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672 G. Pearlstein and C. Peters

1. Introduction

1.1. Overview

Let f : X → S be a smooth, proper morphism between complex algebraic
varieties. Then, by the work of Griffiths [Gr], the associated local system
HQ = Rkf∗QX underlies a variation of pure Hodge structure of weight k,
which can be described by a period map

(1) ϕ : S → Γ\D,

where Γ is the monodromy group of the family. In the case where the mor-
phism X → S is no longer smooth and proper the resulting local system
underlies a variation of (graded-polarized) mixed Hodge structure over a
Zariski open subset of S [SZ]. As in the pure case considered by Griffiths,
a variation of mixed Hodge structure can be described in terms of a period
map which is formally analogous to (1) except that D is now a classifying
space of graded polarized mixed Hodge structure [P1, U].

As we shall explain below, there is a natural metric on such D, induced
by the mixed Hodge metric (5). Deligne’s second order calculations involving
this metric in the pure case [D1] can be extended to the mixed setting, as
we show in this article. For instance, we find criteria as to when the induced
Hodge metric on S is Kähler. We also compute the curvature tensor of this
metric, with special emphasis on cases of interest in the study of algebraic
cycles, archimedean heights and iterated integrals. The alternative approach
[Ca-MS-P, Chap. 12] in the pure case based on the Maurer-Cartan form does
not seem to generalize as we encounter incompatibilities between the metric
and the complex structure as demonstrated in § 9.

1.2. The pure case

Returning to the pure case, we recall that D parametrizes Hodge structures
of weight k on a reference fiber HQ of HQ with given Hodge numbers {hp,q}
and polarized by a non-degenerate bilinear form Q of parity (−1)k. The
monodromy group Γ is contained in the real Lie group GR ⊂ GL(HR) of
automorphisms of the polarization Q.

In terms of differential geometry, the first key fact is that GR acts tran-
sitively on D with compact isotropy, and hence D carries a GR invariant
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Differential geometry of the mixed Hodge metric 673

metric. It is induced by the polarizing form Q as follows. Any Hodge filtra-
tion F on HC induces

(2) hF (x, y) := Q(CFx, ȳ), x, y ∈ HC,

where CF |Hp,q = ip−q is the Weil-operator. This is a metric as a consequence
of the two Riemann bilinear relations: the first, Q(F p, F k−p+1) = 0 states
that the Hodge decomposition is hF -orthogonal and the second states that
hF is a metric on each Hodge-component.

Next, by describing the Hodge structures parameterized by D in terms
of the corresponding flags

F pHC =
⊕
a≥p

Ha,k−a

we obtain an open embedding of D into the flag manifold Ď consisting of
decreasing filtrations F ∗HC such that dimF p =

∑
a≥p h

a,k−a which satisfy
only the first Riemann bilinear relation. In particular, via this embedding,
the set D inherits the structure of a complex manifold upon which the group
GR acts via biholomorphisms.

As a flag manifold, the tangent space at F to Ď can be identified with
a subspace of

(3)
⊕
p

Hom(F p, HC/F
p).

Via this identification, we say that a tangent vector is (strictly) horizontal
if it is contained in the subspace⊕

p

Hom(F p, F p−1/F p).

One of the basic results of [Gr] is that the period map associated to a
smooth proper morphism X → S as above is holomorphic, horizontal and
locally liftable.

Combining the previous two paragraphs, the metric (2) on V induces
a functorial metric on (3) and hence induces a hermitian metric h on the
analytic open subset D of the smooth variety Ď. In particular, since GR acts
transitively on D via biholomorphisms and

hg.F (x, y) = h(g−1x, g−1y)

for all g ∈ GR and F ∈ D, it follows that h is a GR-invariant metric on D.
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674 G. Pearlstein and C. Peters

By [GS, Theorem 9.1] the holomorphic sectional curvature of D along
horizontal tangents is negative and bounded away from zero. In particular,
as a consequence of this curvature estimate, if S ⊂ S̄ is a smooth normal
crossing compactification with unipotent monodromy near p ∈ S̄ − S, then
by [Sc] the period map ϕ has at worst logarithmic singularities near p.

1.3. Mixed domains

In the mixed case, period maps of geometric origin are holomorphic and sat-
isfy the analogous horizontality condition ([U, SZ]). However, although there
is a natural Lie group G (see § 2.1) which acts transitively on the classifying
spaces of graded-polarized mixed Hodge structure, the isotropy group is no
longer compact, and hence there is no G-invariant hermitian structure. In
spite of this, A. Kaplan observed in [Ka] that one could construct a natural
hermitian metric on D in the mixed case which was invariant under a pair
of subgroups GR and exp(Λ) of G which taken together act transitively on
D. The subgroup exp(Λ) (see § 2.2) depends upon a choice of base point in
D and intersects the group GR non-trivially. Nonetheless, as we said before,
by emulating the computations of Deligne in [D1], we are able to compute
the curvature tensor of D in the mixed case (cf. §3).

Let us elaborate on this by defining the natural metric. A mixed Hodge
structure (F,W ) on V induces a unique functorial bigrading [D2], the Deligne
splitting

(4) VC =
⊕
p,q

Ip,q

such that F p =
⊕

a≥p I
a,b, Wk =

⊕
a+b≤k I

a,b and

Īp,q = Iq,p mod
⊕

a<q,b<p

Ia,b.

In the pure case a polarization induces a hermitian inner product for which
the Hodge decomposition is orthogonal. In the mixed case we first declare
the splitting (4) to be h(F,W )–orthogonal and then define the metric on Ip,q

making use of the graded polarization (Grh)F as follows. The summand Ip,q

maps isomorphically onto the subspace Hp,q of GrWp+q. So on classes [z] of
elements z ∈ Ip,q ⊂W p+q modulo W p+q−1 the metric hF,W can be defined
by setting:

(5) h(F,W )(x, y) = (Grh)F ([x], [y]), x, y ∈ Ip,q.
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This is the mixed Hodge metric alluded to previously. By functoriality it
induces Hodge metrics on End(V ) (see (16)) and hence also on the Lie
algebra of G. As in the pure case this induces a natural metric on the mixed
period domain (see Definition 2.6). It is these metrics that form our principal
subject of investigation of this paper.

Remark 1.1. A Mumford–Tate domain DM classifies pure Hodge struc-
tures with extra Hodge tensors [GGK]. In analogy with the classifying spaces
of pure Hodge structures, DM is the orbit of a generic point F ∈ DM un-
der the real points Mumford–Tate group of F . The analog for mixed Hodge
structures are mixed Mumford–Tate domains, e.g. the mixed Shimura vari-
eties of Pink and Milne. See Remark 2.4. All of the Lie theoretic calculations
done in section 2, and hence all of the applications in the subsequent sections
remain true for mixed Mumford–Tate domains.

1.4. Examples

To get an idea of the nature of these metrics in the mixed situation we give
a few examples.

1) Consider the mixed Hodge structure on the cohomology of quasi-
projective curves. So, let X be a compact Riemann surface of genus g
and S be a finite set of points on X. Then, F 1H1(X − S,C) consists
of holomorphic 1-forms Ω on X − S with at worst simple poles along
S, and the mixed Hodge metric is given by

(6) ||Ω||2 = 4π2
∑
p∈S
|Resp(Ω)|2 +

g∑
j=1

∣∣∣∣∫
X

Ω ∧ ϕ̄j
∣∣∣∣2 ,

where {ϕj} is unitary frame for H1,0(X) with respect to the standard
Hodge metric on H1(X,C).

To verify this, we recall that in terms of Green’s functions, the sub-
space I1,1 can be described as follows: If H is the space of real-valued
harmonic functions on X − S with at worst logarithmic singularities
near the points of S, then

(7) I1,1 ∩H1(X − S,R) =
{√
−1 · ∂(f) | f ∈ H

}
.

Indeed, the elements of I1,1 will be meromorphic 1-forms with sim-
ple poles along S. The elements

√
−1 · ∂(f) are also real cohomology

classes since the imaginary part is exact.
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Direct calculation using(7) and Stokes’ theorem shows that I1,1 con-
sists of the elements in F 1 which pair to zero against H0,1. Therefore,
the terms

∫
X Ω ∧ ϕ̄j appearing in (6) only compute the Hodge inner

product for the component of Ω in I1,0.

2) Recall that the dilogarithm [Ha1, §1] is the iterated integral

Li2(x) =

∫ x

0
w1 · w2, w1 =

1

2πi
· dz

1− z
, w2 =

1

2πi
· dz
z
.

For the corresponding variation of mixed Hodge structure arising from
the mixed Hodge structure on π1(P1 − {0, 1,∞}, z), the pull back met-
ric is given by

(8) ‖∇d/dz‖2 =

[
1

|z|2
+

1

|z − 1|2

]
.

For a proof, we refer to § 6.

3) Consider mixed Hodge structures whose Hodge numbers are h0,0 =
h−1,−1 = 1. The corresponding classifying space is isomorphic to C
with the Euclidean metric. In particular, the curvature is identically
zero. Note that the corresponding extensions are parametrized by
Ext1

MHS(Z(0),Z(1)) = C∗: these are equivalence classes of mixed Hodge
structures, but we are not considering these.

4) Let (X,ω) be a compact Kähler manifold of dimension n, and (F,W )
denote the mixed Hodge structure on V =

⊕
p H

p(X,C) defined by

setting Ip,q = Hn−p,n−q(X). For any u ∈ H1,1(X) let N(u) denote the
linear map on V defined by

(9) N(u)v = u ∧ v

Then, N(u) is of type (−1,−1) with respect to (F,W ). By the Hard
Lefschetz theorem, if u is a Kähler class the intersection pairing on
X can be used to construct a graded-polarization of (F,W ). In the
language of [Sc, CKS] (F,W ) is an example of a mixed Hodge structure
polarized by N . See also Section 1.5, item 5.

5) The period domain quotients Γ\D and their Mumford–Tate domain
analogs can be partially compactified by adjoining boundary compo-
nents consisting of nilpotent orbits [KU]. Via the theory of polarized
mixed Hodge structures, such boundary components acquire mixed
Hodge metrics.
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Some properties the Hodge metric has in the pure case are no longer
valid in the mixed situation. This is already clear from Example 3: we can
not expect D to have holomorphic sectional curvature which is negative and
bounded away from zero along horizontal directions. Nonetheless, period
maps of variations of mixed Hodge structure of geometric origin satisfy a
system of admissibility conditions which ensure that they have good asymp-
totic behavior. At the level of D-modules, this is exemplified by Saito’s the-
ory of mixed Hodge modules. At the level of classifying spaces, one has the
analogs of Schmid’s nilpotent orbit theorem [P2, Hay-P] and the SL2-orbit
theorem [KNU, P3].

Remark. The metric in [Hay-P] is obtained by twisting the metric consid-
ered in this paper by a factor which measures how far a point in D is from
being an R-split mixed Hodge structure.

1.5. Results

1) A mixed period domain D is an open subset of a homogeneous space
for a complex Lie group GC, and hence we can identify TF (D) with a
choice (22) of complement q to the stabilizer of F in Lie(GC). In anal-
ogy with Théorème (5.16) of [D1], the holomorphic sectional curvature
in the direction u ∈ q ' T 1,0

F (D) is given by (cf. Theorem (3.4)):

R∇(u, ū) =− [(ad ū∗+ )q, (ad ū+ )q]− ad [u, ū]0

−
(
ad ([u, ū]+ + [u, ū]∗+)

)
q

where the subscripts q, 0, + denote projections onto various subal-
gebras of Lie(GC), and ∗ is adjoint with respect to the mixed Hodge
metric; the adjoint operation is meant to be preceded by the projection
operator +.

2) In the pure case it is well known [Gr2, Prop. 7.7] that the “top” Hodge
bundle1 Fn is positive in the differential geometric sense while the
“dual” bundle F0/F1 is negative. In the mixed setting, the Chern
form of the top Hodge bundle is non-negative, and positive wherever
the (−1, 1)-component of the derivative of the period map acts non-
trivially on the top Hodge bundle. See Corollary 5.4.

1In standard notation; it differs from the notation employed in [Gr2].
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3) If we pull back the Hodge metric via the period map, we get a pseudo-
metric in the sense that at each tangent space it induces a semi-positive
scalar product: non-trivial directions may have zero “length”. By [Lu],
in the pure setting, the pseudo-metric is Kähler, that is, it is hermitian
and its associated (1, 1)-form is closed. So it is a natural question to
ask when there are more instances where the pullback of the mixed
Hodge metric along a mixed period map is Kähler. In §7, we answer
this question in terms of a system of partial differential equations; in
particular we prove:

Theorem (c.f. Theorem 7.5). Let V be a variation of mixed Hodge
structure with only two non-trivial weight graded-quotients GrWa and
GrWb which are adjacent, i.e. |a− b| = 1. Then, the pullback of the
mixed Hodge metric along the period map of V is a Kähler pseudo-
metric.

An example (cf. §6) of a variation of mixed Hodge structure of the
type described at the end of the previous paragraph arises in homotopy
theory as follows: Let X be a smooth complex projective variety and
Jx be the kernel of the natural ring homomorphism Zπ1(X,x)→ Z.
Then, the stalks Jx/J

3
x underlie a variation of mixed Hodge structure

with weights 1 and 2 and constant graded Hodge structure [Ha1]. We
show:

Proposition (c.f. Corollaries 6.7, 7.3). If the differential of the
period map of Jx/J

3
x is injective for a smooth complex projective variety

X then the pull back metric is Kähler and its holomorphic sectional
curvature of is non-positive.

Concerning the injectivity hypothesis, which is directly related to
mixed Torelli theorems we note that these hold for compact curves
[Ha1] as well as once punctured curves [Kae].

4) The curvature of a Hodge–Tate domain is identically zero:

Proposition (c.f. Lemma 3.3 and Corollary 7.3). Suppose hp,q =
0 unless p = q. Then the curvature of the mixed Hodge metric is iden-
tically zero, and pulls back to a Kähler pseudo-metric along any period
map ϕ : S → Γ\D.

Consequently, a necessary condition for a period map ϕ : S → Γ\D
of Hodge-Tate type to have injective differential is that S support
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a Kähler metric of holomorphic sectional curvature ≤ 0. Important
examples of such variations arise in the study of mixed Tate motives
and polylogarithms [D3] and mirror symmetry [D4].

5) Let X → ∆r be a holomorphic family of compact Kähler manifolds of
dimension n equipped with a choice of Kähler class common to every
member of the family. Let (F (s),W ) be the corresponding variation of
mixed Hodge structure defined by setting Ip,q = Hn−p,n−q(Xs) as in
Subsection 1.4.4. Suppose that λ1, . . . , λk ∈ H1,1(Xs,R) for all s (e.g.
a set of Kähler classes common to all members of the family). Let
LC be the complex linear span of λ1, . . . , λr and let u : ∆r → LC be a
holomorphic function. Then, with N as in (9)

(10) (eiN(u(s)) · F (s),W ),

is a variation of mixed Hodge structure. The curvature of the corre-
sponding classifying space is semi-negative along directions tangent to
(10), and strictly negative wherever the period map of F (s) has non-
zero derivative. See Example (4.5). The resulting pseudo-metric is also
Kähler, cf. Corollary (7.3).

6) Turning now to algebraic cycles, recall that by [Sa], a normal function
is equivalent to an extension in the category of variations of mixed
Hodge structure2

(11) 0→ H→ V → Z(0)→ 0.

The classical example comes from the Abel-Jacobi map for degree zero
divisors on a compact Riemann surface and its natural extension

(12) AJ : CHk
hom(Y )→ Jk(Y )

to homologically trivial algebraic cycles on a smooth complex projec-
tive variety Y [Gr]. Application of this construction pointwise to a
family of algebraic cycles Zs ⊂ Ys yields the prototypical example of a
normal function

(13) ν : S → J(H)

whereH is the variation of pure Hodge structure attached to the family
Ys.

2Note: We have performed a Tate twist to make H have weight -1 here.
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Proposition. 1. The pullback of the mixed Hodge metric along a nor-
mal function is a pseudo-Kähler (c.f. Example 7.6).
2. In the case where the underlying variation of pure Hodge structure is
constant (e.g. a family of cycles on a fixed smooth projective variety Y ),
the holomorphic sectional curvature is semi-negative (Corollary 6.3).

Using the polarization of H, one can construct a natural biextension
line bundle B → S whose fibers parametrize mixed Hodge structures
with graded quotients

GrW0
∼= Z(0), GrW−1

∼= Hs, GrW−2
∼= Z(1)

and such that the extension between GrW0 and GrW−1 is determined by
ν(s) and the extension from GrW−1 and GrW−2 is determined by the dual
of ν(s).

As noted by Richard Hain, the biextension line bundle B carries
a natural hermitian metric h which is based on measuring how far
the mixed Hodge structure defined by b ∈ Bs is from being split over
R. In [Hay-P], the first author and T. Hayama prove that for B →
∆∗r arising from an admissible normal function with unipotent mon-
odromy, the resulting biextension metric is of the form

(14) h = e−ϕ

with ϕ ∈ L1
loc(∆

r), i.e. it defines a singular hermitian metric in the
sense of [Dem] and hence can be used to compute the Chern current
of the extension of B̄ obtained by declaring the admissible variations
of mixed Hodge structure to define the extending sections (cf. [Hay-P,
BP]). For this situation we show (§8):

Proposition. Let S be a curve and let B be a variation of biextension
type over S. Then the Chern form of the biextension metric (14) is the
(1, 1)–form

− 1

2πi
∂∂̄h(s) =

1

2
[γ−1,0, γ̄−1,0] ds ∧ ds,

where γ−1,0 is the Hodge component of type (−1, 0) of ϕ∗(d/ds) viewed
as an element of gC. For self-dual variations this form is semi-negative.

Remark. This result was also obtained Richard Hain (§13, [Ha2]) by
a different method.
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We then deduce (see Cor. 8.3 for a precise statement):

Corollary. Let B be a self-dual biextension over S with associated
normal function ν. Then, the Chern form of the biextension metric
vanishes along every curve in the zero locus of ν.

As a final remark, we want to mention that the asymptotic behavior
of the biextension metric is related to the Hodge conjecture: Let L be
a very ample line bundle on a smooth complex projective variety X
of dimension 2n and P̄ be the space of hyperplane sections of X.
Then, over the locus of smooth hyperplane sections P ⊂ P̄ , we have a
natural variation of pure Hodge structure H of weight 2n− 1. Starting
from a primitive integral, non-torsion Hodge class ζ of type (n, n)
on X, we can then construct an associated normal function νζ by
taking a lift of ζ to Deligne cohomology. The Hodge conjecture is then
equivalent [GG, BFNP] to the existence of singularities of the normal
function νζ (after passage to sufficiently ample L). In [BP], it is shown
that the existence of singularities of νζ is detected by the failure of the
biextension metric to have a smooth extension to P̄ .

1.6. Structure

We start properly in §2 and summarize the basic properties of the classifying
spaces of graded-polarized mixed Hodge structures following [P1] and com-
pute the dependence of the bigrading (4) on F ∈ D up to second order. Using
these results, we then compute the curvature tensor and the holomorphic
sectional curvature of D in §3–4.

In §5 and §8 we compute the curvature of the Hodge bundles and the
biextension metrics using similar techniques. Likewise, in §7 we use the com-
putations of §4 to determine when the pull back of the mixed Hodge metric
along a period map is Kähler. In §6 we show how these calculations apply
to particular situations of geometric interest.

In §9, we construct a classifying space D which is a reductive domain
such that its natural complex structure is not compatible with the usual
complex structure making the Hodge metric a hermitian equivariant metric.
So the Chern connection for the Hodge metric is not the same as the one
coming from the Maurer-Cartan form on GC. This makes the calculations
in the mixed setting intrinsically more involved than in the pure case, even
in the case of a split mixed domain.
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In Appendix A we compute the Levi-Civita connection for the Hodge
metric. In general it does not conserve the splitting of the complex tangent
bundle into the holomorphic and anti-holomorphic parts which makes the
formulas more complicated than the one for the Chern connection. Neverthe-
less in certain cases it simplifies which has in favorable cases consequences
for the curvature and for geodesics (Cor. A.10).
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Next, we want to thank Ph. Eyssidieux , P. Griffiths, S. Grushevsky,
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The cooperation resulting in this paper started during a visit of the
first author to the University of Grenoble; he expresses his thanks for its
hospitality. The work of the first author was also partially supported by
NSF grant DMS 1361120.

2. Classifying spaces

2.1. Homogeneous structure

We begin this section by reviewing some material on classifying spaces of
graded-polarized mixed Hodge structure [U] which appears in [P1, P2, P3].
Namely, in analogy with the pure case, given a graded-polarized mixed
Hodge structure (F,W ) with underlying real vector space VR, the associ-
ated classifying space D consists of all decreasing filtrations of VC which
pair with W to define a graded-polarized mixed Hodge structure with the
same graded Hodge numbers as (F,W ). The data for D is therefore

(VR,W•, {Q•}, h•,•)

where W• is the weight filtration, {Q•} are the graded-polarizations and h•,•

are the graded Hodge numbers.
To continue, we recall that given a point F ∈ D the associated bigrading

(4) gives a functorial isomorphism VC ∼= GrW which sends Ip,q to Hp,q ⊆
GrWp+q via the quotient map. The pullback of the standard Hodge metrics on

GrW via this isomorphism then defines a mixed Hodge metric on VC which
makes the bigrading (4) orthogonal and satisfies

hF (u, v) = ip−qQp+q([u], [v̄])
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if u, v ∈ Ip,q. By functoriality, the point F ∈ D induces a mixed Hodge
structure on End(V ) with bigrading

(15) End(VC) =
⊕
r,s

End(V )r,s

which is orthogonal with respect the associated metric

(16) hF (α, β) = Tr(αβ∗)

where β∗ is the adjoint of β with respect to h.
Let GL(VC)W ⊂ GL(VC) denote the Lie group of complex linear auto-

morphisms of VC which preserve the weight filtration W . For g ∈ GL(VC)W

we let Gr(g) denote the induced linear map on GrW . Let GC be the sub-
group consisting of elements which induce complex automorphisms of the
graded-polarizations of W , and GR = GC ∩GL(VR).

In the pure case, GR acts transitively on the classifying space and GC
acts transitively on the compact dual. The mixed case is slightly more in-
tricate: Let G denote the subgroup of elements of GC which act by real
transformations on GrW . Then,

GR ⊂ G ⊂ GC

and we have the following result:

Theorem 2.1 ([P1, §3]). The classifying space D is a complex manifold
upon which G acts transitively by biholomorphisms.

Remark. Hertling [He] defines a period domain of polarized mixed Hodge
structures on a fixed real vector space V equipped with a polarization Q and
weight filtration induced by a nilpotent infinitesimal isometry N of (V,Q).
The difference with our approach is that the latter domain is homogeneous
under the subgroup of G consisting of elements commuting with N . So in a
natural way it is a submanifold of our domain.

2.2. Hodge metric on the Lie algebra

Let gR = Lie(GR) and gC = Lie(GC). By functoriality, any point F ∈ D in-
duces a mixed Hodge structure on gC = gR ⊗ C with bigrading inherited
from the one on End(VC), i.e. gr,s = gC ∩ End(V )r,s. For future reference,
we note that:
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• gC ∩ End(V )r,s = 0 if r + s > 0;

• W−1 End(V ) ⊂ gC.

• The orthogonal decomposition

(17) End(VC) = gC ⊕ g⊥C

induces a decomposition

(18) End(V )p,−p = gp,−pC ⊕ (g⊥C )p,−p

• Let ∗ denote adjoint with respect to the metric hF . Then,

(19) ∗ : End(V )p,q → End(V )−p,−q;

• By Lemma (2.14) below α ∈ gp,−p =⇒ α∗ ∈ g−p,p.

Remark 2.2. In general, for a mixed Hodge structure which is not split
over R, the operations of taking adjoint with respect to the mixed Hodge
metric and complex conjugate do not commute.

Let Flag(D) denote the flag variety containing D, i.e. the set of all
complex flags of VC with the same rank sequence as the flags parametrized
by D. Then, since G ⊂ GC acts transitively on D, it follows that the orbit of
any point F ∈ D under GC gives a well defined “compact dual” Ď ⊂ Flag(D)
upon which GC acts transitively by homeomorphisms:

(20) Ď = GC/G
F
C .

Remark 2.3. As in the pure case, D is an open subset of Ď with respect to
the analytic topology. In the mixed case however, Ď is usually not compact:
in Example 1.4.3 one has G = GC and hence D = Ď = C ⊂ Flag(D) = P1.
One could consider the closure of Ď in the ambient flag variety to obtain a
compact object, but as the example shows, this need not be a homogeneous
space for GC.

Remark 2.4. In analogy with the above, one defines the mixed Mumford–
Tate domains as follows: Let (F,W ) be a graded-polarized mixed Hodge
structure with MT group M and M split be the direct sum of the Mumford–
Tate groups of the associated pure Hodge structures on GrW . Then, M is an
extension of Msplit by a unipotent group U . Let u denote the Lie algebra of
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U(C) viewed as a real Lie algebra and mR denote the Lie algebra of M(R).
Let GM denote the real Lie group with Lie algebra u + mR viewed as a
real subalgebra of Lie(M(C)). Then, the associated mixed Mumford–Tate
domain DM is the orbit of F under GM .

The proof that DM is a complex manifold is parallel to the proof for D:
The compact dual ĎM is the complex homogeneous space defined by the
orbit of F under M(C), and hence it is sufficient to check that there exists
a neighborhood O of 1 ∈M(C) such that O · F ⊂ DM .

It follows that in subsequent calculations we may replace gC by
Lie(M(C)).

By the defining properties of the bigrading (4), it follows that

(21) gFC =
⊕
r≥0

gr,s

is the Lie algebra of the stabilizer of F ∈ D with respect to the action of GC
on Ď. Accordingly,

(22) qF =
⊕
r<0

gr,s

is a vector space complement to gFC in qC and hence:

Lemma 2.5. The map

u ∈ gC 7→ γ∗(d/dt)0, γ(t) = etu · F

determines an isomorphism between qF and T hol
F (D).

The preceding Lemma gives a way to induce a hermitian metric on the
tangent bundle T (D):

Definition 2.6. The isomorphism (22) provides D with a metric, the Hodge
metric.

For F ∈ D let πq denote orthogonal projection End(VC)→ gC. We note
that the restriction of πq to gC is just projection with respect to the decom-
position

(23) gC = gFC ⊕ qF .
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Lemma 2.7. Let f ∈ gFC . Then,

(24) πq◦(ad f )n = (πq◦ ad f )n

as linear operators on gC.

Proof. Induct on n, with the base case n = 1 a tautology. Observe that

(25) (ad f )nu = v + w.

with v ∈ qF and w ∈ gFC . Therefore, (ad f )n+1u = [f, v] + [f, w] and hence

(26) πq((ad f )n+1u) = πq[f, v].

By equation (25), v = πq((ad f )nu) which is equal to (πq◦ ad f )nu by induc-
tion. Substituting this identity into (26) gives

πq((ad f )n+1u) = (πq◦ ad f )n+1u. �

Before stating the next result, we emphasize that unlike the pure case,
the operation of taking adjoint with respect to the mixed Hodge metric does
not preserve gC. Therefore, the statement and proof of the next result all
occur in the Lie algebra End(V ).

Corollary 2.8. Let f ∈ gFC and v, w ∈ q. Then,

(27) hF (v, exp(πq◦ ad f )w) = hF (exp(πq◦ ad f ∗)v, w)

Proof. It is sufficient to prove

hF (v, (πq◦ ad f )mw) = hF ((πq◦ ad f ∗)m v, w)

We induct on m. For m = 1 we have

hF (v, πq[f, w]) = hF (v, [f, w]) = hF ([f∗, v], w) = hF (πq[f∗, v], w)

since [f, w] = w′ + w′′ with w′ ∈ q and w′′ ∈ q⊥, which justifies

hF (v, πq[f, w]) = hF (v, [f, w]) = hF ([f∗, v], w)

Likewise, [f∗, v] = v′ + v′′ with v′ ∈ q and v′′ ∈ q⊥ and so

hF ([f∗, v], w) = hF (πq[f∗, v], w)
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Since at each stage we project onto q, passage from m to m+ 1 follows from
the formula for m = 1. �

Define

(28) Λ =
⊕
r,s<0

gr,s

and note that since the conjugation condition appearing in (4) can be recast
as

(29) ḡp,q ⊂ gq,p + [Λ, gq,p],

it follows that Λ has a real form

(30) ΛR = Λ ∩ gR.

Lemma 2.9 ([P1, Lemma 4.11]). If g ∈ GR ∪ exp(Λ) then

g(Ip,qF ) = Ip,qg·F .

Recall that a mixed Hodge structure (F,W ) is said to be split over R if

Ip,q = Iq,p.

Those mixed Hodge structures make up a real analytic subvariety DR ⊂ D.
To any given mixed Hodge structure (F,W ), one associates a special split
real mixed Hodge structure F̂ = eF · F as follows.

Proposition 2.10 ([CKS, Prop. 2.20]). Given a mixed Hodge structure
there is a unique δ ∈ ΛR such that the spaces Îp,q = exp (−iδ)Ip,q give the
splitting of a split real mixed Hodge structure F̂ = eF · F , the Deligne split-
ting.

A splitting operation is a particular type of fibration D → DR of D over
the locus of split mixed Hodge structures (cf. [P3, Theorem (2.15)]). Our
calculations below use the following result due to Kaplan:
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Theorem 2.11 ([Ka]). Given a choice of splitting operation and choice of
base point F ∈ D, for each element g ∈ G exists a distinguished decomposi-
tion

g = gR exp (λ)f, λ ∈ Λ, gR ∈ GR, f ∈ exp(W−1gl(VC)) ∩GF .

Moreover, if the splitting operation is an analytic or C∞ map, the map
(F, g) 7→ (gR, e

λ, f) is analytic, respectively C∞.

Using the identification of TFD with qF as given by Lemma 2.5, the
mixed Hodge metric (16) induces a hermitian structure on D. In analogy
with Lemma (2.9) and the fact that G acts by isometry on GrW it follows
that

Lemma 2.12 ([Ka, P3]). For any g = gRe
λ, gR ∈ GR, λ ∈ Λ, the mixed

Hodge metric on gC changes equivariantly:

hg·F (Ad g α,Ad g β) = hF (α, β), ∀α, β ∈ g.

and hence g : TF (D)→ Tg·F (D) is an isometry.

Remark 2.13. (1) In [KNU, KNU2], the authors consider a different metric
on D which is obtained by replacing the bigrading (4) attached to (F,W ) by
the bigrading attached to the canonical or SL(2)-splitting of (F,W ). They
then twist this metric by a distance to the boundary function [KNU2, §4].
The metric of [KNU, KNU2] is not quasi-isometric to the metric considered
in this paper except when D is pure. See [Hay-P] for details on the geometry
of this metric.

(2) The previous Lemma implies that, understanding how the decompo-
sition appearing in Theorem 2.11 depends on F ∈ D up to second order is
sufficient to compute the curvature of D (cf.[D1]).

For future use, we introduce the subalgebras

(31) n+ :=
⊕

a≥0,b<0

ga,b, n− :=
⊕

a<0,b≥0

ga,b.

Then, recalling the definition (28) of Λ, we have a splitting

gC = n+ ⊕ g0,0 ⊕ n− ⊕ Λ
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and we let

(32)
End(VC)→ n+, g

0,0, n−, Λ

u 7→ u+, u0, u−, uΛ

denote orthogonal projection from End(VC) to gC followed by projection
onto the corresponding factor above.

We conclude this section with a formula for the adjoint operator α 7→ α∗

with respect to the mixed Hodge metric.

Lemma 2.14. Let z =
⊕

p g
−p,p and denote

(33) πz : End(VC)→ z

the corresponding orthogonal projection. Then (with CF the Weil operator
of GrW V ) we have

α ∈ z =⇒ α∗ = −Ad (CF )πz(ᾱ).

Proof. In the pure case, the statement is well known. Since both sides belong
to z, we only have to check that we get the correct formula on GrW0 (gC). �

2.3. Second order calculations

In this subsection, we compute the second order behavior of the decompo-
sition of g = exp(u) given in Theorem 2.11. The analogous results to first
order appear in [P1].

Employing the notation3 from (22) and (31) consider the following split-
ting

(34) gC = g0,0 ⊕ n+︸ ︷︷ ︸
gFC

⊕ n− ⊕ Λ︸ ︷︷ ︸
q

.

Since q is a complement to gFC , the map

(35) u ∈ q 7→ eu · F

restricts to biholomorphism of a neighborhood U of 0 in q onto a neighbor-
hood of F in D. Relative to this choice of coordinates, the identification of
q with TF (D) coincides with the one considered above (cf. (22)).

3We simplify notation by writing q instead of qF .
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We need to compare this with the real structure on gC = gR ⊗ C. As
usual, we write

α = Re(α) + i · Im(α), Re(α) =
1

2
(α+ ᾱ), i · Im(α) =

1

2
(α− ᾱ).

Lemma ([P1, Theorem 4.6]). Set

=(g0,0) :=
{
ϕ ∈ g0,0 | ϕ̄(0,0) = −ϕ

}
.

Then

(36) gC = gR ⊕=(g0,0)⊕ n+ ⊕ iΛR.

Corollary 2.15 ([P1, Corollary 4.7]). There exists a neighborhood of 1 ∈
GC such that every element g in this neighborhood can be written uniquely
as

g = gR exp (λ) exp(ϕ), gR ∈ gR, λ ∈ iΛR, ϕ ∈ g0,0 ⊕ n+ ⊂ gFC ,

where ϕ0,0 is purely imaginary.

This implies that, possibly after shrinking U there are unique functions
γ, λ, ϕ : U → gR, iΛR, g

F
C respectively such that

(37) exp(u) = exp (γ(u))︸ ︷︷ ︸
in GR

· exp (λ(u)) · exp (ϕ(u))︸ ︷︷ ︸
in GFC

.

Now we introduce g(u) = exp(u) = gR(u) · exp(λ(u)) · exp (ϕ(u)) as func-
tions on U ∩ q.

As a prelude to the next result, we recall that by the Campbell–Baker–
Hausdorff formula we have

exey = ex+y+ 1

2
[x,y]+···.

Alternatively, making the change of variables u = −y, v = x+ y this can be
written as

eu+ve−u = eψ(t0,t1,... ),

where tm = (adu )mv and ψ is a universal Lie polynomial. In a later com-
putation (see the proof of Lemma 6.1) we need more information, namely
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on the shape of the part linear in v:

(38) ψ1(u, v) =
∑
m

1

(m+ 1)!
tm =

eadu − 1

adu
v.

Proposition 2.16. Let F ∈ D and u = u− + uΛ ∈ n− ⊕ Λ = q. Then,

ϕ(u) = −ū+ +
1

2
[u, ū]0 + [u, ū]+ +

1

2
[ū, ūΛ]+ +O3(u, ū)

where the subscripts mean the orthogonal projections onto g0,0, Λ, n+ re-
spectively.

Proof. For the linear approximation note that

u = Re[2(u−)− ūΛ]− i Im(ūΛ)− ū+ ∈ gR ⊕ iΛR ⊕ gFC

and that equation (37) yields the first degree approximation u = γ1(u) +
λ1(u) + ϕ1(u) so that the result follows by uniqueness.

The computation proceeds by expanding the left hand side of

exp (λ) exp (ϕ) exp (−u) = exp (−γ) ∈ GR

using the Campbell–Baker–Hausdorff formula, and then using the fact that
the right hand side is real. To first order the decomposition is

u = γ1(u) + λ1(u) + ϕ1(u)

where

γ1(u) = u+ ū− 1

2
πΛ(ū)− 1

2
πΛ(ū)

λ1(u) = −1

2
πΛ(ū) +

1

2
πΛ(ū)

ϕ1(u) = −ū+ πΛ(ū)

where we have used πΛ to denote projection to Λ for clarity regarding the
order of complex conjugation, since these two operations do not commute.



i
i

“6-Pearlstein” — 2019/9/2 — 15:39 — page 692 — #22 i
i

i
i

i
i

692 G. Pearlstein and C. Peters

The second degree approximation then yields that

λ2 + ϕ2 +
1

2
([λ1, ϕ1 − u]− [ϕ1, u]) is real.

The projection to n+ equals [ϕ2]+ + 1
2 ([λ1, ϕ1 − u]+ − [ϕ1, u]+). Since λ̄1 =

−λ1, the reality constraint implies that

(ϕ2)+ = −1

2
{[λ1, ϕ1 + ϕ̄1 − u− ū]+ + [ϕ̄1, ū]+ − [ϕ1, u]+}

= −1

2
{[ϕ̄1, ū]+ − [ϕ1, u]+ + [λ1, ϕ1 + ϕ̄1 − u− ū]+} .

By the conjugation rules n̄± ⊂ n̄∓ + Λ, the fact that Λ, n+, n− are subalge-
bras, and using [n±,Λ] ⊂ n± + Λ this simplifies to

(ϕ2)+ = −1

2
{[λ1, ϕ1 − ū]+ + [ϕ̄1, ū]+ − [ϕ1, u]+} .

Now set ϕ1 = −ū+ πΛ(ū) so that ϕ1 − ū = −2ū mod Λ. The first term thus
reads 1

2 [2λ1, ū]+, and since ϕ1 = −π+ū, the second term becomes 1
2 [ū+, ū]+

while the last simplifies to −1
2 [ū, u]+ ; in total we get

(ϕ2)+ =
1

2
[2λ1 + π+ū, ū]+ +

1

2
[λ1, ū]+.

Putting 2λ1 = πΛū− πΛ(ū) so that 2λ1 + π+ū = u− πΛ(ū) shows

(ϕ2)+ =
1

2
{[u, ū]+ − [ūΛ, ū]+ − [ū, u]+} ,

which is indeed equal to the stated expression for (ϕ2)+. Similarly we find
for the g0,0-component

(ϕ2)0 =
1

2
[u, ū]0. �

Corollary 2.17. Let F ∈ D. Let

heu·F (Leu∗α,Leu∗β) = hF (expH(u)α, β), α, β ∈ q
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denote the local form of the mixed Hodge metric on T (D) relative to the
choice of coordinates (35). Then, up to second order in4 (u, ū)

H(u) = −(ad (ū)∗+) q︸ ︷︷ ︸
(1,0)-term

+−(ad (ū)+ )q︸ ︷︷ ︸
(0,1)-term

+
1

2

(
ad [ū, ūΛ]+ + [ū, ūΛ]∗+

)
q︸ ︷︷ ︸

(2,0)+(0,2)-term

+

(
1

2
[(ad (ū)∗+ )q, (ad (ū)+ )q]+(ad [u, ū]0 )q+ad [u, ū]+ +ad [u, ū]∗+

)
q︸ ︷︷ ︸

(1,1)-term

.

Here, by ”A(x, y) is a (p, q)-term” we mean A(tx, ty) = tpt̄qA(x, y).

Proof. Let us first check the assertion about types. This follows directly from
the the facts that ad and πq are C-linear, while for any C-linear operator
A, one has (tA)∗ = t̄A∗ and tA = t̄Ā.

Let us now start the calculations. By (37), we have

heu·F (Leu∗α,Leu∗β) = hF (Lexp(ϕ(u)∗α,Lexp(ϕ(u)∗β))(39)

= hF (πq Ad exp(ϕ(u))α, πq Ad exp(ϕ(u))β))

= hF (πq Ad exp(ϕ(u))α,Ad exp(ϕ(u))β))

since gFC and q are orthogonal with respect to the mixed Hodge metric at
F . Therefore,

heu·F (Leu∗α,Leu∗β) = hF (Ad exp(ϕ(u))∗ πq Ad exp(ϕ(u))α, β))

= hF (exp(adϕ(u)∗ )πq exp(adϕ(u) )α, β))

= hF (exp(adϕ(u)∗ ) exp(πq adϕ(u) )α, β))

by equation (24). Likewise, although

exp(adϕ(u)∗ ) exp(πq adϕ(u) )α

is in general only an element of End(VC), since we are pairing it against an
element β ∈ q, it follows that

heu·F (Leu∗α,Leu∗β) = hF (πq exp(adϕ(u)∗ ) exp(πq adϕ(u) )α, β))

= hF (exp(πq adϕ(u)∗ ) exp(πq adϕ(u) )α, β)),

where the last equality follows from (27). By the Baker–Campbell–Hausdorff
formula, up to third order in (u, ū) the product of the exponents in the

4We write xq instead of πqx for clarity and if no confusion is likely.



i
i

“6-Pearlstein” — 2019/9/2 — 15:39 — page 694 — #24 i
i

i
i

i
i

694 G. Pearlstein and C. Peters

previous formula can be replaced by

exp

(
πq adϕ(u)∗ + πq adϕ(u) +

1

2
[πq adϕ(u) ∗, πq adϕ(u) ]

)
.

So, we may assume that

H(u) = πq adϕ(u)∗ + πq adϕ(u) +
1

2
[πq adϕ(u) ∗, πq adϕ(u) ].

To obtain the stated formula for H(u), insert the formulas from Proposi-
tion 2.16 into the above equations and compute up to order 2 in u and ū.
Use is made of the equality [u, ū]∗0 = [u, ū]0 guaranteed by Lemma 2.14. �

3. Curvature of the Chern connection

We begin this section by recalling that given a holomorphic vector bundle E
equipped with a hermitian metric h, there exists a unique Chern connection
∇ on E which is compatible with both h and the complex structure ∂̄. With
respect to any local holomorphic framing of E, the connection form of ∇ is
given by

(40) θ = h−1∂h,

where h is the transpose of the Gram–matrix of h with respect to the given
frame. The curvature tensor is then

(41) R∇ = ∂̄ θ.

Theorem 3.1. The connection one-form of the mixed Hodge metric with
respect to the trivialization of the tangent bundle given in Lemma 2.5 is

θ(α) = −
(
ad ( ᾱ)∗+

)
q

for α ∈ q ∼= TF (D).

Proof. By Corollary (2.17), this is the first order holomorphic term of H(u).
�

Lemma 3.2. Let (D,h) be a complex hermitian manifold and let U ⊂ D
be a coordinate neighborhood centered at F ∈ D and let α, β ∈ TF (U)⊗ C be
of type (1, 0). With H as in Corollary (2.17) at the origin one has

R∇(α, β̄) = −∂α∂β̄H +
1

2

[
∂β̄H, ∂αH

]
.
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Proof. Since the curvature is a tensor, its value on vector fields at a given
point only depends on the fields at that point. Choose a complex sur-
face u : V ↪→ U , V ⊂ C2 a neighborhood of 0 (with coordinates (z, w)) and
u∗(d/dz)0 = (∂α)0, u∗(d/dw)0 = (∂β)0. Write

h = exp(H) = I +H +
1

2
H2 +O3(z, z̄).

Formulas (40),(41) tell us that the curvature at the origin equals

(−∂̄h ∧ ∂h+ ∂∂̄h)0.

This 2-form evaluates on the pair of tangent vectors (∂z, ∂w̄) as

(42) R∇(α, β̄) = ∂w̄h◦∂zh − ∂z∂w̄h.

Now use the Taylor expansion of h up to order 2 of which we give some
relevant terms5:

h(z, z̄, w, w̄)2 = I + (∂zH)0z + (∂w̄H)0w̄ + linear terms involving z̄, w

+ terms involving z2, w2, z̄2, w̄2+

+

(
∂z∂w̄H +

1

2
(∂zH)(∂w̄H) +

1

2
(∂w̄H)(∂zH)

)
0

zw̄

+ terms involving zz̄, wz̄, ww̄.

Now substitute in (42). �

As a first consequence, we have:

Lemma 3.3. The submanifold exp(Λ) · F of D is a flat submanifold with
respect to the Hodge metric. In particular, the holomorphic sectional curva-
ture in directions tangent to this submanifold is identically zero.

Proof. If f is a unitary Hodge-frame for the mixed Hodge structure on V
corresponding to F , then for all g ∈ exp(Λ), (Lg)∗f is a unitary Hodge frame
at g · F and this gives a holomorphic unitary frame on the entire orbit. Hence
the Chern connection is identically zero. This also follows immediately from
the formula for the connection form given above. �

5Remember H is a matrix so that ∂zH and ∂w̄H do not necessarily commute.
We follow the curvature conventions in [Wells]
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Theorem 3.4. Let D be a period domain for mixed Hodge graded-polarized
structures. Let ∇ be the Chern connection for the Hodge metric on the
holomorphic tangent bundle T (D) at F . Then for all tangent vectors u ∈
T 1,0
F (D) ' q we have

R∇(u, ū) = −[(ad ū∗+ )q, (ad ū+ )q]− ad [u, ū]0 −
(
ad ([u, ū]+ + [u, ū]∗+)

)
q
.

We use the following convention: for all u ∈ g we write u∗0, u
∗
+, u

∗
− to mean:

first project onto g0,0, respectively n+, n− and then take the adjoint.

Proof. Apply the formula of Lemma (3.2). Proceeding as in the proof of
that Lemma, choose a complex curve u(z) tangent to u ∈ TFD and write
H(u(z)) = H(z, z̄). We view the curve u(z) as an element of q, i.e., in the
preceding expression we replace u by zu and ū by z̄ū. Then from Corol-
lary 2.17 we have ∂zH(0) = −(ad (ū)∗+ )q, ∂z̄H(0) = −(ad (ū)+ )q and

∂z∂z̄H(0) =
1

2
[(ad (ū)∗+ )q, (ad (ū)+ )q] + (ad [u, ū]0 )q

+
(
ad [ū, u]+ + [ū, u]∗+

)
q
.

Since at the point F ∈ D we have R∇(u, ū) = −∂u∂ūH + 1
2 [∂ūH, ∂uH], the

result follows. �

Remark 3.5. (1) Note that in the pure case this gives back R∇(u, ū) =
− ad [u, ū]0 as it should.

(2) By Remark 2.4, the formula for the curvature of a mixed Mumford–
Tate domain is the same as the one for the mixed period domain.

(3) Exactly the same proof shows that the full curvature tensor, evalu-
ated on pairs of tangent vectors {u, v} ∈ T 1,0

F D is given by

R∇(u, v̄) = −([(ad ū∗+ )q, (ad v̄+ )q])

− 1

2
(ad [u, v̄]0 + ad [v, ū]0 )

+
(
ad ([v̄, u]+ + [ū, v]∗+)

)
q
.

Alternatively, one may use [D1, (5.14.3)]. In that formula R(u, v) stands
for the curvature in any pair (u, v) of complex directions. So R(u, v) =
R∇(u1,0, v0,1)−R∇(v1,0, u0,1).
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4. Holomorphic sectional curvature in horizontal directions

Recall that the holomorphic sectional curvature is given by

(43) R(u) := h(R∇(u, ū)u, u)/h(u, u)2.

Our aim is to prove:

Theorem 4.1. Let u ∈ TF (D) be a horizontal vector of unit length. Then
R(u) = A1 +A2 +A3 +A4 where

A1 = −‖[ū+, u]q‖2,
A2 = ‖[ū∗+, u]q‖2,
A3 = −h([[u, ū]0, u], u)

A4 = −h([[u, ū]+, u]q, u)− h(u, [[u, ū]+, u]q).

Each of these terms is real.

Proof. We start by stating the following two self-evident basis principles
which can be used to simplify (43):

• Orthogonality: The decomposition g =
⊕

gp,q is orthogonal for the
Hodge metric;

• Jacobi identity: For all X,Y, Z ∈ End(V ) we have

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]].

• Metric conversion: The relation

(44) h([X,Y ], Z) = h(Y, [X∗, Z])

implies

(45) − h(ad [X,X∗]Y, Y ) = ‖[X,Y ]‖2 − ‖[X∗, Y ]‖2

Theorem 3.4 and the previous rules imply:

h(R∇(u, ū)u, u) = −h([(ad (ū+)∗ )q, (ad (ū)+ )q]u, u)− h((ad [u, ū]0 )u, u)

− h((ad [u, ū]+ )u, u)− h((ad [u, ū]∗+ )qu, u)

= −‖[ū+, u]q‖2 + ‖[ū∗+, u]q‖2 − h([[u, ū]0, u], u)

− h([[u, ū]+, u]q, u)− h(u, [[u, ū]+, u]q).
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This shows that h(R∇(u, ū)u, u) = A1 +A2 +A3 +A4 where the terms Aj
are as stated. In particular, the terms A1, A2, A4 are real. Metric conversion
allows us to show that A3 is real: setting α = u−1,1 and recalling (33), we
see that [u, ū]0 = [α, πzᾱ] = [α, α∗] and so we find that

A3 = −h([[α, α∗], u], u))(46)

= ‖[α, u]‖2 − ‖[α∗, u]‖2 ∈ R.
�

The next result gives the refinement of the curvature calculations with
respect to the decomposition of a horizontal vector into its Hodge compo-
nents:

Theorem 4.2. For u =
∑

j≤1 u
−1,j ∈ gC set 6

α = u−1,1, β = u−1,0, λ =
∑

j≥1
u−1,−j

ᾱ+ = α∗ + ε, α∗ = πzᾱ+ = ᾱ1,−1
+ , ε =

∑
j≥2

ᾱ0,−j
+ .

Then,

A1 = −
(
‖[β̄+ + ε, α]‖2 + ‖[β̄+ + ε, β]‖2 + ‖[β̄+ + ε, λ]q‖2

)
,

A2 = ‖[α, β]‖2 + ‖[α, λ]‖2 + ‖[β̄∗+, β]q‖2 + ‖[β̄∗+ + ε∗, λ]‖2,
A3 = ‖[α, β]‖2 + ‖[α, λ]‖2 − ‖[α∗, α]‖2 − ‖[α∗, β]‖2 − ‖[α∗, λ]‖2,
A4 = −2‖[α∗, λ]‖2 − 2‖[α∗, β]‖2 +R(α, β, λ),

where

R(α, β, λ) = −2Re (h([[λ, α∗], λ], λ) + h([[α∗, β], λ], λ) + h([[α∗, λ], β], λ)) .

This last term vanishes if λ has pure type.
Moreover, in the R–split situation we have ᾱ+ = α∗ so that ε = 0.

Proof. The term A3. Inserting u = α+ β + λ in (46) immediately gives the
A3-term.

6Recall the notation (33).
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The terms A1, A2. We start by noting that ū+ = ᾱ+ + β̄+ = α∗ + ε+
β̄+ and so (note the precedence of the operators!) ū∗+ = α+ ε∗ + β̄∗+. Ac-
cordingly,

[ū+, u]q = [α∗ + β̄+ + ε, u]q, [ū∗+, u]q = [α+ β̄∗+ + ε∗, u].

The first expression gives

A1 =− ‖[β̄+ + ε, u]‖2

=− (‖[β̄+ + ε, α]‖2 + ‖[β̄+ + ε, β]‖2 + ‖[β̄+ + ε, λ]‖2).

by orthogonality. The second expression expands as:

[ū∗+, u]q = [α, u] + [β̄∗+ + ε∗, α]q + [β̄∗+ + ε∗, β + λ]q

For weight reasons, [β̄∗+, α]q = 0 and [ε∗, α]q = [ε∗, β]q = 0. Therefore, by or-
thogonality:

A2 = ‖[ū∗, u]q‖2 = ‖[α, β]‖2 + ‖[α, λ]‖2 + ‖[β̄∗+, β]q‖2

+ ‖[β̄∗+, λ]q‖2 + ‖[ε∗, λ]q‖2.

The term A4. To calculate A4, we observe that

[u, ū]+ = [β, ᾱ+] + [λ, ᾱ+] = [β, α∗ + ε] + [λ, α∗ + ε].

So h([[u, ū]+, u], u) = h([[β, α∗ + ε], u], u) + h([[λ, α∗ + ε], u], u) and we con-
sider each term separately. For the first term, note that [[β, ε], u] as well as
[[λ, ε], u] belong to

⊕
j≥1 g

−2,−j and hence are both orthogonal to u and we

can discard these terms. Moreover, [β, α∗] ∈ g0,−1 and so, by orthogonality,

h([[β, α∗], u], u) = h([[β, α∗], α], β) + h([[β, α∗], β], λ) + h([[β, α∗], λ], λ).

Since−h([α, [β, α∗]], β) = −h([β, α∗], [α∗, β]) = ‖[α∗, β]‖2 we find for the first
term

h([[β, α∗], u], u) = ‖[α∗, β]‖2 + h([[β, α∗], β], λ) + h([[β, α∗], λ], λ).

Note that [λ, α∗] ∈
⊕

j≥0 g0,−2−j so that by orthogonality,

h([[λ, α∗], u], u) = h([[λ, α∗], λ], β) + h([[λ, α∗], α+ λ], λ).
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The second term thus simplifies to

h([[λ, α∗], α], λ) + h([[λ, α∗], λ], λ) = −h([α, [λ, α∗]], λ) + h([[λ, α∗], λ], λ)

= −h([λ, α∗], [α∗, λ]) + h([[λ, α∗], λ], λ)

= ‖[α∗, λ]‖2 + h([[λ, α∗], λ], λ).

It follows that

A4 = −2‖[α∗, λ]‖2 − 2‖[α∗, β]‖2

− Re (h([[λ, α∗], λ], λ) + h([[α∗, β], λ], λ) + h([[α∗, λ], β], λ)) . �

Remark 4.3. We claim that ε and the Deligne splitting δ of (F,W ) are
related as follows:

ε = [−2iδ, ᾱ]+.

To see this, apply the Deligne splitting:

α = Ad ( eiδ)α‡

where α‡ is type (−1, 1) at the split mixed Hodge structure (F̂ ,W ) defined
by F̂ = e−iδF . At that point the complex conjugate and the adjoint of α‡

coincide. Therefore,

α∗ = Ad ( eiδ)[α‡
∗
]F̂ = Ad ( eiδ)[α‡]F̂

ᾱ = Ad ( e−iδ)[α‡]F̂ = Ad ( eiδ)[Ad ( e−2iδ)α‡]F̂ .

Consequently,

ε = (α∗ − ᾱ)+

= Ad ( eiδ)((Ad ( e−2iδ)− 1)α‡)+,F̂

= Ad ( eiδ)[−2iδ, ᾱ‡]+,F̂

= [−2iδ,Ad ( eiδ)α‡]+

= [−2iδ,Ad ( e2iδ)ᾱ]+

= [−2iδ,Ad ( e2iδ)ᾱ]+

= [−2iδ, ᾱ]+.

We shall now discuss particular cases.
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Corollary 4.4. The holomorphic sectional curvature along a horizontal
direction u = α+ λ with α of type (−1, 1) and λ ∈ Λ equals

R(u) =
2‖[α, λ]‖2 + f(u, ε)− 3‖[α∗, λ]‖2 − ‖[α, α∗]‖2 − Re(h([[λ, α∗], λ], λ))

(‖α‖2 + ‖λ‖2)2
,

where f(u, ε) = −
(
‖[α, ε]‖2 + ‖[λ, ε]‖2

)
+ ‖[λ, ε∗]‖2. In particular:

• R(u) ≤ 0 if [α, λ] = 0 = [λ, ε∗] and λ is of pure type (−1,−k) for some
k < 0 (since [[λ, α∗], λ] and λ have different types), and R(u) < 0 as
soon as α 6= 0.

• R(u)>0 if [α∗, λ]=0=[u, ε] provided 2‖[α, λ]‖2+‖[λ, ε∗]‖2>‖[α∗, α]‖2.

Example 4.5. Let us return to the setting of the variation of mixed Hodge
structure (10) arising from a variation of Kähler moduli along a family of
compact Kähler manifolds. The original variation F (s) of a direct sum of
pure Hodge structures that can be expressed locally as

F (s) = eΓ(s) · F (0)

where Γ : ∆r → q vanishes at 0 and takes values in g−1,1 ⊕ g−2,2 ⊕ · · · . The
requirement that each γj be of type (−1,−1) for all F (s) implies that

Ad ( e−Γ(s))λj = e− ad Γ (s)λj

is horizontal at F (0) for all s. Via differentiation along a holomorphic arc
through s = 0, this fact implies that [Γ′(0), γj ] = 0 since Γ′(0) ∈ g−1,1 and
Γ(0) = 0.

The local normal form of the variation (10) is therefore

F̃ (s) = eiN(u(s))eΓ(s) · F (0)

where u(s) takes values in the complex linear span LC of γ1, . . . , γk. Accord-
ingly, the derivative of (F̃ (s),W ) at s = 0 is

ξ = ξ−1,−1 + ξ−1,1, ξ−1,−1 = iN(u′(0)), ξ−1,1 = Γ′(0)

where [ξ−1,−1, ξ−1,1] = 0. Recall the statement of Theorem 4.2 for the def-
inition of ε. We show that it vanishes in this situation. First observe that
since the ”untwisted” mixed Hodge structure (F (s),W ) are all split over R,
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the element δ attached to (F̃ (0),W ) is defined by the equation

e−iN(u(0)) · Y(F (0),W ) = e−2iδeiN(u(0)) · Y(F (0),W ).

Since δ commutes with all (p, p)-morphisms of (F̃ (0),W ), it follows from the
previous equation that δ = N(Re(u(0))). Accordingly, δ is real and belongs
to LC and so

[Γ̄′(0), δ] = [Γ′(0), δ] = 0.

By Remark (4.3), it follows that indeed ε = 0. Corollary 4.4 then implies:

R(ξ) ≤ 0 and < 0 if ξ 6= 0.

Corollary 4.6. The holomorphic sectional curvature along a horizontal
direction u = α+ β with α type (−1, 1) and β type (−1, 0) is

R(u) =
−n(α, β) + p(α, β)

(‖α‖2 + ‖β‖2)2
,

n(α, β) := ‖[α∗ + ε, α]‖2 + ‖[ε, β]‖2 + 3‖[α∗, β]‖2 + ‖[α, β̄+]‖2 + ‖[β̄+, β]‖2,
p(α, β) := ‖[α, β]‖2 + ‖[β̄∗+, β]q‖2.

In particular, if α = 0, [β, β̄+] = 0 = [ε, β] (which is the case if W−1gC is
abelian) we have R(u) ≥ 0.

Next, we look at a unipotent variation of mixed Hodge structure in
the sense of Hain and Zucker [Ha-Z]. These are the variations where the
pure Hodge structures on the graded quotients are constant so that α =
u−1,1 = 0 and hence ε = 0. This situation occurs in two well known geometric
examples:

• The VMHS on Jx/J
3
x , x ∈ X where X is a smooth complex projective

variety;

• The VMHS attached to a family of homologically trivial algebraic cy-
cles moving in a fixed variety X.

Corollary 4.7. For the curvature coming from a unipotent variation we
have

R(u) =
−‖[β̄+, β]‖2 − ‖[β̄+, λ]‖2 + ‖[β̄∗+, β]q‖2 + ‖[β̄∗+, λ]q‖2

(‖β‖2 + ‖λ‖2)2
.
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5. Curvature of Hodge bundles

5.1. Hodge bundles over mixed period domains

In this subsection, we compute the curvature of the Hodge bundles over the
classifying space D using the methods of § 2.3. Since the Hodge bundles of a
variation of mixed Hodge structure V → S are obtained by pulling back the
Hodge bundles of D along local liftings of the period map, this furnishes a
computation of the curvature of the Hodge bundles of a variation of mixed
Hodge structure.

Let F ∈ D and q be the associated nilpotent subalgebra (22) and U be a
neighborhood of zero in q such that the map u→ eu · F is a biholomorphism
onto a neighborhood of F . Then, we obtain a local holomorphic framing for
the bundle Fp over U via the sections α(u) = euα for fixed α ∈ F p. Let
β(u) = euβ be another such section of Fp over U , and Lg denote the linear
action of g ∈ GL(VC) on VC. Let Π denote orthogonal projection from VC to
F p. Then, as in § 2.3 by (37), the metric is

heu·F (α(u), β(u)) = hF (Lexp(ϕ(u))α,Lexp(ϕ(u))β)

= hF (Π◦Lexp(ϕ(u))α,Lexp(ϕ(u))β)

= hF (Lexp(ϕ(u)∗)Π◦Lexp(ϕ(u))α, β)

= hF (Π◦Lexp(ϕ(u)∗)Π◦Lexp(ϕ(u))α, β).

In analogy with § 2.2, we have the identity

Π◦Lexp(ϕ(u)) = Lexp(Π◦ϕ(u)),

since ϕ(u) belongs to the subalgebra preserving F p. The identity

Π◦Lexp(ϕ(u)∗) = Lexp(Π◦ϕ(u)∗)

is also straightforward because ϕ(u) is a sum of components of Hodge type
(a, b) with a ≥ 0. As such ϕ(u)∗ is a sum of components of Hodge type
(−a,−b) with −a ≤ 0, and hence there is no way for the action of ϕ(u)∗ to
move a vector of Hodge type (c, d) with c < p back into F p.

Accordingly, by the universal nature of the Campbell–Baker–Hausdorff
formula, the only difference between the computation of the curvature of
Fp and the curvature of T (D) is that for the former we are use the linear
action GL(VC) and gl(VC) and project orthogonally to F p whereas in the
later we use the adjoint action and project orthogonally to q. So, with Π the
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orthogonal projection from VC to F p for u, v ∈ T hol
F (D) we find

R∇(u, v̄) = −([Π◦(ū∗+),Π◦(v̄+)])− 1

2
(Π◦([u, v̄]0) + Π◦([v, ū]0))

+ Π◦
(
[v̄, u]+ + [ū, v]∗+

)
.

Taking account of the fact that the terms with subscript + (without an
adjoint) and subscript 0 always preserve F p this simplifies and we get:

Corollary 5.1. Let Π denote orthogonal projection from VC to F p. Then,
the curvature of the Hodge bundle Fp over D in the directions u, v ∈ T hol

F (D)
is

R∇(u, v̄) = −([Π◦(ū∗+), v̄+])− 1

2
([u, v̄]0 + [v, ū]0)

+
(
[v̄, u]+ + Π◦[ū, v]∗+

)
.

The computation of the curvature of the quotient bundle Fp/Fp+1 pro-
ceeds along the same lines as the computation of the curvature of Fp. How-
ever, in this case the corresponding projection operator Π′ sends VC to

Fp/Fp+1 ∼= Up :=
⊕
q

Ip,q(F,W ).

The identity

Π′◦Lexp(ϕ(u)) = Lexp(Π′◦ϕ(u))

results from the fact that elements of gFC have Hodge components of type
(a, b) with a ≥ 0 and such an element moves Up to Up+a. A similar argument
works for Π′◦ϕ(u)∗.

Corollary 5.2. Let Π′ denote orthogonal projection from VC to Up at F .
Then, the curvature of the Hodge bundle Fp/Fp+1 over D in the directions
u, v ∈ T hol

F (D) is

R∇(u, v̄) = −([Π′◦(ū∗+),Π′◦(v̄+)])− 1

2

(
Π′◦([u, v̄]0) + Π′◦([v, ū]0)

)
+ Π′◦

(
[v̄, u]+ + [ū, v]∗+

)
.

Taking account of the fact that the terms with subscript 0 preserve Up it
follows that

R∇(u, v̄) = −([Π′◦(ū∗+),Π′◦(v̄+)])− 1

2
([u, v̄]0 + [v, ū]0)

+ Π′◦
(
[v̄, u]+ + [ū, v]∗+

)
.
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5.2. First Chern forms and positivity

Let us calculate the first Chern form of the Hodge bundles Up over a disk
∆ : f → D with local coordinate s. Set f(s) = Fs and u = f∗(d/ds)Fs . We
also let

u(p) : Up → Up−1, up = α(p) + β(p) + λ(p)

be the restriction of u to Up and α(p), β(p) and λ(p) the decomposition into
types (−1, 1), (−1, 0), respectively

∑
k≥1(−1,−k). Then we have

Lemma 5.3. The first Chern form c1(Up) involves only the components
α(p) of u of type (−1, 1) and locally can be written

c1(Up) =
1

2πi

(
‖|α(p)‖|Fs − ‖|α(p+1)‖|Fs

)
ds ∧ ds̄.

Proof. We have to calculate TrR∇(u, ū) using Cor. 5.2. Let us write u =
α+ β + λ as before. Since Π′◦(ū+) = β̄+, we find[

Π′◦(ū∗+),Π′◦(ū+)
]

= [β̄∗+, β̄+](47)

[u, ū]0 = [α, α∗](48)

Π′◦[ū, u]+ = [α∗, β + λ].(49)

The first two terms preserve the bi-degree but this is not the case for (49). So,
computing traces, we can discard it. The vanishing of the trace of [β̄∗+, β̄+]
follows from the standard calculation

Tr([A∗, A]) = Tr(A∗A)− Tr(AA∗) = Tr(AA∗)− Tr(AA∗) = 0

with A = β̄+ ∈ End(Up). On the other hand, since α maps Up to Up−1 this
argument does not apply (48), and so

TrR∇(u, ū) = −Tr[β̄∗+, β] |Up − Tr[α, α∗] |Up

= ‖|α(p)‖|Fs − ‖|α(p+1)‖|Fs . �

Corollary 5.4. The ”top” Hodge bundle, say Un ' Fn (which is a holo-
morphic sub bundle of the total bundle) has a non-negative Chern form:

c1(Un) =
i

2π

(
‖|α(n)‖|Fs

)
ds ∧ ds̄ ≥ 0.

As in [Gr2, Prop. 7.15] one deduces form Lemma 5.3 also:
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Corollary 5.5. Let Ep := Fp/Fp+1 and put

K(F•) :=
⊗
p

(det(Ep))⊗p.

Then the first Chern form of K(F•) is non-negative and is zero precisely in
the horizontal directions (−1, k) with k ≤ 0.

Let us now consider the curvature form itself.

Example 5.6. Consider the case with two adjacent weights 0 ⊂W0 ⊂
W1 = V . Split the top Hodge bundle as Fn = In,−n ⊕ In,−n+1 and decom-
pose the curvature matrix accordingly

R(u, ū) =

(
α∗◦α+ β̄◦β̄∗ α∗◦β
−β∗◦α α∗◦α− β̄∗◦β̄

)
, u = α+ β.

We see that for v ∈ VC, ‖R(v)(u, ū)‖F = Tv̄R(u, ū)v ≥ 0 if u = α, but
‖R(v)(β, β̄)‖F = ‖β̄∗(v(−n))‖F − ‖β̄(v(−n+1))‖F which need not be ≥ 0.

From the preceding example it follows that we can expect positive cur-
vature at most in the α-direction. In fact, this is true:

Proposition 5.7. The ”top” Hodge bundle, say Un ' Fn has a positive
curvature in the α-directions and has identically zero curvature in the λ-
directions.

Proof. We note the diagonal terms in the curvature form involve α(q)◦(α(q))∗

acting on In,q. Let r be the minimal q with In,q 6= 0 and consider the split-
ting Un = In,r ⊕ In,r+1 ⊕ In,>r+1. Assume β = 0. The matrix of the curva-
ture form splits accordingly:

R(u, ū) =

 α∗◦α 0 α∗◦λ
0 α∗◦α 0

−λ∗◦α 0 α∗◦α

 , u = α+ λ.

So with v ∈ Un one finds for u = α+ λ:

R(v)(u, ū) = ‖α(v)‖2F ≥ 0

with equality if α(v) = 0. �

Here is an example of a variation where β = 0:
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Example 5.8. Consider higher normal functions associated to motivic co-
homology Hp

M(q), see [BPS]. Indeed, these give extension of Rp−1π∗Z(q)
with p− 2q − 1 < 0 where π : X → S is a smooth projective family.
Assume moreover that the cohomologyHp−1(Xt) of the fibresXt is such that
the non-zero Hodge numbers are hp−1−q,q, · · ·hq,p−1−q (i.e. the Hodge struc-
ture has level = p− 1− 2q). With n = 2q + 1− p the non-zero Hodge num-
bers of the mixed variation are, besides h0,0 indeed precisely h−n,0, . . . , h0,−n.
Here β = 0 while λ 6= 0.

5.3. Variations of mixed Hodge structure

We want to stress that, although the above calculations are done on the
period domain, they apply also for variations of mixed Hodge structure:
the Hodge bundles simply pull back and so does the Hodge metric. What
remains to be done is to identify the actions of u, v when these are tangent
to period maps.

To do this and also as a check on the preceding calculations, we shall
now compute the curvature of the Hodge bundles of a variation of mixed
Hodge structure starting from Griffiths computation for a variation of pure
Hodge structure H. To this end, we recall that the Gauss–Manin connection
∇ of H decomposes as

∇ = θ̄0 + ∂̄0 + ∂0︸ ︷︷ ︸
D

+θ0,

where ∂̄0 and ∂0 are conjugate differential operators of type (0, 1) and (1, 0)
respectively which preserve the Hodge bundles Hp,q, while θ0 is an endo-
morphism valued 1-form which sends Hp,q to Hp−1,q+1 ⊗ E1,0 and θ̄0 is the
complex conjugate of θ0. The connection D = ∂̄0 + ∂0 is hermitian with re-
spect to the Hodge metric:

dh(u, v) = h((∂̄0 + ∂0)u, v) + h(u, (∂̄0 + ∂0)v).

In particular, since ∂̄0 coincides with the induced action of the (0, 1)-part of
the Gauss–Manin connection acting on

Hp,q ∼= Fp/Fp+1,

it follows that D is the Chern connection, i.e., the hermitian holomorphic
connection of the system of Hodge bundles attached to H. Expanding out

(θ̄0 + ∂̄0 + ∂0 + θ0)2 = 0
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and decomposing with respect to Hodge types shows that

RD = −(θ0 ∧ θ̄0 + θ̄0 ∧ θ0).

If d/ds is a holomorphic vector field on S, the value u of θ0(f∗(d/ds)) at
zero belongs to g−1,1 and RD(u, ū) = −[u, ū] which checks with the previous
calculation.

To compute the curvature of the Hodge bundles Fp/Fp+1 of a varia-
tion of mixed Hodge structure, V → S we consider the C∞-subbundles Up
obtained by pulling back Up → D along the variation, i.e.

Ip,q(s) = Ip,q(F(s),W), Up =
⊕
q

Ip,q.

By [P1], the Gauss–Manin connection of V decomposes as

∇ = τ0 + ∂̄ + ∂ + θ

where ∂̄ and ∂ are differential operators of type (0, 1) and (1, 0) which pre-
serve Up whereas θ : Up → Up−1 ⊗ E1,0 and τ0 : Up → Up+1 ⊗ E0,1. One has

Ip,q τ0−−→ (Ip+1,q−1 ⊗ E0,1
S ),

Ip,q
θ=(θ0,θ−)
−−−−−−→ (Ip−1,q+1 ⊗ E1,0

S )⊕ (⊕k≥2Ip−1,q+k ⊗ E1,0
S ).

Similarly

Ip,q ∂−→ Ip,q ⊗ E1,0
S ,

Ip,q
∂̄=(∂̄0,τ−)
−−−−−−−→ (Ip,q ⊗ E0,1

S )⊕ (⊕k≥1Ip,q−k ⊗ E0,1
S ).

To unify notation, we also write ∂ = ∂0. Then, we have

∇ = τ0 + τ− + ∂̄0 + ∂0 + θ− + θ0

In particular, relative to the C∞ isomorphism of GrWk with

Ek :=
⊕
p+q=k

Ip,q

the induced action of ∇ on GrWk coincides with the action of

D0 = τ0 + ∂̄0 + ∂0 + θ0
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on Ek. Given that the mixed Hodge metric is just the pullback of the Hodge
metric on GrWk via the isomorphism with Ek, it follows that ∂̄0 + ∂0 is a
hermitian connection on Up. In particular, since the induced holomorphic
structure on Up is given by ∂̄ and by the adjoint property, it follows that

(50) D = τ− + ∂̄0︸ ︷︷ ︸
∂̄

+∂0 − τ∗−

is the Chern connection of Up relative to the mixed Hodge metric. Thus,

RD = R(∂̄+∂0)−τ∗− = R(∂̄+∂0) − (∂̄ + ∂0)τ∗− + τ∗− ∧ τ∗−.

To simplify this, observe that τ∗− is a differential form of type (1, 0), so we
must have

−∂τ∗− + τ∗− ∧ τ∗− = 0

in order to get a differential form of type (1, 1). Therefore,

RD = R(∂̄+∂0) − ∂̄τ∗−.

Expanding out

∇2 = (τ0 + ∂̄ + ∂0 + θ)2 = 0,

it follows that

(51) R(∂̄+∂0) = −(θ ∧ τ0 + τ0 ∧ θ)

and hence

RD = −(θ ∧ τ0 + τ0 ∧ θ)− ∂̄τ∗−.

To continue, we note that

∂̄τ∗− = (∂̄0 + τ−)τ∗− = ∂̄0τ
∗
− + τ− ∧ τ∗− + τ∗− ∧ τ−

and so

(52) RD = −(θ ∧ τ0 + τ0 ∧ θ)− (τ− ∧ τ∗− + τ∗− ∧ τ−)− ∂̄0τ
∗
−.

To finish the calculation, we differentiate the identity

h(τ−(σ1), σ2) = h(σ1, τ
∗
−(σ2))
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and take the (1, 1) part to obtain

h((∂0τ−)(σ1) + τ−(∂0σ1), σ2) + h(τ−(σ1), ∂̄0σ2)

= h(∂0σ1, τ
∗
−(σ2)) + h(σ1, (∂̄0τ

∗
−)(σ2) + τ∗−(∂̄0σ2)).

Using the properties of the adjoint, this simplifies to

∂̄0τ
∗
− = (∂0τ−)∗.

It remains to compute ∂0τ− = ∂τ−. To do this, first observe that

R∂̄+∂ = R∂̄0+∂0+τ− = R∂̄0+∂0
+ (∂̄0 + ∂)τ− + τ− ∧ τ−.

Now note that equation (51) implies that R∂̄+∂ is of type (1, 1), and hence

R∂̄+∂0
= R∂̄0+∂0

+ ∂τ−,

since R∂̄0+∂0
is also of type (1, 1) as the curvature of hermitian holomorphic

connection for h and ∂̄0. Moreover, since ∂̄0 + ∂0 preserves the bigrading by
Ip,q whereas ∂τ− lowers weights, it follows from (51) that

∂τ− = −(θ− ∧ τ0 + τ0 ∧ θ−).

Corollary 5.9. The curvature of the Hodge bundles of a variation of mixed
Hodge structure V → S is

RD = −(θ ∧ τ0 + τ0 ∧ θ)− (θ− ∧ τ0 + τ0 ∧ θ−)∗ − (τ− ∧ τ∗− + τ∗− ∧ τ−).

Let us compare the above results with the ones obtained on the period
domain.

Proposition 5.10. Let θ(ξ) = u. then the action of RD(ξ, ξ̄) on Up agrees
with the action of R∇(u, ū) on Up from Corollary (5.2). More precisely, the
four terms in the expression for R∇(u, ū) compare as follows

[Π′◦(ū∗+),Π′◦(ū+)] = (θ ∧ τ0 + τ0 ∧ θ)(ξ, ξ̄)
−[u, ū]0 = −(θ0 ∧ τ0 + τ0 ∧ θ0)(ξ, ξ̄)

−Π′◦[u, ū]+ = −(θ− ∧ τ0 + τ0 ∧ θ−)(ξ, ξ̄),

−Π′◦[u, ū]∗+ = −(θ− ∧ τ0 + τ0 ∧ θ−)∗(ξ, ξ̄).
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Proof. Recall that for vector valued A of type (1, 0) and B of type (0, 1) we
have

(A ∧B +B ∧A)(ξ, ξ̄) = [A(ξ), B(ξ̄)].

A check of Hodge types shows that τ−(ξ) = Π′ ◦ (ū)+ and hence

−(τ− ∧ τ∗− + τ∗− ∧ τ−)(ξ, ξ̄) = −[Π′ ◦ (ū)∗+,Π
′ ◦ (ū)+]

which is the first term of R∇(u, ū). The partial term

−(θ0 ∧ τ0 + τ0 ∧ θ0)(ξ, ξ̄) = −[u, ū]0

is extracted from −(θ ∧ τ0 + τ0 ∧ θ). What remains of this term,

−(θ− ∧ τ0 + τ0 ∧ θ−),

computes −Π′ ◦ [u, ū]+. �

6. Special case: W−1gC is abelian

Negative Curvature

Consider a period map

F : ∆→ D, s 7→ F (s).

One lets π
F (s)
q denote projection onto qF (s) via the decomposition

gC = g
F (s)
C ⊕ qF (s).

By Lemma 2.5 we have

F (s) = eΓ(s) · F (0),

where Γ : ∆→ qF (0) is a holomorphic arc. The following expression for the
pushforward vector field d/ds on ∆ is needed below:

Lemma 6.1. We have

(53) F∗

(
d

ds

)
= π

F (s)
q ψ1

(
Γ(s),

(
dΓ

ds

))
,

where we recall (38) that ψ1(u, v) =
eadu − 1

adu − 1
v.
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Proof. We begin with the observation that

F (s) = eΓ(s)e−Γ(p) · F (p)

= eΓ(p)+[Γ(s)−Γ(p)]e−Γ(p) · F (p).

The Campbell-Baker-Hausdorff formalism (38) shows that

eΓ(p)+[Γ(s)−Γ(p)]e−Γ(p) = eψ1(Γ(p),Γ(s)−Γ(p)).

Since Γ(s)− Γ(p) = (s− p)dΓ
ds (p) +O((s− p)2), we have

eψ1(Γ(p),Γ(s)−Γ(p) = eψ1(Γ(p), dΓ

ds
(p))(s−p)+O((s−p)2).

So, for a given test function ζ at F (p), we have

F∗

(
d

ds

)
p

ζ =

(
d

ds

)
p

ζ(eΓ(s) · F (0))

=

(
d

ds

)
p

ζ(e(s−p)ψ1(Γ(p), dΓ

ds
(p)) · F (p)).

The result then follows applying again Lemma 2.5 but now for the identifi-
cation of TF (p)D and qF (p) (in loc. cit. take t = s− p and u = dΓ

ds (p)). �

Proposition 6.2. Let

F : ∆→ D, s 7→ F (s),

be the period map of a unipotent variation of mixed Hodge structure (i.e. the
induced variations on GrW are constant) and suppose further that W−1gC
is abelian. Then the holomorphic sectional curvature of the pull back metric
is ≤ 0.

Proof. We have seen in Corollary 4.6 that the holomorphic sectional curva-
ture of the Hodge metric on D at F (0) is semi-positive. However, when we
pull back a metric, the curvature gets an extra term which is ≤ 0. We shall
show that due to the fact that W−1gC is abelian, the pull back metric gains
sufficient negativity to compensate positivity.

By the choice of coordinates (35), we can write the period map in the
local normal form

F (s) = eΓ(s) · F (0),

where Γ(s) is a holomorphic function taking values in the intersection of
W−1gC and q = qF (0). Then Γ(s) ∈ g0,−1 + Λ and Kaplan’s decomposition
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(Theorem 2.11) in this situation simplifies to

(54) eΓ(s) = eΓ(s)+Γ̄(s)︸ ︷︷ ︸
gR(s)

· e−πΛ(Γ̄(s))︸ ︷︷ ︸
eλ(s)

· e−π+(Γ̄(s))︸ ︷︷ ︸
f(s)=eϕ(s)

thanks to the fact that W−1gC is abelian.
The relation (53) becomes

(55) F∗

(
d

ds

)
= π

F (s)
q

(
dΓ

ds

)
,

since ψ1(Γ(p), dΓ
ds (p)) = dΓ

ds (p): indeed, in our case Γ(p) and dΓ
ds (p) commute.

Next we need to replace π
F (s)
q by an expression involving πq = π

F (0)
q since we

want to calculate the Hodge metric at F (0). Now note that Ad gR(s) · eλ(s)

maps End(V )i,jF (0) to End(V )i,jF (s) and since π
F (s)
q is defined in terms of pro-

jections onto such components,

π
F (s)
q = Ad gR(s) ·Ad eλ(s)

◦πq◦Ad e−λ(s) ·Ad g−1
R (s)

= Ad gR(s) ·Ad eλ(s)
◦πq◦Ad eϕ(s) ·Ad e−Γ(s) .

Remark that (54) shows that ϕ(s) = −π+(Γ̄(s)) ∈ g0,−1. Using all of this,
again by commutativity, (55) becomes

(56) F∗

(
d

ds

)
= Ad gR(s) ·Ad eλ(s)

(
dΓ

ds

)
.

Note that Ad gR(s) ·Ad eλ(s) acts by isometries and so

h(s) :=

∥∥∥∥(F∗

(
d

ds

)∥∥∥∥
F (s)

=

∥∥∥∥(dΓ

ds

)∥∥∥∥
F (0)

.
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The function ξ(s) =
dΓ

ds
is a holomorphic function and so

∂ξ(s)

∂s̄
= 0. Put

ξ̇ =
dξ(s)

ds
and ho = hF (0). Then, the curvature of the pullback metric is:

K = −1

h

∂2

∂s∂s̄
log h = − 1

ho(ξ, ξ)

∂2

∂s∂s̄
log ho(ξ, ξ)

= − 1

ho(ξ, ξ)

∂

∂s

(
ho(ξ, ξ̇)

ho(ξ, ξ)

)

= − 1

ho(ξ, ξ)

ho(ξ̇, ξ̇)ho(ξ, ξ)− ho(ξ̇, ξ)ho(ξ, ξ̇)
ho(ξ, ξ)2

=
|ho(ξ̇, ξ)|2 − ho(ξ̇, ξ̇)ho(ξ, ξ)

h3
o(ξ, ξ)

≤ 0,

where the last step follows from the Cauchy-Schwarz inequality for ho(ξ̇, ξ).
�

Remark. The proof shows that the Gaussian curvature of the pullback is
negative wherever ξ and ξ̇ are linearly independent.

In particular, Proposition (6.2) yields:

Corollary 6.3. Let ∆→ D be a period map associated to a normal func-
tion with fixed underlying Hodge structure. Then the holomorphic sectional
curvature of the pull back of the Hodge metric is semi-negative.

Remark 6.4. Via isomorphism Ext1
MHS(A,B) ∼= Ext1(Z(0), B ⊗A∨), the

observation of the previous paragraph also applies to families of cycles on a
fixed variety X and the VMHS on Jx/J

3
x of a smooth projective variety.

Another application: Mixed Hodge structures
and fundamental groups

We treat this in some detail with an eye towards a reader less acquainted
with this material.

Let X be a smooth complex algebraic variety, and Zπ1(X,x) be the
group ring consisting of all finite, formal Z-linear combinations of elements
of π1(X,x). The augmentation ideal Jx is defined to be the kernel of the
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ring homomorphism

ε : Zπ1(X,x)→ Z

which maps each element g ∈ π1(X,x) to 1 ∈ Z. By the work of Morgan [M],
the quotients Jx/J

k
x carry functorial mixed Hodge structures constructed

from the minimal model of the de Rham algebra of X. We follow Hain’s
alternative approach [Ha1]; the mixed Hodge structure on Jx/J

k
x can be

described using so called iterated integrals as follows: The iterated integral
on θ1, . . . , θr ∈ E1(X), ∫

θ1 · · · θr

assigns to each smooth path γ : [0, 1]→ X the integral of θ1 · · · θr over the
standard simplex in Rr, i.e.∫

γ
θ1 · · · θr =

∫
0≤t1≤···≤tr≤1

θ1(γ∗(d/dt1)) · · · θr(γ∗(d/dtr))dt1 · · · dtr.

Such an iterated integral is said to have length r. The spaces

HomZ(Jx/J
s+1
x ,C)

can be described as spaces of certain linear combinations of iterated inte-
grals of lengths ≤ s, the so called homotopy functionals. We only need their
description for s = 2:

Theorem 6.5 ( [Ha1, Prop. 3.1.]). The iterated integral

(57)

∫
θ +

∑
j,k

ajk

∫
θjθk

is a homotopy functional if and only if θ1, . . . , θr are closed and

(58) dθ +
∑
jk

ajkθj ∧ θk = 0.

The mixed Hodge structure (F,W ) on HomZ(Jx/J
s+1
x ,C) is described

on the level of iterated integrals as follows. Such a sum belongs F p if and
only if each integrand θ1 · · · θk contains at least p terms θj ∈ Ω1(X). As for
the weight filtration, α belongs to Wk if and only if α is representable by a
sum of iterated integrals of length ≤ k plus the number of logarithmic terms
dzj/zj in the integrand.
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Suppose next that H1(X) has pure weight ` = 1 or ` = 2. The first hap-
pens for X projective, the second for instance when the compactification
of X is P1. In these situations, following [Ha1, §6], the dual of Jx/J

3
x is

an extension of pure Hodge structures. To explain the result, note that
the cup-product pairing H1(X)⊗H1(X)→ H2(X) is a morphism of pure
Hodge structures. It follows that

K := ker
[
H1(X)⊗H1(X)→ H2(X)

]
carries a pure Hodge structure of weight 2`. Theorem 6.5 now implies:

Theorem 6.6. The mixed Hodge structure on HomZ(J/J3,C) is the exten-
sion of pure Hodge structures of weight ` and 2` given by

0→ H1(X)→ HomZ(J/J3,C)
p
−→ K → 0.

Explicitly, the iterated integral
∫
θ +

∑
j,k ajk

∫
θjθk is mapped by p to∑

ajk[θj ]⊗ [θk] which, by construction, belongs to K. The kernel of p can
be identified with the the length one homotopy integrals

∫
θ , i.e. those with

dθ = 0. Hence ker p ' H1(X). It follows that the graded pieces have a natu-
ral polarization coming from the one on H1(X) and which is given by these
identifications.

In particular, the above implies that if X is smooth projective, the
graded polarized mixed Hodge structure on HomZ(J/J3,C) has two ad-
jacent weights and so if we now leave X fixed but vary the base point, we
get a family of mixed Hodge structures over X for which W−1gC is abelian
and by Proposition 6.2 we conclude:

Corollary 6.7. Let X be a smooth complex projective variety, and sup-
pose that the differential of the period map of Jx/J

3
x is injective. Then the

holomorphic sectional curvature of X is ≤ 0.

Complements: Flat Structure and the Hodge Metric. 1. The flat
structure given by the local system attached to J/J3 may be described as
follows: Fix a point xo ∈ X and let U be a simply connected open sub-
set containing xo. Given a point x ∈ U let γ : [0, 1]→ U be a smooth path
connecting xo to x. Then, conjugation

(59) α 7→ γαγ−1

defines an isomorphism π1(X,x)→ π1(X,x0) which is independent of γ since
U is simply connected. Trivializing (J/J3)∗ using (59), we then obtain the
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period map via the change of base point formula (see [Ha1, Remark 6.6]):

(60)

∫
γαγ−1

θ1θ2 =

∫
α
θ1θ2 +

(∫
γ
θ1

)(∫
α
θ2

)
−
(∫

γ
θ2

)(∫
α
θ1

)
one then obtains the following result via differentiation:

Lemma 6.8. The flat connection ∇ of (J/J3)∗ operates on iterated inte-
grals via the following rules:

∇ξ
(∫

θ1θ2

)
= θ1(ξ)

(∫
θ2

)
− θ2(ξ)

(∫
θ1

)
and ∇ξ(

∫
θ) = 0.

As a check of the formula for ∇ given in Lemma 6.8, note that by
Theorem 6.5 that the iterated integral (57) appears in (J/J3)∗ only if θj
and θk is closed for all j, k an equation (58) holds. Therefore,

∇2

∫ θ +
∑
j,k

ajk

∫
θjθk

 =
∑

aij

(
dθj

∫
θk − dθj

∫
θk

)
= 0

because dθj = 0. Likewise, direct calculation using Lemma (6.8) shows that
the Hodge filtration F of (J/J3)∗ is holomorphic and horizontal with respect
to ∇, and the weight filtration W is flat.
2. By way of illustration we shall prove the correctness of the expression (8)
for the mixed Hodge metric as announced in the introduction. First of all
(for X = P1 − {0, 1,∞})

∇
∫
dz

z
· dz

1− z
=
dz

z

∫
dz

z − 1
− dz

z − 1

∫
dz

z
,

and, secondly, from the above discussion it follows that∥∥∥∥∫ dz

z − 1

∥∥∥∥2

= h

([
dz

z − 1

]
,

[
dz

z − 1

])
= (4π)2.

where h is the Hodge metric on H1(X) (and similarly for ‖
∫
dz
z ‖

2).
3. As a further illustration, let us calculate the mixed Hodge metric when we
specialize the preceding to a compact Riemann surface X of genus g > 1.
Let θ1, . . . , θg be an unitary basis of H1,0(X) with respect to the Hodge
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metric. Then, up to a scalar, the metric on X obtained by pulling back the
mixed Hodge metric via the period map of (J/J3)∗ is given by

‖d/dz‖2 =

g∑
j=1

‖θj(d/dz)‖2.

This follows directly from Lemma (6.8) and the discussion on the mixed
Hodge structure on (J/J3)∗ we just gave.

Remark. The above description of the mixed Hodge metric can be general-
ized in a straightforward manner to any smooth complex projective variety.

7. The Kähler condition

We recall some facts about Kähler metrics. Let h be a hermitian metric on
a complex manifold M . Given any system of local holomorphic coordinates
(z1, . . . , zm) on M , the associated fundamental 2-form Ω is given by the
formula

(61) Ω = −
√
−1

2

∑
j,k

hjkdzj ∧ dz̄k, hjk = h

(
∂

∂zj
,
∂

∂zk

)
.

This form is a globally defined (1, 1)-form and by definition h is Kähler if
and only if dΩ = 0.

An equivalent condition can be given in terms of the torsion tensor for
the associated Chern connection ∇h on the holomorphic tangent bundle.
Recall that the torsion tensor for any linear connection ∇ on the tangent
bundle is defined by the formula

T∇(X,Y ) := ∇XY −∇YX − [X,Y ],

where X and Y a local smooth vector fields. The Kähler condition is equiv-
alent to T∇h = 0. see [Ko, Prop. I.7.19].

Proposition 7.1. A hermitian metric h as above with Chern connection
∇ = ∇h is Kähler if and only if for local holomorphic vector fields X,Y on
M one has

∇XY −∇YX − [X,Y ] = 0.

Proof. The torsion is a tensor, i.e. bilinear over C∞(M) and since all lo-
cal vector fields are C∞(M)-linear combinations of the holomorphic coordi-
nate vector fields and their complex conjugates, it suffices to test whether
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T (X,Y ) = 0 with X and Y locally holomorphic or anti-holomorphic. If X
and Y have different types one has [X,Y ] = 0 7 and hence the torsion van-
ishes on such pairs (X,Y ). Since T (X̄, Ȳ ) = T (X,Y ), to show that the tor-
sion vanishes, one therefore may restrict to pairs (X,Y ) of local holomorphic
vector fields. So T = 0 precisely if T vanishes on pairs of vector fields belong-
ing to a holomorphic local frame for the holomorphic tangent bundle. �

Let ∆m a polydisk at 0 ∈ Cm with coordinates (s1, . . . , sm) and let
F : ∆m → D be a holomorphic, horizontal map. Let q be the subalgebra
(22) attached to F (0). Recalling the local biholomorphism (35) mapping a
neighborhood of 0 ∈ q to a neighborhood of F (0) in D, locally we can write
as in [P1]

F (s) = eΓ(s) · F (0)

for a unique q-valued holomorphic function Γ which vanishes at 0.

Theorem 7.2. Let h = F ∗(hD) denote the pullback of the mixed Hodge
metric hD to S. Set ξj = ∂Γ

∂sj
(0). Then h is Kähler if and only if for all

j, k, ` one has

(62) h(ξj , πq[π+(ξ̄`), ξk])− h(ξ`, πq[π+(ξ̄j), ξk]) = 0.

Proof. First, remark that by Theorem 3.1 one has

∇ξjξ` = −πq[π+(ξj)
∗, ξ`].

Since
h(πq[π+(ξj)

∗, ξ`], ξk) = h([π+(ξj)
∗, ξ`], ξk)

= h(ξ`, [π+(ξj), ξk])

= h(ξ`, πq[π+(ξj), ξk]),

formula (62) for all j, k, ` is equivalent to

∇ξjξ` −∇ξ`ξj = 0 for all `, j

and hence, by the second condition from Prop. 7.1 we only have to show
that the bracket [ξj , ξ`] vanishes.

To see this, recall that period maps are horizontal, i.e. all tangents to the
image F (s) of a period map belong to U−1

F (s) =
⊕

q I
−1,q
F (s) . As in the theory of

7 Clearly, if X, Y are local holomorphic coordinate vector fields [X, Ȳ ] = 0 and
an easy calculation shows that [fX, ḡȲ ] = 0 whenever f, g are local holomorphic
functions and X,Y holomorphic fields with [X, Ȳ ] = 0.
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infinitesimal variations of pure Hodge (cf. Chapter III of [Gr3]), this implies
that the derivative of the period map takes values in an abelian subalgebra
of q ⊆ g8. In particular, we have commutativity relation

[ξj , ξ`] =

[
∂Γ

∂sj
(0),

∂Γ

∂s`
(0)

]
= 0.

�

Corollary 7.3. The pullback of the mixed Hodge metric along an immer-
sion is Kähler in the following cases:

(a) Variations of pure Hodge structure (Lu’s result [Lu]);

(b) Hodge–Tate variations;

(c) The variations of mixed Hodge structure attached to Jx/J
3
x for a smooth

complex projective variety;

(d) The variations from § 1.4. Example 4 arising from the commuting
deformations of the complex and Kähler structure of a compact Kähler
manifold.

Proof. In case (a), the derivatives of Γ at zero are of type (−1, 1) and so for
all `, j

(63) [π+(ξ`), ξj ] = [π+(dΓ/ds`(0)), dΓ/dsj(0)]

is type (0, 0) which is annihilated by πq.
In case (b), π+(dΓ) = 0.
In case (c) the bracket (63) is of type (−1,−1) which is zero due to the

short length of the weight filtration.
In case (d), the bracket (63) has terms of type (0, 0) and (0,−2), both

of which are annihilated by πq. �

Remark 7.4. In case (d) one can also show that the the holomorphic
sectional curvature will be ≤ 0.

Theorem 7.5. Let V be a variation of mixed Hodge structure with only two
non-trivial weight graded-quotients GrWa and GrWb which are adjacent, i.e.
|a− b| = 1. Then, the pullback of the mixed Hodge metric along the period
map of V is a Kähler pseudometric.

8For a proof in the mixed case, see [P1, Theorem 6.13] and set the monodromy
logarithms N1, . . . , Nn = 0.
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Proof. We shall prove the symmetry relation (62) which in our situation due
to the short nature of the weight filtration reduces to

(64) h(ξj , [ξ̄`, ξk])− h(ξ`, [ξ̄j , ξk]) = 0.

Without loss of generality, we can assume that ξj , ξk, ξ` are of pure Hodge
type. Inspection of the possibilities shows that the only non-trivial case is
when X = ξj and Y = ξ` are type (−1, 0) and Z = ξk is type (−1, 1). Since
by Lemma 2.14 we have Z∗ = −Z̄ in this case, the formula (44) and the fact
that h is hermitian gives

h(X, [Ȳ , Z]) = h([X, Z̄], Ȳ ))

= h(Y, [X̄, Z]),

which is (64). �

Example 7.6. In particular, Theorem 7.5 applies to the tautological vari-
ations of Hodge structure over the moduli spaces Mg,n and more generally,
to families of pairs (Xs, Ys) of a smooth projective variety Xs and a smooth
hypersurface Ys ⊂ Xs as well as a family of normal functions (11) over a
curve S with H fixed and whose period map is an immersion.

8. The biextension line bundle

Recall from the introduction that in this special case for the graded Hodge
numbers we have h−1,−1 = 1 and all other hp,q = 0 unless p+ q = −1; the
mixed Hodge structure is described as a biextension

(65)
0→GrW−1 →W0/W−2 → GrW0 = Z(0)→ 0

0→GrW−2 = Z(1)→W−1 → GrW−1 → 0.

As explained below, a family of such mixed Hodge structures over a param-
eter space S comes with a biextension metric hbiext(s). Its Chern form will
be shown to be semi-positive along any curve, provided the biextension is
self-dual: see Theorem. 8.2.

The point in this section is that the mixed Hodge structure is in general
not split and that the metric hbiext can be found by comparing the given
mixed Hodge structure (F,W ) on the real vector space W0 to its Deligne
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splitting (e−iδF,WF,W ) where we recall from [CKS, Prop. 2.20] that

(66) δF,W =
1

2
ImYF,W =

1

4i
(YF,W − ȲF,W ) ∈ ΛF,W ∩ gR.

Here YF,W ∈ End(VC) equals multiplication by p+ q on Deligne’s Ip,q(V ).
Since GrW−2 ' R and similarly for GrW0 , fixing bases, the map δF,W can

then be viewed as a real number δ, depending on (F,W ). By [Hay-P, §5],
there exists a further real number λ depending only on W such that the
positive number h(F,W ) = e−2πδ/λ depends only on the equivalence class of
the extension.

Let us apply this in our setting of a family (F ,W ) of biextensions over
a complex curve S. Then

(67) hbiext(s) := h(Fs,W ) = e−2πδ(s), δ(s) =
δFs,W
λ

turns out to be a hermitian metric on S.
As before we write

(68) F (s) = eΓ(s) · F,

where F = F (0) and Γ(s) is a holomorphic function on a coordinate patch
in S with values in q. This is the main result we are after:

Theorem 8.1. Let S be a curve and let F be a variation of biextension
type over S with local normal form (68). Let γ−1,0 be the Hodge component
of type (−1, 0) of Γ′(0).

The Chern form of the biextension metric (67) is the (1, 1)–form

1

2πi
∂∂̄ log (hbiext(s)) = i

∂2 δ(s)

∂s∂s̄
ds ∧ ds(69)

=
1

2
[γ−1,0, γ̄−1,0] ds ∧ ds.

Proof. Let

(70) eΓ(s) = gR(s)eλ(s)f(s)

as usual. Then, by Lemma 2.9 we have Y (s) = gR(s)eλ(s)Y , where Y =
Y(F,W ). If we set f(s) = eϕ(s), using (66), we get

(71)
∂2

∂s̄∂s
δ(s) =

1

2
Im

∂2

∂s∂s̄
eΓ(s)e−ϕ(s)︸ ︷︷ ︸

d(s)

·Y.
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Since Γ(s) is holomorphic, we have

∂

∂s̄
d(s) · Y = Ad ( eΓ(s))

(
∂

∂s̄
e− adϕ(s) · Y

)
and so

∂2

∂s∂s̄
d(s) · Y =

(
∂

∂s
ead Γ (s)

)(
∂

∂s̄
e− adϕ (s)Y

)
(72)

+ Ad e Γ(s)

(
∂2e− adϕ (s)

∂s∂s̄
Y

)
.

We now consider the Taylor expansion (note that ϕ(0) = 0)

ϕ(s) = ϕ01s+ ϕ10s̄+
∑
j,k

ϕjk s
j s̄k +O3(s, s̄).

By Lemma 2.16, we also know

ϕ10 = 0,(73)

ϕ01 = −(Γ′(0))+,(74)

ϕ11 = [γ, γ̄]0 + [γ, γ̄]+(75)

= [γ−1,1, γ̄−1,1]0 + [γ−1,1, γ̄−1,0].

Formula (73) shows that the term with ss̄ in the Taylor expansion of

∂2

∂s∂s̄
e− adϕ (s)Y

is just −[ϕ11, Y ]. Together with equation (72) it follows that

(76)
∂2

∂s∂s̄
d(s) · Y

∣∣∣∣
0

= −[Γ′(0), [ϕ01, Y ]]− [ϕ11, Y ]

Eqn. (74) states that ϕ0,1 = −Γ′(0)+. Let γ = Γ′(0). By horizontality and
the short length of the weight filtration,

γ = γ−1,1 + γ−1,0 + γ−1,−1.

Moreover, since (F,W ) is a biextension

γ̄−1,1 ∈ g1,−1, γ̄−1,0 ∈ g0,−1, γ̄−1,−1 ∈ g−1,−1
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Therefore,

−ϕ01 = (Γ′(0))+ = γ̄−1,1 + γ̄−1,0.

In particular, since adY acts as multiplication by a+ b on ga,b it follows
that

−[Γ′(0), [ϕ01, Y ]] = [γ, [γ̄−1,1 + γ̄−1,0, Y ]] = [γ, γ̄−1,0](77)

= [γ−1,1, γ̄−1,0] + [γ−1,0, γ̄−1,0].

Finally, using (75),

ϕ11 = [γ, γ̄]0 + [γ, γ̄]+

= [γ−1,1, γ̄−1,1]0 + [γ−1,1, γ̄−1,0],

so that

(78) [ϕ11, Y ] = −[γ−1,1, γ̄−1,0].

Combining Eqns. (76)–(78), we have:

(79)
∂2

∂s∂s̄
d(s) · Y

∣∣∣∣
0

= [γ−1,1, γ̄−1,0] + [γ−1,0, γ̄−1,0] + [γ̄−1,1, γ−1,0].

The result then follows from (71). �

So far, we have not assumed anything special about the biextension
variation F . Of special interest in connection with the Hodge conjecture is
the case where the two normal functions appearing in (65) are self-dual with
respect to the polarization Q on H := GrW−1.

Theorem 8.2. Let h be the Hodge metric on GrW−1 and let F be a self-dual
biextension over a curve S with local normal form at a disk (∆, s) at s0 ∈ S
given by F (s) = eΓ(s). Choose a lift e(0) ∈ I0,0

F of 1 ∈ Z(0) and let

γ = Γ′(0) ∈ End(W0)C, t := γ−1,0(e(0)) ∈ I−1,0
F ,

where γ−1,0 is the Hodge component of type (−1, 0) of Γ′(0). Let

ν ∈ Ext1
VMHS(Z(0),GrW−1F)

and its dual be the two normal functions associated to the biextension and
let δ(s) be the Deligne δ-splitting of Fs. Then
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1) the value of the infinitesimal invariant ∂ν for the normal function ν
at s0 can be identified with t.

2)

(80)
∂2

∂s∂s̄
δ(s)

∣∣∣∣
0

(e(0)) = h(t, t) ∈ R≥0, t = γ−1,0(e(0)).

3) The Chern form of the Hodge metric is semi-positive.

Proof. 1. The point here is that γ1,0 ∈ Hom(I0,0
F , I−1,0

F ) is the derivative at
s0 of the period map for the normal function ν which, from the set-up gets
identified with t.

3. Follows from Theorem 8.1 and 2.
2. Recall (69). We have

1

2i
[γ−1,0, γ̄−1,0]e(0) = − 1

2i

(
γ−1,0(γ̄−1,0(e(0)))− γ̄−1,0(γ−1,0(e(0)))

)
= − 1

2i

(
γ−1,0(t̄)− γ−1,0(t)

)
= − Im(γ−1,0(t̄)).

Next, we express self-duality. Observe that the derivative of the period map
of the dual extension ν∗ can be expressed as a functional on W−1: it is
zero on W−2 and self-duality means precisely that on H∗ = Hom(H,Z(1))
it restricts to the functional9

β = Q(s,−) ∈ H∗ 7→ −Q(s, t) ∈ C.

This formula implies that, tracing through the identifications, one has
γ−1,0(t̄) = −Q(t̄, γ−1,0e(0)) = −Q(t̄, t) = Q(t, t̄) and hence:

1

2i
[γ−1,0, γ̄−1,0]e(0) = − Im(Q(t, t̄)).

Since h(t, t) = Q(−it, t̄) = −iQ(t, t̄) is real, we get indeed 1
2i [γ

−1,0, γ̄−1,0]e(0)
= h(t, t) ∈ R. �

Corollary 8.3. If V is a variation of biextension type over a curve S with
self-dual extension data, then δ(s) is a subharmonic function which van-
ishes exactly at the points s ∈ S for which the infinitesimal invariants of the
associated normal functions vanish.

9For simplicity we have discarded the Tate twist.
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9. Reductive domains and complex structures

In this section we consider special classifying domains: the reductive ones.
Recall that a homogeneous space D = G/H with G a real Lie-group acting
from the left on D is reductive if the Lie algebra h = Lie(H) has a vector
space complement n which is adH -invariant:

(81) g = h⊕ n, [h, n] ⊂ n.

Note that this implies that n is the tangent space at the canonical base
point ofD = G/H; moreover, the tangent bundle is theG-equivariant bundle
associated to the adjoint representation of H on n.

9.1. Domains for pure Hodge structures

These are reductive: in this situation nC := n+ ⊕ n− (see (31)) is the com-
plexification of n := nC ∩ g and this is the desired complement.

Let us recall from [Ca-MS-P, Chap. 12] how the connection form for the
metric connection (the one for the Hodge metric) can be obtained. Start with
the Maurer-Cartan form ωG on G. It is a g-valued 1-form on G. Decompose
ωG according to the reductive splitting. Then ω = ωh, the h–valued part,
is a connection form for the principal bundle p : G→ G/H = D. Let ρ :
H → GL(E) be a (differentiable) representation and let [E] = G×ρ E be
the associated vector bundle. It has an induced connection which can be
described as follows. Locally over any open U ⊂ D over which p has a section
s : U → G, the bundle [E] gets trivialized and the corresponding connection
form then is s∗(ρ̇◦ω), where ρ̇ : h→ EndE is the derivative of ρ.

In the special case where E = TFD this leads to a canonical connection
∇D on the holomorphic tangent bundle of D. If D is a period domain this
canonical connection is the Chern connection for the Hodge metric.

From this description the curvature can then directly be calculated:

Theorem ([Ca-MS-P, Cor. 11.3.16] ). Let D be a period domain for
pure polarized Hodge structures and let α, β ∈ n = TFD . Then RD ∈
A1,1
D (End n), the curvature form of the canonical connection ∇D on the holo-

morphic tangent bundle of D evaluates at F as:

RD(α, β̄) = − ad [α, β̄] h.

Remark 9.1. The above proof for the pure case makes crucial use of the
compatibility of the complex structure of D and reductive structure: First,
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one needs the complex structure coming from the inclusion D = G/GF ⊂
Ď = GC/G

F
C to see that the Maurer-Cartan form is the real part of a holo-

morphic form, the Maurer-Cartan form on GC and hence ω is the real part
of a holomorphic form. Next, one uses that the complex structure J on n is
such that n± ⊂ nC is the eigenspace for J with eigenvalue ±i and one makes
the identification

TFD = (n, J) ' n−.

In the mixed case there are situations where the domain is reductive, but
the complex structure then does not behave as in the pure case, as we now
show.

9.2. Differential geometry of reductive domains

Let D = G/V be a reductive homogeneous space and a choice g = h⊕ n
of a reductive splitting. Let us recall some major results from [No]. The G-
invariant connections on T (D) are in one two one correspondence to bilinear
adH –invariant functions

α : n× n→ n.

A given such connection ∇ corresponds to

α(X,Y ) := ∇X Ỹ ,

where Ỹ is the vector field on D obtained from Y ∈ To(D) by left G-
translation (o ∈ D is the coset of 1 ∈ G). The Maurer-Cartan induced con-
nection ∇D on T (D) is the one for which α is identically zero. In loc. cit. it
is called the canonical affine connection of the second kind.

Suppose that we have a V –invariant metric g on n. This gives G–
equivariant metric on D, likewise denoted g. By [No, Theorem 13.1] a G-
invariant connection ∇ on T (D) is metric with respect to g if and only
if

(82) ∇X Ỹ =
1

2
[X,Y ]n + U(X,Y ),

where U : n× n→ n is the R–bilinear form which is determined by the for-
mula

(83) 2g(U(X,Y ), Z) = g([Z,X]n, Y ) + g(X, [Y,Z]n).

Moreover, the connection is free of torsion if and only if U is a symmetric
form. For the Maurer-Cartan induced connection the left hand side of (82)
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vanishes and so it is metric, precisely when

(84) U(X,Y ) = −1

2
[X,Y ]n.

So this can only be without torsion if [X,Y ]n = 0. In fact, By [No, Theo-
rem 10.3] its torsion is given by

(85) T (X,Y ) = −[X,Y ]n.

So, the canonical connection in general differs from the Levi-Civita connec-
tion.

Remark 9.2. 1) We extend the above connections to the complex tangent
bundle TC(D). The same considerations then hold provided g and U are
replaced by their C–bilinear extensions.

2) Note that in general only the thus extended canonical connection
preserves the decomposition TC(D) = T 1,0D ⊕ T 0,1D into the holomorphic
and anti-holomorphic tangent bundles. For the Levi-Civita connection this
holds if the metric is Kähler.

9.3. Split domains

Mixed domains are seldom reductive, and, even if they are, we shall see
that the complex structure does not satisfy the compatibility required by
Remark 9.1.

Examples 9.3. 1. Suppose Λ = 0. Then equation (34) implies that n =
nC ∩ gR is the desired complement. Note that in the pure case this equals also
nC ∩ g. This difference will influence the curvature calculations. Domains
with Λ = 0 are called split domains because they parametrize split mixed
Hodge structures. We investigate these below in more detail.

2. We consider the general mixed situation. Let Dsplit be the subdomain
of D parametrizing split mixed Hodge structures10. This domain can be
identified with GR/G

F
R , where F is a fixed split mixed Hodge structure. Note

that nC ⊕ Λ has a real structure which makes Dsplit a reductive domain for
the splitting

gR = g0,0 ∩ gR︸ ︷︷ ︸
Lie(GFR )

⊕(nC ⊕ Λ)R.

In general Dsplit only has the structure of a differentiable manifold.

10This has been called DR in § 2.
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3. In general the group GR does not act transitively on D. But there is
another natural subgroup of G which does act transitively. To explain this,
introduce (for r < 0):

GWr := {g ∈ G | for all k the restriction g|(Wk/Wk+r) is real.}

Note that GW−2 contains exp(Λ) as well as GR and hence it acts transitively
on D. Under the minimal condition

Lie(GW−2) = gR ⊕ iΛ

we clearly get a reductive splitting

Lie(GW−2) = g0,0 ∩ gR ⊕ [(nC ⊕ Λ)R ⊕ iΛR] .

Domains which satisfy this condition are called close to splitting. An example
is provided by the so-called type II domains from [P3].

Note that in general (nC ⊕ Λ)R does not admit a complex structure:
dim Λ can be odd!

9.4. Two step filtrations

This case has been treated in detail in [U, § 2]. The domains in question are
examples of split domains, and hence they are reductive. The mixed Hodge
structures they parametrize indeed split over R since the associated weight
filtration has only two consecutive steps, say 0 = W0 ⊂W1 ⊂W2 = H.

Assume that we are given two polarizations on W1 and GrW2 , both de-
noted Q. One can choose an adapted (real) basis for H which

• restricts to a Q–symplectic basis (a1, . . . , ag, b1, . . . , bg) for W1;

• the remainder of the basis (c1, . . . , ck, c
′
1, . . . , c

′
k, d1, . . . , d`) projects to

a basis for GrW2 diagonalizing Q, i.e. Q =diag(−12k,1`).

Then

G =

{(
A B
0 C

)
| A ∈ Sp(g;R), C ∈ O(2k, `), B ∈ C2g×(2k+`)

}
,

reflecting the Levi-decomposition. More invariantly, the two matrices A and
C on the diagonal give the semi-simple part Gss while the matrices B give
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the unipotent radical

Gun ' HomC(GrW2 ,W1).

Here, the isomorphism (via the exponential map) in fact identifies Gun with
its Lie-algebra:

(86) gun = HomC(GrW2 ,W1),

the endomorphisms in g which lower the weight by one step.
The real group GR consists of the group given by similar matrices, except

that now the matrices B are taken to be real. In particular

(87) gun
R = gun ∩ gR = HomR(GrW2 ,W1).

Next, fix the Hodge flag F =
{
F 2 ⊂ F 1 ⊂ F 0 = HC

}
which has the fol-

lowing adapted unitary basis

(88)

(f1, . . . , fk︸ ︷︷ ︸
F 2

, d1, . . . , d`, f
′
1, . . . , f

′
g︸ ︷︷ ︸

F 1

, f̄ ′1, . . . , f̄
′
g, f̄1, . . . , f̄k),

fk : =
1√
2

[ck − ic′k], f ′k =
1√
2

[ak − ibk].


The group GF consists of the subgroup of G with A =

(
U −V
V U

)
, U + iV ∈

U(g), C ∈ O(2k)×O(`) and the matrices B are of the form{(
B′

−iB′

)
| B′ ∈ Cg×(2k+`)

}
.

Note that Gss/GF ∩Gss = D1 ×D2, the product of the domain D1 ' Hg,
parametrizing weight 1 Hodge polarized structures with h1,0 = g and D2

parametrizing weight 2 polarized Hodge structures with h2,0 = k, h1,1 = `.
The natural projection

(89) G/GF → Gss/GF ∩Gss = D1 ×D2

is a holomorphic bundle with fiber associated to the adjoint representation
of Gss ∩GF on gun/gun ∩ gF . Explicitly, this action is

g · [B] = [ABC−1], g =

(
A 0
0 C

)
.
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The fiber of (89) over F is the affine space consisting of the extension data
of (W1, F ) by (GrW2 , F ) on which Gun acts transitively as the group of trans-
lations. The group Gss acts on this fiber bundle by holomorphic transforma-
tions from the left: g ∈ Gss sends the fiber over F biholomorphically to the
fiber over g · F .

To obtain a reductive decomposition gR = h⊕ n, set

(90) h := g0,0 ∩ g, n = nss ⊕ gun
R , nss =

(
⊕p 6=0g

p,−p) ∩ g.

Let us study the metric properties of the Hodge metric h and its Chern
connection ∇h. It is invariant under the Hodge metric and so is determined
by Eqn. (82).

Lemma 9.4. The canonical connection ∇D on the complex tangent bundle
TC(D) of D = G/GF given by the reductive decomposition (90) is distinct
from the (extended) Chern connection ∇h on TC(D).

Proof. Both connections are metric for the Hodge metric and so they are
both given by the formula (82). In particular, for X,Y ∈ gC we have

∇DX Ỹ = U(X,Y ).

Let us calculate U(X,X), X ∈ g−1,0 with the aid of (83) where (cf. Re-
mark 9.2) g is the complex bilinear extension of the real part of the Hodge
metric on gC. We then see that for Z ∈ g−1,1 ⊕ g1,−1, we get

2g(U(X,X), Z) = g([Z,X], X) + g(X, [X̄, Z])

= h([Z,X], X̄) + h([X̄, Z], X̄)

= −h(Z, [X∗, X̄]) + h(Z, [X̄∗, X])

= g(Z, [X, X̄∗]− [X̄,X∗])

where the third line follows from (44). Hence U(X,X)= 1
2([X, X̄∗]− [X̄,X∗])

which does not always vanish. Indeed in the basis (88) the tangent vector
X corresponds to a matrix with A = C = 0 and B arbitrary, while X̄∗ is

the transpose conjugate so that U(X,X) =

(
Im BTB 0

0 −Im TBB

)
. Now

compare this with what happens for ∇h. Eqn. (84) tells us that we must
have U(∇h)(X,X) = −1

2 [X,X] = 0. Indeed, the canonical connection has

∇DX Ỹ = α(X,Y ) = 0. This shows that ∇D 6= ∇h. �

As to the complex structure we have:
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Lemma 9.5. The complex structure compatible with the reductive structure
is not the one coming from the embedding G/GF ⊂ GC/G

F
C .

Proof. Write

gun = g0,−1
F ⊕ g1,−2

F︸ ︷︷ ︸
gun
F,+

⊕ g−1,0
F ⊕ g−2,1

F︸ ︷︷ ︸
gun
F,−

nss = [g−2,2 ⊕ g−1,1︸ ︷︷ ︸
nss
F,−

⊕ g1,−1 ⊕ g2,−2︸ ︷︷ ︸
nss
F,+

] ∩ g.

Since gun
F,+ = gF ∩ gun

F , the tangent space at F to

Dun := Gun/GF ∩Gun

gets identified with
TFD

un = gun/gun
F,+

= gun
F,−,

a space of complex dimension g(2k + `). The complex structure comes from
the standard complex structure J on gun, since TFD

un is a quotient thereof.11

Next, note that

gFR ∩ gun = 0

and so

Gun
R /GF ∩Gun

R = gun
R = HomR(GrW2 ,W1)

and this space gets a complex structure thanks to the weight one Hodge
structure induced by F on W1. It is induced by a complex structure JF1
whose complexification on gun has eigenvalues as in the following table:

I2,0
F I1,1

F I0,2
F

I1,0
F i i i

I0,1
F −i −i −i

One deduces that the complex structure (gun
R , JF1 ) is not isomorphic to the

complex structure (gun
R , JF ).

The complex structure JF coming from G/GF ⊂ GC/G
F
C identifies the

holomorphic tangent space at F as follows:

TFD = g/gF = nss
F,− ⊕ gun

F,− ' (nss, JF )⊕ (gun
R , JF ).

The natural complex structure JF on nss comes from the one inducing the
complex structure on the base D1 ×D2 of the fiber bundle (89).

11I.e., J is multiplication by i.
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Taking the same complex structure on nss but the other on gun
R leads to

a different holomorphic tangent space

(TFD,J
F
1 ) = (nss, JF )⊕ (gun

R , JF1 );

it is a complex structure on n whose ±i–eigenspaces inside n⊗ C are given
by

nF,+ = nss
+,F ⊕HomC(GrW2 ⊗C, I

0,1
F )

respectively

nF,− = nss
−,F ⊕HomC(GrW2 ⊗C, I

1,0
F ).

Finally, note that the isomorphism

(TFD,J
F
1 ) = (n, JF1 ) ' nF,−.

gives TFD the complex structure which is required in the standard curvature
calculations for reductive domains, as explained above. However, as we have
seen, this structure is not the one which comes from the embedding D =
G/GF ↪→ GC/G

F
C . �

Remark. 1. Clearly, JF1 and JF commute. More can be said. For a fixed
filtration F , the group of extension data, Ext(Gr2W,W1) can be identi-
fied with the intermediate Jacobian JF of the weight-(−1) Hodge struc-
ture Hom(GrW2 ,W1). It carries two canonical complex structures: the one
by Weil, defined by the action of the Weil-operator, and the one by Grif-
fiths, having the property that the ±i-eigenspaces are given by F ′−1 and
its conjugate, where F ′ is the induced Hodge filtration on Hom(GrW2 ,W1).
From this description one sees that JF gives Weil’s intermediate Jacobian,
while JF1 gives Griffiths Jacobian. With the latter structure the family
{JF | [F ] ∈ D1 ×D2} is indeed varying holomorphically.
2. Consider the surjective morphism

GR/G
F
R → Gss/GFR ∩Gss = D1 ×D2.

It is a real-analytic complex vector bundle associated to the Gss ∩GF –
representation space gun

R . This is also a J1-holomorphic fiber bundle: if
U ∈ U(g) and V ∈ [O(2k)×O(`)], the action on ϕ ∈ HomR(GrW2 ,W1) is
given by ϕ 7→ U ◦ϕ◦V −1 and hence is JF1 -complex. However, the action of
Gss on this bundle is no longer holomorphic: g = (U, V ) ∈ Sp(g)×O(2k, `)
sends ϕ in the fiber over F to U ◦ϕ in the fiber over g · F and since U and
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JF1 only commute when U ∈ U(g) this is not a JF1 -complex-linear isomor-
phism. Since in our situation G/GF ' GR/G

F
R , this also confirms that the

two complex structures are distinct.

Appendix A. The Levi-Civita connection

Suppose that M is a complex manifold and X1,0
M and X0,1

M denote the sheaves
of complex vector fields of type (1, 0) and (0, 1) respectively. Then, the con-
jugation action u 7→ uc defined by

uc · f = u · f

defines an isomorphism of sheaves X1,0
M

∼−→ X0,1
M as modules over the sheaf

C∞(M,R) of real valued smooth functions on M . It restricts to a conjugate
linear morphism between the sheaves of holomorphic and anti-holomorphic
vector fields on M .

Lemma A.1. Let XM denote the sheaf of C∞ real vector fields on M .
Then,

X1,0
M → XM
u 7→ ur := u+ uc

defines a linear isomorphism over C∞(M,R). Moreover, if x and y are holo-
morphic vector fields, then

(A.1) [xr, yr] = [x, y]r.

Proof. If zj = xj +
√
−1yj is a system of holomorphic coordinates on an

open subset U of M then(
∂

∂zj

)
r

=
∂

∂xj
,

(√
−1

∂

∂zj

)
r

=
∂

∂yj

and hence the stated morphism induces an isomorphism over any holomor-
phic coordinate chart. Using partitions of unity, it then follows that it is a

global isomorphism, X1,0
M

∼=−→ XM . Since holomorphic and anti-holomorphic
vector fields commute, (A.1) follows. �

Let g be a Riemannian metric on the underlying C∞-manifold of M .
Then, the associated Levi-Civita connection ∇LC is determined by the
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Koszul formula:

2g(∇LC
X Y, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )(A.2)

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X).

In particular, if h is a hermitian metric on M given as a pairing of sections
of X1,0

M we obtain an associated Riemannian pairing on sections of XM by
the rule

(A.3) g(ur, vr) = Reh(u, v).

By the above remarks, in order determine the Levi-Civita connection of
the metric (A.3) it is sufficient to evaluate the expression (A.2) on vector
fields X = xr, Y = yr and Z = zr with x, y and z holomorphic vector fields
on M . Unraveling the above, for holomorphic vector fields u, v and w we
have:

(A.4)

wr · g(ur, vr) = w · Reh(u, v) + wc · Reh(u, v)

= (1/2)w · (h(u, v) + h(v, u)) + (1/2)w · (h(u, v) + h(v, u))

= Re (w · (h(u, v) + h(v, u))).

 .

Lemma A.2. The Levi-Civita connection ∇LC of the Riemannian metric
(A.3) underlying a hermitian metric h on a complex manifold M is deter-
mined by the formula:

2g(∇LC
xr yr, zr) = Re (x · (h(y, z) + h(z, y)) + y · (h(x, z) + h(z, x))

− z · (h(x, y) + h(y, x)) + h([x, y], z)

−h([x, z], y)− h([y, z], x)) ,

where xr, yr and zr arise from underlying holomorphic vector fields x, y and
z.

Proof. The right hand side of the Koszul formula (A.2) for the Levi–Civita
connection is the sum of the terms

xr · g(yr, zr) + yr · g(xr, zr)− zr · g(xr, yr)

= Re (x · (h(y, z) + h(z, y)) + y · (h(x, z) + h(z, x))− z · (h(x, y) + h(y, x)))

and
g([xr, yr], zr)− g([xr, zr], yr)− g([yr, zr], xr)

= Re (h([x, y], z)− h([x, z], y)− h([y, z], x)) .

�
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We want to apply this formula in the case of the mixed Hodge metric
and holomorphic vector fields of the form

α̃(eu · F ) = Leu∗α

where α ∈ q acts as the derivation

α · f =
d

dz
f(ezα · F )

∣∣∣∣
z=0

on germs of functions at F and u 7→ eu · F gives a biholomorphism from a
neighborhood of 0 in q to a neighborhood of F in D.

Lemma A.3. Let α, β, γ ∈ q. Then12,

α̃ · h(β̃, γ̃)
∣∣∣
F

= −hF (β, [π+(ᾱ), γ]).

Proof. We have

α̃ · h(β̃, γ̃)
∣∣∣
F

=
d

dz
hezα·F (β̃, γ̃)

∣∣∣∣
z=0

=
d

dz
hF (Lf(z)∗β, Lf(z)∗γ)

∣∣∣∣
z=0

,

where f(z) = exp(−z̄π+(ᾱ) +O2(z, z̄)). Therefore,

α̃ · h(β̃, γ̃)
∣∣∣
F

= −hF (β, [π+(ᾱ), γ]).
�

Theorem A.4. For xr, yr and zr arising from x̃, ỹ, z̃ we have

2g(∇LC
xr yr, zr) = −Re(hF (y, [π+(x̄), z]) + hF (z, [π+(x̄), y]))

− Re(hF (x, [π+(ȳ), z]) + hF (z, [π+(ȳ), x]))

+ Re(hF (x, [π+(z̄), y]) + hF (y, [π+(z̄), x]))

+ Re(hF ([x, y]− [x∗, y]− [y∗, x], z)).

Corollary A.5. If x̃ and ỹ arise from x, y ∈ g−p,−q(F,W ) , p, q > 0 by left trans-
lation, then for the corresponding vector fields xr, yr we have

∇LC
xr yr =

1

2
[x, y]r.

12compare with Cor. 2.17
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Proof. Let zr arise from z̃ as above. The first two lines in the formula of
Theorem A.4 vanish since π+(x̄) = π+(ȳ) = 0 because x, y ∈ ΛF . As for the
third line of the formula for ∇, we note that π+(z̄) can never have a com-
ponent of type (0, 0) and hence [π+(z̄), x] is orthogonal to y and [π+(z̄), y]
is orthogonal to x. So, only the last line of the formula of Theorem A.4
survives which gives

2∇LC
xr yr = [x, y]r − πq([x∗, y] + [y∗, x])r.

The last term then vanishes since [x∗, y] + [y∗, x] has type (0, 0). �

Lemma A.6. Let x, y, z ∈ qF . Put t := [y∗, x] + [x∗, y]. Then

RehF (t, π+(z̄)) = RehF (π+(t)∗
∗
, z).

If (F,W ) is split over R then

π+(t)∗
∗

= π−(t̄) = π−([ȳ∗, x̄] + [x̄∗, ȳ]).

Proof. Since hF (u, v) = hF (v, u) we have

RehF (t, π+(z̄))) = RehF (π+(z̄), t)

= RehF (z̄, π+(t))

= Re Tr(z̄◦(π+(t))∗)

= Re Tr(z◦π+(t))∗)

= RehF (z, π+(t))∗ ∗)

= RehF (π+(t))∗ ∗, z).

In the split case, ∗ and complex conjugation commute and hence π+(t)∗
∗

=
π+t = π−(t) and the second assertion follows. �

Theorem A.7. If (F,W ) is split over R then 2∇LC
xr yr at F is the real

derivation defined by

− πq([π+(x̄)∗, y] + [π+(x̄), y] + [π+(ȳ)∗, x] + [π+(ȳ), x])

+ π−([ȳ∗, x̄] + [x̄∗, ȳ]) + πq([x, y]− [x∗, y]− [y∗, x]).
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Proof. Applying Lemma A.6 to Theorem A.4 we have

2g(∇LC
xr yr, zr) =− Re(hF (y, [π+(x̄), z]) + hF (z, [π+(x̄), y]))

− Re(hF (x, [π+(ȳ), z]) + hF (z, [π+(ȳ), x]))

+ Re(hF (π−([ȳ∗, x̄]), z) + hF (π−([x̄∗, ȳ]), z))

+ Re(hF ([x, y], z)− hF ([x, z], y)− hF ([y, z], x))

which becomes

2g(∇LC
xr yr, zr) =− Re(hF ([π+(x̄)∗, y] + [π+(x̄), y], z)

− Re(hF ([π+(ȳ)∗, x] + [π+(ȳ), x], z)

+ Re(hF (π−([ȳ∗, x̄]) + π−([x̄∗, ȳ]), z)

+ Re(hF ([x, y]− [x∗, y]− [y∗, x], z)). �

Corollary A.8. Assume (F,W ) is split over R. Let xr and yr be vector
fields arising from x̃, ỹ with x and y of type (−1, 1). Then,

∇LC
xr yr =

1

2
[x, y]r.

Proof. In this case, by Lemma 2.14 x∗ = x̄, y∗ = ȳ and so π+(x̄)∗ = x and
π+(ȳ)∗ = y. We also note that [x̄, y] and [ȳ, x] project to zero in q = n− ⊕ Λ.
Therefore, the formula of Theorem A.7 reduces to the stated form. �

Corollary A.9. Assume that W has only two weight graded quotients
which are adjacent and let xr and yr arise from x̃ and ỹ with x and y
of type (−1, 0). Then,

2∇LC
xr yr = −[x̄∗, y]r − [ȳ∗, x]r

Proof. For u and v of type (−1, 0) in this setting we have π+(ū) = ū and
[u, v] = [ū, v] = 0. Likewise, [v∗, u] and [v̄∗, ū] are type (0, 0) while [v̄∗, u]
is type (−1, 1). Consequently, the formula of Theorem A.7 reduces to the
stated form. �

Let us apply this to flow curves

γx : t 7−→ exp(tx) · F, x ∈ qF

and set

x(t0) :=
dγx
dt

∣∣∣∣
t0

∈ q.
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Corollary A.10. (1) For x, y ∈ ΛF of the same type we have

∇LC
x(t)r

y(t)r =
1

2
[x(t), y(t)]r.

(2) The flow curve γx is a geodesic. This is in particular the case when γx
is the image under a period map.
(3) Suppose that x, y, z ∈ ΛF have the same type and commute. Then the
Riemann curvature

R(xr, yr)zr = ∇LC
x ∇LC

yr zr −∇
LC
yr ∇

LC
xr zr −∇

LC
[xr,yr]

zr

vanishes.

Proof. Under the flow the type need not be preserved. However, an appli-
cation of Lemma 2.9 shows that the types are preserves when we start with
x ∈ g−p,−qF with p, q > 0. Then (1) follows from Cor. A.5. In particular, this
vanishes for x = y. By definition the curve γx then is a geodesic. The formula
for the Riemann curvature implies (3). �
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