. T 2 ∩W ) are pairwise disjoint and parallel, i.e., any two components
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of T 2 ∩ V cuts out an I-bundle over an annulus. So are T 2 ∩W . Since the
union of all those annuli is T 2, by combinatorial techniques, we have

Fact 4.2. T 2 intersects V in only one essential annulus.

Proof. Suppose there are at least two essential annuli in V . It is known that
there is an essential disk D ⊂ V such that D cuts out a solid torus containing
T 2 ∩ V . For T 2 ∩W , there is also an essential disk E ⊂W such that E cuts
out a solid torus containing T 2 ∩W , see Figure 3.

D E

V W

Figure 3: Parallel annuli.

Since the distance of Heegaard splitting V ∪S W is 2, ∂D ∩ ∂E 6= ∅. It
means that the red circles coincide with the blue circles in Figure 3. Then the
essential annulus bounded by the red circles in V and the essential annulus
bounded by the blue circles in W are patched together in T . And the resulted
manifold is a torus or a Kleinian bottle. But T 2 contains no Kleinian bottle
as its subset. So the resulted surface is a torus which is the T 2, where it
intersects S in only two simple closed curves, a contradiction. �

By the proof of Fact 4.2, we have

Fact 4.3. if M is toroidal, there is only one essential separating torus in
M up to isotopy.

We begin to prove Theorem 1.3, which is rewritten as follows.

Theorem 4.4. For a 3-manifold M admitting a distance two Heegaard
splitting V ∪S W of genus at least two, if there is an essential nonseparating
simple closed curve γ in S so that

1) γ bounds no essential disk in V or W ;

2) there is a geodesic realizing Heegaard distance of V ∪S W with γ as its
vertex;
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3) for any two essential simple closed curves α and β bounding disks in V
and W respectively, if they are both disjoint from γ, then dC(Sγ)(α, β) ≥
11,

then M is either a hyperbolic 3-manifold or an amalgamation of a hyperbolic
3-manifold and a small Seifert fiber space along an incompressible torus.

Proof. Since M admits a distance 2 Heegaard splitting, by Haken’s Lemma,
M is irreducible. It is known that every irreducible closed orientable 3-
manifold M either contains an essential torus or not. In the later case,
by Geometrization theorem, M is either a small Seifert fiber space or a
hyperbolic 3-manifold.

Claim 4.5. M is not a small Seifert fiber space.

Proof. Suppose M is a small Seifert fiber space. Then it has S2 as its base
surface and at most three exceptional fibers. If M has only one or two
exceptional fibers, then M is a Lens space. But all genus at least 2 Heegaard
splitting of a Lens space is stabilized, reducible, i.e., they all have distance
0. So M has three exceptional fibers.

It is known that every irreducible Heegaard splitting of a Seifert fiber
space is either vertical or horizontal, see [17]. If the Heegaard splitting V ∪S
W is vertical, then it has genus 2. By Corollary 2.6, there are two essential
disks D1 and D2 from two sides of S and two non isotopic disjoint essential
simple closed curves C1 and C2 so that both C1 and C2 are disjoint from
∂D1 ∪ ∂D2. But under the condition that dC(Sγ)(α, β) ≥ 11, by the proof of
Fact 4.1, C1 is isotopic to C2. It is impossible. So it is a horizontal Heegaard
splitting.

Recall that for a horizontal Heegaard splitting, M1 = F × I/(x, 0) ∼
(ψ(x), 1), where ∂F is connected and ψ|∂F = Id, and M = M1 ∪B2 × S1.
And V = F × [0, 12 ] (resp. W is homeomorphic to F × [12 , 1]). By Lemma 2.5,
there is an essential simple closed curve C ⊂ F so that A1 = C × [0, 12 ] and
A2 = C × [12 , 1] so that C × {0} intersects C × {1} in at most one point.

It is not hard to see that there are a pair of essential disks of two sides
of S so that their boundary disjoint from C × {12}. By the proof of Fact 4.1,
C × {12} is isotopic to γ. Let a be an arc in F disjoint from C. Then there
is an essential disk D1 = a× [0, 12 ] (resp. D2 = a× [12 , 1]) disjoint from C ×
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{12}. Thus D1 ∩ A1 = ∅ ( resp. D2 ∩ A2 = ∅ ). Hence

dC(Sγ)(∂D1, ∂D2) ≤ diamC(Sγ)(∂D1, ∂A1)+

+ diamC(Sγ)(∂A1, ∂A2)+

+ diamC(Sγ)(∂D2, ∂A2)

≤ 1 + 2 + 1

= 4.

It contradict the choice of γ. �

So M is not a small Seifert fiber space. Then it is either hyperbolic or
toroidal.

If M is a hyperbolic 3-manifold, then the proof ends. So we assume that
M contains an essential torus T 2. By Facts 4.1, 4.2 and 4.3,

(1) it contains only one essential separating torus T 2 up to isotopy;
(2) each component of T 2 ∩ S is isotopic to γ;
(3) T 2 ∩ V (resp. T 2 ∩W ) splits V (resp.W ) into a solid torus and a

handlebody.
Let A be the annulus bounded by T 2 ∩ S in S. Then SA = S −A = Sγ .

Let M1 be the amalgamation of these two solid tori along A. It is not hard
to see that M1 is a small Seifert fiber space with a disk as its base surface.

Let M2 = M −M1. In M2, ∂SA consists of two isotopic essential simple
closed curves in ∂M2 = T 2 and SA cuts M2 into two handlebodies. Let S2 be
the union of SA and an annulus A∗ bounded by ∂SA in ∂M2, see Figure 4.

SA

S

S2
A

A
*

Figure 4: Heeegaard surface S2.

After pushing S2 a little into the interior of M2, S2 cuts M2 into a
handlebody and a compression body. So there is a Heegaard splitting V2 ∪S2

W2 for M2. Similar to the proof of Fact 3.3, S2 is a strongly irreducible
Heegaard surface.

Remember that S2 is also contained in M . So
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Fact 4.6. S2 shares the essential subsurface SA with S in common.

Proof. See Figure 4. �

From Figure 4, every essential disk in V2 (resp. W2) with its boundary dis-
joint from ∂SA is a compression disk of SA in V (resp. W ) and a compression
disk of S in V (resp. W ).

Claim 4.7. M2 is irreducible, boundary irreducible, atoroidal and anannu-
lar.

Proof. Since M is irreducible and T 2 is incompressible, M2 is irreducible
and boundary irreducible. By Fact 4.3, M contains only one essential torus
T 2 up to isotopy. Then M2 is atoroidal.

Now suppose M2 contains an essential annulus A1. By Schultens’ Lemma
[25], A1 ∩ S2 are all essential simple closed curves in both A1 and S2. Af-
ter pushing all these boundary parallel annuli to the different side of S2,
A1 ∩ V2 (resp. A1 ∩W2) are essential annuli. We claim that at least one
component γ1 ⊂ A1 ∩ S2 is not isotopic to γ. For if not, then there is an
I-bundle of ∂M2 = T 2 containing A1 after some isotopy, which means that
A1 is inessential. Then there is an essential disk D1 ⊂ V2 (resp. E1 ⊂W2))
disjoint from γ1.

Since S2 cuts M2 into a handlebody and a compression body, let V2 be
the handlebody. From Figure 4, S2 is the union of SA and annulus A∗, where
V2 is a disk sum of a handlebody and I-bundle of the annulus A∗. Then the
boundary of each essential disk in V2 intersects SA nontrivially. So SA is a
compressible hole. By the similar argument, SA is also a compressible hole
for W2. Then by the proof of Fact 4.1, there is a pair of essential disks
D ⊂ V2 for D1 and E ⊂W2 for E1 so that ∂D and ∂E are both disjoint
from ∂SA and

dC(SA)(∂D, ∂E) ≤ 10.

Remember that each essential disk in V2 or W2 disjoint from ∂SA is still an
essential disk in V or W respectively and SA = Sγ . Then it contradicts the
assumption of γ. �

By Thurston’s hyperbolic theorem of Haken 3-manifolds, M2 is hyper-
bolic. Then M = M1 ∪T 2 M2 is an amalgamation of a hyperbolic 3-manifold
and a small Seifert fiber space. �

Remark 4.8. The main result (Theorem 1.1) of Johnson, Minsky and Mo-
riah’s paper [10] says that for a Heegaard splitting V ∪S W , if there is an
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essential subsurface F ⊂ S such that the distance of these two projections
of disk complexes D(V ) and D(W ) into F , denoted by dF (S), satisfies that
dF (S) > 2g(S) + 2, then up to an ambient isotopy, any Heegaard splitting
of M with genus less than or equal to g(S) has the subsurface F in common.
For the Heegaard splitting in Theorem 4.4, if condition (3) is updated into
dS1(α, β) ≥ max{2g(S) + 3, 11}, then any Heegaard splitting S

′
of it with

genus less than or equal to g(S) has S1 in common up to an ambient isotopy.
Since ∂S1 bounds no disk in M , S1 ⊂ S

′
is essential. By the calculation of

the Euler characteristic number, ∂S1 bounds an annulus A in S
′
. So the

Heegaard surface S is a minimal Heegaard surface.

5. Proof of Theorem 1.6

Let M , V ∪S W and γ be the same as in Theorem 4.4. Recall that a once
punctured torus is a torus domain in V (resp. W ) if it is essential in S and
its boundary curve bounds an essential disk in V (resp. W ).

Throughout the proof of Theorem 4.4, the case that M contains an
essential torus means that (1) two copies of γ bounds an essential annulus
in V (resp. W ), namely, there are two torus domains containing γ in both V
and W ; (2) γ is not a co-core in either of these two sides of S. To eliminate
all possible essential tori in M , it is sufficient to add some conditions related
to these two cases.

We assemble the above argument as the following proposition.

Proposition 5.1. Let M , V ∪S W and γ be the same as in Theorem 4.4.
If either there is no torus domain containing γ in at least one of V and W
or γ is a co-core for one side of S, then M is hyperbolic.

Proof. Suppose M is not hyperbolic. Since M admits a locally large distance
two Heegaard splitting, by Theorem 4.4, M contains an essential annulus T 2.

The proof of Theorem 4.4 suggests that T 2 intersects S in two copies of
γ. It means that these two copies of γ bounds an essential annulus A1 (resp.
A2) in V (resp. W ). Then doing a boundary compression on A1 (resp. A2)
produces a separating essential disk in V (resp. W ), which cuts out a solid
torus in V (resp. W ). So there are two torus domains containing γ in both
V and W .

Claim 5.2. γ is not a co-core for either side of S.

Proof. Suppose the conclusion is not true. Without loss of generality, we
assume γ is a co-core in V . Then there is an essential disk D so that ∂D ∩ γ
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in one point. So ∂N(∂D ∪ γ) bounds an essential disk D1, which cuts V
into a solid torus ST and a smaller genus handlebody. Since the annulus
A1 is essential in V and V is irreducible, by the standard innermost disk
argument, A ∩D1 = ∅. Then A1 ⊂ ST .

As γ is a co-core, the disk D intersects A1 in one essential arc. Then
there is a boundary compression disk D0 ⊂ D for A1 in ST so that after
doing a boundary compression along D0, A1 is changed into a trivial disk in
V , a contradiction. �

Thus these two conclusions contradict the assumption of γ. �

Moreover, Proposition 5.1 can be updated into the following theorem,
which is Theorem 1.6.

Theorem 5.3. Let M , V ∪S W and γ be the same as in Proposition 5.1.
Then M is hyperbolic if and only if either there is no torus domain con-
taining γ in at least one of V and W or γ is a co-core for one side of S.

Proof. For the forward direction. Suppose that (1) there are two torus do-
mains F1 and F2 containing γ in V and W respectively; (2) γ is a co-core for
neither of these two sides of S. Then ∂F1 (resp. ∂F2)) cuts out a solid torus
in V (resp. W ) containing γ. Let A be the closed regular neighborhood of
γ. Since γ is not a co-core for either side of S, by standard combinatorial
techniques, ∂A bounds two essential annuli A1 and A2 in both of V and W
respectively, see Figure 5. In Figure 5, let a be a properly embedded essen-
tial arc in F1 −A with its two ends in ∂A. Then there is also a properly
embedded essential arc a1 in A1 so that a ∪ a1 bounds a disk in this solid
torus, which is a boundary compression disk of A1 in V. It is not hard to
see that doing a boundary compression along this disk on A1 produces an
disk D1 in this solid torus, which is also an essential disk in V . Since D1 is
disjoint from A1 and A1 is incompressible in V , D1 is parallel to the disk
bounded by ∂F1.

Then A1 ∪A2 is a torus T 2 or a Kleinian bottle K. Since A1 ∪A2 is
separating in M , it is a torus T 2.

Claim 5.4. T 2 is essential in M .

Proof. By Figure 5, A1 (resp. A2) cuts out a solid torus ST1 (resp. ST2),
where both of these two solid tori have the annulus A as their common
boundary surface. Since γ, the core curve of A, is not a co-core of either of
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A

A1

Figure 5: The essential annulus A1.

these two handlebodies V and W , M2 = ST1 ∪A ST2 is a small Seifert fiber
space. Since A is incompressible in both ST1 and ST2, A is incompress-
ible in M2. Then T 2 is incompressible in M2. For if not, then T 2 = ∂M2

is compressible in M2. So the compression disk D intersects A nontrivially.
Otherwise, either A1 or A2 is compressible in ST1 or ST2 respectively. Then
there is an outermost disk D0 ⊂ D for A. Without loss of generality, we
assume that D0 ⊂ ST1 in V . It is not hard to see that D0 is a boundary
compression disk of A1 in V . After doing a boundary compression on A1

along D0, A1 is changed into a trivial disk in V , which is impossible.
Let M1 = M −M2. The proof of Fact 3.3 suggests that T 2 is incom-

pressible in M1. So T 2 is incompressible in M . �

So M contains an essential torus T 2. It contradicts the assumption that M
is hyperbolic.

For the backward direction. The proof is already contained in the proof
of Proposition 5.1. �
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