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A finite dimensional approach to
Donaldson’s J-flow

RuapHAi DERVAN AND JULIEN KELLER

Consider a projective manifold with two distinct polarisations L,
and Ls. From this data, Donaldson has defined a natural flow on
the space of Kéhler metrics in ¢;(L1), called the J-flow. The exis-
tence of a critical point of this flow is closely related to the existence
of a constant scalar curvature Kahler metric in ¢;(L;) for certain
polarisations Ls.

Associated to a quantum parameter k> 0, we define a flow
over Bergman type metrics, which we call the J-balancing flow. We
show that in the quantum limit £k — +o0, the rescaled J-balancing
flow converges towards the J-flow. As corollaries, we obtain new
proofs of uniqueness of critical points of the J-flow and also that
these critical points achieve the absolute minimum of an associated
energy functional.

We show that the existence of a critical point of the J-flow im-
plies the existence of J-balanced metrics for k > 0. Defining a no-
tion of Chow stability for linear systems, we show that this in
turn implies the linear system |Ls| is asymptotically Chow sta-
ble. Asymptotic Chow stability of |Ls| implies an analogue of K-
semistability for the J-flow introduced by Lejmi-Székelyhidi, which
we call J-semistability. We prove also that J-stability holds auto-
matically in a certain numerical cone around Lo, and that if Lo
is the canonical class of the manifold that J-semistability implies
K-stability. Eventually, this leads to new K-stable polarisations of
surfaces of general type.
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1. Introduction

Let M be a smooth projective manifold equipped with two ample line bun-
dles L1, Lo and of complex dimension n > 2. Fix Hermitian metrics h; €
Met(L1), hy € Met(Ls) such that the curvatures w = ¢1(hq), and x = ¢1(h2)
are both Kahler forms. Given this data, Donaldson introduced a flow of
Kahler metrics called the J-flow [I4]. This flow is given by the following
parabolic PDE in the (smooth) w-potentials ¢;:

(1) i XA (w+V/=109¢)" !
ot ! (@ + V10067

where v is the topological constant S C}(sz((:z(f)i) " called the J-constant. A

critical metric for Donaldson’s J-flow is a solution at time +o00 of the flow,
i.e. a Kéahler metric w 4+ /—1090¢ € c1(L1) solution of

(2) X A (W + V=190¢)" ' = v(w + vV/—108¢)".

Donaldson’s motivation for studying this flow is its relation to an infi-
nite dimensional moment map picture. Soon after its introduction, the work
of Chen, together with a refinement due to Song-Weinkove, proved that if
Lo = Ky is the canonical class of M, then the existence of a critical point of
the J-flow implies properness of the Mabuchi functional for (M, Ly) [7, 43].
Properness of the Mabuchi functional is conjecturally equivalent to the ex-
istence of a constant scalar curvature Kéhler (which we abbreviate to cscK)
metric on L;. Indeed, the existence of solution of the J-flow is equivalent
to properness of a functional, which we denote I,,, due to work of Chen
and Collins-Székelyhidi [7, [10]. When Ly = K the functional I, is a com-
ponent of the Mabuchi functional, which explains the relation between the
cscK problem and the J-flow. Since then there has been much work in pro-
viding numerical criteria for the existence of critical metrics of the J-flow,
in order to better understand the existence of cscK metrics [8], 43| 49], un-
der the assumption Kj; is ample. Chen has also very recently proposed a
program to prove the existence of cscK metrics using a continuity method,
in which the metric at t = 0 is a critical metric of the J-flow [9]. We later
discuss these motivations for studying the J-flow in further detail.

We now give an overview of the main results of this paper. As is now
well understood, one can quantise metrics on L using metrics on the finite
dimensional vector spaces HO(M, L'f) with quantum parameter k, called
Bergman metrics. In the present work we study a flow on the space of
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Bergman metrics, which we call the J-balancing flow. Critical points of the
J-balancing flow are called J-balanced metrics, and these fit naturally into
a finite dimensional moment map picture. Our main result is that in the
quantum limit & — 400, the J-balancing flow converges to the J-flow.

Theorem 1.1. Fiz T > 0 and let wi(t) be the solution of the J-balancing
flow, for t € [0,T]. Then as k — oo, the sequence wy(t) converges in C™>
to the solution of the J-flow as k — oo. Furthermore, the convergence s
C! in the variable t. Assuming there is a critical point of the J-flow, the
convergence holds for all t > 0.

By showing J-balanced metrics are unique, we obtain the following Corol-
lary, which is an analogue of Donaldson’s quantisation proof of uniqueness
of cscK metrics [15].

Corollary 1.2. Critical metrics of the J-flow are unique.

This was first proven by Chen using the strict convexity of the I,,, func-
tional along certain geodesics in the space of Kéhler metrics on L; [§]. Sim-
ilarly, we recover the fact that J-balanced metrics achieve the absolute min-
imum of an associated functional.

Corollary 1.3. Critical metrics of the J-flow achieve the absolute mini-
mum of the I, functional.

This is analogous to Donaldson’s proof that cscK metrics achieve the
absolute minimum of the Mabuchi functional [16].

Our next results relate the existence of a critical metric to algebro-
geometric notions of stability. We define a notion of Chow stability for a
linear system on a polarised manifold, and by relating this notion of stability
with the existence of J-balanced metrics we obtain the following.

Theorem 1.4. The existence of a critical metric of the J-flow implies the
linear system |La| is asymptotically Chow stable.

This is an analogue of Donaldson’s result proving the existence of a cscK
metric implies asymptotic Chow stability [15]. The first result relating the
J-flow to algebro-geometric stability is due to Lejmi-Székelyhidi [23]. They
proved the existence of a critical point implies an analogue of K-stability
in this case, which we call J-stability. Since asymptotic Chow stability of
|Lo| implies J-semistability, we obtain a new proof of the semistability part
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of their result. We remark that they then use a perturbation argument to
prove strict J-stability.

Corollary 1.5. If (M, Ly, Ly) admits a critical metric of the J-flow, then
it 1s J-semistable.

The existence of a cscK metric is conjecturally equivalent to the algebro-
geometric notion of K-stability; this is called the Yau-Tian-Donaldson con-
jecture. Through Chen’s work one would therefore expect that when Lo =
Ky, J-stability is naturally related to K-stability [7]. We show that this is
indeed the case. We extend Lejmi-Székelyhidi’s definition of J-stability to
the case where Lo is an arbitrary (not necessarily ample) line bundle, and
our results hold in this generality.

Theorem 1.6. If (M, Ly, Kyr) is J-semistable, then (M, L) is K-stable.

Similarly, analogously to the work giving numerical criteria for the ex-
istence of critical metrics of the J-flow, we give a numerical criterion for
J-stability.

Theorem 1.7. Suppose yL1 — Ly is nef, with v > 0. Then (M, Ly, La) is
J-stable.

Here we have used additive notation for line bundles. Note that while v >
0 is automatic when Lo is ample, our result holds for Ly arbitrary provided
~ > 0. Combining the previous two results gives the following, which was
also proven by the first author using a different method [13, Theorem 1.7].

Corollary 1.8. Let vy be the J-constant for (M, L1, Kyr), and suppose vy >
0. If yL1 — Ky is nef, then (M, Lq) is K-stable.

We emphasise that in contrast to the corresponding analytic results due
to Chen, Weinkove and Song-Weinkove proving properness of the Mabuchi
functional [8][43],[49], we do not need to assume that K, is ample. We expect
however that a similar phenomenon occurs for the Mabuchi functional, see
Conjecture .1}

We can strengthen the above results when M is a surface by a more
delicate analysis of the J-stability condition.

Theorem 1.9. If M is a projective surface satisfying %’yLl — Lo is nef,
then (M, Ly, Lo) is J-semistable provided v > 0. In particular if Ly = Ky,
then M s K-stable.
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This gives the most general currently known criterion proving K-stability
of polarised surfaces with v > 0.

Finally, building on work of Sano and Seyyadali [41] [42], we prove that
J-balanced metrics are the fixed points of a natural dynamical system. This
gives a variational approach to the existence of such metrics and provides
a natural interpretation of the energy functionals associated to the J-flow
that appeared in [8], [43].

Theorem 1.10. Assume there exists a critical metric of the J-flow. Then
for each k> 0, there is a natural map

Ty : Met(L}) — Met (L)

defining a dynamical system which has the J-balanced metric as its (unique)
fized attractive point.

This also gives an algorithm to compute critical metrics, however we do
not pursue this direction in the present work.

1.1. The J-flow from symplectic geometry

The J-flow is very natural from the point of view of symplectic geometry as
we now briefly explain. Consider M a compact symplectic manifold and w, x
are symplectic forms. If one considers the manifold Diff (M) of diffeomor-
phisms f : M — M homotopic to the identity and equipped with a natural
symplectic form

n

) Tyl = [ xany,

then there is a naturally associated moment map picture [I4]. Here a,b €
I(f*(TM)) as we identify the tangent space of Diff (M) at f to the space of
smooth sections of f*(T'M). The group G of exact w-symplectomorphisms
of M acts on Diff(M) and preserves T, . Since we can identify the Lie
algebra Lie(G) with the set

{f ec™OLR), [ fur- o},
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we can express simply the associated moment map p : Diff (M) — Lie(G)*
for the group action as

* n—1

(4) pa(f) = W -

This moment map induces also a gradient flow f; of the function ||us(f:)]|?.
Assuming that M has an integrable almost-complex structure compatible
with w (in the sequel M will always be Kéhler), the J-flow is just the gradi-
ent flow expressed using (f;)~!(w) on M, fixing the complex structure and
varying the form within the Kéhler class. From [§], it is known long time
existence of Donaldson’s J-flow for all time, that is admits a smooth so-
lution for all £ > 0. If it exists, Chen moreover shows that the critical metric

is actually unique.
1.2. CscK metrics and the J-flow

While the Yau-Tian-Donaldson conjecture predicts the existence of a cscK
metric is equivalent to K-stability, in practice it seems just as difficult to
check K-stability in specific examples as it is to check the existence of a
cscK metric. Thus, it is beneficial to give more explicit criteria that apply in
concrete examples. For example, one can ask if given such a Kahler class that
admits a cscK metric (for example a Kéhler-Einstien metric, where many
examples are known), if it is possible to describe nearby Kéhler classes that
have also cscK metrics. One way of achieving this goal is by understand-
ing properties of the Mabuchi energy; recall an important conjecture of
Mabuchi-Tian asserts that the existence of a cscK metric should be equiva-
lent to the properness of the Mabuchi energy (a small modification is needed
if M admits holomorphic vector fields).

From the above discussion, it is therefore natural to search for Kéahler
classes with proper Mabuchi energy around a Kahler class that is endowed
with a cscK metric. In this direction, it was first proven by Chen that if
[X] € —c1(M) < 0 and there exists a critical metric of the J-flow in the class
[w], then the Mabuchi energy for [w] is bounded from below, see [7, [50]. This
was strengthened by Song and Weinkove who proved the properness of the
Mabuchi energy [43]. Thus Mabuchi-Tian’s conjecture predicts the existence
of a cscK metric in such [w].

Donaldson observed that a necessary condition for the existence of a
critical metric is the following inequality on the Chern classes

() nylwl =[x = myer(Ly) — e (Le) > 0.
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In dimension 2, it is proved in [8, 49] that the condition is sufficient, the
problem being proved equivalent to solve a Monge-Ampere equation in [8]
(see also the study of the convergence of the J-flow in [49]). However, the
condition is not sufficient in higher dimensions, see [23]. Ideally, one could
hope that an optimal Chern inequality similar to (5)) (or more generally an
algebro-geometric condition) would imply the existence of critical metrics of
the J-flow, and that this condition would be relatively simple to check, at
least for general type manifolds, in view of [39], Section 4]. Keeping in mind
the Yau-Tian-Donaldson conjecture, one can expect that the right algebro-
geometric condition for the existence of a critical metric would provide the
K-stability of the class.

The problem to find a good algebro-geometric condition equivalent to the
existence of a critical metric is subtle. For instance, it is known from [43] [50]
that if there exists a Kihler metric w’ = w + /—190¢ € c1(L1) satisfying

(6) (nyw — (n—1Dx)A W) 2 Auna >0

for all (1,0)-form w, then there is convergence of the flow towards a critical
metric. Conversely if there is convergence such a metric w’ does exist. Un-
fortunately, it seems pretty hard to check @ in practice. For instance it is
not even clear whether it depends on the class only (and not on the forms)
as pointed out in [23].

The most general result using the J-flow to prove properness of the
Mabuchi functional for certain Ké&hler classes is due to Li-Shi-Yao [24]. We
remark that they are also able to use J-flow techniques to prove properness
of the Mabuchi functional for certain Kéhler classes also when c¢;(M) is
positive, i.e. M is Fano (see [12] for a similar result proven by a direct
analysis of the Mabuchi functional).

Very recently, Lejmi and Székelyhidi [23] have made an important con-
tribution to the subject by proposing an algebro-geometric condition (that
we call J-stability, see Section [4)) using the technology of deformation to the
normal cone and modelled on the K-stability theory. Their conjecture has
been proven in the toric case [10].

1.3. Organisation of the paper

In Section[2] we introduce a notion of J-balanced embeddings for X in certain
projective spaces depending on a quantum parameter k > 0. This notion of
J-balanced embedding is based on the symplectic formalism of moment maps
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and has an algebro-geometric interpretation that will become clear in Sec-
tion dl By pulling-back the Fubini-Study metric, such embeddings provide
algebraic metrics that we call J-balanced metrics. We also introduce certain
flows on the space of Bergman metrics of level k, called J-balancing flows,
that converge towards J-balanced metrics if they do exist. More precisely,
we prove that at the quantum limit £ — 400, the J-balancing flows converge
towards to Donaldson’s J-flow (Theorem ﬂ, Theorem .

In Section [3 building on the work of Sano and Seyyedali [41}, 42], we
prove that J-balanced metrics when they do exist, are actually attractive
fixed points of a natural dynamical system (Theorem Corollary .
This gives a variational approach to the existence of such metrics and pro-
vides a natural interpretation of the energy functionals associated to the
J-flow that appeared in [8] [43].

In Section [ we introduce a generalisation of the notion of Chow sta-
bility adapted to our context and prove that the existence of J-balanced
metrics implies the stability in that sense (Theorem . In particular,
our Chow stability condition is a necessary condition for the existence of a
critical metric to the J-flow (Corollary [4.20). We describe how it is related
to the notion of J-stability of Lejmi-Székelyhidi. Building on the blowing-up
formalism of Wang and Odaka for expressing weights, we are able to relate
the notion of J-stability and the classical notion of K-stability, giving a sim-
ple criterion for J-stability which corresponds to (weaker) algebraic version
of a result of Song-Weinkove [43] (Theorem [£.32] Theorem [4.41]). Eventually
we relate J-semistability to K-stability (Theorem .
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2. Finite dimensional approach to the J-flow

Given the Hermitian metric h € Met(L¥) with positive curvature, one can
consider the Hilbertian map

Hilb, = Hilby,, : Met(LY) — Met(H°(L}))

such that

Hilb, (h) = 1/ Codn XA (B!
v JIm

is the L? metric induced by the fibrewise h and the volume form yx A
c1(h)"1. On the other hand, one can consider the injective Fubini-Study
maps F'S = F'S : Met(H(L¥)) — Met(L¥), such that for H € Met(H°(L})),
{s;} an H-orthonormal basis of H°(X, L,*) and for all p € X,

dimHg,Ll )‘3‘( )‘2 _ dimHO(X, le)
> {WPNEsw ) = Vo, (X))

which means that we fix pointwisely the metric F.S,(H) € Met(L*). The
curvature of F'S(H) is the pull-back of the Fubini-Study metric living in
the projective space, using the embedding defined by the H-orthonormal
basis {s;}.

We also define the map

T\ = F'S o Hilb,.
Definition 2.1 (J-balanced metric). A fixed point hy of the map
T, : Met(L}) — Met (L)
is called a J-balanced metric at level &.
Let us denote in the sequel N = Ny = dim H°(LY) — 1. We introduce a
moment map setting in finite dimensions. Let us consider first pprg : PV —

vV —1Lie(U(N + 1)) which is a moment map for the U(N + 1) action and the
Fubini-Study metric wpg on PY. Given homogeneous unitary coordinates,
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one sets explicitly prg = (trs)a,s as

2023

(7) (MFS([zO,...,ZN]))a,,B: Z‘Zz‘g

Then, given a holomorphic embedding ¢ : M — PHY(LY)* and the Fubini
Study form wgg on the projective space, define

(8) i (6) = i /M ups(u(p)) x A (@50 (0).

An alternative, but equivalent, point of view is to consider y , as a map from
the space of holomorphic bases of s = {s;} of H°(LY) as a basis determines
a unique Hermitian inner product H for which it is orthonormal. Then, this
inner product induces a Fubini-Study metric wrgs and thus we can consider

i (s) = i /M urs(510), - v D)) X A wish(p).

Later we will be interested in special Hermitian metrics H (associated to a
particular basis) and so we shall write pu, , (H).

Proposition 2.2. The map py,  is a moment map for the U(N + 1) action
over the space of all bases of HO(L]f) with respect to the symplectic structure
defined by Equation @D

Proof. We follow essentially the techniques developped in [I8, Theorem 8.5.1].
Given A € Lie(GL(N + 1)), we denote A the induced action on PN and
Al = A - A|TM where A|TM stands for the orthogonal projection on TM
with respect to the Fubini-Study metric. On the space of bases identified to
GL(N + 1), we have a natural symplectic structure w defined at s by

A 1 A ~ -
w4 B) =1 / wrss(AT, BY) Y Awligh
M

1 ) 1 n—1
(9) + a /M grS,s (Xa ZA|TMWFS’S A ZB|TMwF575> X N\ QJF&S’

where A, B € Lie(GL(N + 1)) and grs = wrss(+, J-) is the associated met-
ric to the Kéhler form wpgs. We shall use the following fact (see for instance
the proof of [18, Lemma 3.2.1]): for any 1-forms «, 8 and Kéhler forms w, x,
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one has the identity
L0 A" = w0, B) AX AW — (n— D ABAX AW,
where g is the associated metric to w. Hence we can compute
w(A,B) = /M wrss(AL, BY) x Awisl
+ /M WFS,s (ZA|TMWFS 85131 70 WES, s) XA w?gls

2
(n_l)/ ZA|TM(’UFSS/\ZB| wFSS/\X/\w??SS?

/ WFS.s A B X/\WFSS
M

(4, B)
n—2
(4,B)

—(n—1) e WESs Mg WESs A X AWpg,
/wFss B X/\wpss

M

—(n—1)

/ wrs.s( B) X/\uJFSS
M

fya
A,
/ Oprs(A) A dpps(B) Ax Awpg?,
A
-1 [

tr(prsA)00ups(B) A x A Wigs:
M

= <d/MMFS X/\WFSS(B) A>

During the computation we used the fact that the embedding given by s is
holomorphic and prg is a moment map on the projective space. Moreover
Hk is Ad-equivariant as the integral of the Ad-equivariant moment map
HFS- 0

Now SU(N + 1) acts isometrically on the spaces of holomorphic bases with
the moment map given by

s vl (Mk,x@) _ Wmﬂ) € V=ILie(SUN +1)).

In the Bergman space of metrics GL(N + 1)/U(N + 1), we have a preferred
metric associated and this is precisely a J-balanced metric.
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Definition 2.3 (J-balanced embedding). The embedding ¢ is J-balanced
if and only if

(e (1)
N +1

g (1) = i (1)

Idy.1 = 0.

A J-balanced embedding corresponds (up to SU(N + 1)-isomorphisms)
to a J-balanced metric t*wpg by pull-back of the Fubini-Study metric from
PHO(L%)* so our two definitions of J-balanced metric and embedding actu-
ally agree. A notion of balanced basis can also be derived in an obvious way
using previous discussion. Note that for H € Met(H°(LY)), it also makes
sense to consider py ,(h) where h = FS(H) € Met(LY), i.e when h belongs
to the space of Bergman type fibrewise metric that we identify with B = By.

On the other hand, seen as a Hermitian matrix, u{ X(L) induces a vector
field on PV. We are lead to study the following flow

L N0

and we call this flow the J-balancing flow. To fix the starting point of this
flow, we choose a Kéhler metric w = w(0) and we construct a sequence of
Hermitian metrics hy(0) such that wg(0) := c¢1(hi(0)) converges smoothly
to w(0) providing a sequence of embeddings ¢x(0) for k£ > 0. For technical
reasons, we decide to rescale this flow by considering the following ODE,

dug(t)

(10) 7

= —k’QﬂL%,X(Lk (t))a

which we call the rescaled J-balancing flow. In the following Subsections [2.1
we will study the behaviour of the sequence of Kiahler metrics

an(t) = 1a(t)"(wrs)

as k tends to infinity.
2.1. The limit of the rescaled J-balancing flow

In this section, we assume that the sequence wy(t) is convergent and we want
to relate its limit to Equation .

Theorem 2.4. Suppose that for each t € Ry, the metric wy(t) induced by
Equation @) converges in smooth topology to a metric w; and that this
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convergence is C' int € Ry. Then the limit w; is a solution to Donaldson’s
J-flow starting at wo = limg_, oo wi(0).

The proof is similar to [5, Theorem 3]. The only difference is that we
are dealing with orthonormal basis of holomorphic sections {s;} of L} with
respect to Hz‘lbk,x(hk). But in that case, the asymptotic of the Bergman
function stands as

(11) > sili = MW +O(k"™)
=1

where w = ¢1(h) thanks to the following proposition, see [47] (we also refer to
[6, 51] and [3] where the first term of the asymptotic expansion is identified).

Proposition 2.5 (Catlin-Tian-Yau-Zelditch expansion). Let (M, L)
be a projective polarized manifold. Let h € Met(L) be a metric such that its
curvature c1(h) = w > 0 is a Kdhler form. Assume Q) to be a smooth volume
form. Then we have the following asymptotic expansion for k — oo,

N+1

12 nwin n—1
;yszyhk K+ O™,

where {s;} is an orthonormal basis of H(L*) with respect to the L? inner
product [,, h*(.,.)Q = Hilbo(h*). Here by O(k"'), we mean that for r > 0

N+1

S Isipe —

=1

S Cr k:TL— 1
Cr

where ¢, remains bounded if h varies in a compact set (in smooth topology)
in the space of Hermitian metrics with positive curvature.

In particular, the potentials 8 = —k’tI‘(,U,%XNFS) converge in smooth
topology to the potential
/\ n—1
(12) | XAW
wr

when k — +o0o. We also have

Proposition 2.6. Let h(t) € Met(L1) be a path of Hermitian metrics on
Ly with e1(h(t)) > 0. Let us consider hy(t) = FS(Hilby, , (h(t)*))/* the path
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of induced Bergman metrics. Then ahgt(t) converges to ag—f) as k — 400 in

C® topology. This convergence is uniform if h(t) belongs to a compact set
in the space of positively curved Hermitian metrics on Ly.

Proof. This is obtained easily by a simple modification of the proof of [5]
Proposition 2.3] or [I7, End of Section 1.4.1 and Theorem 9]. O

Proof of Theorem Let’s write wy = w + v/—100¢;. By assumption, ngt
is continuous and can be normalized to be unique by demanding that it has
vanishing integral. Consider the potential S (t) induced by the embedding
1 (t) given by the rescaled J-balancing flow. The integral of Si(t) is zero.
Therefore, with Proposition this sequence of potentials converges to ¢t~
Hence, together with , the theorem is proved. O

2.2. Convergence result for the rescaled J-balancing flow

Theorem 2.7. Fiz T > 0. For any t € [0,T], the sequence wi(t) converges
in C*° topology to the solution of Donaldson’s J-flow with ¢o =0 and
w = limg_,oo wi(0). Furthermore, the convergence is C' in the variable t. If
there is a critical metric, then there is convergence for all t > 0.

The last part of the theorem is a consequence of the long time existence of
the flow and the fact that when there is a critical metric, the J-flow converges
towards this critical metric [43, Theorem 1.1, (i) < (4i)]. Thus the metrics
involved in the J-flow belong to a compact set in the space of smooth Kéahler
metrics when there is a critical metric. The proof of Theorem [2.7] will occupy

Subsections [2.2.2], 2.2.3] 2.2.4], and [2.2.5]

2.2.1. The Qi operator. In this section, we recall the following impor-
tant technical result, see [25, Theorem 1], [26, Section 6]. Note that the C"
estimate below holds for any f € C*°(M,R).

Theorem 2.8. Let us consider h € Met(L) with positive curvature on an
ample line bundle L, and w = c1(h) the induced Kdhler form, Q a smooth
positive volume form and {s,} orthonormal basis of H°(L*) with respect to
Hilbo(h*). Then the operator on C*°(M,R) given by

QN0) = g [T s s (@) s sl () @),
a,b

approximates the operator %nexp(—ﬁ) in the following sense. For any r €
N*, there exists C > 0 such that for all k sufficiently large and any function
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f e C>®(M,R), one has

|3 (Gl

(1) o -1

c
< — e
L2

C
' < 9l fllorss
)

where the norms are taken with respect to the induced Kdhler form obtained
from the fibrewise metric on the polarisation L and A is the Laplace operator
for the induced Kdhler metric. The estimate is uniform when the metric
varies in a compact set of smooth Hermitian metrics with positive curvature.

2.2.2. First order approximation. We know that from any starting
point w = wy, there exists a solution

Wt =w + vV —16(§¢t

to the J-flow for t > 0. We can write w; = ¢1(hy) where h; is a sequence of
Hermitian metrics on the line bundle L. Furthermore, we can construct a
natural sequence of Bergman metrics

hi(t) = FS(Hilby (hF))/*

by pulling back the Fubini-Study metric using sections which are orthonor-
mal with respect to the inner product

11
—— | ()" h)" L
n [ e

Using Proposition [2.5] we obtain the asymptotic behavior

hi(t) = (W +0 (;))W hy

X N c1 (ht)nfl

for k> 1. Thus, the sequence hy(t) converges to hy as k — co.

On the other hand, the rescaled J-balancing flow provides a sequence of
metrics wy(t) = ¢1(hy(t)) which are solutions to (10]). Note that by construc-
tion, we fix hy(0) = hy(0) for the starting point of the rescaled J-balancing
flow.

In this section, we wish to evaluate the distance between the two metrics
hi(t) and hg(t). Since we are dealing with algebraic metrics, we have the
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(rescaled) metric on Hermitian matrices given by

tr (H(] - H1)2

= > " on Met(HO(L¥))

di(Hy, Hy) = (

which induces a metric on Met(Lq), that we denote by disty.

Proposition 2.9. One has for t € [0,T],

distk (hk (t), iLk (t)> S

=1Q

for some constant C' > 0 independent of k and t.

Proof. Let us consider e?®hg a family of Hermitian metrics with positive
curvature, and denote

wy = c1 (e¢(t)h0).

The infinitesimal change at ¢ in the L? inner product induced by this path
and the induced volume form is given by

- 1

Uaplt) = iz | {50059) (k) + Aud() x Awp™ = Au, dlt)e)

where A,, is the Laplacian with respect to w; and Awt is given by the
Laplacian-type operator

_ 1w
l
Ayu= Ewt]wz X590k Oru.

Here {s,} is an orthonormal basis of H°(LY) with respect to the L?-inner
product

1
e /M ey AL,

The formula is obtained by noticing that the variation occurs with respect

to the fibrewise metric and the induced volume form. Now, if furthermore
¢(t) is a solution to the J-flow, this infinitesimal change is given at hy(t) as

- 1 x Awl L _
U, t:/ Sas S (k(l—t>+01>x/\w"1
(1) T M( 8) or (1) /

with {s,} satisfy the same assumption as above.
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On another hand, the tangent (at the same point hy(t)) to the rescaled
J-balancing flow is given directly by the moment map ,ug’x, and we
write the infinitesimal change of the L? metric as

k? dap (8a,58) 1
U, 5(t) = / — ’ Awihal,
2 VK" Jm (“ +1 SN 52 XS

where s; are L? orthonormal with respect to the L? inner product induced
by h(t)* and x Awl™!. Again, using the fact that wrg = kw; + O(k~!) and
from Proposition [2.5] one has asymptotically

. 1 o
Ua(t) = Uasp(t) + T /M<Sa,85>0(1) X A wy L

Here the term O(1) stands implicitly for a (smooth) function which is
bounded independently of the variables ¢ and k. Thus, one has

t (Coslt) ~Uaolt)? _ (fom.a (fowm)) .

We can use Theorem Inequality to obtain that

r Aa - Ya 2 —
t (U ,,B(t)k2 U ﬂ(t)) :O(l{? 2).

This shows that dy (U s(t), Uas(t))) = O(1/k). If we denote by hy(t) the
rescaled J-balancing flow passing through ﬂk(to) at t =tp, we have just
proved that hy(t) and hy(t) are tangent up to an error term in O(1/k) at t =
to. On the other hand, it is clear that hy(t) and hy(t) are close when t — oo,
because they are obtained through the gradient flow of the same moment
map and this gradient flow is distance decreasing (see also [8, Theorem 1]).

Thus dist(hg(t), k() = O(1/k). This finally proves the result. O

2.2.3. Higher order approximation. In this section, we only describe
the main differences with [5, Section 4.2]. The key operator appearing in the
linearisation of the problem is actually,

We mean that it is sufficient to solve inductively equations of the form
Le(ni) = vi0(n1, ..., mi—1) where 7, is smooth. By the standard parabolic
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theory, a smooth solution n; of

{£¢(n) =& n(0) =0,§ € C(M,R)}

exists for all time ¢ > 0. Using this remark, it is easy to modify the arguments
of [5, Theorem 4] in order to obtain the following result.

Theorem 2.10. Fiz T > 0. Given solution ¢; fort € [0,T] to Donaldson’s

J-flow and k> 0, there exist functions ni,...,nm, m > 1, such that the
deformation of ¢ given by the potential

1
w0 =6 3 50
]:

satisfies
‘ _ C
dlstk(hk(t),hk(t)) < Em+1
and
' Ohi(t) Ohy(t c
dlstk< gt( ), akt( )) < T

k
Here hy(t) = FS(Hilb, (hkeF D)) 1/k ¢ Met(L,) is the induced Bergman
metric from the potential v, hi(t) € Met(L1) is the metric obtained by the
rescaled J-balancing flow (@), and C' is a positive constant independent of
k andt.

2.2.4. L? estimates in finite dimension. In this section we provide
analogues of Proposition 4.3, Lemma 4.1 and and Corollary 4.1 of [5], where
pq is replaced by the moment map pu . This is because all the proof of
these results depend only on the integrand of the expression for the moment
map [, given in .

Fix

HA = ZAij(Si,Sj) = tl“(A/Aps) € COO(M,R),
0.

where A = (4;;) is a Hermitian matrix, {s;} is a basis of H(L¥), and (.,.)
denotes the fibrewise Fubini-Study inner-product induced by the basis {s;}.

We start this section by recalling the notion of R-boundedness in C”
topology (see [15, Secion 3.2]). The purpose of this definition is to avoid
constants depending on k in the forthcoming estimates. Let us fix a reference
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metric wyes € c1(L1). We denote @y = kwyes the induced metric in ke (Ly).
We say that another metric @ € kci(L1) has R-bounded geometry in C” if
-1 -
w > RWref and [|© — @refllons,.,) < B-
Moreover, we say that a basis {s;} of HY(L}) is R-bounded if the Fubini-
Study metric induced by the embedding of M in PHY(L})* associated to
{si} has R-bounded geometry.

Proposition 2.11. There exists C' > 0 independent of k, such that for any
basis {s;} of HO(LY) with R-bounded geometry in C" and any Hermitian
matriz A,

[1Hallor < Cllpnx (1) llopl| Al

where ¢ is the embedding induced by {s;}.

In the above proposition, the constant C' depends on the parameters
(M, LI)T7X7wref)~

Lemma 2.12. Let us fir r > 2. Assume that for all t € [0,T], the family
of basis {s;}(t) of HO(L¥) have R-bounded geometry. Let us define by h(t)
the family of Bergman metrics induced by {s;}(t). Then the induced family
of Fubini-Study metrics &(t) satisfy

T
5(0) = (D)2 < Cup i)l [ dist(h(s). ) s,

and also

150 - S

. T (0h, . Oh
<O sl 0y | i (e 5 0) as

T
+ € s5up i (o6)) oy [ dist(A(s), h(0))ds,
0
where C, C* are uniform constants in k.

Corollary 2.13. Let @y be a sequence of metrics with R/2-bounded geome-
try in C"*2 such that the norms ||pk (@r)|lop are uniformly bounded. Then,
there is a constant C > 0 independent of k such that if @ has distg(®, k) <
C, then & has R-bounded geometry in C".
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2.2.5. Projective estimates. We collect here some projective estimates,
following the lines of [I7), Section 5].

Proposition 2.14. Let h be a Hermitian metric on L1 with curvature w =
c1(h) > 0. Consider the sequence hy = FS(Hilb(h)) € Met(LY) of Bergman
metrics, approzimating h after renormalisation, thanks to Proposition [2.5

Let us call
1

jk,X = / <Si,8j>hkx/\wn71,
YJIM

where {s;} is a basis of holomorphic sections of HO(L¥) orthonormal with
respect to Hilb(h). Then, as k — +0o0,

[tk (Pi) = Tiexllop — O

and the convergence is uniform for w lying in a compact subset of Kahler
metrics in c1(L).

Proof. Because of the asymptotic expansion (Proposition [2.5)), we have

Nk,x(hk) = fly /M<8i, Sj)m(l +O1/k))x A w%gl.

Then, we apply [15, Lemma 28] that gives that for the operator nom,

n—1
KlﬁfﬂEﬁ,()(l/k>

< n
TWrs

op

H}Y | tssihne 1+ 01 /R A

L(x)

The uniformity of the convergence is given by the uniformity of the expansion
in the asymptotics. O

In the sequel we fix a point b € B.

Lemma 2.15. For any pair of Hermitian matrices A, B € Ty B, denote A B
the induced vector field on PN . One has

1 PR _
tr(Bduk(A)) = p” / (A, B)x A w}?gl —O0Hp NOHA N XN w?{gl,
M

where (.,.) denotes the Fubini-Study form induced on the tangent vectors.

Proof. This is contained in the proof of Proposition but for the sake of
clearness let us provide the proof. We have, using the fact that pupg is a
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moment map,

tr(Bdpg / tr(Bdups(A))x Awlis'

M

1

> [ aBues)Li0cnwps)
Y JIM

/ (A, B) X A whie!

M

1
/ tr(Burs) 881:1"(14,&175) A WA w?;gl
7 M

Q\H + Q\H

n—1

X/\WFS

Q\H

(4,
M
— Otr(Bups) AOtr(Apps) A x Awpgt.

O

By the fact that pupg is a moment map, we have the following simple
lemma.

Lemma 2.16. Let A, B € TyB. Pointwise over (PV)*, one has
H Hg + (A, B) = tr(ABpurs).
The next lemma is deduced from Lemmas and
Lemma 2.17. For any Hermitian matrices A, B € Ty,
tr(Bdprx (A)) + (Ha, H) 20,2 xnwn5t) = t1(AB k),

where the LQ(M 3X A Whg ) -norm is computed with respect to the volume
form L XA WFS and the gmdzent induced by x.

We can derive from the two previous results the following corollaries.
Lemma 2.18. For any Hermitian matriz A € TpB,

HHAH%%(M,LX/\LU;?) < ||A||2‘|Mk,xH0p-
S
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Proof. From the last lemma,
||HAH§,§(M7LX/W;§1) = tr(A2Mk,x) - tr(Ade,x(A))-

Now, by Lemma tr(Adpg(A)) > 0. The conclusion follows from the
fact that tr(A%pg) < | A%k x||op- O

Lemma 2.19. For any Hermitian matriz A € T8,

1danx (A)llop < Nl gy (AN < 20 Al 5. xllop-
Proof. From Lemma [2.17] one has
ldpr (A)I* = tr(dpny (A)?)
= tr(Adpu (A ) = (Ha, Hap () 20, 2xnwp5")
< AN dbnx (Al b xllop = (s Hapy () 13001, 2 xrsh)

By Cauchy-Schwarz,

[(H s Hap o (4)) 12 (1, x|
< Hallzz o, 2 xpwpst 1 Haw () 21, 2xpwpsy
and the previous lemma, we conclude the proof. O

Finally, we obtain as a consequence of our work the following proposition.

Proposition 2.20. Let by,by € B. Then,

itk (1) lop < €01y (B0) op.

Proof. The proof is similar to the proof of [5, Proposition 4.5], using Lemma
2.19 O

We have now all the ingredients to proceed to the proof of the main
result of this section.

Proof of Theorem|2.7. The only difference with the proof of [5, Theorem 1,
p.26] is that here we need to estimate ||J ||op Which is bounded from above

by sup,s X/::}n using [15, Lemma 28]. This latter term is also bounded along
the J-flow by a maximum principle argument. The other main ingredient of
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the proof is the uniformity in the evolving metrics, which is ensured by the
fact that we are working in finite time or that we have smooth convergence.

For the sake of the clarity, we now provide a complete proof. Using
Theorem [2.10} for any m > 0, we have obtained a sequence of Kahler metrics

w(k;t) = cl(hoew(k’t))

such that w(k;t) converges, when k — +oo and in smooth sense, towards
the solution w; = c1(hoe?*) to the J-flow.

Moreover, one has, for k large enough and with hy(t) € B the Bergman
metric associated to hoe?¥Y) € Met(L), the estimate

(15) Qisti (1) Be(1) < i

where hy(t) is the metric induced by the rescaled J-balancing flow. Conse-
quently, in order to get the C° convergence in ¢, all what we need to show
is that

(16) lwr () = 1 (P () o () = O

The idea is to consider the geodesic in the Bergman space between these
two points.

Firstly, we will get that along the geodesic from hy(t) to hy(t) in B,
|tk x |lop is controlled uniformly if we can apply Proposition This re-
quires to prove that hg(t) is at a uniformly bounded distance of hy(t) and
that ||k (hk(t)|lop is bounded in k. But, this comes from the fact that
one can choose precisely m > n + 1 in Inequality and one can apply
Proposition

Secondly, we show that the points along this geodesic have R-bounded
geometry. This is a consequence of Corollary applied with the refer-
ence metric wy to the sequence ¢y (hg(t)). On one side, ||uq (ki (t))||op is under
control as we have just seen. On another side, c;(hx(t)) are convergent to
w; in C* topology (hence in C"** topology), thus they have R/2-bounded
geometry. Given m > n + 2, one obtains, thanks to Corollary and in-
equality , that all the metrics along the geodesic from hg(t) to hy(t)
have R-bounded geometry in C"+2.

Thirdly, we are exactly under the conditions of Lemma It follows
that, by renormalising the metrics in the Kéhler class ¢;(L) and by (L5),
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that

ki (t) — ker (D) e hony < Clttin i ())lopk™ 2 disty, (i (t), T (1)),
llwr (t) — c1 (hi(t ))||CT () < CH,UkX( (t))Hopkn+2 m— 1+r/2’

where we have used that the geodesic path from 0 to 1 is just a line. Here C' >
0 is a constant that does not depend on k. If we choose m > r/2+ 1+ n, we
get the expected convergence in C” topology, i.e Inequality . Of course,
this reasoning works to get the uniform C° convergence in t for t € Ry,
because all the Kéhler metrics w; that we are using are uniformly equivalent
under our assumptions, and because we have uniformity of the expansion in
Proposition [2.5] and Theorem [2.8]

We now prove that one has C! convergence in ¢ of the flows wy,(t). Again,
we need to show the C! convergence of wy(t) to c1(hi(t)), because we already
know the convergence of ¢;(hy(t)) to w; by Proposition We are under
the conditions of Lemma by what we have just proved above. So we
have, using again that our path is a geodesic,

Quwp(t) _, Ocr(hi(t))
ot ot

I

Cr

* N n ; Ohu(t) Ohu(t
< Ol (B (1) | op k™ 2 st ( gi ))’ ;t( )>

+ C¥[ldpage (i (8)) [l op k™ dlistiy (R (1), P (2)).
Here the C" norm is computed with respect to kw;. If we apply Lemma [2.19

Theorem (2nd inequality), we can bound from above the RHS of the
last inequality, and get

H dwp(t)  dei(hy(t))

< T n+2—m—r/2
o o < Ol patex (e (8)) oph

Cr(wy)

+ C”H;uk,x(ﬁk(t)) ||opkn+2+r/2k—m—1k—m—1
< ka:n+2_m_r/2.

Finally, we choose m > 7/2+n + 2 to obtain C! convergence. This com-
pletes the proof of Theorem O
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2.3. Convergence result for J-balanced metrics

The previous results are uniform if one assumes that the J-flow is convergent
(and so T" can be chosen T' = +00). Thus a direct corollary of Theorem
the long time existence and convergence of the J-flow is the following.

Corollary 2.21. Consider (M, Ly, La) a polarised manifold by Ly, La such
that that there exists a critical metric solution of (2)). Then for k sufficiently
large, there exists a sequence of J-balanced metrics on Met(L¥) obtained as
the limit of the rescaled J-balancing flow at time t = +00. Furthermore, the
sequence of J-balanced metrics converges in smooth topology towards the
critical metric when k — 400.

This is an analogue of the main result of [15]. Of course a more direct
proof inspired from [I5] could be used to derive Corollary This would
involve to the operator obtained from linearising the Bergman function close
to the critical point we i.e explicitly

¢ Dy ¢

This operator is a uniformly elliptic second order operator. Its kernel consists
of constant functions. Eventually, the existence of J-balanced metrics can
be seen as a necessary condition for the existence of critical metrics. As a
consequence of our work, we recover the uniqueness of the critical metrics.

3. Variational approach to the rescaled J-balancing flow
3.1. Convexity along geodesics

Let us consider the functional
JX : Met(Ll) — R

on the space of smooth Hermitian metrics with positive curvature on L4
defined up to an additive function by

dJ(

h 1 .
(17) dtt) = 5 /M dr x Acr(he)"

where h; = e~%thg is a smooth path in Met(L;). Setting

wi = c1(he) = wo + V—190¢y,
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a direct computation gives

A Jy(he) _

1 [ - IR S -
dt2 5 / d)t X A w? = d)tAthSt wtn + ¢tAm¢t X A W;l 1-
M

We shall use the same notation J, as above for the induced functional
defined on Met(L¥) for k > 0. Consider now the following functional I e
Br, — R on the Bergman space defined by

Volp, (M)

Ly (H) = Jyo FS(H) + —

e logdet(H),

where H € Bj. It is clear that the derivative of J, o F'S at a point H € By,
is given by

1 _
,YZ/M((sH)i,j<3i73j>FS(H) X Aer(FS(H))" Y,
(2]

where {s;} is an orthonormal basis of holomorphic sections of L¥ with respect
to H. Thus a J-balanced metric H is a critical point of the functional 1,0 E

The functional [, u is the integral of the moment map ,u%x (or Kempf-
Ness function), in the sense of [30]. In particular it is decreasing along the
rescaled J-balancing flow. Furthermore, due to Kempf-Ness theory and its
convexity, its properness on SL(N + 1) is equivalent to the existence of a
(unique) critical point which turns out to be a J-balanced metric (see [30),
Proposition 3.5] and [19, Sections 4 and 8], [46]).

One can ask at that stage what is the analogue of 10 . for the infinite di-
mensional space of Kéhler potentials. Let us consider w,wg = w + v/ —100¢
two Kéhler metrics in ¢1(L1). We define the functional

1
- (1
I, (w,w ://cbt()(Aw"_l—w”)dt,
NJ( ¢) 0 M ,.y ¢t ¢t

for wg, a smooth Kéhler path from w to wg. The functional I, is well defined
and independent of the chosen path. Remark that this functional appeared
also in [43] where it is called J. Moreover I u, (w,.) vanishes at w. Without
loss of generality, as it is defined up to a constant, we can assume that J,
also vanishes at w.

Lemma 3.1. The functional J,, is strictly convex on the C11 geodesics of
the space Met(L1) of Kdhler potentials in c1(L1).
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Proof. See [8, Proposition 2.1]. O
We sum up the main properties of I,,; in the next proposition.

Proposition 3.2. The functional 1,,, is strictly convex on the CHl geodesics
of the space Met(L1) of Kdhler potentials in c1(L1). Along Donaldson’s J-
flow, the functionals I,,, and J, are equal and decreasing. The functionals
1,,, satisfies the cocyclicity property

I,UJ (OJ, w¢o) + I/LJ (w¢07w¢1) = IMJ (w7w¢l)

for wg,,ws, Kdhler forms in the Kdhler class [w]. I, is the integral of the
moment map of py defined by .

Proof. 1t is well known that the functional

1
IMM(w wy) = —/ / Prwg, dt
0o Jm

(often called Aubin-Yau-Mabuchi energy) is affine along geodesics of the
space of Kahler potentials. Therefore the convexity is just a consequence of
Lemma Moreover, I,,, and J, are equal since [ M Qﬁtwgt vanishes and
they agree at w. Furthermore, along the flow, they are decreasing by def-
inition. The cocyclicity property can be proved following the lines of [27,
Theorem 2.3]. O

Lemma 3.3. The functional J, o F'S is convex along geodesics of By,.

Proof. Firslty, let us explain formally why the result holds. A result of
Phong-Sturm asserts that the geodesics in the the space of Kéhler potentials
can be approximated by the image via the F'S map of geodesics from the
Bergman space By, (see [1], 2} 38]). Now, from Lemma the functional J,
is strictly convex on the geodesics in the space of Kéahler potentials which
leads to the convexity of J, o F'S along geodesics of By,.

We proceed by a direct computation to prove the lemma. A geodesic in
By is just a line. Given A a Hermitian matrix and a Hamiltonian function
Hjy = tr(Appg) for the corresponding action and the 1-parameter group of
embeddings 1; = t o ¢, one needs to evaluate the derivative with respect to
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t of the quantity

1 *
! / G Ha) Y A ),
Y JMm

but this is equal, up to the factor %, to

/ IVha|?x A whs 1—2/ hAaahA/\x/\wFS,

:/ \Vhal? X/\W?fq —2/ 8h,4/\8h14/\x/\w$§1.
M M

Now, the last term is

_ 1
/ Oha A Oha A X A wpig' —/ OhalFar X A Wi’ — n/ |3hA|2TM,X WS-
M M

Here |0ha|%); = £|Vhal%), is the norm of the tangential part to M of Oha
and |0h A|2TMX is the norm with respect to y. Consequently, the derivative
we are looking for is given by

_ 1
/ Vhal X Al + & / OBy, Wi > 0,
M nJpm

where |[Vha|? stands for the norm of the normal component. Therefore, we
have obtained the required convexity. O

Corollary 3.4. The functional I,,, o F'S is convex along geodesics of By.
Proof. This is a consequence of the previous lemma and the fact that the

functional IAYM o F'S is convex along geodesics in the Bergman space, cf.
[16, Proposition 1]. O

Now, using the fact that log det is linear on geodesics, we also get
Corollary 3.5. The functional 1,0 is convex along geodesics of By. It has

at most one critical point. A J- balanced metric is an absolute minimum of
the functional 1,0 . and is in particular unique.

3.2. Iterates of the maps Hilb, o F'S and F'S o Hilb,

In this section, we investigate the iterates of the map T} , .
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Lemma 3.6. Consider hg € Met(L1), h = e~%hg € Met(Ly). Then
1 n—1 1 n—1
- ¢ x Aci(h) < Jx(h) _Jx(ho) < - ¢ x A c1(ho) :
Y JM Y JIM

Proof. If one defines hy = e *®hg, and

£(t) = i /M tox A ea(ho)" — (Jy(he) — Jy(ho))

then f(0) = f’(0) = 0 and furthermore along the considered path,

£ = —(n—1)- / ox A r(h)"% A /1006,
Y Jm
_ (n—l)\/—ll/ 96 A 3d Ay A ey (he)™2,
Y Jm

which is non-negative. Thus f(¢) > 0 at ¢ = 1 which provides one inequality.

By symmetry, we get the result. One can perform a direct computation.
. . 1

For instance, when n =2, J,(h) — Jy(ho) can be written as ﬂfMgﬁx/\

(c1(ho) + c1(h)). O

Define for h € Met(L%), H € Met(H (L)),

N1
P(h, H) =log > ||Sill3n, ) — log(N +1)
=1

N+1

logdet(H) + ——————
+ log det( )+V01L1(M)

Ix(h)

where {S;} form an orthonormal basis with respect to H. Then it is not
difficult to check that

N+1
T . (H)

P(FS(H),H) = Voly, (AT s

Lemma 3.7. For any metrics h, H, one has

P(h,H) > P(FS(H), H).
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Proof. One checks that if we define h = e ®FS(H), then

P(h,H) — P(FS(H),H) = log (fy\/]:l:(lj\f) /M e Y A cl(h)"_1>

N+1
i Vol OF) (Jy(h) — J(FS(H))),

N+1
’)/VOIL / —oxnalh

n N+1
VOlLl(M)
>0

(Jx(h) = Iy (FS(H))),

9

using Lemma [3.6] O

Lemma 3.8.

P(h, H) > P(h, Hilby(h)).
Proof. This is a consequence of the arithmetic-geometric inequality. O

Assume the existence of hpy € Met(L’f) J-balanced metric and Hy, €
Met(HO(LY)) J-balanced metric on the Bergman space. Then for any h €
Met(L¥), and H € Met(H(L¥)) one has

= lo (H
VOlLl(M) ‘LLX’“( )’
1
>—— T (Hpa),

VOlLl(M) Pxok
FS(Hpa1), Hoat)

hbats Hpat)-

E E

In particular it gives that

Lo (H) = 1 (Hyal).

Moreover P(h, Hilby(h)) > P(hpar, Hilb (hpar))-
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Thus the functional on Met(L¥) defined by

. Vol (M) 4 . B Voly, (M) :
I (h) = Nl P(h, Hilby(h)) = Jy(h) + Nl log det Hilb, (h)
satisfies

Ii(h) > L (hpa)-

We will see soon that this new functional has a geometric interpretation. A
direct consequence of Lemmas [3.7] and [3.§] is the following corollary.

Corollary 3.9. In our setting, the following hold:

1) A J-balanced metric on Met(L¥) (resp. Met(HO(L})) is a minimum of
the functional Iy (resp. 1o ).

2) The map F'S o Hilb,, decreases the functional I, while the map Hilb, o
F'S decreases the functional Iu(; .-

3) The functional I, is bounded from below if and only if the functional
Iuﬁi . s bounded from below.

We now explain the asymptotic behavior of the functional I &k, by studying
the term

log det Hilb, (hy)

where hy = he %% (with ||¢¢||c = O(1) when k — 00) is a path in Met(L}).
Then, we can write Hilby (h) = (si, 5;) mitn(n,) Where {s;} is an orthonormal
basis with respect to Hilb, (h). Thus its derivative at t = 0 is given by the
derivative of ), H3i|’§{ilbx(ht) and because of the variation of the volume
form, this is written as

(2

i /Mk:qbz |Si|}2LX/\Cl(h)n—1+(n—l)Z |Sl|i2z X/\Cl(h)n_l/\\/jlagd),

Together with and the fact that the second term in the integrand is
negligible compared to the first one when k& — 400 (by uniformity of the
Bergman expansion in C? topology), we obtain when k — +oco that

d <V01L1(M)

— . *kﬁbt _ . n
Ao\ N +1 log det Hilb, (he )) k/M</>cl(h) +0(1),

where we have used that N = Vol (M)k" + O(k™1). This leads to the
following conclusion for Ij.
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Corollary 3.10. Over compact subsets of Met(L1), the functionals I, and

I,,, are equivalent, up to a normalisation, i.e

LI = 1, () + O(/R)

for h € Met(Lq).

Corollary and our last result show that a critical metric solution of
(2)) is actually an absolute minimum of I,,,. Of course this is conceptually
a consequence of I,,, being the integral of the moment map p ;. Formally,
this can be seen from the facts that the J-flow decreases I,,,, and from the
analytic study of the flow (convergence to a unique critical metric in smooth

topology).
Finally, following the techniques of [41], we obtain that if there is a J-

balanced metrics of order k, then the iterates of Hilb, o F.S on Met(H"(L}))
will converge towards this metric.

Theorem 3.11. Assume that there exists Hy, € Met(HO(LY)) J-balanced.
For any Hy € Met(H°(LY)), denote from now

H; = Hilby o FS(H;_1),
for 1 > 1. Then, up to a positive constant r,
H; — rHy
as | — +oo.

For the sake of clarity, we give the details of the proof which consists in
an easy modification of [41], [42], which is not surprising since it is a purely
finite dimensional problem and our setting is very close. We will decompose
the proof into several lemmas starting with the following definition.

Definition 3.12. Let {s;} be a basis of H(L¥). Using this basis, we can
view elements of Met(H(L¥)) as Hermitian matrices (N + 1) x (N + 1). A
subset U C Met(H?(L¥)) is bounded if there exists a number R > 1 satis-
fying the following. For any H € U, there exists a constant vy > 0 so that
the smallest and largest eigenvalues of H satisfy

%{ < min A )] < maxw <7mR.

q q




A finite dimensional approach to Donaldson’s J-flow 1057

With the notations of the the previous definition, we have the following
obvious proposition due to the fact that the closure of bounded sets are
compact in finite dimension.

Proposition 3.13. Any bounded sequence Hy has a subsequence Hy, such
that ﬁan converges in Met(HC(LK)).

Lemma 3.14. [}2, Lemma 3.2] The set U is bounded if and only if there
exists a number R > 1 so that for any H € U, we have

1 . H(Q)] |H(C)]
— < min < max <R,
R q q
where H = N —
det(H) N+T

Proof. We include the proof for the sake of clarity. Without loss of general-
ity, we can assume H(s;,s;) is diagonal with entries e, < < Avgrs
Assuming U bounded, we obtain v < ReM and g > %e)‘f. Thus, e+ <
R?¢* and e > R72¢M for alli=1,..., N + 1, which gives

1/(N+1)
det(H) YN+ An+ — <H eAN“_*i) < R%.

Similarly, we obtain det(H)~/(N+Deh > 2. 0

Lemma 3.15. Under the assumption of the theorem, if the sequence Hy is
bounded in Met(HO(L})), then the sequence det(H,) is convergent and

det(Hy 1 H ') — 1
as l — +oo.

Proof. From Lemma we deduce that the sequence log det(H;) is decreas-
ing. From Lemma [3.7, we deduce that the sequence Jy o F.S(H;) is also de-
creasing. Since b (H;) is decreasing and bounded from below, log det(H;)
is bounded and converges. U

Lemma 3.16. Assume the sequence H; is bounded in Met(HC(LY)). Let
H € Met(H°(L%)) and {st}; be an orthonormal basis with respect to H; so

that the matriz H (s, sé) is diagonal. Then,
o VOIL1 (M)

. 12
l_l)lfrnoo HSiHHile(FS(HZ)) T TN+1
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Proof. Let us consider § another basis, orthonormal with respect to H; and
so that Hy, (8, ]) is dlagonal From the previous lemma, we deduce that
limy_, 4 oo det (Hp4 (8 35, Z)) = 1. We have always that

tr(Hilby (FS(H))H ) = N +1,

so we get tr(H;, (8, 8))) = N +1 for all I. It is not difficult to check that
the arithmetic-geometric inequality implies

Hl+1( Sis i) —1

as | — +o00. Now, we write

N+1

I _ I Al
5i = Z AjjSj

j=1

with (al ;) € U(N +1). The matrix al] converges when | — +oo up to taking
a subsequence For the limit (af7) € U(N + 1) we have

N+1

Hl—‘rl 17 ] Z|CL

which means that

N+1
im
I—+o00 yVolr,

/M 542500 X A 1 (FS(H)™ =1,

as expected. O

Lemma 3.17. If the sequence H is bounded, then for any Hermitian metric
H € Met(H°(L%)) and € > 0, we have

(18) Lo (H) > 1o (H)-
for 1 sufficiently large.

Proof. Fix {st} an orthonormal basis with respect to H; such that H(s!, ])
is diagonal Wlth entries e, Define f(t) = I  (Hy) where Hy is the matrix
of entries e, so that Hy—o = H; and H;;—; = H. By convexity of I;0 o, in
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the Bergman space, we have f(1) — f(0) > f’(0). By definition, one gets

X/\CI(FS(Ht)) Vol (
/ dt|t 0 (FS(H)) ZA

N+1
™ XA er(FS(Hy)" Vol (M l
Z)\|51|F5(H, ~y N+1 Z)\
=1

Let us assume that )\é are bounded. Then we can apply Lemma and
obtain that f’(0) — 0 when [ — 400, which provides eventually (18).

It remains to show that )\é are all bounded when [ varies. Using the fact
that {e~*/2sl}; is an orthonormal basis for H and Lemma we have
the existence of R > 1 such that

1 Hl( s, Z)e_Ai B e N

R~ det(H)VO) ~ det(a e < F

from which we deduce that A! is bounded if and only if det(H;) is bounded.
But this is the case by Lemma |3.15 U

Proof of Theorem |[3.11]. As we have already seen in the previous section,
the J-balanced metric Hy, is unique up to normalisation. To normalise our
metrics, we choose to work in the space

{H = (det H)"V/WN+D [ H € Met(H(LY))} € Met(HO(LY)).

Furthermore, as integral of the moment map ug’k, the functional [ 10 is

proper and bounded from below. The sequence [ 0 k(Hl) is decreasing, and

thus Jy, ((det Hy) "/ (N+D FS(Hy)) is also bounded. By properness, it follows
that

H; = (det H)"YWNTVpS(H))

is bounded. This forces this sequence to converge as we now see.

Suppose not. Then we can at least take a non convergent subsequence
which always remain at a distance € of the J-balanced metric Hy,. But
is bounded and its image by I, o . converges to the minimum of the

f?lk
k
functional I 0 , up to taking a subbequence that we denote H, L, - In fact, we
have obtalned from the previous results that for any bounded sequence H ls

Lo (H)) converges to the minimum of the functional I,,0 ue ,» see Lemma

Therefore, Hlk converges and its limit is actually a J-balanced metric frorn
Corollary [3.5, This is a contradiction with the fact that all the terms Hj,

are at dlstance € of Hy
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From Lemma we get that log(det(H;)) is bounded and decreasing.
This allows us to conclude that H; is convergent to rHyo. O

From Corollary we obtain the following result.

Corollary 3.18. Assume the existence of a critical metric solution ws of
(1). Then for all k> 0, the map

Hilb, o F'S : Met(H(LY)) — Met(H°(LY))

(respectively Ty, = F'S o Hilb, : Met(L¥) — Met(L¥)) defines a dynamical
system that has a fized (unique) attractive point, the J-balanced metric Hyq
(respectively hypg with F'S(Hyg) = hpar). Furthermore,

o)

4. Algebro-geometric aspects

1
Hwoo - %Cl(FS(Hbal))

In this section we describe a notion of Chow stability for a linear system |Lg|
in a fixed polarised variety (M, L), which is related to Geometric Invariant
Theory (GIT). Our main result is then that the existence of a J-balanced
metric implies this notion of Chow stability for |Ls|. It follows that the ex-
istence of a critical point of the J-flow implies asymptotic Chow stability
of |La|. Our definition of asymptotic Chow stability is motivated by Lejmi-
Székelyhidi’s notion of J-stability (see Definition , which is an analogue
of K-stability for the J-flow. Indeed we show that asymptotic Chow semista-
bility of |Ls| implies J-semistability, just as asymptotic Chow semistability
of a polarised variety implies K-semistability.

Before discussing the notions of stability relevant to us, we recall some
standard GIT as motivation. Let G C SL(n + 1,C) act on a scheme M C P",
and let € M have lift & € C**!. We say the point z is stable in the sense
of GIT if the orbit G.Z is closed and x has finite stabiliser. There is a
weaker notion of polystability which allows higher dimensional stabiliser,
but we will not need this. Roughly speaking, a quotient M /G parame-
terising polystable orbits exists. To understand whether or not the point is
represented in the quotient, one therefore seeks to understand the stability
of the point.

The Hilbert-Mumford criterion gives a numerical way of checking this
stability. Let A : C* — G be a one-parameter subgroup. Denote the limit
xo = limy_,0 A(¢).z, so that z¢ is a fixed point of A. There is therefore a C*-
action on the line above xg, which acts with weight w = —pu(A, ). By this we
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mean that, for &y any lift of xo, we have A(t).Zg = t“&¢. Then the Hilbert-
Mumford criterion states that x is stable if and only if p(z, ) > 0 for all
one-parameter subgroups A\. We will later need the following properties of
the weight where one fixes a one-parameter subgroup A and varies z.

Lemma 4.1. Let M be an irreducible subvariety of P". Fizx a one-parameter
subgroup A : C* — G. Then the weight u(\, x) is constant outside a Zariski
closed subset of M. This general value is equal to the largest weight of any
point in X.

Proof. Both of these properties are consequences of the following alternative
characterisation of the weight of a one-parameter subgroup. Diagonalise the
C*-action as diag(t" - - - t*) with \g < --- < \,,, and set [ = min{s | z; # 0}.
Then pu(A, z) = —N;. Remark that —X\; > =X\ > - > —\,.

We now use the hypothesis that M is irreducible. The intersection of a
hyperplane with the irreducible variety X is either empty, or of codimension
one in M. The subset of M with weight not equal to A is the intersection
of M with the hyperplane {xg = 0}; by irreducibility this is either empty or
of codimension one. In the latter case, the general point of M has weight Ay
and we are done. On the other hand if it is empty, we continue this process
until we find the smallest ¢ such that X N {z; =0} # @ (remark that M
must intersect some hyperplane section). Then the general point of M will
have weight —\;. By construction, —\; is the largest weight of any point
in M. Il

Remark 4.2. It is essential here that M is irreducible; if M = V (zy) C C?
and ) is given as diag(t®,t?), then clearly no such general weight exists for

a #b.

One can apply GIT to moduli spaces of varieties. Our discussion roughly
follows [40]. Let Y C P™ be a fixed subvariety. There are two natural mod-
uli spaces in which one can naturally consider Y as a point. The first is
the Hilbert scheme of subschemes of P" with the same Hilbert polynomial,
which essentially parameterises ideal sheaves. The second is the Chow vari-
ety, whose definition uses intersection theory and compactifies by adding
cycles at the boundary. Both moduli spaces naturally embed in certain
Grassmanians constructed from P", and so we will have corresponding GIT
problems. To calculate stability of points in each moduli space, we will need
to understand the line above a point under these embeddings into Grassma-
nians.
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We first consider the Hilbert scheme, for which we refer to [20, Theo-
rem 1.4] for the detailed construction. For our purposes we only need to
understand how one obtains a point in a certain projective space from a
given scheme, thus our construction omits many important details. The ex-
act sequence of sheaves on P"

0—=Zy - Opn - Oy — 0
induces by twisting with Op« (1) an exact sequence for sufficiently large K
(19)  0— H(P",Zy(K)) — SEHO(P", 0(1)) — H(Y, Oy (K)) — 0.

If one fixes a Hilbert polynomial, one can choose K independently of Y C P"
(see for example |28, Lecture 14] or [20, Theorem 1.5]); in particular the pre-
vious sequence is exact for all such Y.

The Hilbert scheme of subschemes of P" with Hilbert polynomial p(K) =
dim H°(Y, Oy (K)) is embedded via this exact sequence as a subscheme of
Grass(SEHO(P", O(1)),p(K)), with the point corresponding to Y given by
the vector subspace H(P",Zy (K)). In turn these Grassmanians naturally
embed into projective spaces using the Pliicker embedding, explicitly we
have embeddings

Hilb — Grass(SXH(P", 0(1)), p(K)) — P(APH)(SK HO(P", 0(1)))).

The SL(n + 1,C) action on P" naturally induces an action on these projec-
tive spaces, and so for each K we have an associated GIT problem.

Definition 4.3. We say that Y C P™ is Hilbert stable if the corresponding
point in the Hilbert scheme is GIT stable embedded as a subscheme of
projective space using the Pliicker embedding for K > 0.

We now turn to the Chow variety, for which we refer to [20, Section
1.3] for the detailed construction and definition. Again we only need to
understand how, in the construction of the Chow variety, one associates a
point in a certain projective space from a given scheme, so we omit many
important details in our discussion. We denote by m the dimension of ¥ C
P" =P(V) and d the degree of Y, i.e. (Opn(1)]y)™ =d. Let Z be the set
of (n —m — 1)-dimensional planes intersecting Y nontrivially, so that Z C
Grass(n —m,n + 1). We denote the Pliicker embedding of this Grassmanian
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as
(20) Pl : Grass(n —m,n+ 1) — P(A"""V).

One can show that Z is of codimension one in the Grassmanian, and that
Z =V(f) for some section f € H°(Grass(n —m,n +1),0(d)) unique up
to scaling. One therefore has a corresponding point [f] € P(H?(Grass(n —
m,n+1),0(d))), called the Chow point. The Chow variety has a natural
compactification obtained by adding limit cycles at the boundary. Again the
SL(n + 1,C) action on P induces one on P(H"(Grass(n — m,n + 1), O(d))).

Definition 4.4. Wesay Y C P" is Chow stable if its Chow point [f] is GIT
stable under the induced action of SL(n + 1,C).

The Hilbert-Mumford criterion states it is enough to show a correspond-
ing weight is positive for each one-parameter subgroup \:C* < SL(n +
1,C). Fixing some one-parameter subgroup A, the limit Yy = lim;_,o A(¢).Y
is naturally a point in the same Hilbert scheme and Chow variety as Y,
which has a corresponding Hilbert-Mumford weight. Here one considers Y
as the limit scheme in the Hilbert scheme, and as the limit cycle in the Chow
variety. Hence Y is Hilbert stable or Chow stable if and only if these weights
are strictly positive for each one-parameter subgroup.

Considering instead a polarised variety (M, L), one naturally has a
sequence of embeddings M — P(H°(X, L})*) for each r sufficiently large.
Hence one can define asymptotic Hilbert stability (respectively asymptotic
Chow stability) to mean the point corresponding to M is GIT stable in the
appropriate Hilbert scheme (respectively Chow variety) for k sufficiently
large. We will need an extension of the above discussion to subvarieties
of M.

Definition 4.5 (Twisted stability). Let Y C M be a subvariety. We say
that Y is M-twisted asymptotically Hilbert stable (respectively Chow stable) if

it is Hilbert stable (respectively Chow stable) under the natural embeddings
Y — P(H(M, L7)*) for all r > 0.

Remark 4.6. Clearly setting Y = M recovers the usual definition of asymp-
totic Chow and Hilbert stability.

In what follows we will explicitly calculate the weight of the one-
parameter subgroup p(A,Y) in each moduli space using data arising only
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from the action on P(H?(M, L7)*) itself. We first need the following defini-
tion, which is a geometrisation of the one-parameter subgroups considered
above.

Definition 4.7. A test configuration (X, L) for a polarised variety (M, L)
is a variety X together with

e a proper flat morphism 7 : X — C,
e a C*-action on X covering the natural action on C,

e and an equivariant relatively very ample line bundle £ on X

such that the fibre (X, £;) over t € C is isomorphic to (M, LY) for one, and
hence all, t € C* and for some r > 0. We call r the exponent of the test
configuration.

For each subvariety Y C X, by taking the closure of Y under the C*-
action, one naturally obtains a test configuration for (Y, L), where we have
abused notation by writing L; as the restriction of Lj to Y. We denote this
induced test configuration by (), £), with similar abuse of notation.

Proposition 4.8. [/, Proposition 3.7] A test configuration of exponent
r s equivalent to a one-parameter subgroup of GL(h(r),C), where h(r) is
the Hilbert polynomial of (M, L1). Given a one-parameter subgroup A, the
corresponding test configuration is Xy = \(t).X with the line bundle the re-
striction of the O(1) from the projective space. Conversely, for each K > 0
one can equivariantly embed a given test configuration (X, L) of exponent
r into P(HO(X, L™ )*) such that the test configuration is realised by some
one-parameter subgroup.

We are now in a position to give a numerical criterion for M-twisted
asymptotic Hilbert and Chow stability. In order to do so, we introduce the
following notation.

Let (X,L) be a test configuration. As the C*-action on (X, L) fixes
the central fibre, there is an induced C*-action on (X, L) and hence on
HO(Xp, L) for each K. We denote the Hilbert polynomial and total weight
of this action respectively by

h(K) = agK™ + a1 K" ' 4+ O(K™?),
w(K) = bo K" + b K"+ O(K™ ).
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By asymptotic Riemann-Roch and flatness of the test configuration, we have
intersection-theoretic formulas for ag, a1, as

L KLt
—, ar=r" .
n! 2(n —1)!

For (), L) denote the corresponding Hilbert and weight polynomials by

h(K) = aoK™ + O(K™ 1),
W(K) = by K™ + O(K™),

where m is the dimension of Y.

Theorem 4.9. Let (M, Ly) be a polarised variety andY C M a subvariety.
Then Y is M -twisted asymptotically Hilbert stable if and only if, for all
r > 0, each test configuration of exponent r has normalised weight (setting
k=rK)

Wy = W(k)rh(r) — kw(r)h(k) >0

for k> 0.

The normalised weight Wy, s a polynomial in k and r of degree m + 1
in k, write Wy, = Z?:gl ei(r)ki. Then'Y is M-twisted asymptotically Chow
stable if and only if for all r > 0 we have ep4+1(r) > 0.

Proof. We first prove with the Hilbert stability statement. The Hilbert-
Mumford criterion together with Proposition [£.8] imply X-twisted asymp-
totic Hilbert stability is equivalent to the asymptotic Hilbert weight of each
test configuration being strictly positive, provided it lies in SL(h(r),C)
rather than GL(h(r),C). The proof is in two steps. The first is to modify a
fixed test configuration to lie in SL(h(r),C), and the second is to explicitly
calculate the Hilbert weight asymptotically.

For clarity we consider a more general situation. Let A be a one-parameter
subgroup of GL(N,C) diagonalised as diag(t* ---#*V), with total weight
w=>,N. If w=0, then X lies in SL(V,C); assume this is not the case.
Then one gets a new one-parameter subgroup by subtracting § from each
weight, provided each \; — §; remains an integer. As this is not necessarily
the case, we first multiply each A; by N to produce a new one-parameter
subgroup with total weight wN, and subtract w from each weight to produce
a one-parameter subgroup of SL(N,C).

There are two natural operations one can perform on a test configuration
which leave the total space X intact but modifies the weight. The first is
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pulling back the test configuration over a finite map C — C given by the
map t — t%, which modifies the total weight w(k) by multiplication by d.
The second is by adding a constant 7 to the weights, which modifies the
total weight by adding 7kh(k). We use these operations to ensure the test
configuration induces one-parameter subgroups of SL(h(r), C), following the
previous paragraph. Firstly, we pull-back over a finite map ¢ — t""") so that
the total weight is w(r)rh(r). Next we add —rw(r) to the weights, ensuring
the test configuration now lies in SL(h(r),C).

From the exact sequence , the line above the limit scheme ) is given
as

AmaxHO(yo,ﬁ(I)() ® A/\ma:vSK];IO(]\47 L’Il‘)*

Since the one-parameter subgroup we consider lies in SL(h(r)), the in-
duced action on A™*SKHO(X, L")* has weight zero. We therefore need
only calculate the change in weight for the action on A™®HO()y, LI).
The finite cover ¢t — t"(") of the test configuration modifies this weight
by w(rK) — w(rK)rh(r), while adding —rw(r) to the weights modifies the
weight by

~

w(rK)rh(r) — w(rK)rh(r) — (rw(r)) Kh(rK).

We conclude by recalling k = rK.

The Chow statement follows since for fized r, the Chow weight is the
leading order term in the polynomial which determines the Hilbert weight
[29, Lemma 2.11] [40), Theorem 3.9]. O

Remark 4.10. Theorem extends the well known criterion for asymp-
totic Hilbert and Chow stability obtained by setting M =Y, see for example
[40, Theorem 3.9] whose proof we have followed above. The reason that we
have discussed Hilbert stability in this section is primarily its use in the
above proof. Indeed, to show the X-twisted asymptotic Chow weight is a
polynomial, we first showed the X-twisted asymptotic Hilbert weight was a
polynomial and used that the Chow weight is the leading order term in the
Hilbert weight.

We now focus on the setting relevant to the J-flow, which is a minor
modification of the above. Here we fix a polarised variety (M, L1) together
with an auxiliary ample line bundle Ly. The notion of stability we then define
is not a bona fide GIT notion, instead we formally adapt the definition
of stability using the Hilbert-Mumford criterion to incorporate the linear
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system associated to Lo. For the moment we assume that |Ls| is an arbitrary
linear system.

Lemma 4.11. Let M C P™ be a projective variety together with a linear
system |Lg|. For each one-parameter subgroup A\ — SL(n + 1,C), the Chow
weight of A for D € |La| is constant outside a Zariski closed subset of |La|.
We define the Chow weight of X for |Ls| to equal this general value.

Proof. The Chow weight is the GIT weight of the one-parameter subgroup
in an appropriate Chow variety. Note that the linear system |Lo| is a pro-
jective space, hence irreducible, and the image of an irreducible variety is
irreducible. Therefore Lemma implies the Chow weight of A for D € |Ls|
is constant outside a Zariski closed subset of |Lo|, as required. O

Remark 4.12. To the authors’ knowledge, this phenomenon was first no-
ticed by Székelyhidi in the study of twisted Kéhler-Einstein metrics [45].

Definition 4.13. Let M C P" be a projective variety together with a lin-
ear system |La|. We say that |La| is Chow stable if for each one-parameter
subgroup A < SL(n + 1,C), the Chow weight of A for |Ls| is strictly posi-
tive.

This immediately implies that the asymptotic Chow weight of a linear
system for a fixed test configuration is constant outside a Zariski closed
subset of |Ly|. Note that, as the M-twisted asymptotic Chow weight for a
fixed divisor D is a polynomial in 7, it is determined by finitely many values,
and hence its general value is also constant outside a Zariski closed subset
of ’L2|

Definition 4.14. We say that a linear system |Lo| is asymptotically Chow
stable if for all r > 0, the asymptotic Chow weight of each test configuration
of exponent r is strictly positive. This is equivalent to the linear system being
Chow stable in P(H(M, L7)*) for r > 0.

The following definition is equivalent to one due to Lejmi-Székelyhidi
[23]. Indeed our definition of Chow stability of a linear system is motivatived
by their work.

Definition 4.15. We define the J-weight J, (X, £) of a test configuration
(X, L) to equal 1/ay times the leading order term of the asymptotic Chow
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weight of the linear system |Ly|. We say that (M, L1, Lo) is J-stable (resp. J-
semistable) if Jr, (X, L) > 0 (resp. > 0) for all non-trivial test configurations
with normal total space. Explicitly, the J-weight of a test configuration is

boao — bod
JLQ(X,ﬁ):%OOO-

Indeed, one obtains this by simply expanding the polynomial e,,11(r) de-
fined in Theorem the J-weight is simply 1/ag times the leading order
term in 7 of this polynomial.

Remark 4.16. Our assumption that the total space X of the test con-
figuration is normal is to exclude certain pathological test configurations
which normalise to the trivial test configuration, and necessarily have J-
weight zero. These test configurations are alternatively characterised as hav-
ing norm zero [13, Theorem 1.3] [4].

For comparison we state the definition of K-stability.

Definition 4.17. Let (X, L) be a polarised normal variety. We define the
Donaldson-Futaki invariant of a test configuration to be (a positive constant
times) the leading order term in its asymptotic Chow weight. Explicitly, we

define
DF(X, L) = boar — brao
ap
We say that (X, L) is K-stable if DF (X, £) > 0 for all non-trivial test con-

figurations with normal total space.

Proposition 4.18. Assume the linear system |Ls| is asymptotically Chow
semistable. Then (M, L1, La) is J-semistable.

Proof. This is immediate as the J-weight of a test configuration is the leading
order term in the asymptotic Chow weight for the linear system |Lo|. O

4.1. J-balanced metrics and Chow stability

In this section we work with a smooth projective variety M embedded in
a fixed projective space P", and a very ample line bundle Ls. By Bertini’s
Theorem, since |Ls| is basepoint free, a general element D € |Lo| is smooth.
The main result of this section is the following.
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Theorem 4.19. If (M, Ly, L) admits a J-balanced metric, then |La| is
Chow stable.

We conjecture that the two are actually equivalent, however technical
issues prevent us from proving this. From Corollary we can relate the
existence of solutions of the J-flow to algebraic geometry as follows.

Corollary 4.20. Suppose there exists a fixed point of the J-flow, i.e a crit-
ical metric solution of . Then |Ls| is asymptotically Chow stable.

Our proof is reminiscent of the Kempf-Ness Theorem. The existence of
a J-balanced embedding for (M, Ly, Lo) is equivalent to the properness of a
certain functional on a space of metrics. Taking a one-parameter subgroup as
in the definition of Chow stability of a linear system, we show that properness
of the this functional along this one-parameter subgroup forces the Chow
weight to be strictly positive.

To prove Theorem we need some preliminary results.

Theorem 4.21. [23] Let M be a smooth projective n-dimensional variety
together with a very ample line bundle Lo. Let o € ¢1(L2) be a positive (1,1)-
form. Then there is a smooth signed measure p on the projective space |La|

such that
o' :/ [D]du
De|L,|

holds in the weak sense, i.e. for all smooth (n — 1,n — 1)-forms 3 we have

/Ma M= De|Ls| </D ﬁ) -

The above Theorem allows us to replace our smooth (1,1)-form y with
an integral over the linear system |La|. To work with the relevant functional
for a fized divisor, we use a result due to Phong-Sturm [37]. In order to state
this result, we define the corresponding functional and a certain norm on
sections of line bundles over Grassmannians.

Definition 4.22. Consider D € |Lg| a smooth divisor in M. We define the
functional T3YM over the space of Met(L;) variationally by

d AYM _ 1 ;o on—1
D (¢(t))__\W/l)¢tw¢t ;
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taking the value zero on ¢ = 0. Here

VOlLl(D):/DCl(Ll)n_l:/Mcl(Ll)n_l.Cl(Lg)

is the volume of D.

Comparing this to the functional relevant to the existence of J-balanced
metric (see Section [3.1]), defined variationally by

d 1 .
21 —J (1) = — Hx Aw' L,
(21) Zh0) == [ doxnug
where x € ¢1(Ls) is a smooth positive (1,1)-form, we obtain the following
Corollary of Theorem [4.21

Lemma 4.23. The J-balancing functional satisfies

7(6) = —Voly, (M) /D PRI

where du is chosen as in Theorem[{.21]

Here we may integrate only over the smooth elements D € |Ls|, since the
complement has measure zero (by Bertini’s Theorem) this does not affect
the value of the integral.

In the previous section, in defining stability of projective varieties, we
have fixed a basis of projective space and acted on the variety itself by one-
parameter subgroups. An alternative, but equivalent, point of view that we
will now take up is to fix a variety and vary the basis of projective space.

Let w = wpg be the Fubini-Study metric of projective space. For o €
SL(n+ 1,C), define

2
(22) ¢s = log ('T:CTQ' ) :

and also

We = w + 100¢,.

In this way we can consider both J,(¢) and I5YM(¢) as functionals on
SL(n+1,C). By abuse of notation, we denote these functionals as J, (o)
and I85¥M(0) for ¢ € SL(n + 1,C).

We now define a norm on the space of sections over certain Grassman-
nians, following Phong-Sturm.
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Definition 4.24. [37] Section 4] Let f € H°(Grass(n —m,n + 1), O(d)) be
the Chow point of a degree d variety in P"™. Denote by wg, = Pl*(wps),
where we recall from equation that P! is the Pliicker embedding of the
Grassmannian. We define the norm of f as

.1 ()P
e e ot

where Vol(Gr) fG wgfj Lis the volume of the Grassmannian and r + 1 =

(n— )(m + 1) is its dimension.

Theorem 4.25. [37, Theorem 5] Let D C P™ be a smooth projective variety
of dimension m. Denoting by f the Chow point of Y, we have, where V s
the volume of D with respect to the Fubini-Study metric

o s>
1712

(23) —V(m+1)IA™M(5) =log

Corollary 4.26. Suppose the functional
—IH™(5): SL(n +1,C) = R

is proper. Let o(t) — SL(n+ 1,C) be a one-parameter subgroup. Then the
Chow weight of D with respect to o(t) is strictly positive.

Proof. The properness of the functional means that ||o.f||> — oo as ||o[|? —
0o. Applying this to our one-parameter subgroup, this implies the orbit o;. f
is closed.

To relate the closedness of the orbit to the Chow weight, we use the
Hilbert-Mumford criterion. Let fy be the limit lim;_,o, o¢. f, which is a fixed
point of the one-parameter subgroup. Write fo for a lift of fy. Defining w by
A(t).Zo = t" T, the Chow weight is —w. If w > 0, then 0 lies in the closure
of the orbit of the one-parameter subgroup, hence the orbit is not closed.
Similarly if w = 0 then the action is trivial on the line above zq, and so the
orbit of a lift of x cannot be closed. We conclude that the orbit being closed
implies the Chow weight is positive. O

We can now prove Theorem [4.19
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Proof of Theorem[[.19. By Lemma [£.23] we have

J4(8) = —Volp, (M) / I ().

De|T)|

For 0 € SL(n + 1,C) this implies

(24) Jy (o) = —Volz, (M) /D ” ngYM(a).

By hypothesis, the functional J, (¢) is proper. Fix a one-parameter subgroup
o(t) = SL(n+1,C). By Lemmal4.1] the Chow weight of this one-parameter
subgroup is constant outside a Zariski closed subset of |La|. In the integral
over |Ls| in equation , we ignore the union of the non-smooth D together
with the subset on which the Chow weight is not equal to the general value.
Remark this set has measure zero, and hence this does not affect the value
of the integral.

For the one-parameter subgroup o(t), one of two things must therefore
happen. Either the general Chow weight is positive, or the general Chow
weight is non-positive. Remark that by Lemma in the latter case the
Chow weight is non-positive for each D € |La|. If the general Chow weight
is positive for each one-parameter subgroup, then by definition the linear
system | Lo | is Chow stable and we are done. We therefore wish to show that
if each Chow weight is non-positive, the functional J, (o(t)) is not proper.

We now consider the latter case. We use the fact that a C? convex
function f(t) : R — R is proper if and only if

where the value infinity is allowed. Applying this in our situation along the
one-parameter subgroup o(t), by Corollary we see that the Chow weight
for each D € |Lg| being non-positive implies for smooth D that

(25) — lim %(IﬁYM)’(a(t)) <0.

We now relate the limit derivatives of the two functionals. For fized t,
we have
I () = Vol (01) [ 15 (a(t)d
De| L]

and thus I5YM(c(t)) is integrable. Furthermore, for all D, ¢ — I8YM (o (t))
can be differentiated and we can express its derivative using the notation of
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) s

L1 [ el (¢ ol
MW = oy EOC )

where = (1,21, ..., 2zy) and as explained in [37]. Here o(t) = e‘*oq with ¢
traceless Hermitian. Consequently, if r¢ is the spectral radius of ¢, we have

115 ™M (o (t))'] < 2r¢Volr(D)

and D +— Vol (D) is integrable over |L2|. Hence a variant of Lebesgue dom-
inated convergence theorem asserts that

d

Gt = Vol (1)

- (ifﬁmwt») .

Now, for almost all D € |Lo|, & (I5YM) (0(t)) converges simply when ¢ tends

to 400, so together with above properties, another variant of Lebesgue dom-
inated convergence theorem gives

) d :
i 57 (a(0) = = Jim Vol,, (M) [

Equation then implies

d
. d <
thm dtJX(U(t)) <0,

contradicting properness. This completes the proof. U

4.2. The J-flow and K-stability

In this section we study J-stability, as in Definition In this definition
one takes a projective variety M with two ample line bundles L;, Ly, and
associates a weight called the J-weight Jr, (X, L) to each test configuration
(X, L). J-stability then requires that Jp,(X, L) > 0 for each non-trivial test
configuration with X normal. In order to study J-stability, we reduce the
class of test configurations needed to those which are blow-ups along flag
ideals.
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Remark 4.27. To clarify notation in this section, for a line bundle L we
denote rL its rth tensor power. We denote intersection numbers as L" =
J3c1(L)™ and so on. We also use additive notation for the tensor product
of line bundles.

Definition 4.28. A flag ideal Z is a coherent ideal sheaf on M x C of
the form Z = Iy + (t)I1 +--- + (tV), where t is the coordinate on C and
Iy C--- CIny_1 C Oy are a sequence of coherent ideal sheaves on M cor-
responding to subschemes Zy D Z1 D -+ D Zy_1 of M.

Denote by B the blow-up of Z on X x C, i.e.
7:B=BlyM xC — M x C,

denote by L1, Ly the pullbacks of Lq,L; to B and let O(—E)=7"'T be
the exceptional divisor of the blow-up. The map B — C is flat, and the
natural C*-action on X x C lifts to B. It follows that (B,7L; — E) is a test
configuration of exponent r for (X, L) provided r£1 — E is relatively ample.
Remark that each such test configuration has a canonical compactification
obtained by blowing up Z on M x P'; we denote this test configuration by
B and by abuse of notation denote L1, Lo, E the corresponding line bundles
and divisors on B. The following Proposition then states that it is enough
to check J-stability with respect to these test configurations, provided one
allows r£q — E to be relatively semi-ample.

Proposition 4.29. Let M be a normal projective variety with ample line
bundles L1, Ly. Then (M, Ly, Lo) is J-stable is equivalent to the fact that

JL2(B,T,C1 - E) >0

for all flag ideals T with B = Blz M x P! normal and rL — E relatively semi-
ample over P1. Recall the J-constant of (M, Ly, Ls) is defined as

Lyt !
- =5

On such blow-ups the J-weight defined by Definition is given by the
formula

n
n+17

(26) JLQ(B, ’I“,Cl — E) = (Tﬁl — E)n < T_I(T‘El — E) + EQ) s

up to multiplication by a positive dimensional constant.
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Proof. By [32] Corollary 3.11], given an arbitrary test configuration (X, H),
there exists a flag ideal Z and a C*-equivariant map

Y (B,rLy — E) — (X, H)

with B normal and r£; — E = ¢*H relatively semi-ample over C. Since the
map v is C*-equivariant, the total weight wt H°(Xy, kHo) is equal to the
total weight wt HO(Bo, k(rL1 — E)o). Similarly given a divisor D C M, de-
note by D C X the closure under the C*-action. If one denotes by Bp the
proper transform of D x C, then similarly by [35, Proposition 3.5] we have

wt HO(Do, kHo) = wt H*(Bp.o, k(rL1 — E)]o).

To obtain a formula for the J-weight, we need to calculate the by and Bo,
where the latter is for a general divisor D € |T'|. We first of all compactify
the above semi-test configuration as detailed above. We denote by B and
Bp the corresponding test configurations over P!. For the by term, by [32]
Theorem 3.2] or [48] Proposition 17] we have

wt(H(Bo, k(rLy — E)|%)) = x(B, k(rL, — E)) + O(k™™1),
n+1
— (Tﬁ(ln__i_flj; + kn+1 + O(kn),

using asymptotic Riemann-Roch for normal varieties [32, Lemma 3.5]. Sim-
ilarly for arbitrary D € |Ly| we have

wt(H"(Bp.o, k(rL1 — E)|o)) = x(Bp, k(rL1 — E)) + O(k"?),

— Ml_j)'lgf’kn+0(;€n—l)’
_ (L1 - F) -(ﬁn2'+ (Bp — Ez))kn + Ok,

Here L5 is the line bundle associated to the total transform of D x P!,
while Bp corresponds to the proper transform. Remark that these are equal
for general D, indeed they are not equal if and only if the flag Z has a
component contained in D. It follows that

~ (Tﬁl — E)nf,g
bp= —F—F7-7—"—.
n!
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Summing up, we see that

(n + 1)!JL2(B, Tﬁl — E) = (Tﬁl — E)n <—n :L_ 1’y7"_1(7“£1 - E) + ﬁz) y
using
= nr@
v = a0 0

Using the above, we can extend the definition of J-stability to the case
where Lo is an arbitrary line bundle, which will be useful in applications.
By Proposition it follows that when Lo is ample, this definition is
equivalent to Definition

Definition 4.30. Let (M, L1, L2) be a normal projective variety M with an
ample line bundle L; and an auxiliary line bundle Ls, not necessarily ample.
We say that (M, Ly, Lo) is J-stable if for each flag ideal Z, the corresponding
J-weight given in equation is strictly positive.

In order to use this formalism, we need the following positivity properties
of certain intersection numbers.

Lemma 4.31. [3], Proposition 4.3, Theorem 2.6] [31, Equation (3)] [11,
Lemma 3.7]

With all notation as above, let R be a nef divisor on M, and denote p*R =R
where p : B — M is the natural morphism induced by the blow-up map. Then
the following positivity properties of intersection numbers hold.

(i) (r£1 —E)"R <0,
(i) (r£y — E)".E >0,
(iii) (rfy — E)".(rL1 +nE) > 0.

We can now apply this blowing-up formalism.

Theorem 4.32. Suppose that vLy — Lo is nef, with y>0. Then (M, Ly, L2)
s J-stable.
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Proof. We use the blowing-up formalism of Proposition Let 7 be a flag
ideal with corresponding blow-up B. The J-weight is given as

Jr,(B,rLy — E) = (rL£y — E)". (— yr Y rLy — E) + Eg) ,

n+1
yr Y (rLy + nE) + (—yL1 + Eg)) .

n 1
—(Tﬁl—E) .<n+1

By Lemma [4.31] (éii), we have
(rfy — EY".(rL1 +nkE) >0,

while Lemma (i) together with the assumption that yL; — Lo is nef
gives

(Tﬁl — E)n.(—’7£1 + EQ) > 0.

Combining these proves the result. O

n—1
Remark 4.33. Since vy = Ly Ln'LQ, the assumption v > 0 is automatic when
Lo is ample, or even effective. The above result holds for general Lo however

using Definition provided v > 0.

Remark 4.34. In the case Ly is ample, a result of Weinkove [50] states
that if

n—1

yL1 — Lo

is also ample, then the I,,, functional is bounded. Note that this is a weaker
assumption than we made in Theorem however we do not assume Lo is
ample. It would be interesting to directly prove J-stability under Weinkove’s
hypothesis.

We now prove a link between J-stability and K-stability (as in Defini-
tion. This is the algebro-geometric analogue of the relationship between
existence of solutions to the J-flow and coercivity of the Mabuchi functional,
due to Chen [7]. Our result will make use of certain measures of singularities
of projective varieties.
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Definition 4.35. Let M be a normal Q-Gorenstein variety. Let 7 : Y — M
be an arbitrary birational map with Y normal. We can then write

Ky —m*Ky =Y a(E;, M)E;.

We say that M is Kawamata log terminal if a(E;, M) > —1 for all E; with
M normal. By [21] Lemma 3.13] it suffices to check this property for Y — M
a resolution of singularities. In particular, smooth varieties are Kawamata
log terminal.

Theorem 4.36. Suppose (M, Ly, Kyy) is J-semistable, with M Kawamata
log terminal. Then (M, Ly) is K-stable.

Proof. A result of Odaka [32], Corollary 3.11] states that, similarly to Propo-
sition to check K-stability it suffices to show the Donaldson-Futaki in-
variant of each semi-test configuration given in Proposition is strictly
positive. The proof is a comparison of the Donaldson-Futaki invariant and
J-weight. Indeed, letting B be a blow-up along a flag ideal as above, we have

Ji, (B, Ly — E) = (rLy — E)". <_n n

n 171"_1(7“51 —FE)+ ICM) ,

while the corresponding Donaldson-Futaki invariant is given by Odaka as

DF(B,rLy — E)=(rLy — E)". <— r Y rLy — E)+Ku +KB/MxIP>1> :

n+17

Here we have denoted KCj; the pullback of Kj; to B. Hence
DF(B, ’F[,l — E) = JKM(B, E{ - E) + (rﬁl — E)n.KB/MX]pl.

The term Kpg IMxP = K — " Kjrxpr 18 an exceptional divisor of the
blow-up 7 : B — M x P!, since B is normal the intersection numbers make
sense. Hence to show K-stability, by Lemma[d.31] (i), it suffices to show that
Kpg/arxp is effective. This follows by inversion of adjunction [22, Theorem
5.50]. Indeed, M being Kawamata log terminal implies that X x P! is purely
log terminal, hence the discrepancy term is effective. O

The following Corollary is our motivation for extending the Definition
of J-stability to the case with Ls not necessarily ample.
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Corollary 4.37. Suppose that (M, L1) is a Kawamata log terminal variety
with v > 0 which satisfies

’YLl - KM > Oa
i.e. the difference is nef. Then (M, Lq) is K-stable.
Proof. This is immediate by combining Theorems and U

Remark 4.38. This Corollary should be compared to Weinkove’s work
[50] in the smooth case with Kj; ample, which proves that the Mabuchi
functional for (M, L) is proper provided

n—1

yL1 — Ky

is ample. While we need a stronger ampleness criterion for L, we do not
need to assume K is ample, merely that v > 0.

Remark 4.39. Corollary was also obtained by the first author through
a direct analysis of the K-stability condition [I3, Theorem 1.7]. When L; =
Ky, i.e. M is a canonically polarised variety, this result is due to Odaka
[31].

When M is a surface we can improve these results, using another inter-
section theoretic Lemma. This is essentially a strengthening of Lemma
(#i7) for surfaces.

Lemma 4.40. Suppose M has dimension 2. Then
(rLy — E)*.(rL1 + E) > 0.
Proof. The intersection number expands as
(rLy — B).(rLy1+ E) = 3L3 — r?L2.F — 1Ly .E* + E>.

As L is the pullback of a line bundle from the surface M, we have £3 = 0.
Recall that the flag ideal is of the form Z = Iy + (¢)I1 +--- + (t). Asin
the proof of [31, Theorem 2.6], we can assume that the flag ideal has support

s = dim Supp(Oprxp2/Z) < 1.

Indeed otherwise, the flag idea satisfies Iy = Oy and dividing by a power of
t does not change the blow-up and hence the Donaldson-Futaki invariant,
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but ensures s < 1. Then provided s < 1, we have £3.E = 0 by the projection
formula, as in [33, Lemma 3.5].
It follows that

(27) (rLy — BE)?.(rLy + E) = —rL1.E* + E3,
(28) = —F%(rLy — E).

But this latter term is non-negative by [31, Lemma 2.8 (i)] (setting i = 1 in
the notation of that Lemma), concluding the proof. O

Using the above Lemma we can strengthen Theorem for surfaces.

Theorem 4.41. Suppose M has dimension 2 satisfying %le — Lo is nef,
and v > 0. Then (M, Ly, Lo) is J-semistable.

Proof. We follow the proof of Theorem [4.32] using Lemma Letting 7
be a flag ideal as above, the J-weight is given as

2
Jr,(B,rLy — E) = (rLy — E)z. (377’_1(7‘[,1 —FE)+ Eg) ,
2 4
— 1= B (S 0L+ B+ (gL + L)

By Lemma we have
(rLy — E)?.(rL1 + E) >0,

while Lemma [4.31] (i) together with the hypothesis of the Theorem ensures
(rL, — E)? —%£+E >0
1 . 37 1 2| =2 U 0

Remark 4.42. It is important to note that in the above result we only
prove J-semistability, it would be interesting to prove J-stability assuming
the line bundle %'yLl — Lo is actually ample. This does not follow directly
from our method.

We immediately obtain the following Corollary, by Theorem [4.36] This is
the most general currently known result for K-stability of surfaces of general

type.

Corollary 4.43. Let (M, L1) be a polarised Kawamata log terminal surface
satisfying %*yLl — Ky is nef and v > 0. Then (M, L) is K-stable.
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Remark 4.44. Panov and Ross have proved slope stability of surfaces with
ample canonical class under the weaker assumption 2vL; — Kj; is ample
[36, Example 5.8]. However by [36, Example 7.8], slope stability is a strictly
weaker condition than K-stability, i.e. K-stability implies slope stability but
there are examples of slope stable polarised varieties which are not K-stable.

Corollaries [£.43] and [£.37] together with the link between J-stability and
the I,,, functional lead us to the following conjecture. We remark that the
definition of the I,,, functional makes sense with Ly arbitrary, taking a not
necessarily positive (1,1)-form x € ¢1(Lg).

Conjecture 4.1. Let M be a smooth n-dimensional variety with an ample
line bundle L1 and an arbitrary line bundle Lo. Suppose v > 0 and

n—1

vLy — Ly
is ample. Then the I,,, functional is proper. In particular if Ly = Ky, then
(X, L1) has proper Mabuchi functional.

We emphasise again that in the above Conjecture we do not assume Lo
is positive just that v > 0. In the case L9 is positive the above Conjecture
follows from Weinkove’s work [50]. In the case of minimal surface of general
type (i.e with big and nef canonical bundle), the Conjecture is proved in
[44].
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