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Existence and regularity of multivalued

solutions to elliptic equations and systems

BriaAN KRUMMEL

We construct C1* multivalued solutions to more general classes
of elliptic equations and systems, including the minimal surface
system with small boundary data and the Laplace equation. This
extends work of Simon and Wickramasekera in which they con-
struct a large class of C™* multivalued solutions to the minimal
surface equation. We use methods for differential equations, which
are more general than the specific minimal submanifold approach
adopted by Simon and Wickramasekera. We also prove the branch
set of the graphs of the solutions are real analytic submanifolds by
inductively using Schauder estimates.
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We consider solutions to elliptic differential equations and systems which are
represented by multivalued functions as developed by Almgren in [I]. In [10],
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Simon and Wickramasekera constructed a rich class of C'* g-valued solu-
tions to the Dirichlet problem for the minimal surface equation on the cylin-
der C = B#(0) x R"~2. However, the method of Simon and Wickramasekera
was specific to the minimal surface equation and does not readily generalize
to other elliptic equations or to elliptic systems. We extend the results of [10]
by establishing in Theorem [2] the existence of C'* g-valued solutions with
small boundary data to the Dirichlet problem for a large class of elliptic
systems and in Theorem [3| and Corollary [l the existence of C1# g-valued
solutions (possibly without small data) to the Dirichlet problem for large
classes of elliptic equations. In particular, we extend the results of [10] by
giving examples of ¢g-valued harmonic functions and branched minimal sub-
manifolds with codimension greater than one. The boundary data of these
solutions satisfy a k-fold symmetry condition as in [I0]. Our approach uses
techniques for differential equations, which have the advantage applying in
a more general context than codimension one minimal surfaces.

We also study the regularity of the branch set of minimal immersions.
The singular set of minimal submanifolds is known to have Hausdorff dimen-
sion at most n — 2 in the case of area minimizing n-dimensional integral cur-
rents due Almgren [I] and stationary graphs of C'#* two-valued functions due
to Simon and Wickramasekera [11]. The branch set of the minimal surfaces
constructed in [I0] and this paper are obviously CL# (n — 2)-dimensional
submanifolds. We extend these results by showing that the branch sets of
minimal immersions constructed in [10] are locally real analytic (n — 2)-
dimensional submanifolds.

The methods of differential equations require adding and multiplying
functions. However, it is not generally possible to add or multiply g-valued
functions to obtain a g-valued sum or product. To handle this difficulty we
consider g-valued functions % on an open set €2 in R™ each associated with
a map u= (ug,usz,...,uq): 2\ [0,00) x {0} x R""2 — (R™)9 such that
W(X) = {u(X),u2(X),...,ue(X)} as an unordered g-tuple for each X €
0\ [0,00) x {0} x R"2 as we can then add and multiply the correspond-
ing maps u.

To construct ¢-valued solutions to elliptic equations and systems, we
first prove Theorem (1], which establishes the existence of g-valued solutions
to the Dirichlet problem for a class of Poisson equations. Using a change
of variable & + iy = (z1 + i:cg)l/ 9, we transform the Poisson equation of
g-valued functions into a singular differential equation of single-valued func-
tions, which we can solve using Fourier analysis and standard elliptic theory.
Using the average-free and k-fold symmetry properties of the solution, we
obtain a bound on how the solution decays at points on the axis {0} x R*~2
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of C, which implies the Holder continuity of the gradient of the solution. The
existence result for elliptic systems, Theorem [2] then follows from the con-
traction mapping principle and the existence results for elliptic equations,
Theorem [3] and Corollary [I], follow from the Leray-Schauder theory.

The branch set of the graphs of the g-valued solutions @ constructed
in [10] is the graph of @ over {0} x R"~2. Thus the real analyticity of the
branch set follows in Theorem [4, which establishes that a g-valued solution
@(x,y) (where x € R? and y € R"~?) to a elliptic equation with real analytic
data is real analytic with respect to y in the sense that @ locally satisfies
bounds of the form | D} a(z, y)| < |y|!C1! for some constant C' € (0, 0c). Note
that an analogous regularity result, Theorem [5|, also holds for elliptic sys-
tems. Rather than proving Theorem [d] by extending an approach of Morrey
in [6] using integral kernels, we inductively apply the Schauder estimates.
This argument readily yields C'* estimates on derivatives Dy for every
multi-index 7, where p € (0,1/q). More care is needed to obtain the partic-
ular type of bound on Dji(z,y) required for real analyticity with respect
to y. We obtain such bounds using a modified version of a technique due to
Friedman [2] involving majorants.

2. Preliminaries and statement of main results

We adopt the following notation and conventions.
n >3, m>1,and g > 2 are fixed integers.

BL(X) denotes the open ball of radius R centered at X, in R! and
Br(Xo) = B}(Xo)-

C = B#(0) x R"~2 denotes an open cylinder in R".

X = (z,y) denotes a point in R”, where z € R? and y € R" 2. We
identify 2 with the point re? in C, where r € [0,00) and 6 € R.

Let A4 (R™) denote the space of unordered g-tuples @ = {u1,ug, ..., uq},
where uy, us, ..., uqs € R™ and we allow u; = u; for i # j. We define a metric

G on A, (R™) by

q 1/2
G(u,0) = min <Z lw — vg(1)|2>
=1

for all unordered g-tuple @ = {u,...,uq} and ¥ = {v1,...,vq}, where the
minimum is taken over all permutations o of {1,...,¢}. A ¢g-valued function
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@ on a set & CR" is a map @: Q — A (R™) (note that this definition of
g-valued functions is equivalent to the definition of Almgren [I]). A g-valued
function @ : @ — A, (R™) is continuous at X, € 2 if either X is an isolated
point of Q or

Jm G(a(X), 4(Xo)) =0,

where the limit is taken over X € Q. C%(Q;A,(R™)) denotes the space of
continuous g-valued functions @ : Q@ — A,(R™). A g-valued function @ : Q —
Ay(R™) is Holder continuous with exponent p € (0,1] if

g(a(X),u(y))

U0 = sup ——— < 0.
[t xXyeq, x2y | X —=Y|#

A g-valued function u : Q — A,(R™) is differentiable at a point X in the

interior of € if for some m x n matrices Aq,..., Ay,
u(X X)+ A
o o SCECE ) L)+ ) _
h—0 |h’

in which case we say Da(X) = {Ai,...,A,} is the derivative of @ at X.
For each open set Q CR™ C1(Q;A,(R™)) denotes the space of g-valued
functions @ : 2 — A, (R™) such that Du exists at each point in © and @
and Du are continuous on Q. For each u € (0,1] and open set 2 C R",
CHH(Q; Ay (R™)) denotes the space of g-valued functions @ € C(2; A, (R™))
such that [Da],.0 < oo for every open set ' CC €.

Let Q be an open set in R and @ € C1(Q; A,(R™)). We let By de-
note the set of points Xy € © such that there is no ball Br(Xp) C 2 on
which @ = {u1,ug, ..., uy} for some single-valued functions wuy,ug,...,u, €
CY(Bgr(Xo); R™). We say @ satisfies

Di(AYX, @, Du)) + B(X, @, D) = 0 weakly in Q\ B

for continuous single-valued functions A%, B : Q x R™ x R™" — R if for ev-
ery ball Br(Xo) € Q\ By, @ = {u1,us,...,uq} on Br(Xy) for single-valued
functions u; € C1(Bg(Xo); R™) such that

D;(AY(X,u;, D)) + B(X,u;, Duj) = 0 weakly in Br(Xo)

forl=1,2,...,q.

Observe that we cannot in general add or multiply multivalued func-
tions. Given two g-valued functions @,? : @ — A4(R™), there is no canon-
ical way to pair the elements u;(X) and v;(X) of the unordered g¢-tuples
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ﬁ(Xl)) = {u(X),u2(X),...,ue(X)} and 9(X) = {v1(X),v2(X),...,v9(X)}
to obtain a sum

(@ + 0)(X) = {ur(X) + vi(X), ua(X) +v2(X), ..., ug(X) + v4(X)}
or product
(@) (X) = {ur (X)v1(X), ua(X)v2(X), ..., ug(X)vg(X)}.

Moreover, for some g-valued functions @, o € C1(2; A,(R™)), there is no way
to pair the elements u;(X) and v;(X) to obtain a sum

(@4 0)(X) = {u1(X) + 01 (X), ua(X) + v2(X), ..., ug(X) + v4(X)}

that is C' on €; for example, consider @,7 € C'(R?; A3(R)) given by
(21, 29) = {£ Re(xy + ize — 1)%2} and 9(z 1, x2) = {& Re(xy + izy + 1)3/2}.
In what follows, we develop a theory of multivalued solutions to linear
and quasilinear elliptic differential equations, which requires adding and
multiplying functions. Rather than working with multivalued functions di-
rectly, we will work with functions u: '\ [0,00) x {0} x R*~2 — (R™)4,
which we can add and multiply. The class of functions u that we consider take
the form w(X) = (u1(X), u2(X),...,uye(X)) at each X € 2\ [0,00) x {0} x
R"2 where u;:Q\[0,00) x {0} x R""2 5 R™ for [=1,2,...,q, and,
roughly speaking, satisfy limg, 4o wi(z1,22,y) = limg, 0 uiy1(z1,22,y) for
1=1,2,...,¢—1 and limg,1ouq(z1,z2,y) = limg, o u1 (21, x2,y) whenever
(0,22,y) € Q. To each such map u we will associate a g-valued function
@ — Ay(R™) such that a(X) = {u1(X),ua(X),...,ue(X)} for X € Q\
[0,00) x {0} x R"~2,

Definition 1. Let € be an open set in R" and k>0 be an integer.
C*4(Q; R™) denotes the set of maps u = (ug,ug, ..., ug) : 2\ [0,00) x {0} x
R"~2 — (R™) such that U QR (0,00) xR —2 €xtend to C* functions on QN
R x [0,00) x R"2 and U] QR x (—o0,0) xR €xtend to C* functions on QN
R x (—00,0] x R"2 for [ =1,2,...,q and

lim D%y (z1, x2,y) = li%Daul+1(x1,x2,y) forl=1,2,...,q—1,
T2

IEQTO
lim Dauq(xly €2, y) = lim Daul (xl) €2, y)a
210 20

for all z1 > 0, y € R"2, and |a| < k. Given u € C¥9(Q;R™), we let

D%u(0,y) = il_r)I%)D uy(z,y)
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whenever (0,y) € Q and |a| < k. We let C°4(Q; R™) = 72, CF9(Q; R™).
CE9(Q; R™) denotes the set of u € C*9(Q; R™) such that for some Q' CC €,
u=0on (Q\)\[0,00) x {0} x R*2,

Definition 2. Let € be an open set in R™, k>0 be an integer, and
p € (0,1]. CFH4(Q; R™) denotes the set of maps u € C*¥9(Q; R™) such that
U QAR x (0,00) xR -2 €xtend to C*# functions on QN R x [0,00) x R*2 and
U] QR x (—o0,0) xRn 2> €xtend to C*:# functions on Q NR x (—o0,0] x R"~2 for
=1,2,...,q.

To each u € C*9(Q;R™), where k € {0,1}, we associate a unique g-
valued function @ € C*(Q;A,(R™)) given by a(X) = {u1(X),ua(X),...,
ug(X)} for X € 2\ [0,00) x {0} x R"2. Of course, more than one u €
Ck:4(€; R™) may be associated with the same g-valued function .

Let 2 be an open set in R™. Given a set S C €2, we define

2.2 infu = inf i X),... X

@2 igtu= ot min{a(X), ()
supu = sup max{ui(X),...,ue(X)},
s X€5\[0,00)x {0} xRn—2

for each u € C%4(Q;R) and we define

(2.3) sup |u| = sup max{|u (X)], ..., lug(X)|}.
S XeS\[0,00)x{0} xR"—2

for each u € C%4(£2; R™). Note that if instead u : Q \ [0,00) x {0} x R*~2 —
(R™)? is measurable, we can define info u and supq v if m = 1 and supg |u]
by and by replacing the infimums and supremums with essential
infimums and supremums. We say v € C%9(Q; R) attains its maximum value
at Xo € Q if either Xg € Q\ [0,00) x {0} x R"~2 and

SUp U = max{u1(Xo), u2(Xo), . .., uq(Xo)}

or Xog € 2N [0,00) x {0} x R"2 and

sgpu = lim max{u(X),u2(X),...,ue(X)}.

X—Xo

For each integer k > 0,

[ullcriaga) = Z sup | D%l
lal<k
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for every u € C*9(Q; R™). For each integer k > 0 and u € (0, 1],
q
[u]u;qﬂ = Z([ul]u;QﬂRX(O,oo)XR"—2 + [ul]u;QﬂRX(—oo,O)XR"—Q)
=1

for every u € C%#9(Q; R™) and

[ullcrmay = Y sup [Dul + > sup[Du] 00
lal<k ol =k

for every u € CH#9(Q; R™). When 2 = Br(Xj) is an open ball, we define

lullera(paixey = D B sup [D%|
(Br(Xo)) = |l§<:k e

for every u € C¥9(Bgr(Xo); R™) and

Hu||CkM(BR Xo) Z Rl sup |D%u| + Z sup R* (D] ,,.4 0
R jal=k

for every u € CHM9(Bp(Xo);R™). Given a sequence {u(j)}j:m,g’m in
Ck4(Q;R™) and u € C*4(Q), we say ul) — u in CFI(Q;R™) i /
ullcria(q) — 0. Note that if € is a bounded open set in R™ and ul) =

(ugj),uéj), .. (])) j=1,2,3,..., is a sequence in C*#9(Q; R™) such that
sup; | ul?) Hck wa(Q) < 00, then by Arzela-Ascoli applied using the sequences
{u 0 |:0nRx (0, oo)XR" 2}and {ul?) |,u,Qﬂ]R><( oo,0)xrn-2 forl =1,2,..., g, there

is a subsequence {u Ji) biz123,.. of {u 9) }i=123,.. andu € Ck1a(Q; R™) such
that u() — u in CF9(Q; ]Rm) as i — 00.

Given open sets ' CC QCR" heR and n € R"2 such that 0 <
|hn| < dist(€',092), and u € C%(; R™), we define

Shygtt = (O i1, SppUia, - - ., Opptg) € CO9(Q;R™)
by

w(z,y + hn) —w(z,y)
h

(2.4) (5hmul(x, y) =

for all (z,y) € '\ [0,00) x {0} x R* 2 and [ =1,2,...,q
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Definition 3. Let Q@ C R™. For 1 < p < oo, LP(Q; R™) denotes the set of
Lebesgue measurable functions u = (u1, ug, ..., uq) : @ = (R™)9 such that

q 1/17
[/l poo () = (/ ZIWI”) < 0.
Q=

L>9(Q; R™) denotes the set of Lebesgue measurable functions u = (uq, ug,
S Ug) : = (R™)9 such that supq || < oo for 1 =1,2,...,4q.

Definition 4. Let Q C R" be an open set, 1 < p < oo and k > 1 be an inte-
ger. WHP4(Q; R™) denotes the set of u = (ug,us, ...,u,) € LP(Q;R™) such
that for every a with |a| < k there exists a v = (v, v2,...,v4) € LP9I(Q;R™)
(depending on «) such that

q | ‘ q
/Ql;ulD G =(~1) /Q;UZQ

for every ¢ = (¢1,Ca,...,y) € CE4(Q;R™). D = v denotes the order
weak derivative of u.

To each measurable function u : 2 — (R")? we associate a measurable g-
valued function @ : Q— A, (R™) given by a(X) = {u1(X), u2(X), ..., uq(X)}
for X € Q. @ is unique up to its values L™-a.e. on €.

For each integer k> 1 and 1 < p < oo,

l|ul[yy.ria () = Z sup || D%ul| Lria(q)
la| <k

for every u € W*P4(Q; R™). Given a sequence ul) € LP4(Q), j = 1,2,3,...,
and u € LP9(Q), we say ul) — u in LP9(Q;R™) if |ul) — || oo () — 0.
Given a sequence {u(j)}j:m,g,m in Wkri4(Q) and u € WhkP4(Q), we say
ul) — uin WP R™) if [|ul) — ullyprsaiq) — 0. We let WP (Q;R™)
denote the closure of CH9(;R™) in the Banach space WFP4(Q;R™).
Note that if u() :(ugj),ugj),...,ugj)), j=1,2,3,..., is a sequence in
Wh4(Q; R™) such that sup, |9 [w1.2:a(2) < 00, then by Rellich’s compact-
ness lemma applied to the sequences

{ugj) | :00R % (0,00)xRn-2}  and {“z(j) | s (—00,0) xn -2 }
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forl =1,2,...,q, there is a subsequence {uV")};—1 53 of {ul)},;=1 23 and
u € WH%4(Q; R™) such that uU?) — u strongly in L%7(Q; R™) as i — oo and
|Dull o) < liminf; [ Dub|| p20(q).

Given aset Q C R" and u = (ug, ug, ..., u,) : Q\ [0,00) x {0} x R""2 —
(R™)4, there exists uq : 2\ [0,00) x {0} x R"™2 — R™ and us = (uf1,urs2,
cestfg) 2\ [0,00) x {0} x R"™2 — (R™)? such that

18
(2.5) w = uq +uypy forl=1,2,...,q, where UaZ*E uj.
q <
j=1

We call u, the average of u. We say u is average-free if u, =0 on Q. uy is
average-free and thus we call us the average-free part of w.

The first of our main results concern the existence of solutions to the
Dirichlet problem for elliptic differential equations in the cylinder C =
B?(0) x R"2, Fix an integer k > 2 such that k and ¢ are relatively prime.
We say u € C%4(C; R™) is k-fold symmetric if

ul(reeriQ’r/k,y) = ul(rew,y) if0<0<2r—2m/k, 1=1,2,...,q,

uy (re? 2Tk gy = ug(re® y) if 21 — 21 /k < 0 < 2m,

ul(rewHQ’r/k,y) = ul_l(rew,y) if2r —2w/k <0 <2m, 1=2,3,...,q,

for all (re,y) € Q. We will let R denote the n x n matrix such that

R(rew’ y) — (rei9+i2ﬂ'/k’ y).

We write
cos(2w/k) —sin(2x/k) 0 O 0
sin(2w/k)  cos(2w/k) 0 O 0
; 0 0 1 0 0
R = (Rj})ij=1,..n = 0 0 0 1 0
0 0 0 0 1

where Rf denotes the entry in the ¢-th row and j-th column of R. We say u
is periodic with respect to y; with period p; >0 for j =1,2,...,n —2if

w(z,y + pjej) = w(x,y)

for all (z,y) € Q\[0,00) x {0} x R" 21 =1,2,...,¢q,and j =1,2,...,n —
2, where eq, e, ..., e,_o denotes the standard basis for R? 2.
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We will be interested in the regularity of multivalued solutions up to
the boundary of C. Recall that the continuity of multivalued functions on
C is defined above. We say @ :C — A,(R™) is differentiable at X, € 9C
if holds when the limit is taken over h such that X +h € C. We
let C1(C; A4(R™)) denote the space of @ :C — A,(R™) that are continu-
ously differentiable on C. We say @ € C1#(C; A (R™)) for p € (0,1] if 4 €
CY(C; Ay(R™)) and (D], g2 (0)x Br—2(0) < o for all p € (0,00). We define
Ck4(C;R™) for integers k > 0 by Definition (1| with C in place of Q. We
say u € C*#4(C;R™) for an integer k > 0 and p € (0,1) if u € C*9(C; R™)
and [Dku]u;qﬁf(o)xB}}*?(o) < oo for all p € (0,00). Note that given a set
S C C, we define infgu and supgu for u € C°(C) by and supg |u| for
u € C°(C;R™) by .

We will first establish the existence of solutions in C%4(C) N C*#4(C) to
weak Poisson equations:

Theorem 1. Let € (0,1/q) and k > q be an integer such that k and q are
relatively prime. Given f7 = (f{,f3,...,f7) € CO¥4(C) and g, € C%¢(C)
such that

n

(2.6) F(re®t 275 gy = 3 R (re?y)
p=1
if0<@<2r—2m/k, 1=1,2,...,q,
Rlre® 7% 1)~ 3° Rige(re®. )
p=1
if 2m — 27 /k < 0 < 2,
F e 2wl gy = ST RLY (re, )
p=1
if2n —2n/k <60 <2m, 1=23,...,q,
for all (re” y) € C, g and ¢ are k-fold symmetric, and

sup || + [f]u;q,c + sup |g| < o0,
oc C

there is a u € C%4(C) N CYH4(C) such that u is k-fold symmetric,

q a
27) /c ;Djulpjg - /C ;U;chl — aG)

for all ¢ € CHI(C\ {0} x R"™2),
up = on dC,
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orl=1,2,...,q and
[
supuf < € (sup ¢l + g + supll).
C ocC C

Moreover, if f7, g, and ¢ are periodic with respect to vy; with period
pi >0 fori=1,2,...,n—2, then u is the unique solution to that is
periodic with respect to y; with period p; fori=1,2,....,n— 2.

Note that in the special case where f/ = 0 and g = 0, the ¢g-valued func-
tion a(X) = {u1(X),u2(X),...,uq(X)} associated with the solution u ob-
tained in Theorem is a g-valued function in C%(C; A,4(R)) N CH#(C; A, (R))
such that A = 0 weakly in C \ By.

To prove Theorem [I, we first assume f7, g, and ¢ are periodic with
respect to each ;, as the general result follows by approximation of f7, g,
and . We use the change of variable & + i€ = (z1 + iazg)l/q to transform
u(z1,2,7) to a single-valued function ug(£1, &2, y) defined by ug(re?,y) =
u (rt/9e/4 y) for r € [0,1], 8 € (2(1 — 1), 2l7), and y € R" 2. The single-
valued function wug satisfies a singular differential equation which we solve
using Fourier series with respect to the y; variables and the existence the-
ory for single-valued solutions to elliptic equations to solve for the Fourier
coefficients as functions of & and &. By linearity, we can assume that f7, g,
and ¢ are all average-free and therefore the constructed solution u will be
average-free and k-fold symmetric. The average-free and k-fold symmetry
conditions on u will guarantee that u(z,y) decays sufficiently quickly as z
approaches zero to guarantee that u € C1#4(C).

Using Theorem [I] and the contraction mapping principle, we can con-
struct solutions to quasilinear elliptic systems with small boundary data ¢

in CL#4(C; R™):

Theorem 2. Let m > 1 be an integer, p € (0,1/q), and k > q be an in-
teger such that k and q are relatively prime. Let Fi € C?>(R™) and G, €
CL(R™ x R™) be single-valued functions, where R™ is the space of m x n
matrices, such that F'(0) =0, DF!(0) =0, G.(0,0) =0, DG.(0,0) =0,
and

Fi(PR) = RIFJ(P), G.(Z PR)=G.(Z,P)

for all P € R™. For some £ >0 depending on m, n, q, f, Fi, and Gy,
if ¢ € C11(C,R™) is k-fold symmetric with ||¢||cruacy < €, there exists a
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solution u € CH#4(C; R™) to

q q )
(2.8) /c ;Djumc,“ - /C ;wzwul)m& — G, D)%)

for all ¢ € CHI(C\ {0} x R"%:R™),
up = on dC forl=1,2,...,q.

Moreover, u is k-fold symmetric and |[ul|cr.ua(cy < €. The q-valued function
W(X) = {1 (X), ua(X),...,uq(X)} associated with u is a q-valued solution
in CLH(C; Ay(R™)) to

AU — DiFL(Da) — G (i, D@t) = 0 weakly in C \ Ba.

In particular, Theorem [2| yields g-valued solutions @ € C1#(C; A,(R™))
to the minimal surface system in C \ By. For sufficiently small € > 0, these
solutions to the minimal surface system are stable in the sense that

(2.9) /E

for all normal vector fields X € C?(Xz; R"™™) N Wh2(X;, R, where $4
is the graph of u regarded as an immersed submanifold. holds true
in the case that X = 0 near {0} x R""2*™ by the convexity of the area
functional. To prove for general X, for § € (0,1) let x5 € C*([0,00))
be the logarithmic cutoff function given by x5 =0 on BZ(0) x R"~27™,
xo(z,y, Z) = —log(|z|/6%)/log(0) if x € B2(0) \ B%(0), y e R" 2, and Z €
R™, and x5 =1 on R"™™\ B2(0) x R"2T™_ Replace X by x;X in
and let 0 | 0 to obtain with the original X. Theorem |2| also yields ¢-
valued solutions to the Euler-Lagrange equations for functionals of the form
Jo(IDul? + f(Du)) where f € C*(R™";R) is a single-valued function such
that Df(0) =0, D*f(0) =0, and f(PRy, ) = f(P) for all P € R™.

Note that Theorem [2] would not be true without the assumption of small
boundary data as a consequence of [5], which showed that for some boundary
data there are no C'! single-valued solutions to the Dirichlet problem for the
minimal surface system.

We also use Theorem [I| and the Leray-Schauder theory to construct
solutions to general quasilinear elliptic equations (without assuming small
boundary data):

YD) = Y X Almmy)P ) 20
1=1

1,j=1

a
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Theorem 3. Let k > q be an integer such that k and q are relatively prime.
Let A € C*(R"), B € CY(R x R") be single-valued functions such that

(2.10) AY(PR) = RIAY(P), B(Z,PR)= B(Z,P).
Suppose
0 < A(P)IE]* < Dp, A'(P)&i&; < A(P)[E]® for all € € R"
for some continuous positive functions A and A, the structure conditions

(2.11) B(Z, P)sgn Z/A(P) < Ai|P| + fa,
(2.12) A(P)| + [B(Z, P)| < Bs\(P)|PP if |P| > 1,

for some constants p1, B2, B3 € (0,00), and B(Z, P) is non-increasing in Z
for fized P € R"™. Let p € C%4(C) is k-fold symmetric with [l geia @y < o0
Then there exists au € C19(C) such that v € CYH9(C) for every p € (0,1/q)
and

q
(2.13) /Z(AZ(DUZ)chl — B(uj, Duy)¢;) =0
Ci=1
for all ¢ € CHI(C\ {0} x R"™2),

u =¢; on IC forl=1,2,...,q.

Moreover, u is k-fold symmetric. The g-valued function W(X) = {u1(X),
ua(X), ..., ug(X)} associated with u satisfies & € CH(C; Ay(R)) for all p €
(0,1/q) and

(2.14) D;AY(Di) + B(@, Dii) = 0 weakly in C \ Bj.

Note that to prove Theorem [3| we need a new C7¢ Schauder estimate
(Lemma [2[ in Section [3)) in order to construct a compact map to apply the
Leray-Schauder theory.

The proof of Theorem [3| uses the maximum principle to obtain a global
gradient estimate. By obtaining interior gradient estimates via [8] and using
an approximation argument, we can assume ¢ € C%4(C). See Section 4 of [§]
for other examples of structural conditions on A* and B that imply interior
gradient estimates.
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Corollary 1. Let k > q be an integer such that k and q are relatively
prime. Let A® € CQ(R”) B € CYR x R") be single-valued functions satisfy-
ing l Let v( (14 |P]| )1/2 and g (P) = 6% — P;P;/(1 + |P|?) and
suppose the structure condztzons ,

PAY(P) >v(P) =y, [|A(P)| <72, [|B(Z P)| <y2/v(P),
v(P)Dp, A'(P)&;&; > g7 (P)&i&; for all € € R™,
v(P)|Dp, A (P)&m;| < 72(g" (P)&&5) (g™ (P)nim;)/? for all &,m € R™,

hold for all Z € R and P € R™ for some constants p1, B2, 83 € (0,00), 71 €
[0,1), and 75 € (0,00). Also suppose B(Z,P) is non-increasing in Z for
fized P € R™. Let ¢ € C%4(C) is k-fold symmetric wz’th supye |¢| < 0o. Then
there eists a solution u € C%4(C) N CYH9(C) to such that u is k-fold
symmetric and v € CY*4(C) for every p € (0, l/q) The q-valued function
W(X) = {u1(X),u2(X),...,uq(X)} associated with u is a g-valued solution

in C°(C; A,(R)) and CL“(C;Aq(R)) for all we (0,1/q) to .

Finally we consider the interior regularity of g-valued solutions to elliptic
equations:

Theorem 4. Let i € C*(B1(0); Ay(R)) be a g-valued function such that By
is nonempty, Bz C {0} x BY2(0), and %]lcr (B, (0)) < 1/2. Suppose @ is a
solution to

(2.15)  Di(AY(X, @, Di)) + B(X, @, Di) = 0 weakly in By (0) \ Ba,

for some locally real analytic single-valued functions A*, B : B1(0)x (—1,1) x
B} (0) — R and

(2.16) (D;AN(X, Z, P)&&; > Mg

forall X € B1(0), |Z] <1, P € B{(0), and § € R™ for some constant A > 0.
Then u(x,y) is real analytic in y in the sense that for Br(xo,yo) CC B1(0),

sup ]D;ﬂ(x,yﬂ < p!lCPR7? forp= h,’ >1
(I,y)GBR/z(xo,yo)

for some constant C € (0,00) depending on n, q, u, A*, B, and Bg. Conse-
quently, the branch set of the graph of @ is a union of N < q/2 real analytic,
(n — 2)-dimensional submanifolds.
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In particular, establishes that the branch sets of the minimal hy-
persurfaces constructed in [I0] are locally real analytic (n — 2)-dimensional
submanifolds.

Suppose @ is as in the statement of Theorem Then @ = {uy,ug,...,uq}
on B1(0) \ (0,00) x {0} x R"2 for some C' single-valued uy, us, . . ., u, such
that D; AY(X,u;, Duy) + B(X,u;, Duj) = 0 weakly in By(0) \ [0,00) x {0} x
R"2 and @ = {v1,v2,...,v4} on By(0)\ (—00,0) x {0} x R"™2 for some
C! single-valued vy, vs, ..., v, such that D; AY(X, v, Dv;) + B(X, v, Dv;) =
0 weakly in B1(0) \ (—o0,0] x {0} x R"2. By unique continuation, we can
order vy, v,...,v4 so that u; =v; on Bi(0) "R x (—o00,0) x R™ 2. More-
over, there exists a permutation o of {1,2,...,q} such that u,; = v, on
B1(0) NR x (0,00) x R"~2. After reordering uy, us, ... ,u,, We may assume
that

0’=(1,2,...,’i1)(i1+1,i1+2,...,i2)-~~(iN_1,iN_1—|—1,...,q)

for some integers i; so that (u;, ,41,ui, ,42,...,u;,) € CH~4=1(By(0)) for
j=1,2,...,N, where iy = 0 and iy = g. To prove Theorem [4 it suffices to
assume N = 1 so that u = (u1,ug,...,u,) € CY9(B1(0)) and show that

(2.17) sup |Dju(z,y)| < p!lCPR™P for p=|y[ > 1
(2,y)€BRr/2(x0,Y0)

for some constant C' € (0, 00) depending on n, ¢, i, A, and B. The branch
set of the graph of @ is {(0,y,u1(0,y)) : y € BI%(0)}, which is real analytic
if u satisfies .

We can regard Theorem [4] as analogous to the result that single-valued
solutions to are real analytic. One approach to proving such theo-
rems for single-valued functions due to Morrey (see [6, Sections 5.8 and 6.7]
or [7]) is to use integral kernels to show the single-valued solution extends
to a holomorphic function on some domain in C". However, we cannot use
integral kernels for ¢g-valued functions, so instead we take another approach
of inductively using Schauder estimates. To prove Theorem [4, we first show
that Dju € C1#4(B1(0)) for all o by an inductive argument involving differ-
ence quotients and Schauder estimates. For Theorem [ we need estimates on
Dju of the particular form , which requires obtaining precise estimates
on terms appearing in the Schauder estimates using a modified version of a
technique used by Friedman in [2] involving majorants.

By replacing a Schauder estimate for equations (Lemma [7]in Section
with a Schauder estimate for elliptic systems (Lemma [§ in Section , we
obtain a similar result for elliptic systems:
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Theorem 5. Let € (0,1/q). There is a € = e(n,m,u,v) >0 such that
the following is true. Let i € CY*(B1(0); Ag(R™)), where u € (0,1/q), such
that By is nonempty, Bz C {0} x BY2(0), and %]l cr (B, (0)) < 1/2. Suppose
W 18 a solution to the non-linear elliptic differential equation

DAL (X, @y, Diy) + B (X, 1y, Diyy) = 0 weakly in B1(0) \ Ba,

where A% B, : B1(0) x B*(0) x B™(0) — R are locally real analytic single-
valued functions such that

(Dpr AL)(X, Z, P) = §96,5| < e for (X, Z,P) € Bi(0) x BY"(0) x B"™™(0).
Then u(x,y) is real analytic in y in the sense that for Br(xo,yo) CC B1(0),

sup |Dyi(z,y)| < plCPR™P forp=|y| > 1,
(z,y)€BR/2(T0,Y0)

for some constant C € (0,00) depending on n, q, u, A*, B, and By. Con-
sequently, the branch set of the graph of U is a union of at most q/2 real
analytic, (n — 2)-dimensional submanifolds.

In particular, establishes that the branch sets of the minimal subman-
ifolds constructed in Theorem [2|are locally real analytic (n — 2)-dimensional
submanifolds provided ¢ is sufficiently small.

3. Elliptic theory for multivalued functions

The proof of the main results use standard theorems for elliptic differen-
tial equation such as the maximum principle and the Schauder estimates.
This chapter is concerned with extending those theorems to solutions in the
spaces C%4 and W12 discussed in Section |2 We first consider differential

equations of the form
a?jDijul + b%Diul + cqu; = (Z, S) fl in Q \ [0, OO) X {0} x R 2

for [ =1,2,...,q, where Q is an open set in R", u= (uy,uz,...,u,
C#(Q\ {0} x R"72), and a" = (af,ad,...,aq), b' = (b},b,...,b}), ¢

Il m
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(c1,¢2,--5¢q), f=(f1, f2,-- -, fq) € CY9(Q2). We assume the ellipticity con-
dition

(3.1) af (X)&&; > Né|? for X € Q, € € R, 1=1,2,...,q

for some constant A > 0. Given (z,y) € 2, if 1 <0 then each u; solves
a’ Diju; + biDyu + cup = (>,<) f; in By 2(w,y) N Q. Similarly if z1 >0
and 7y are the C? single-valued functions defined by @; = u; on By 2(w,y) N
QNRx (0,00) x R"2 for I =1,2,...,q, 14 = u, on By 2(m,y) NQNR x
(—00,0) x R"™2, @y = wj—y on Biyjja(z,y) NQNR x (—00,0) x R*™2 for
[=2,3,...,q, then each u; satisfies an elliptic differential equation on
Biyy/2(z,y) N Q. Thus u satisfies standard elliptic estimates on By /2(, y) N
Q. Our first result is a strong maximum principle:

Lemma 1. Let u € C%(C)NCH(C)NC%IC\ {0} x R"72), a¥, Vi, c€
CY%4(C) satisfy

(3.2) af’ Dyjuy + b Dywy + cpuy > 0 in €\ [0,1) x {0} x R"2

for 1=1,2,...,q. Assume holds true for some constant A >0 and
e <0in C\[0,1) x {0} x R*™2 for | =1,2,...,q. Then u does not attain
its mazimum value in the interior of C unless u; all equal the same constant
function.

Proof. Assume u; do not all equal the same constant function. By the strong
maximum principle [4, Theorem 3.5] applied locally in C\ {0} x R"72 u
does not attain its maximum value in C \ {0} x R"~2. Suppose u attained
its maximum value at (0,70) for some yo € R"~2. Then u; extends to a
C' function on B14(0,1/4,y0) that attains its maximum value at (0,yo),
Duy(0,y0) = 0, and satisfies , contradicting the Hopf boundary point
lemma [4, Lemma 3.4]. O

Next we prove a Schauder estimate that will be needed for the proof of
Theorem [l

Lemma 2. Let 0 < pu <7 <1/q and Br(Xo) C R™. Suppose

u e C'"(Br(Xo)), a“,f € C*"4(Br(Xo))

(3.3) af Diju; = fi in Br(Xo) \ {0} x R"2.
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Assume (|3.1|) holds true for some constant A > 0 and Hain/CU,w(BR(XO)) <A
for some constant A > 0. Then

(8:4) tlsrasy oy < C (B2l a(anccoy + B2 Noosnzacx)
for some constant C = C(n,q, p, 7, A\, A) € (0,00).
The proof of Lemmaextending Liouville-type result [11} Corollary 2.6].

Lemma 3. Let u € (0,1/q) and suppose u € CHH4(R™) N C4(R™) such
that

(3.5) Auy =0 in R™\ [0,00) x R"™2

and [Du);qr < 00. Thenw(X) =a+b- X forall X € R\ [0,00) x {0} X
R" 2 andl=1,2,...,q for some a € R and b € R" independent of I.

Proof. Let u be as in the statement of Lemma . U = Uq + uy where u, =
é ;1.:1 uj and uy are as by 1D and u, is an affine function by the Liouville
theorem. Thus it suffices to suppose that u is average-free and show that
u = 0.

For u € C14(R™) that is non-zero, average-free, and satisfies (3.5) and

Yo € R"2, we define the frequency function of u at (0,9) by

PP I, 04) 2t | Daf?
pt f@BP(O,yo) >y Jul?

N’U,,(O,yo) (p) =

for p € (0,00). We extend the two identities in [I1, Remark 2.3(2)] by either
the argument in [I1] using the fact that v and Du vanish on {0} x R"~2
or by using a cutoff function argument. We then can extend Lemma 2.2,
Remark 2.3(1)(3)(4), and Remark 2.4 of [11] to establish monotonicity and
other standard properties of frequency functions for N, (g y,)-

Next we extend [11, Lemma 2.5] by showing that for some § = d(n, q) €
(0,1), there are no u € C19(R") that are non-zero, are average-free, satisfy
(3-5), and are homogeneous degree o for o € [1,1+ §). Arguing as in [11] us-
ing the fact that Du vanishes on {0} x R"~2_ if u € C14(R") is average-free,
satisfies , and is homogeneous degree one then Du; all equal the same
constant function on S"71\ [0,00) x {0} x R"72. Since u is average-free,
this implies u; = 0 on R \ [0,00) x {0} x R*~2 for alll = 1,2,...,q. By ar-
guing as in [T1] we also conclude that if ul/) € C14(R") that are non-zero, are
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average-free, satisfy with ©@) in place of u, and are homogeneous de-
gree o; for o; | 1, then after passing to a subsequence u) converges strongly
in L%9(B1(0)) to u € W1%4(B1(0)) such that u is average free, u satisfies
, Duy all equal the same constant function, and [|ul|24(p, (0)) = 1. But
u being average-free implies that Dwu; must all equal the zero function and
thus ; all equal the zero function, contradicting ||ul| z24(B, (0)) = 1-

By extending the proof of [II, Corollary 2.6] there is no nonzero u €
CH#9(R™) such that u is average-free, u satisfies (3.5)), and [Du],.qr» <
oo for some p € (0,d). Having established Lemma [3| in the case that u €
(0,0), we can prove Lemma [2| in the special case that 0 < u < 7 < 4. Using
the dimension reduction argument in the proof of [II, Theorem 4.1] and
the fact that the homogeneous, average-free u € C'%(R?) satisfying
are given by u;(re?) = Re(erttF/agik/a0+2(=1)m) for 1 > 0, 4 € [0,27), and
l=1,2,...,q for some constant ¢ € C and integer k > q + 1, we conclude
that there are no non-zero, average-free u € C14(R"™) that satisfies is
homogeneous degree o € [1,1+ 1/¢) and thus Lemma 3| holds for all p €

(0,1/q). O

Proof of Lemma[4 We adapt the proof of [11, Lemma 3.2]. We in fact as-
sume R = 1 and prove the weaker inequality that for every § > 0,

[DU]T;q,B1/2(Xo) < 6[DU]T;Q731 (Xo)

+C (Sup lu| + sup [Dul + ‘f‘|C’0*“=q(Bl(X0))>
B (0) B1(0)

for some constant C = C(n,q, p, A\, A,0) € (0,00). Then by translating and
rescaling, v as in the statement of Lemma [2] satisfies

:OH_T [Du]f;q,Bp/z(Y) < 5p1+T [Du}ﬂ‘IaBp(Y)

+C ( sup |u[ +p sup |Dul+ P2||f||/co,u;q(3p(y))>
Y ()

3 3

for all B,(Y') € Br(Xo) and (3.4) follows by standard interpolation inequal-
ities.

Suppose instead that for some § > 0 and every positive integer k, there is
a ball Bl(Xk) and wuy, :”(uk,l, U2, - - - ,uk,q) € CQ;Q(BR(XZ) \ {0} X Rn_Q) N
CLT;q(BR(Xk)) and CLZJ = (a;;il) a’;g’27 s )ag’q% fk = (fk,h flf?,?u s 7fk,q) €
C449(Bg(X;)) such that (3.1) and (3.3) hold with w,, a;, and fi; in
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place of uy, afj, and f; and HGZjHCOJm(BR(Xo)) < A but
(36) [Duk]T;q,Bl/z(Xk) > 5[Duk]T;Q7Bl(Xk)

+k (Sup lug| + sup [Dug| + | fillco.n Q(Bl(Xo))>
B1(0) B1(0)

Assume [Dug]rq B, ,(x,) < 2 [Duk 1By 2 (X,)NRx (0,00) xRn—2 - Select Y, Yyl €
By j5(Xy) NR x (0,00) x R"2 such that

|Duge 1 (Vi) — Duga (YD) _ 1

. > —|D .
(3 7) ’Yk _ Yk/|T - 4q[ uk]T,Buz(Xk)

and let pg, = |Y} — Y/|. By (3.6) and (3.7),

1 2 2
— [Dugl... <= Dug| < ——[Dug1].. ,
4q[ Uk)rB, (X)) < o B??)I()k)! ug| kPZ[ Uk 1|78, (X))

so pi. < 8/qk for all k and thus p;, — 0 as k — oo.

Suppose dist({Y%, Y/}, {0} x R"2)/p;, < ¢ for some constant ¢ € [1,00).
Then for some Zj, € {0} x R" 2 |Y}, — Zi| < 2cpp. By translating assume
Zy = 0. Let Ry, = 1/2px, — 2¢>0 for k sufficiently large Rescale letting (j, =

Yk/pk and Ck_Y//ka and uk_(uk‘,lauk‘,?a" uk:,q) ak‘ _(dk: 1,&?2,.. d?q)
and fr = (fr,1, fr2, -+, fr,q) Where
1 (X) = pp T [Duk] (it (pkX) — g (0) — Dugg 0) - prX),

d?z(X) agy (PkX)
fra(X) = p~ [Duk]ﬂgl (x0) TR (PR X),

for X € Bg,(0)\[0,00) x {0} x R" 2 and [ =1,2,...,q so that
&;;:];lDijak:l = fk,l n BRk (0) \ {0} X RniQ

. . 0
[Duk]T;q,BRk (0) <1, |Duk,1(Ck) Dy, 1(Ck)’ Z

Since {(x} and {(;} are bounded, after passing to a subsequence, (; — ¢
and (; — ¢’ for some points ¢, ¢’ € R". Since

sup Id?! + p;”[a?]u;q,&e, 0 = CA,

Bg,, (0)
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after passing to a subsequence {dzjl} converges to some constant a* (in-
dependent of [) uniformly on K \ [0,00) x {0} x R"~2 as k — oo for every
compact subset K of R™. By (3.6]),

sup | fil + 0" fil,a 0) < Cop T /K

Bg, (0)

for some constant C' = C(m,n) € (0,00), so after passing to a subsequence
{fr} converges to zero in C%(Q) as k— oo for all Q cC R™. Since
[Ditg]rg,B,, (0) < 1, after passing to a subsequence, {uy} converges in claQ)
to some @ = (i, g, . .., 1,) € CLT4(R™) for all Q CC R™. Moreover, by the
interior C*# Schauder estlmates for single-valued functions [4, Corollary 6.3]
applied locally on R™\ {0} x R"2 after passing to a subsequence i, — 1
in C%4 on compact subsets of R™\ {0} x R"~2. Hence # satisfies the dif-
ferential equation a“D;;a =0 on R™\ {0} x R"~2. However, [Di] g < 1
and |Diy(¢) — Du1(¢’)) > §/4q, which after an affine change of variables
contradicts Lemma [3]

Suppose instead that dist({Y, Y/}, {0} x R"72)/p is unbounded. As-
sume dist ({Y, Y}, {0} x R"72)/py, tends to infinity and Y € By ;2(0) N {0} x
(0,00) x R"2. For some Ry, — oo, Ry, < dist({Y%, Y/}, {0} x R"~%)/p;, and
Ry, < 1/2py. Rescale letting ¢ = (Y — Y})/pr and letting 4y, a;’, and fx be
the single-valued functions defined by

a(X) = Pk T [Dural; g, x, (kY + prX) = up(Yy) — Dug(Yy) - prX),

i (X) = a’k (Y + piX),

Fo(X) = pp T [Duk ), () Fe (Vi + X)),

for X € Bpg,(0) for large k. Similar to above, after passing to a subsequence,
{Ck} converges to some ¢, {a;’} converges uniformly on compact subsets of
R™ to some constant a*, {i} converges in C? on compact subsets of R"
to some single-valued function @, and {fi} converges uniformly to zero.
@ satisfies D=0 on R™, [Di], go—2 < 1, and |Da(¢) — Da(0)] > £,

which after an affine change of variables contradicts the Liouville theorem
for single-valued harmonic functions. O

Next we consider equations of the form

(3.8) /Q ( a 'Djw + bim) D¢ — (C‘liju + dlul) Cl)

=1
/Q > (fDiG - 9iG1)

=1

LS
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for all ¢ = (¢1,Ca, ..., () € C&UQN\ {0} x R*2), where Q is an open set in
R™, u = (u1,ug, ..., uq) € Wh24(Q), a¥ = (allj,a?, . ) b= (b, 05, ...,
bfl),cj =(d,c,....c}),d=(d,da,....dg) € Loo’q(Q) and fi= (fl,fg,...,
f2),9="(91,92,--.,9¢) € € L%9(2). We require ellipticity condition to
hold for some constant A > 0. We claim that ( continues to hold 1f in-
stead ¢ € C29(Q). To see this, for every § > 0 let x5 € CH(R™) be a single-
valued function such that 0 < x5 <1, xs = 1 on R™ \ Bg(O) xR"2 x5 =0

on B5/2(O) x R"™2 and |Dy;s| < 3/4. Replace (; with (;xs in to get
q
/QZ ((a?JDjul + biul) D¢ — (CZD]‘U + dl“l) Cl) X6
1=1
=(£,2>) /QZ (fiDiG — 91G1) x5 — /Q > <a§JDjuz + b'uy — ff) GDixs
=1 =1

and let § | 0 to get (3.8) for ¢ € CH%(9). Using (3.8) and Sobolev inequality
Lemma 4] below, the maximum principle [4, Theorem 8.1] and global supre-
mum estimates [4, Theorem 8.16] readily extend to u € W1%4(Q) satisfying

(3.8) with the < sign. Using (3.8) and Sobolev inequality Lemma [4| and
Poincaré inequality Lemma [5] below we will extend local Holder continuity

estimates |4, Theorem 8.22] to solutions to (3.8) with the = sign.
Lemma 4. Let 1 <p < n. Suppose u € Wy P'(R™). Then

el prosenvriamry < CllDul| poia(gny
for some C = C(n,q,p) € (0,00).

Proof. By the Sobolev inequality for the single-valued functions
UZ‘RX(O,OO)XR"*z and ul|]R><(—oo,0)><R"*27 [ = 1) 2) -4,

HU| an/(nfp);q(]Rn)

q (n—p)/np
= (Z(Hu Hzp}/)/zl jz)) 2(Rx (0,00) xR"?—2) +Hu Hzpé/? 712)) 2 (Rx (— 0070)><Rn2))>
=1

a (n—p)/np
=0 (Z(wulnzzé%;% oy D[R OQMR_QQ)
=1

< C||Dul ey

for C = C(n,q,p) € (0,00). d
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Lemma 5. For u € W4%4(Bg(0)),
(3.9) |u =€l L2:0(BR(0)) < CRIDul|2:0(B(0))

for some C' = C(n,q) € (0,00) where { = fBR(O) % i uj.

Remark 1. The reason for stating in terms of W24 functions on a
ball Br(0) centered at a point on {0} x R"~2 = () is that (3.9) fails if we
replace Br(0) with a ball B such that BN {0} x R"2 = (). For example,
fails if u; = —1, us =1, and y; =0 for [ > 3 in B.

Proof of Lemma[j By scaling, we may suppose R = 1. Writing u = uq + uy
for u, = %Z?Zl u; and uy as by 1D

It = 73, 0)) = 1ta = T2, o)) + Nl 205, 0y

1D 203, 0)) = 1DUallFoia(m, o)) + 1DUs a5, 0)):

By the Poincaré inequality for single-valued functions, [ua — £|z2(B,(0)) <
C||Dual|12(B, (o)) for some C = C(n) € (0, 00), so it suffices to suppose u is
average-free.

Suppose that for every integer j > 1 there are average-free ul?) e
WL24(By(0)) such that

1D a3, 0y) > 31 DUD || 20, 0

By scaling we may suppose ||u(/) | 22:0(B, (0)) = 1 s0 that

HUU)HLM(&(O)) =1, ||Du(j)||L2;q(Bl(o)) <1/j.

By Rellich’s lemma, after passing to a subsequence ul?) converges in
L%4(B1(0)) to some average-free u = (u1,us,...,u,) € WhH%4(B1(0)) such
that ||ullp2a(p, ) = 1 and || Dul|z24(B, (o)) = 0. Since Du; = 0 a.e. in B1(0)
forl =1,2,...,qand u € W4%4(B1(0)), u; all equal the same constant func-
tions on B1(0). Since u is average free, u; = 0 a.e. on B1(0) forl =1,2,...,q,
contradicting ||“||L2W(Bl(0)) =1 U
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Lemma 6. Let Ry>0. Let u€ WH2%4(Bpg, (0)), a¥,b%, ¢/, de L= (Bg,(0)),
and f7 € L*9(Bg,(0)) and g € L*/%9(Bg,(0)) for s > n such that

/BRO 0 &= al ‘Djul + biul> D;( — (CljDJ'u + dlul) Q)

q
/B Z fIDi¢ — 91Q)

l:l

for all ¢ € CFY(Bgr,(0) \ {0} x R"2). Suppose holds for some constant
A >0 and

sup |a”?| <A, Ro sup |b|+ Ro sup |¢/|+ Rj sup |d| <v,
Br,(0) Br, (0) Br, (0) Br, (0)

for some constants A,v > 0. Then for some constants p € (0,1/q) and C €
(0,00) depending on n, q, s, X\, A, and v, u is equal to an element of
CY#4(Bp, /2(0)) a.e. in Br,/5(0) and, taking u to be in C**4(Bp, 1(0)),

Ry [U]P«?‘LBRU/?(O)

= <BS‘”€0> ful + BRI sy o) + RHH/SHgiiLsm;q(BRO(o») |

Proof. First we show that if By4r(0,y0) C Bg,(0) and @ € W%%(Byr(0,y0)),
fi € L59(Byr(0,40)), and § € L¥/%9(Byr(0,y0)) for s > n such that 4; > 0
forl=1,2,...,q and

(3.10) /B o f: ((af Dy + Vi) Dic — (e Dyt + diir) 1)

/Bmo% i( DiG ~ i)

for all ¢ € CH%(Byr(0,y0) \ {0} x R"2) such that ¢; >0 for [=1,2,...,q
then
q

3.11 R™™ algc< inf a4+ RS
( ) BQR(OyyU); BR(anO) H ‘

L#9(B4r(0,y0))

+ R2—2n/s ||g||Ls/2:‘1(B4R(O7yO))>
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for some constant C' = C(n,q,s,A/\,v/\) € (0,00). Translate and rescale
so that yo =0 and R =1. follows from standard arguments using
and Sobolev inequality Lemma 4| such as the proof of Theorem 8.18
of [4] except to prove

q q
T4 / w Pl <C
</Bs<o>; l) ( Bs<0>lz; : )

where @ = iy + X[ fll oo s 0)) + 1191 Lerza(co(Baoy)) for p e (0,1) and
some constant C' = C(n,q,p,s,A/\,v/\) € (0,00) we use a standard argu-
ment that uses (3.10]), Sobolev inequality Lemma and Poincaré inequality
Lemmato bound the integrals of |w — £|¥/k¥, where w; = log(w;), for large
integers k for some £ € R and that avoids using the John-Nirenberg inequal-
ity (see the proof of Theorem 4.15 of [3]).

Rescale so that Ry = 1. Arguing as in the proof of Theorem 8.22 of [4],
replacing the weak Harnack inequality [4, Theorem 8.18] with , we
obtain

(3.12)  oscp,(0y,) u < CR! < sup  u+ K) < CRV (sup U+ K) ,
B1/2(0,%0) B1(0)

for all yg € B’f/_;(()), R € (0,1/2] and for some constants p € (0,1/q) and

C € (0,00) depending on n, q, s, A/, and v/\, where

OSCBL(0,yo) W = Sup w— _inf w,
Br(0,30) Br(0,50)

K = X" (Ifllsam0)) + 1190l 2er2a (B 0)))-

We want to bound [w],;;B, ,,(0)nRx (0,00)xrn—2 for I € {1,2,..., ¢} by show-
ing that if X7 = (z1,91) and Xa = (z2,y2) are distinct points in B /5(0) N
R x (0,00) x R""2 then

(3.13) lug(X1) — w(X2)| < C|1 X7 — Xao|t (su(p) lu| + K)
B1(0

for some constant C' = C(n, q,s, A/, v/\) € (0,00). Assume |z1| < |z2]. We
consider four cases: (a) | X7 — Xa| < |z2]/2, (b) |x2|/2 < | X7 — Xa| < |22,
(c) x1 =22 =0, and (d) | X1 — Xa| > |x2| > 0. In case (a) follows by
using the Holder continuity estimates for single-valued functions [4, The-
orem 8.22] to bound [u],p . . (x,). replacing p with a smaller value if
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necessary. In case (b) (3-13) follows by using (3.12) to bound oscp, . (0,4.) ¥
if |zo| < 1/4 and (3.13)) is obvious if |x2| > 1/4. In case (c) (3.13]) follows by

using |i to bound 0SCp 1 /a(0,21t02) Ue In case (d) (3.13]) follows from
(b

cases and (c) and the triangle inequality:

[ur(X1) — wi(Xe2)| < Jw(X1) — w0, y1)| + [w(0,y1) — w (0, y2)|
+ w0, y2) — wi(X2)|

<3C|X7 — Xo|# | sup |u|+ K |.
B,(0)

Similarly we can bound [w],, B, .(0)nRx(~o0,0)xrn—> Dy proving (3.13) when
X1 and X; are instead distinct points in By 2(0) NR x (—00,0) x "2 [0

Lemma 7. Let u€(0,1/q) and Br(Xo) CR™. Suppose ue€ C*4(Bg(Xy)),
a’ b, fi € CO"9(BRr(Xo)), and ¢/,d,g € C%(Br(Xy)) satisfy

q .. . .
(3.14) /BR(XO) lzl <(a§]Dle + bf“l) DG — <CZDJ‘U + dﬂu) Cl)
q
= /BR(XO) lzl (fiDi¢ — aiQ1)

for all ¢ € CFY(Br(Xo) \ {0} x R""2). Suppose holds for some con-
stant A > 0 and

(3.15) 0™ lgw.a(maxay < A

R0 ([Goma(paxy + B sup |J]+ R? sup |d] <w,
BR(XO) BR(XU)

for some constants A,v > 0. Then

(316) HUHIC’Lu;q(BR/Z(XO))SC( sup |u|+R1+M[f]p,;q,BR(XO)+R2 sup |g|>
Br(Xo) Br(Xo)

for some constant C = C(n,q, pu, A\, A,v) € (0,00).

Proof. First observe that Lemma @ holds true in the special case where afj

all equal the same constant function, b* = 0, ¢ = 0, and d = 0 by a scaling
argument similar to the proof of Lemma [2| (Note that unlike in the proof
of Lemma [2] we do not need to show that after passing to a subsequence
G, — 1 in C%9(Q) for Q cC R™\ {0} x R*72.)
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0). Sup-

rR(X
By (519,

a"(Z)Dijuy = Di((a"(Z) — a) ) Djuy — bjuy + f{) — ClijUl — diu; + gi

Next we prove Lemmal/[7]in general. Consider any B,(X) C B
pose {0} x R" 2N B,.(X) # 0 and let Z € {0} x R" 2N B,(X).

in B.(X)\ {0} x R"~2. By Lemmal 7| for the operator a®(Z)D;; and (3.15| -,

1+2u
(3.17)  r"HDulyg B, x) < C( i Pl p,(x) + [uller s

+ R f] Ba(xo) + B? sup !9\)
Br(Xo)

for some constant C' = C(n,q, u, A\, A,v) € (0,00). If instead {0} x R*~2n
B.(X) =0, then holds by the Schauder estimates for single-valued
functions. By with r < eR for e = e(n, pu, A, A, v) > 0 sufficiently small
and by interpolation, we obtain . [l

By slightly modifying the proof of Lemma [7] we obtain the following
Schauder estimate for linear systems, whose proof we omit.

Lemma 8. Letp € (0,1/q) and BR(XO) CR™. Suppose u=(u1,uz,...,uy)
6 CLIJ«Q(BR(XO) Rm) .ZJ)\ 7 (an)\ 1 /4)\ 20 n)\ q) bf-:)\ = (bn)\ 17b/4)\ 29
n)\ q) fl ( é,l? ;,27 SRR fi,q) COMQ(BR(XO))7 and ¢y = (6,70\,17 CZ;)\Qv R

C;)\7q) dnA - (dn)\,lv dm>\,27 o 7dn)\,q)a 9k = (g/i,l)gn,Qu s vgn,q) Eco;q(BR(XO))
satisfy

/ ,{A,szuzA + bfm,z“?) D¢ — (Ci)\,leuA + dm,m?) Cf)
Br( XO) =1

q
LR( Z HlDzCl _gfilCl)

Xo) 1=1
for all ¢ = (¢1,C2,...,(g) € C’cl;q(BR(XO) \ {0} x R"~2;R™). Suppose
Ru[aij)\]u;q,BR(Xo) + RHbi)\HICOvHHZ(BR(XO))

+R sup |cl,|+R® sup |du| <,
Br(Xo) Br(Xo)

for some constants A,v > 0. For some € = e(n,m, u,v) > 0, if

la?y — 6% Seall coBr(xo)) < €
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where 69 and 6,y denote Kronecker deltas, then

HUH/CLM‘Z(BR/Q(XO)) < C ( sup |u| + R1+M[f],u,;q,BR(X0) + R2 sup |g|>
Br(Xo) Br(Xo)

for some constant C = C(n,m,q, u,v) € (0,00).

To prove Theorem [I| and Theorem [2 in the case of non-periodic data
we need a global estimate supremum estimate on u that is independent of

Pls-- -5 Pn—2-

Lemma 9. Let u € (0,1/q). Suppose u € CH#4(C), f* € CO*4(C), and g €
C%4(C) satisfy

q q )
(3.18) /C;DiUZDiCI = /c; (fiDi¢ — a1C1)

for all ¢ € CHI(C\ {0} x R"2). Then

supuf < (sup ul + (£l + suplo]
C ac C
for some constant C = C(n,q, n) € (0,00) independent of p1, ..., pn—2.

Proof. Suppose instead for every integer k > 1 there are uy, = (ug1,ur2,- - -,
uk,q) € CLM;Q(C)L f]z = (f]zg’la f]z 27 f]z,q) € CO7M;q(C)7 'and 9k = (gk,lagk,%

oy Jkq) € C%4(C) such that (3.18) holds with wug,, [, and g in place
of u;, ff, and g; but

(3.19) sup |ug| > k <sup |uk| + [fil g + sUP \gk|> :
¢ oc c

Assume supe |ug| = 1, |ug.1(&, 0)] = 1 for some &, € BF(0) \ [0,1) x {0}, and
f11(0,0) =0 for all k =1,2,3,...and [ = 1,2,...,q. Now (3.19) becomes

After passing to a subsequence {{} converges to some fe B2(0). By 1
fr4 — 0 uniformly on K\ [0, 00) x {0} x R™2 for every compact set K C C
and gr; — 0 uniformly on C \ [0,1] x {0} x R""2. By the interior Schauder
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estimates Lemmaand , after passing to a subsequence {uy} converges
in C'1 on compact subsets of C to some @ = (41, Qg . . ., 4y). Given (zg, yo) €
0C, u decomposes into ¢ single-valued solutions to Poisson equations on
C N By 2(70, Yo), so by local estimates [4, Theorem 8.27] and (3.20]) @ extends
to a continuous function on C with 4; =0 on 9C for [ =1,2,...,q. Now 4
satisfies

Ay =0inC\ [0,1) x {0} x R" % for 1 =1,2,...,q,
4y =00on dC forl =1,2,...,¢q

Note that 4 € C*4(C \ {0} x R"~2) by elliptic regularity. Since sup |4| < 1

and |4(€,0)| = 1, || has attains its maximum value of 1 at (€,0). However,
@ =0 on 8C, so @ in fact attains an interior maximum at (€,0), contradicting
strong maximum principle Lemma [l

Combining the global supremum estimates similar to [4, Theorem 8.16],
Lemma [0 Lemma [7} and and the local boundary Schauder estimates for
single-valued solutions [4, Section 8.11], we obtain global Schauder estimates:

Lemma 10. Let € (0,1/q) and Br(Xo) € R". Suppose u, ¢ € ChHa(C),
a’. b, fi e COM9(C), and c,d, g € C%9(C) satisfy

[

for all ¢ € Ccl;q(C \ {0} x R"™2) and u; = ¢; on OC for 1 =1,2,...,q. Sup-
pose holds for some constant X\ > 0,

al 'Djul + biul) D¢ — (CngU + dzuz) Cl> = /ci (£/DiG — Q)
=1

=1

la" || comaicy <A, (1Bl comae) + Sup ] + Sup d| < v,
for some constants A,v > 0, and
q .
/Z <_bngCl + dzCz) <0
Ci=1
for all ¢ € CHI(C\ {0} x R"2) such that ( >0 forl=1,2,...,q. Then

fullreay < € (Uln + 500101+ Bollenrag ) -
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for some constant C = C(n,q, pp, A\, A\, v, p1, ..., pn—2 € (0,00). Moreover, in
the special case that holds, the constant C' is independent of p1, ...,

Pn—2-
4. Existence of solutions to a Poisson equation

We now want to prove Theorem [I} which recall involves finding a solution
u = (u1,us,...,uy) €CY%(C) N CH(C) to given f' = (f{, f3,.... fl)e
CO#4(C) and g = (g1,92,---+9¢), P = (01,92, -..,04) € C%(C) as in the
statement of Theorem [I] Note that by the weak maximum principle analo-
gous to [4, Theorem 8.1], in the case that u, f?, g, and ¢ are periodic with
respect to y; for i = 1,2,...,n — 2 there is at most one solution u to (2.7).
To solve we will first assume that f7, g, and ¢ are periodic with respect
to y; with period p; for i =1,2,...,n — 2. Let uq, fa, 9o, and ¢, denote the
average parts of u, f, g, and ¢ respectively and wuy, fr, g7, and ¢ denote
the average-free parts of u, f, g, and ¢ respectively as defined by . By
linearity, it suffices to use the existence theory for single-valued functions [4,
Theorem 8.34] to solve for u, such that Au, = D;fa + g, weakly in C and
Ug = @q on IC and then solve for uy such that Auy = Djfjjc + g5 weakly in
C and uy = ¢y on OC. Thus we may suppose f/, g, and ¢ are average-free
and find an average-free solution u to ([2.7).

For simplicity, we will first assume fl] =0inCforl=1,2,...,q. Tosolve
, we will use the change of variables &; + i€y = (1 + ix2)'/9. Under this
change of variables, u, g, and ¢ transform into the continuous single-valued
function wug, go, and ¢q on C given by

iq6 iq6
) )

uo(re”,y) = w(r1e'’,y),  go(re”,y) = gu(rie®, y),

¥0 (7,,67:97 y) = ¢l (quiqea y)a

forr € [0,1], 2(l — 1)7/q < 0 < 2lr/q,and y € R" %, and l = 1,2,...,¢q and
(2.7) transforms into

Agug + q2\§|2q_2Ayuo = q2|§]2q_290 weakly in C \ {0} x R" 2,
ug = o on OC.

We will assume that go and ¢ are smooth on C and ¢g = 0 in Bf/2(0) X
R"~2. Since g and ¢ are periodic with respect to y; with period p; for
Jj=12,...,n—2, go and ¢ are periodic with respect to y; with period
pjfor j=1,2,...,n— 2. Thus for each z = (21, 22, ..., 2p—2) € 772 we can
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define Fourier coefficients go , and ¢g . of ug, go, and g with respect to y
by

0.2 (£) :/R . M I 2 /P go (€, y)dy,

©0,2(€) = / e BT 2 0 0y (€, y)dy
Rn—2
for £ € B?(0) and solve for the Fourier coefficient ug . of u satisfying
(41)  Acuo. — P(21/pt +23/05+ -+ 2n o/ Pr o) [T o
= ¢*[¢[** 2 go,. in B} (0),
ug = g on OC.
for each 2z € Z"~2. By standard elliptic theory [4, Theorems 8.14] there exists
a unique solution ug . € C*(B2(0)) to 1) for every z € Z" 2.

Fix z € Z"? and define u, = (u1,z,u2.z, . - -, uq.) : BZ(0)\ [0,1]x {0} —
RY by

(1) = o o (/161020
forr €10,1],0 € (0,27), and [ = 1,2, ..., q. We will show u, € C1#4(B1(0))
using the average-free and k-fold symmetry assumptions. Since g and ¢ are
average-free,

q—1 q—1
(4.2) > 90,2 (re D) =3 Tipg (el T, y) = 0
=0 =0

for all » € [0,1] and 6 € [0, 27). Since g and ¢ have k-fold symmetry and k
and ¢ are relatively prime,

(4.3) gO,Z(Tei(9+27r/k)) = gO,z(Tew)v @07Z(rei(9+277/k)) = @O,z(Tew)

for all » € [0,1] and € € [0, 27). By the maximum principle, (4.2]), and (4.3),

q—1
(44) Z UQ, 2 (rei(€+2ﬂ—l/q)) = 07 u07z(rei(9+2W/k) ) y) = U0,z (Tei97 y)7
=0
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forallr € [0,1] and 6 € [0, 27). By (4.1), the degree 2¢ — 1 Taylor polynomial
of up . is harmonic and thus takes the form

2q—1

Re | D ¢j(& + i)

J=0

for some ¢; € C. By (4.4), ¢; =0 for j =0,1,2,...,¢q. By the Schauder esti-
mates,

Z|§|]’DJU0 £)| < sup [DIHyq ,[|€|7 T

1(0)
<C(

for € € BQ( ) for some constant C' = C(n,q, i, 2, p1, - - ., pn—2) € (0,00). By
the change of variable & + i& = (z1 + izo)/9,

(B2(0)) + lo,zllcar2(am2(0)) 1€17F!

Z |27 | DIy . ()| < C (ll90,2llca(m2(0)) + 00,2l carz(om2(0))) 24

for all z € B}(0) and thus u, € C1/%4(B2(0)) for all z € Z" 2.
For each integer v > 1, we define partial sums of the Fourier series of ug,

go, and g by

n—2
E uo Z 7'27‘—23':1 ijj/pj7

|z|<v
n—2
E o, (& 12”21:1 ijj/ﬂ.y"
|z|<v
; n—2
y — E QDO,Z 61271'23':1 ijj/Pj’
|l2|<v

and define u®) = (ugy),uéy), .. .,ul(zy)), g( v) = (ggy),gé ), . ,géy)), and go(”) =
(sogy),sog)’-.-,so( )Y in C%(C) by

ul(v)(rew’ y) = u(()”) (Tl/qei(9+2(l—1)7r)/q’ Y),
gl(v)( i97y) _ g(u)( l/qei(9+2(l—l)7r)/q7y)7
o (re,y) = o (11100 ),
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for r € [0,1], 0 € (0,27), y e R" 2 and [ = 1,2,...,q. Since

ul(y)(x,y): Z Ul,z(m)ei%Z?:_lQijj/Pj’

ZEL"—2

for all 2 € B?(0) \ [0,1] x {0} and y € R""% and u, € C*1/%4(B%(0)) for all
z e 72, ) e CL1/%9(C). Since gg is smooth,

sup [g0.2(€)] < C(1+ |z1)) 2 (1 + [22)) 72+ (1 + [zn—2) llgoll o2 oy
£eBi(0)

Thus g(()y) converges uniformly to gy on C as v — oo. Hence ¢g*) converges
to g in C%4(C) as v — oo. Similarly (p[()y) converges to @g in C?(C) and thus,
since g = 0 in Bf/Q(O) x R"2, ") converges to ¢ in C%4(C) as v — .
By the Schauder estimate of Lemma for every € (0,1/q),

[l oy < € (S‘ép 9% + Hw(”)ch«(@)
<C <SLClp 9] + lell grme @) + 1)

for some constant C' = C(n, ¢, u) € (0,00) independent of v. After passing to
a subsequence, {u()} converges to some u in C1¢(C) such that u € C**4(C)
for all p € (0,1/q) and u satisfies (2.7).

Consider the case where f7 # 0 and go and g are merely continuous. We
will construct functions f*) € C*4(C;R"™) and g*), o) € C>4(C) approx-
imating f, g, and ¢ as follows. Extend f to an element of COria (R™; R™) such
that [f]uqrr < C[f]ugc for some C = C(n,u) € (0,00). For each ¢ >0,
let x5 € C>°(R?) be a single-valued function such that 0 < y5 <1, x5 =1
on R?\ B%(0), xs =0 on Bg/Q(O), and |Dxs| <3/6 and extend xs5 to a
function xs(x,y) of € R? and y € R"2 that is independent of y. Since
fe C’g””q(R”;R”) and fj =0 on {0} x R"2 for [ = 1,2,...,q because f is
average free, observe that xsf = (xs/f1,Xsf2,---,Xs6fq) 18 in CoH9 (R R™)
with

xsf — fin C°(B3(0) x R"%) as § | 0,
X6.flisarn < Clf g e for € = C(n, p) € (0, 00).

Select a smooth spherically symmetric mollifier ¢ € C2°(B1(0)) and let

Vo (X) =07 "p(X/0)
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for X € B,(0) and o > 0. Let (z1,22,y) € C\ B, ,(0) x R"2. If 23 <0
then we define fl(l’)(:vl,:cg,y) to be the value of the convolution of f; and
Yo-v-s at (x1,x2,y). If 1 > 0 and x9 > 0 then we define fl(y) (z1,22,y) to

be the value of the convolution of fl and Yo-v-s at (zy1,ze,y), where f; =
fi for 1=1,2,...,q on CN(0,00)? x R"2 and fi = f, and fi = fi_y for
1=2,3,...,q on CN(0,00) x (—00,0) x R"2. If 1 >0 and x5 < 0 then
we define fl(V (1,x2,y) to be the value of the convolution of f; and y—v-s
at (z1,z2,y), where now fl = fiforl=1,2,...,qonCN(0,00) x (—00,0) X
R" 2 and f, = frarfori=1,2,...,q—1 andfq = fionCN(0,00)% x R*2,
Define f*) =0 on B2, ,(0) x R""2. Then

f(y) — fin CO;q(é)v [f(y)]u;q,c < C[f]u;q,c for C' = C(n,u) € (0,00).

Define goy) by convolution of gy with smooth spherically symmetric mollifiers
such that géy) — go uniformly on C and then define ¢*) by

g(()y) (Teie,y) = gl(y) (rqeiqg,y) if 2(l—1)m/q < 6 <2n/q

forr € [0,1],y € R" 2 andl = 1,2,...,q. Assume ¢ = 0 on B%/Z(O) x R"=2\
[0,1/2) x {0} x R""% and define ) similarly via convolution of ¢y with
smooth spherically symmetric mollifiers. Let uV) = (ugy),ugy), e ,ugu)) €
CY#(C) to be the solution to with ul(y), 0, div fl(y) + gl(y), and (pl(y) in
place of uy, fi, gi, and ¢; respectively. By global supremum estimates similar
to [, Theorem 8.16], {u)} is Cauchy in C%(C) and thus {u*)} converges
to some u in C%(C). By the local Schauder estimates of Lemma [7| after
passing to a subsequence {u(*)} converges to u in C4(Q) for all @ CcC C
and u € CL#4(C). Therefore u is a solution to (2.7).

To solve in the case that f, g, and ¢ are not periodic with respect
to each y;, approximate f, g, and ¢ uniformly on compact subsets of C by
f®) e cOma(C), ¢, p®) € C%(C) such that (2.6) holds with f*) in place
of f, ¢ and cp(”) are k-fold symmetric, f®), ¢, and go(”) are periodic
with respect to each y; with period p, (independent of j) such that p, — co
as v — 0o, and

(4.5)  [fugc < Clfluacs suplg™| <suplgl, sup|p™| <suply,
C C ocC oC

where C' = C(n, ) € (0,00). Let u®) € C%(C) N C#4(C) solve (2.7) with

ugy), Z(V), gl(y), and Lpgy) in place of u;, fi, g, and () respectively. By Lemma

local Schauder estimates Lemma |7}, and (4.5) we have local C1#:4 estimates
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on u¥) that are independent of v and thus after passing to a subsequence
{u)} converges to some u € C1#4(C) in C14(Q) for all @ CC C. By using [4,
Theorem 8.27] and , we can establish uniform modulus of continuity
estimates on u(®) at points on AC that are independent of v and thus u
extends to an element of C%9(C) such that u = ¢ on dC. Therefore u is a
solution to ([2.7)).

5. Existence of solutions to nonlinear systems

In this section we will prove Theorem [2, which recall involves finding the
unique solution u = (uy, ug, ..., u,) € CLHHI(C;R™) to given FZ, G,,
and ¢ = (@1, 92, . ..,¢q) € C1#9(C) as in the statement of Theorem First
we consider the case where u and ¢ are periodic with respect to y; with pe-
riod p; > 0forj =1,2,...,n — 2. Let V denote the space of u € CH#4(C; R™)
that has k-fold symmetry and is periodic with respect to y; with period p;
for j =1,2,...,n— 2. By Theorem [, we can define T': V — V by letting
u="Tvif u=(up,ug,...,uqg),v=(v1,02,...,04) €V satisfy

q q
|- pinyc - /C S (FH(Du)D;C" — Golvr, Dun)C)
=1 =1

for all ¢ € CH(C \ {0} x R"™%;R™),
u; =@ on 0C forl =1,2,...,q.

Let € > 0 to be determined and choose arbitrary v = (v, vo,...,vq), 0" =
(V1,0 -, vg) €V such that [[v]| e <€ and [V crae) < € Let u=
(ur,ug, ... uq) =Tv and v’ = (uy, uj, ..., u;) = Tv'. By the Schauder esti-

mate Lemma

1) ilerray <C (IFDOe+5 G0 DO+l )

|lu — u’HCl,W@ <C <[F(Dv)—F(Dv')]Mq,c+81ép |G(v, Dv)—G(V', Dv')|> ,

for some constant C' € (0,00) depending on n, m, ¢, and p and indepen-
dent of p1,..., pn—2, where F(Dw) = (F(Dwy), F(Dwy),...,F(Dw,)) and
G(w, Dw) = (G(w1, Dwi), G(wa, Dws), ..., G(wg, Dwy)) for w = (wq,ws,
...,wq) € V. Note that C being independent of p1,...,pp—2 is necessary
for later removing the condition that ¢ be periodic with respect to y;. Since
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F € C*(R™") with DF(0) = 0,

(5:2) [F(Dv)]qc < O|SI‘1P |DF(P)| [Dv]4¢ < Ce?
Pl<e

[F(Dv) — F(DU/)]u;q,C < Cusjl‘lf |D2F(P)’([DU]#;%C + [Dv’]u;q,c)

x sup |Dv — Dv'|
c
+ C sup |DF(P)|[Dv — DV]4c
|P|<e
S 06”1} — ’U,HCL;L;q(E)

for some constants C' € (0, 00) depending on n, m, and sup| 7|4 p|<1 |D2F(P)|.
Since G € CH(R™ x R™") with G(0) = 0,

(5.3) sup |G(v,Dv)| < sup |G(P)|<C sup |DG(P)|e,
¢ |1Z]+|P|<e |Z|+|P|<e
sup|G(v, Dv) = G/, D) < € sup  [DG(P)| o — ' enne
c |Z|+|P|<e

for some constant C' = C(n,m, q) € (0,00). Combining (5.1)), (5.2)), and (5.3])
and using the fact that DG(0) = 0, for some ¢ > 0 depending on n, m, q, u,

F, and G,

1
||u”Cl-,u:q(E) < &, HU - UIHCI,u;q(@) < 5“1} - ,U,HCLu:,q(@)'

Therefore by the contraction mapping principle, there exists a fixed point
ug € V of T with [Jul[c1.,.@) < €. In other words, u satisfies .

To remove the condition that ¢ is periodic with respect to y;, approx-
imate ™) in C14(C;R™) by ) € C1#4(C;R™) such that p*) is k-fold
symmetric and is periodic with respect to each y; with period p, where
p¥) = 00, ) — ¢ in C17 on compact subsets of C, and Hcp(”)||cl,m@ —
[l g1mae)- Let u®) € CH#4(C; R™) be the unique solution to lj with
1™ and ) in place of u and ¢ respectively. Since HU(V)ch;q(E) < g, after
passing to a subsequence {u(*)} converges in C%(B?(0) x BZ}_Q(O); R™) for
all p € (0,00) to u satisfying with the original ¢.

6. Existence of solutions to nonlinear equations

In this section we will prove Theorem [3 which recall involves finding a solu-
tion u = (u1,uz,...,uy) € CH7(C;R™) for every 7 € (0,1/q) to (2.13) given
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At B,and ¢ = (01,92, ..,0,) € C%(C) as in the statement of Theorem
The proof uses the Leray-Schauder theory. For now assume ¢ is periodic
with respect to y; with period p; for j =1,2,...,n — 2. Rewrite (2.13) as

(Dp, A" (Dw) Diju; + B(w, Dug) = 01in C\ {0} x R" 2 for [ = 1,2,...,q,
uy=prondC forl=1,2,...,q

Let V denote the space of u € C1#4(C) that are periodic with respect to
y; with period p; for 5 =1,2,...,n —2 and have k-fold symmetry. Define
T:V—=Vbyu="Tvif u=(u,u,...,uy),v = (v1,v2,...,79¢) €V satisfy

(6.1)  (Dp,A")(Dv)Djju; + B(vy, Dv;) =01in C\ [0,1) x {0} x R*"2
forl=1,2,...,q,
=prondCforl=1,2....q

The existence of a unique u € VN C%4(C \ {0} x R"~2) satisfying will
follow from Lemma [T1] below. By Lemma Schauder estimate Lemma
and local boundary Schauder estimates for single-valued solutions [4, Section
6.2], T is in fact a continuous map from V into C%74(C) for every 7 €
(1,1/q), so by Arzela-Ascoli T is compact. We will need to show that for
some constants p € (0,1/q) and C € (0, 00) depending only on n, A*, B, and
el ey, if u e CH#4(C) and o € [0, 1] satisfies

/Z (A1(Dw) DG — o B(us, Du)Gr) = 0 for all ¢ € CX9(C\ {0} x R™2),
Cz 1
uy=op;on dC forl =1,2,...,q,

then [Jul[ o, oy < €. Then by the Leray-Schauder theory, there exists a
fixed point u € V of T. In other words, the u solves . Note that u =
Tu € CH74(C) for all 7 € (0,1/q).

Lemma 11. Let 1< B> <7< l/q and a’w = (al 70’2]7 s 7af]j)7g = (917927

., 9q) €ECO(C) and ¢ = (¢1,p2,...,pq) € CHT(C). Suppose a", g,
and @ are periodic withrespect to y; with period p; for | =1,2,...,n—2,
ad(RX) = ai'j/(X)Rﬁ/R;/ for all X € C, and

I (X)Et; > NEP for X €T, € €RY, 16 oaey < A,
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for some constants A, A > 0. Then there exists a unique u = (u1,us, ..., uq) €
CY%(C)nChma(C)nC%a(C\ {0} x R"™2) such that

(6.3) af Dijw, = g in C\ [0,1) x {0} x R"2 for i =1,2,...,q,
up =y ondC forl=1,2,...,q.

Moreover, u is k-fold symmetric and periodic with respect to y; with period
pr forl=1,2,...,n—2.

Proof. For now suppose a%,p € C*4(C). By replacing u with u — ¢, we
may suppose ¢ = 0. Re-write (6.3 as

q
(6.4) / Z(a;]DjulDiQ + DiangjulQ)
Ci=1

q
—— [ S g for all ¢ € CH9(C {0} x R™2),

Ci1=1
uy=0o0ndC forl=1,2,...,q.

We will solve using the method of continuity. Let VW denote the space of
u € CY79(C) such that u is periodic with respect to y; with period p; for j =
1,2,...,n — 2, u has k-fold symmetry, and u; =0 on OC for [ =1,2,...,q.
Define the family {L;},e(o,1) of weak linear operators on W by

Lywy = (1 — t)Awy + t(Di(a Dju;) — (D;a)’ ) Djuy)
and consider

Lyw, = D;f] + g weakly in C\ {0} x R"2,
(6.5) u; =0 on 0C

for 1= (fl,fi,.... /1) € COC) and g = (91,9, .,g5) € C%(C) such
that f/ and g are periodic with respect to y; with period p; for [ = 1,2, ...,
n — 2, f7 satisfies , and g has k-fold symmetry. By Theorem fort=0
we can find a unique weak solution u € W to . Suppose we can find a
unique solution u € W to for t = s for some s € [0,1]. Then can

be rewritten as

Lew; = Dif! + g+ (Ls — L) in €\ {0} x R"2,
u; = 0 on OC.
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Define a map U : W — W by v = U(v) for u = (u1,u,...,uq),v = (vi, 02,
S, 0g) €W E

Low = Djflj + g+ (Ls— L)y in C\ {0} x R"™2,

u; = 0 on OC.
Choose arbitrary v = (v1,v2,...,,),v" = (v],0,...,v;) €W and let u =
(ur,ug, ..., uq) = U(v) and u' = (uy,uy, ..., uy) = U(v'). Since

Lw—u) = (L~ L) —)
= (s — t)(“—A(vl — ;) + Di(a; Dj (v — vy))
— (Dia)’)Dj(vr — vy)),

by Schauder estimate Lemma

||u - u,HCLT:Q(E)
< Cls —t ([Dv — Dv’]T;q,c + [aiij(v — U,)]T;q,c + sup |Diaij] | Dv; — Dvﬂ)
C

< C|S - t|H’U - Ul”CLT;fJ(@)v

where C' € (0, 00) depends only on n, ¢, 7, A, A, Haincl;q(E), and p1,..., pn_2.
So if |s — t| < 1/2C, then U is a contraction mapping and we can solve
for t with |s — t| < 1/2C. By dividing [0, 1] into intervals of length less than
1/2C and applying this result we conclude that we can solve for all
t € [0,1], in particular for ¢ = 1. This gives us a u € W satisfying . By
elliptic regularity, if g € C%*4(C) then u € C*#(C \ {0} x R"72) and thus u
satisfies ([6.3)).

To solve for general a and ¢, approximate a” and ¢ by ap-
proximating their average parts by convolution with smooth, spherically
symmetric mollifiers and approximate their average-free parts using the
same construction as in the proof of Theorem [1] to approximate f by el-
ements of C°(C) to get a,) € C°(C) converging to a” uniformly on
C\[0,1) x {0} x R*~2 and ) € C*>(C) converging to ¢ uniformly on
C\ [0,1) x {0} x R*"2, Let u®) € C74(C) solve with u), a, g, and
4,0(”) in place of u, a”, g, and . By an extension of [4, Theorem 3.7] proven
using maximum principle Lemma

) ¢
sup [u'”| < sup |p| + 5, Sup lg|
C ocC C
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for some constant C' = C(n) € (0,00). Thus by the Schauder estimate
Lemma [2] after passing to a subsequence {u(”)} converges in C' on com-
pact subsets of C to u € C1™9(C). By the local Schauder estimates [4]
Corollary 6.3], after passing to a subsequence {u(*)} converges to some u
in C%% on compact subsets of C\ {0} x R"™? and thus a;’ Djju; = g; in
C\[0,1) x {0} x R*"2 for [ = 1,2,...,q. By local barriers [4, Section 6.3],
we can establish uniform modulus of continuity estimates for u(*) at points
on JC that are independent of v and thus u extends to a continuous function
on C such u; = ¢; on OC. O

Suppose that u € C19(C) satisfies 1’ We want to bound [[ul 1. )
for some p € (0,1/¢). By extending [4, Theorem 10.3] using maximum prin-

ciple Lemma |1| and by (2.11)),

(6.6) sup [u] < My where My = sup || + C3s
c ocC

for some constant C'= C(f;) € (0,00), where 81 and (2 as in (2.11)). By a
standard argument involving local barriers [4, Corollary 14.3] along 0C using

structure condition (2.12)),

(6.7) sup |Du| < My,
ac

for some M; € (0,00) depends on n, Hg0||cz;q(5), 51, B2, and B3, where 33 is
as in .

We want to show u € W22%4(Q) for all 2 CC C. By replacing ¢; with D,
for a single-valued function ¢ € CH9(C\ {0} x R" ) and p € {1,2,...,n} in
the first equation in and integrating by parts,

q
(6.8) /Z(Dpj A" (Duy) Djpuy Di¢
Ci=1
— Dij(ul, Dul)DjpulC — DZB(Ula Dul)DpulC) =0

for all ¢ € CH(C\ {0} x R"2). Let ¢ = Dyun?x3 in , where n € CL(C)
is the single-valued cutoff function such that 0 <n <1, n =1 on Bg/3(Xo),
n=0onR"\ Br(Xy), and |Dn| < 3/R and y; is the function such that 0 <
X5 <1, xs(x,y) = 1if |[x| > 0, x5(z,y) = 1if |z| < /2, and |Dxs| < 3/6. By
a standard computation using the fact that Dp, A*(P)&;&; > A(P)[¢[* for all
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P € R™ and £ € R™ and using Cauchy’s inequality,

/ w%ﬁﬁsc/ (G +Dxsl?) < ©
Br/2(Xo) =1 Br(Xo)

for some constants C' € (0, 00) depending on n, R, A*, B, My, and sup | Du|
and independent of 8. Letting 6 | 0, || D?ul| 12(p,, ,(x,)) < C for all Br(Xy) C
C.

Now let v(X) = (|Du1(X)[?, ..., |Duy(X)|?) € CH9(C\ {0} x R*~2). By
replacing (; with Zgzl Dp(Dpug) in the first equation in (2.13) and using
integration by parts, we get

/Z Dp Dul D le2<l + 2DP A’(Dul)DpjulDipulQ
Ci=1
— Dij(ul, Dul)Djle — 2DzB<’U,l, Dul)vl(l) =0

for all ¢ € C29(C\ {0} x R"2). Since Dp, A'(Duy) Dypuy Djpuy > 0,

/Z Dp, A'(Duy) Dy D¢
C

=1
— Dp, B(u;, Du;) Djui§ — 2D 7 B(wy, Dug)v ) <0

for all ¢ € CZYC\ {0} x R"2) such that ;>0 in C\ {0} x R*2 for
l=1,2,...,q. By the weak maximum principle similar to [4, Theorem 8.1]

sup [ Dul < sup [Dul < M,
C acC

where M7 is the constant from .

By the interior Hélder continuity estimate Lemma |§| applied to (6.8))
and the boundary Hoélder continuity estimates for single-valued functions [4]
Section 13.1] we obtain

[u]u;qf <C

for some constant C' € (0,00) and p € (0,1/q) depending on n, g, 81, B2, Bs,
A, Subpz, (0) |DpAYl, SUD(—M,,Mo)x By, (0) |DpBl, SUD(— Mo, ,Mo)x By, (0) |DzB|,
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and (|| 2 ©- Therefore we have shown that if u satisfies {i then
(69) HU’HCLMQ(é) < C

for some constant C' € (0,00) and p € (0,1/q) depending on n, q, 51, B2, B3,
As suppy (o) [DPA'|, sup_ar, ar)x By, (0) PP Bs sUp(—ar, ny)x By, (0) 1Pz Bl,
and H@o”o%q(F :

To solve gTSl} in the case that ¢ € C%4(C) with [l caia (@) < o0 and ¢
is not periodic, approximate ¢ in C%9(C) by ©®) that are k-fold symmet-
ric and periodic with respect to each th period p, such that p, — oo

2.

as v — 0o. Let u®) e ¢l C) solve (2.13)) with ™ and ¢ in place of
u and ¢ respectively. By , after passing to a subsequence {u(” )} con-
verges in C19(C) to a solution u to with the original . By Schauder
estimate Lemma [2] and local boundary Schauder estimates for single-valued
solutions [4, Section 6.2] for every 7 € (0,1/q) we have uniformly local C'1:734
estimates on u(*) that are independent of v and thus u € C174(C).

For Corollary [} we need to obtain an interior gradient estimate without
using ¢ € C%9(C). We will do so by extending an interior gradient estimate
due to Simon [8, Theorem 1] to solutions u € CY9(C). This requires using
cutoff function arguments to handle of singularity of u along {0} x R"~2.
For example, the analogue of (2.11) of [§] is

q
(6.10) Z/{ - ((1 - 7'/@0%2 + UlDPjAZ(DUZ)DinDjWZ) UlX(Ul)C2
=1 " \=T

q
<8142y / (A0)B2C + 20| D) uix(wr)
1=1 /{u=T}

for all ¢ € CoUC\ {0} x R""2), where v = (1+|Dw|?)V?, g =d;; —
DiywDju /(1 + |Dwl?), 67 = vl_lejAi(Dul)glkk/Dikulek/ul, i1y satisfies

i _ 1/2 i 1/2
lvDp, A" (Dw)&mi| < (fuln|?) / (uDp, A*(Dw;)&&;) /

on C\[0,1] x {0} x R"~2 for all £,n € R" and x and A are single-valued
functions as in [8]. Since u € W2%4(Q) for all Q CC C, we can show
holds for any ¢ € CI(C) N Wol’Z;q(C) by replacing ¢ by (s in for § >
0, where ¢5 € C*°(C) is the logarithmic cutoff function defined by ¢5(x,y) =
0if |z < 6%, ¢s(x,y) = —log(|z[/6%)/ log() if 6 < |z[ < 4, and Ys(x,y) = 1
if |z| > ¢, and then letting 0 | 0. The arguments of [8] only require using key
integral inequalities, in particular analogues of (2.1) and (2.11), with test
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functions in C&*(C) N W,*(C) and thus [8, Theorem 1] follows. Note that
the analogue of (2.1) for test functions h vanishing along {0} x R"~2 follows
from the first variation of area formula for the closure of the graph of u as an
immerse submanifold in C x R\ {0} x R"™! (see the proof of [9, Theorem
18.6]) and then the analogue of (2.1) holds for any h € C2¥(C) N Wol’Q;q(C)
by the logarithmic cutoff function argument.

Now we will solve in the case that ¢ € C%9(C) has k-fold symmetry
and supg |¢| < 0o. Assume ¢ = 0 in B%/2(O) x R"2\ [0,1/2) x {0} x R"~2,
Approximate ¢ uniformly on compact subsets of C by ¢*) that are k-fold
symmetic and periodic with respect to each y; with period p, such p, — oo
as v — oo. Let u*) € CH1/24:4(C) solve with «*) and ¢®) in place of
u and ¢. By , the interior gradient estimate of [8, Theorem 1], and
Lemma @ sup,, ||U(V)Hcl,u;q(§2) < oo for all Q cc C for some u € (0,1/2q]
depending on n, A*, B, and supgc |¢|, so after passing to a subsequence
{u} converges in C%% on compact subsets of C to some u € C1#4(C).
By Schauder estimate Lemma [2| for every 7 € (0,1/q) we have uniformly
local interior C173 estimates on u(*) that are independent of v and thus
u € CY74(C). Using local barriers [4, Theorem 14.15], we obtain uniform
modulus of continuity estimates on u() at points on dC that are independent
of v and thereby conclude that u extends to an element of C%9(C) such that
u = ¢@rondC forl =1,2,...,q. Therefore u solves with the original .

7. Regularity of g-valued solutions

Recall from Section 2] that to prove Theorem |4} it suffices to prove (2.17))
for u = (u1,us, ..., uq) € CH(By(0)) such that |jullcras, o) < 1/2 and u
satisfies the elliptic equation

(7.1) D;(AY (X, u;, Dw)) + B(X,u;, Duj) =0
in B1(0) \ [0,00) x {0} x By 2(0)

for given locally real analytic single-valued functions A*(X,Z, P) and
B(X,Z,P) on B1(0) x (—1,1) x B}(0). Using arguments similar to those
from Section |§| we can show that u € W2%4(Q) for all 2 CC B;(0) and by
Lemma [0] using the fact that Dju is a satisfies

Di(Diji(X, u, Dul)DjDkul—l—DzAi(X, Uy, Dul)Dkul—l—DXkAi(X, u, Dul))
—i—Dij(X, U, Dul)DjDkul—i-DZB(X, uy, Duy) Dywi+Dx, B(X, up, Du;) =0
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in B1(0) \ [0,00) x {0} x B}"%(0), we can conclude that u € C#9(B;(0))
for some p € (0,1/q). The first step to proving Theorem 4| is to establish
that Dju € C1#9(B;(0)) for all ~.

Lemma 12. Let pu€ (0,1/q). Suppose u € CH#4(B1(0)) such that
lullcra(p, (0)) < 1/2 and u satisfies for given smooth single-valued func-
tions A, B : B1(0) x (=1,1) x B}0) — R and assume holds. Then
Dju € CY#9(By(0)) for all 7.

The proofs of Lemma and Theorem 4| require applying D, to (7.1).
Observe that

(7.2) D) (AY(X,u, D)) = (Dp, A") (X, u, Du) D DJuy
+ F2(X, w, { DDyui} g <y -1)s

D;(B(X7 ug, DUl)) = (DPJB)(Xa ur, DUZ)DJD;/UZ
+ Gy (X, u, {DDSw}i51< )y -1)s

on By(0)\ [0,00) x {0} x B¥"%(0) for I =1,2,...,q for some functions F!
and G . To simplify notation, let a¥ = (a},ag,... ad), b = (b}, 05, ...,b)),

£y = (s P g a0 4y = (91,02 ) Where

5

(7.3) a = (Dp,A)(X,w,Dwy), f,=—F(X,u, {DD5w}s1<1y)-1),
b = (Dp,B)(X,w, Dw;), gy = —G~(X,u, {DDJu} 1<)y-1),

on B1(0)\ [0,00) x {0} x B}2(0). We can express ff, as

(74) 'Z;/vl = anujuB(D(ay,Z,P)Ai)(X7 ug, Dul)
X H Dgz’kU[ H Dyﬁ”*"‘Djkul

k<|oz| k<|op|
on B1(0)\ [0,00) x {0} x B!"2(0), where a = (v, az,ap) and DG, zp) =
D; ' D2 D" and the sum is taken over all nonzero multi-induces o, Bz,
and Bp; and 1 < j < n such that

(7.5) ay+ > Bzt Y. Bre=7
J<laz] k<|ap]

and |Bpk| < p and the coefficients ¢, j 3 are positive integers depending on

Q, 1,5 Jjafs and B, ..., Bjo- Note that in (7.4) and (7.5 assume the con-

vention that sums over j < 0 equal zero and products over j < 0 equal one.
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We can write a similarly express g, as

(76)  9y=_ ca;s(DY zpB)(X,u,Du) [[ Dy#*u [[ Djr*Dj.u

kS‘CVZ| k§|aP|

on B1(0)\ [0,00) x {0} x By2(0), where the sum is taken over all nonzero
multi-induces o, Sz, and Bp; and 1 < ji <n such that (7.5) holds and

1Bpk| < p. By (7.2), applying Dy to (7.1) yields

(7.7) Di(aiijDgul) + bijD;ul = Dif,;l + 9y,
in B1(0) \ [0,00) x {0} x B}2(0).

Proof of Lemma[Ig. Given n € R"2\ {0}, for each h # 0 let 05, be the
difference quotient defined by and let D(g,) denote the derivative in
the direction (0,7). We will show that D,y D7u € C'#4(By(0)) for every
n € R"2\ {0} by induction on |y|. This follows by a standard difference
quotient argument where we use the Schauder estimates Lemma 7] to obtain
uniform local C'#4 bounds on SnnDyu that are independent of h. The
key to the proof is the fact that such difference quotients 6y, , of u and its
derivatives are well-defined.

First we show D ue CH#9(B1(0)) for every neR" 2\ {0}. Let
Br(xo,y0) CC B1(0) and suppose |hn| < R/4. By applying 6y, to and
using Schauder estimate Lemma

RIIDSn yull go.vso(B1) 4 (20.0) < C ( sup  [Opnul + 1)

Br/2(x0,Y0)

< Cln| ( sup  |Dyu| + 1)

Br(z0,%0)

for some constant C' € (0, 00) depending on n, q, i, A*, B, lullcrn (Bra(zomyo))s
and R and independent of h. So given any sequence of h; — 0, we can
pass to a subsequence {(5hj/’77u} that converges in C%¢ on compact subsets
of Bi(0) with a limit in CT#9(By(0)). But &y ,u — Do ,u pointwise, so
in fact &p,u — D(gu in CH7 on compact subsets of B1(0) as h — 0 and
D(O,n)u S Cl"u;q(Bl(O)).

Now let |y| > 1. We will show that D g, Dju € C#(B1(0)) assuming
Dgu € CY#(B1(0)) whenever |3| < |v|. Let Br(xo,v0) CC B1(0) and sup-
pose |hn| < R/4. Recall that applying Dy to yields . By applying
Sy to and using the Schauder estimates Lemma (7} if Br(zo,yo) CC



922 Brian Krummel

B1(0) and |hn| < R/4,

RID,n Dyull o ma(s, . (o,90))

§C< sup  [6ny Dyul + [IDDJullco (B a(wo,yorhm)

Bry2(20,y0)

2
+R”5h’7]f’yH/CYO,/_L:q(BR/2(1-O7,yO)) +R sup |5hﬂ797’
Brj2(zo0,y0)

< Cn ( sup |DyD;U| + HDD;“||/cfo,u;q(BR(x07yo))
Br(o,y0

+R”Dyf’YH/CU«H:Q(BR(a:o,yO)) + R? 5 S(UP ) |Dy97|)
R(Z0,Y0

for some constant C' € (0, 00) depending on n, ¢, i, A%, B, ullcrm (B (zo,y0))»
and R and independent of h. So given any sequence of h; — 0, we can pass
to a subsequence {5hj,’nD;u} that converges in C'%¢ on compact subsets of
B1(0) with a limit in C'#4(B1(0)). But 04, Dju — D(q ;) Dju pointwise, so
in fact 64, Dyu — Do, Dyu in C on compact subsets of By(0) as h — 0
and D(Om)DJu S Cl’“;q(Bl(O)). O

Recall from the beginning of this section that applying Dy to (7.1) yields
(7.7). By the Schauder estimate Lemma applied to ([7.7),

(7.8)  IDJullcrsa(sp s x0))

SC( sup | DJul 4+ (R/p) ") q By (x0) + (R/P)*  sup Ig»y|>
Br/p(X1) Br/p(X1)

for all Br(X;) CC B1(0) and some constant C € (0,00) depending on n,
G 1> A SUPB L (x,) % (—1,1)x By (0) [DAl, and supp, ;) (—1,1)x By (0) | DB Since
[5 and g, can be expressed in terms of u, Du, DDyu, ..., DD{j_lu7 we can
. . . ’y

prove .2.17 b}f 1nduct1Yely computing bounds on HDDZJUH/COM?(BR/QP(XQ)'
The difficulty is bounding [f,],.4.8,,,(x,) and supg,  (x,)lg| in order to
obtain the necessary estimates (2.17) on Dju. We accomplish this using a
modified version of a technique used by Friedman in [2]. Since the estimate
on supp,, (x,) |gy| is easier to obtain, we will obtain that estimate first.

Lemma 13. Let p > 5 be a positive integer, Ko, K, Hy > 1 be constants,
and Br(X1) CC B1(0). For some constants C € (0,00) and H > 1 depend-
ing on n, Ko, K, and Hy and independent of p the following holds true.
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Suppose u € CH(B1(0)) satisfies |[ullcra(p, o)) < 1/2 and for given
smooth single-valued functions A%, B : B1(0) x (—1,1) x B}(0) — R. Sup-
pose for any multi-inder a = (ax, oz, ap) with |af = k, where we let D* =
DS$X D%? DYr

x Yz Pp s

KoKkR—1-lox|=laz] ifk=1,2,3,

7.9) |D¢ B(X,Z,P)| <
(7.9) | (X,Z,P) (X, 2, )|—{(k_g)!KOKkR—I—aX|—|az if 4 <k <p,

for X € Br(X1), |Z] <1/2, and |P| < 1/2 and for any multi-index 3 with
B =5 <p,
(7.10) % sup |D5u| + sup |DD5u|
Br/p(X1) Br/p(X1)
HoR~ ifs=0,1,2,
{(s —DIHGH 3R~ if3<s<p.

Then g, defined by and satisfies

R sup |g| <C(p—2)!HPF?RP.
BR/P(Xl)

Proof. Suppose we had a function V(yi,...,yn—2,Z, P1,..., P,) such that
¥(0,0,0) =0 and

(7.11) |Dy»D%* Dy B(X, Z, P)| < Dy»Dgz DY (0,0,0)

(Z1,--92n)

for X € Br(X1), |Z| <suppg,(x,)|ul, and |P| <supp, (x,)[Du| and for all
nonnegative integers az and multi-induces o, and ap such that 1 < |ay| +
az + |ap| < p. Further suppose we had functions v;(y1,...,yn—2), 7 =0,1,
..., n, such that v9(0) = 0 and

(7.12) sup ]Dgu\ < Dyﬁvo(O)
BR/p(Xl)

for 0 < |8] <pand for j =1,...,n,v;(0) =0, Djv;(0) > 0, and

(7.13) sup |D5Dju| < Dyﬁvj(())
BR/p(Xl)

for 0 < || < p. Recall that g, can be expressed as in (|7.6); that is,

Gyt =Y Cajp(DY 7 pyB) X w, Duy) [ DJ7*w [ Dy Djow

k<|az]| k<lap]|
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for [ =1,2,...,q, where the sum is taken over o = (o, 0z, ap), Bz, Bpris

and 1 < ji < n such that (7.5 holds and |8p,| < p and the ¢4, a,,a5,5,8 are
the positive integers from ((7.4]). We also have

(7.14) anu,ﬁ y,ZP)‘I’)@h v)
X H Dgz’k’(}[) H Dgpv’“‘vjl
k<|oz| k<|op|

where the sum is taken over and the coefficients ¢, ; g are the same as

above. Herev—(vo,vl,.. vn) and \I'(y, V)= (Y1, .oy Yn—2,00, V1, .-, Up_2).
Comparing ((7.6)) and (| using -, and (| -,
(7.15) sup gy < DJ(¥(y,v(y)))ly=o-

BR/P(Xl)

To construct vg,v1,...,v, and ¥, first we simplify the setup by letting
vo(y) = Ru(R™ (y1 + -+ +yn—2)) and wvi(y) =---=va(y) = (R (y1 +
-+ 4 yp—2)) for some function v(&) and replacing ¥ (y1,...,Yn—2, %, P1, ...,
P, with RYU(R~ Yy + ... +yn2),R°'Z+ P, +--- + P,) for some func-
tion W(&, ¢). We choose

21 a 1
(€, C) =;kKoKk€+C) gmk_l)(k_z)KOKk(“C)k’

H, HS*?) s
7y Ho §

It is easy to check ( - -, and (| using and (| -

For functions f(§) and g¢(¢), let f <<p g denote that |Dgf(0,0)] <
Dgg(0,0) for 1 < s < p. We claim that

p
1
o(€) = Ho& + 5 Hot® + 2

(7.16) (€4 (14 n)v(€)F <, F 11+ (1 + n)HO)’f

k k+1 s—k—2¢s
X
gty Z k) 3
s= k+2
for k=1,2,...,p for some constant ¢ > 1 independent of k. We can see this

by induction on k. (7.16]) obviously holds for k = 1. Let k > 2. Assuming
(7.16]) holds with k£ — 1 in place of k and multiplying (£ + (1 4+ n)v(§)) by
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(&4 (L+n)o(&)F 1,
(717)  (€+ (L+n)(9)*

<p 272 (1 + (1 4 n) Ho)*

PP s—k
k| ck+l 1 s—k—2¢s
AT L Y e

s=k+2 j=2

Since

i
e

1

(9 G102 k1P

<
[\

IS 1 1 2
_jzz(s—k:)2 j—=1 s—j—k+1
<S"“ 1 4 o

T sk -7 T 3(s— k)

(7.16) follows from ((7.17) provided we choose ¢ = 47%/3. Combining the
definition of ¥ and ([7.16|), for p > 5,

k!
k=1
PP
> §k+§k+1+ Z ( k)Q sfk72§s
s=k+2
S |
k—1 k k
1 1 Hy)"KyK
+kZ:3(,€_2)3c (14 (1 +n)Ho)* Ko
p” 1
> €k+§k+1+ Z 37k72§s
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It follows that

R
p! 0gp £=0

2
1 _ e
< ZWC’“ Y1+ (1+n)Ho)* KoK* HP~+=2

+ P11+ (1 +n)Hy)P Ko KP

(p—2)3

Let H = max{cK(1+ (1 +n)Hy),1} so that, using a computation similar

to ([7.18), we have

1 0P C
25 V(& (n+ 1Du(€)) o < m

_ 3 3 ryp—3
ET KoK°(1+ (1+n)Ho)’H

for some constant C' € (0, 00) independent of p. Thus by (7.15)),

R sup |g,| <C(p—2)HP?RP
BR/p(Xl)

for some constant C = C(n, Ko, K, Hp) € (0,00) independent of p. O

Lemma 14. Let p > 5 be a positive integer, Ko, K, Hy > 1 be constants,
and Br(X1) CC B1(0). For some constants C € (0,00) and H > 1 depend-
ing on n, Ko, K, and Hy and independent of p the following holds true.
Suppose u € CH4(By(0)), where pu € (0,1/q), satisfies |[ul|crap, 0y < 1/2
and for given smooth single-valued functions A*, B : B1(0) x (—1,1) x
B} (0) — R. Suppose for any multi-index o = (ax,az,ap) with |a] =k,

(719) |Dfy 7.p)A(X. Z.P)| <

KoKk R lex|-laz| ifk=1,2,3,
(k — 3)|KoKFR-lexI=lezlif 4 < |k < p,
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for X € Br(X1), |Z| <1/2, and |P| < 1/2 and for any multi-index 5 with
6] = s <p,

R
(7.20) 2 sup |DPu|+  sup |[DDJul + < ) [DDJul g8, (x0)
Bryp(X1) Bry/p(X1) o
_ JHoR™ ifs=0,1,2,
T | (s —2)!HoH*3R™% if3<s<p.

Then f,y defined by and (.) satisfies
(B/PY' 1) 1Bryp(x) < Clo — 2)IHPPRITE.

Proof. We will use a similar argument as for Lemma except now we
need to compute a Holder coefficient. To this we will introduce an auxiliary
parameter t such that derivatives of ¥ and v with respect to ¢ bound to
Holder coefficients of expressions involving A’ and u. The basic idea is to use
the fact that the sum, product, and chain rules for computing derivatives
with respect to ¢ are similar to sum, product, and composition rules for
computing Hoélder coefficients.

Suppose we had a function ¥(yi,...,yn—2,t,Z, P1,...,P,) such that
¥(0,0,0,0) =0 and

(7.21) |Dy»Dy? D ANX, Z, P)| < Dy» D2z D ¥(0,0,0,0),

(21500 20)
(2R/p)1*#|DyD;‘y DY D% AX, Z, P)| < DtDayDO‘ZDO‘P ¥(0,0,0,0),

(215-17n)
for X € Br(X1), |Z] < supp,(x,)|ul, [P| <supg,(x,) |Dul, and 1 < |ay| +
az + |ap| < p and we had functlons Vi (Y15 - Yn—2, ) j=0,1,...,n, such
that vo(0,0) = 0,

(7.22) sup |D5U| < ngo(0,0) for 0 < |B| < p,
BR/P(Xl)
(Dt iq.Br),(x0) < DiDyuo(0,0)  for 0 <[] < p,

and v;(0,0) =0, Dyv,(0,0) > 0,

(7.23) sup ]Dngu] < Dyﬁvj(0,0) for 0 < |B| < p,
BR/p(Xl)

[Dngu]mq,BR/p(Xl) < Dthvo(0,0) for 0 < |B| < p,
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for j =1,...,n. Recall that f; can be expressed as in 1) and compute
that

(7.24) [f’Y]# 4,Br/p(X1) Z COWﬂ( y7Z P)AZ)(X U, Du)];u?%BR/p(Xl)

X H sup|D5“u| H sup|D5P'ijku|

k<|oz| k<|ap|
+sup D zp) Al Y Dy ul,
k<|az|
X Hsup|D521"u| H sup\DngDjku\
I#k k<|ap]
+ sup |D?X727P)Ai| H sup \Dgzv’“u|
k<|az|
X Z [D5P=’°Djku]unsup]DgP’ZDjluO,
k<lar] 4k

where (D(O‘y7Z7P)A")(X, u, Du) = ((D(O‘%Z,P)Ai)(X, ug, Dug))i=12,... 4, the supre-
mums of derivatives of A® are taken over X € Br(X1), |Z| <suppg,(x,) |ul,
and |P| < supp,(x,)|Dul, and the supremums and the Holder coefficients of
derivatives of u are taken over Bp/,(X1). Moreover,

(7.25) [(DEX ZP)A ) (X, u s D) g, Bry(x1)
< 2R/p)'™" sup |(DyDf ; p)A')(X, u, Du)
BR/p(Xl)

+ sup |(DZD((D§,,Z,P)Ai)(Xvu’D“)|[u]u;q,BR/p(Xl)
BR/p(Xl)

+ Z sup |(DPkD?y,Z,P)Ai)(X7 u, Du)| [Dku]u;q,BR/p(Xﬂ
k=1 Br/p(X1)

We also have

D) (¥(y,t,v) an’]g yZP\IJ)(y,t,v) H Df“vo H Dgpv’“vjk

k<|az| k<|ap|

where the sum is taken over (7.5 and the coefficients c, ;g are as in ((7.4)).
Here v = (vg,v1,...,v,) and ¥(y,t,v) = U(y1, ..., Yn—2,t, 00,01, ..., Un_2).
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Thus

(7.26)  DDY(W(y,t, 0y, 0) = 3 o (Dt«Df;,,Z,p)\IJ)(y, t,v))

« T[ Di=*wo [ Diwu,

k<|az| k<|ap|
+(D?y,Z,P)\I/)(yat,v) Z DtD?/jz,kvO
kg‘az|
<11y 1] Do
14k K<jar]
+ (D3, 2 W), t,0) [ Dy#*vo
kg‘az|
< 2 Dthp’k“ijD{f”"%)
kslar] Ik

where

(727) Dt((D(ay,Z,P)\IJ)(yv t? U)) S (‘DtDEJ;7Z7P)\Ij)(ya tv /U)
+ (DzD{, 7 p\¥)(y,t,v) Dyvo

n
+ Z(DPkDg;,Z,P)\Ij)(y7 t,v) Dyvy.
k=1

Comparing (7.24) to (7:26) and (7.25) to (7:27) using (7:21), (7-22), and
[723),

(728 [Flaasn, o0 < DDfzm D@ Lo

To construct vy, v1,...,v, and ¥, first we simplify the setup by letting

UO(yv t) :RU(R_l(yl + o+ yn—2)a (R/p)_ut) and U1 (ya t) == Un(yv t) =
V(R y1 + -+ + yn_2), (R/p)~#t) for some function v(£,7) and replacing
\I/(yl, NN ,yn,Q,t, Z, Pl, PN ,Pn) with

(R Y yr+- +Un2),(R/p) ", R'Z+ P +---+ Py)
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for some function ¥(¢, 7, (). We choose

2
W(E 7. 0) = KoK + Y (1 + K)ok e + O
k=1""

+ kzzg i 11)(k — 2)K0(1 +(k—2)K7)K*(&+O)F

p
U(f,T)Z(l-f—T) (H0§+;Hgf2+zs(sl_
s=3

$s—3¢5
1)H0H ¢ >

It is easy to check -, -, and usmg and (| - Note
that to verify (7.22)) in the case |B] = p we use Wlth Bl=s=p—1
and choose H > 5/3.

For functions f(&,7) and g(§,7), let f <1 ¢g denote that |D§f(0,0)| <
D¢g(0,0) and [D; D¢ f(0,0)] < D;Dgg(0,0) for 1 < s < p. By the (7.16)), for
k=1,2,...,p,

(7.29) (£ + (1+n)vo(€,7)" <y FTHEL + k)

% £k+£k+1+ Z

k+2

s—k—2€s

k‘)

where ¢ > 1 is a constant independent of k and Hy = 1+ (n + 1)Hy. By the
definition of ¥ and ([7.29)), for p > 5,

V(& 7,¢) <pa KOKT-I-Zk Y1+ 2kK7)HE Ko K*

% fk €k+1 + Z 1 H87k72§8

2
S (5 R)
b 1
k—1 7k k
14+ 2kKT)H KoK
+k223k(k—1)(k—2)c (1+ 2kKT) Ho Ko
1 s—k—2¢s
% §k+€k+1+ Z k)QH k 2§

s= k+2
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It follows that

(&, (n+1)v(E))

€=0,r=0

< 5 ckflgcl)cKoKkJral*ka

i 5 CkflKOH(I)ch+1Hp7kf2

—3
p
n Z 2 LTk g KR
(k —2)2 0

Suppose H satisfies cK Hy < H so that, using a computation similar to

(7.18), we have

R ”lapﬂ‘li n+1)v
(/) 2 e+ 1))

<~ K K*H3HP3RP
om0 (=320 0

for some constant C' € (0, 00) independent of p. Thus by (7.28)),
(R/D)"[f3)usq.Brsp(x) < Clp = 2)\ HGHP PRV
for some constant C' = C'(n, Ko, K, Hy) € (0,00) independent of p. O

Lemma 15. Let p € (0,1/q) and u € CH#9(B1(0)) such that ||ullcuap, (o)
<1/2 and u is a solution to for some locally real analytic single-
valued functions A, B : B1(0) x (—1,1) x B®(0) — R such that holds
for some constant X > 0. Let Ko, K,Hy>1 and Bpr,(Xo) CC B1(0). For
some H = H(n,q, p, \, Ko, K, Hy) > 1 the following holds. Suppose that for
every multi-index a = (ax, az,ap) with |o| =k,

‘D(aX,Z,P)A(Xv Z,P)| + RO|D?X,Z,P)B\
- KoK*Ry1oxI7l] ifk=1,2,3,
=\ (k= ) KoKFRy Xl ipa < k< p,

for X € Br,(Xo), |Z| <1/2, and |P| < 1/2. Further suppose that whenever
Br(X1) € Bg,(Xo), for every multi-index  with |3| = s,

HoR™* ifs=1,2,

S
7.30)  —|| D s <
(7:30)  RlIDyullesmaisn s ooy < {(s — D HGH2R™% if3<s<p.
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Then for every Br(X1) C Bg,(Xo) and multi-index v with || = p,
(R/p)_l||DguH,CLM;Q(BR/ZP(Xl)) S (p - 2)!H0Hp—2R—p'

Proof. First we will apply Lemma [I3] and Lemma [14] in order to bound the
terms [f5]1:q,B,,(x,) and SUPR,,, (X)) lgy| in (7.8). We need to check
and . For every X € Bpj,(X1) \ [0,00) x {0} x R""2, B,_1yg/p(X) C
BRD(XO , SO by

(7.31) (R/s)" ' DSu(X)| + |DDSu(X)| + (R/s)*|DDiu
< 2“||D5UII’01,W,(

w:0,B(p—1)R/2ps (X)

Bp-1)r/2ps (X))

< 21(s — 2)|HyH*2 <(p_p1)R>s

< 2e(s — 2)! HoH* 2R™*.

Now let X = (x1,2,y), X" = (2,25,9') € Bp/p(X1) with x5 > 0 and zf, >
0. If |X —X'| < (p—1)R/ps, then X = (X+X")/2 € By/,(X1) and X, X' €
Bp-1)rp(X) C Bg,(Xo), so by (7.31)

R\ " |DD:;’u,l(X)—DDZ’LLl(X/)| R\" s
(7.32) (s) X — X/|» S [DDyu]u,B(p—anps(X)

S
2He
< (s—2)!Hy Tt

forl=1,2,...,¢. If | X — X'| > (p— 1)R/ps, then by using (7.31]) to bound
|DD;wy(X)| and [DDyuy (Y],

< 21 2e(s — N HG R H

R\* |DDju(X) — DDuy(X')
(7.33) () X = X/

S

for i =1,2,...,q. By the same computations, @ and also hold if

instead 22 < 0 and 24 < 0. By (7.31)), (7.32)), and (7.33), and ([7.20

hold with 2272*H, in place of Hy when s > 2. By a similar argument ((7.10

and hold with 22+2#Hj in place of Hy when s = 1, 2.
Now by Lemma [13] and Lemma

T34) (BRI Fuasivn + (Bp) | swp |or] < Clp = DUHGHT SR
R/p(X1
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for some constant C' = C(n, ¢, u, Ko, K) € (0,00). Thus by (7.8) and (7.34]),

(R/p)~" 1D ullrma (B ay (1))
< C (p(p—3)!HoH" *R™P + (p— 2)|HP*R™P)

1
< — )\ HyHP?R™? P
< C(p— 2\ HyHP R <(p_2)H+HOH>

< (p— 2)!HoH" 2R

where C' € (0, 00) denotes constants depending on n, q, u, A, Ko, K, and Hy
and independent of p and H is large enough that Lemmas and [14] hold
and H > max{4C,2C/Hy}. O

To complete the proof of Theorem (4} let Br(zo, o) CC B1(0). Since A
and B are real analytic and by the proof of Lemma there are constants
K, Ky, Hy > 1 such that for any multi-index o = (ax, @z, ap) with |a| =k

1D 2.m A"l + (R/2)| Dy 5 py Bl < KoK*(R/2) lexI=lezl for | = 9,3,
1DPx 7. Al + (R/2)|Dix 5 py Bl < (k = 3)UKo K (R/2) 71171zl for | > 4,
for X € Br(zo,v0), |Z| <1/2, |P| <1/2 and for any multi-index 8 with
1Bl =s

)) < }IO(R/Q)iS

2s
E H.D5u|’/c‘41,u;q(BR/4S (Qf,y

whenever (z,y) € Br/a(o,90) and s = 1,2,3,4. By the Lemma [15| and in-
duction, for some H sufficiently large depending on n, q, Ky, K, and Hy,

2s s— —S
EHDguH,Clwq(BR/%(x,y)) < (s = 2)!HoH**(R/2)

whenever (x,y) € Br/a(7o,0) and s > 5 and in particular (2.17) holds true
with C = HyH.
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