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Graphs with large girth and nonnegative

curvature dimension condition

Bobo Hua and Yong Lin

In this paper, we classify unweighted graphs satisfying the curva-
ture dimension condition CD(0,∞) whose girth are at least five.

1. introduction

In Riemannian geometry, there are various geometric curvature notions, such
as sectional curvature, Ricci curvature and scalar curvature, derived from the
Riemann curvature tensor. Of particular interest, curvature bounds usually
impose many topological and geometric constraints for underlying mani-
folds. Even in the non-smooth setting, there are generalizations of curvature
bounds, e.g. sectional curvature on Alexandrov spaces, see [8, 9], and Ricci
curvature on metric measure spaces [33, 42, 43], from which many geometric
consequences can be derived accordingly.

Many authors attempted to define appropriate curvature conditions on
discrete metric spaces, e.g. graphs, in order to resemble some geometric
properties of Riemannian curvature bounds.

One is so-called combinatorial curvature introduced by [17, 22, 41]. The
idea is to properly embed a graph into a Riemannian manifold, in particular
a surface, and to define the curvature bound of the graph from that of the
ambient space. In this way, one can derive some global geometric properties
of the graph via the embedding, see [5, 6, 10, 11, 13, 18, 20, 24, 26, 27, 44, 45].

Ollivier [38] used L1-Wasserstein distance for the space of probability
measures on graphs to define a curvature notion mimicking the Ricci cur-
vature on manifolds. Interesting results can be obtained from the optimal
transport strategy, see [4, 7, 23, 39, 40]. Lin, Lu and Yau [30] modified Ol-
livier’s definition and [31] gave a classification of Ricci flat graphs with girth
at least five. Maas [35] identified the heat flow and the gradient flow of the
Boltzmann-Shannon type entropy by introducing a Riemannian structure on
the space of probability measures on graphs. Erbar and Maas [14] defined
the generalized Ricci curvature via the convexity of the entropy functional
and derived many functional inequalities under this curvature assumption.
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620 B. Hua and Y. Lin

From a different strategy, one can define curvature dimension condi-
tions via the so-called Γ-calculus for general Markov semigroups, where
Γ is the “carré du champ” operator, see [2, Definition 1.4.2]. In partic-
ular, the curvature bound is defined via a Bochner type inequality us-
ing the iterated Γ operator, denoted by Γ2, see Definition 2.3 in this pa-
per. For the diffusion semigroup, curvature dimension conditions were initi-
ated in Bakry and Émery [1], and for the non-diffusion case, e.g. graphs,
introduced by Lin and Yau [32]. Later, variants of curvature dimension
conditions were introduced to obtain important analytic results, see e.g.
[3, 12, 15, 16, 19, 19, 21, 28, 29, 36, 37].

We introduce the setting of graphs and refer to Section 2 for details. Let
(V,E) be an undirected, connected, locally finite simple graph with the set
of vertices V and the set of edges E. Without loss of generality, we exclude
the trivial graph consisting of a single vertex. Two vertices x, y are called
neighbors if {x, y} ∈ E, denoted by x ∼ y. The combinatorial degree of a
vertex x ∈ V is the number of its neighbors, denoted by dx. We assign a
weight mx to each vertex x and a weight µxy to each edge {x, y}, and refer
to the quadruple G = (V,E,m, µ) as a weighted graph. The graph G is called
unweighted if µ ≡ 1 on E. For any x ∈ V, we denote µx :=

∑
y∼x µxy.

We are mostly interested in functions defined on V, and denote by C(V )
the set of all such functions. For any weighted graph G, there is an associated
Laplacian operator, ∆ : C(V )→ C(V ), defined as

(1) ∆f(x) =
1

mx

∑
y∼x

µxy(f(y)− f(x)), f ∈ C(V ), x ∈ V.

One can see that the weights µ and m play the essential role in the definition
of Laplacian. Given the weight µ on E, typical choices of m are of interest:

• In case of mx = µx for all x ∈ V, we call the associated Laplacian the
normalized Laplacian.

• In case of m ≡ 1 on V, the Laplacian is called physical (or combinato-
rial) Laplacian.

Moreover, if the graph is unweighted, the corresponding Laplacian is called
unweighted normalized (i.e. µ ≡ 1 on E and m ≡ µ on V ) or unweighted
physical Laplacian (i.e. µ ≡ 1 on E and m ≡ 1 on V ) respectively. For sim-
plicity, we also call the graph unweighted normalized or unweighted physical
graph accordingly.

We denote by `p(V,m) or simply `pm, the space of `p summable functions
on the discrete measure space (V,m) and by ‖ · ‖`pm the `p norm of a function.
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Large girth and curvature dimension condition 621

Define the weighted vertex degree D : V → [0,∞) by

Dx =
1

mx

∑
y∼x

µxy, x ∈ V.

It is well known, see e.g. [25], that the Laplacian associated with the graph
G is a bounded operator on `2m if and only if supx∈V Dx <∞.

The curvature dimension condition CD(K,n), for K ∈ R and n ∈ (0,∞],
on graphs was introduced by [32], which serves as the combination of a lower
bound K for the Ricci curvature and an upper bound n for the dimension,
see Definition 2.4. To verify the CD(K,n) condition, we adopt the following
crucial identity for general Laplacians, analogous to the Bochner identity
on Riemannian manifolds, which was first proved in [32], see also [34], for
normalized Laplacians.

Proposition 1.1. For any function f and x ∈ V,

Γ2(f)(x) =
1

4
|D2f |2(x) +

1

2
(∆f(x))2(2)

− 1

4

∑
y∼x

µxy
mx

(Dx + Dy)|f(y)− f(x)|2,

where

|D2f |2(x) :=
∑
y,z∈V
y∼x,z∼y

µxyµyz
mxmy

|f(x)− 2f(y) + f(z)|2.

Note that the summation over the terms with z 6= x in |D2f |2(x) is a
discrete analogue of the squared norm of the Hessian of a function f in the
Riemannian setting.

The girth of a vertex x, denoted by Gir(x), is defined as the minimal
length of cycles passing through x, and the girth of a graph is the minimal
girth of vertices, see Definition 2.1. Inspired by the work [31], we classify the
unweighted graphs with large girth and satisfying the CD(0,∞) condition.
By definition, the curvature condition at a vertex is determined by the local
structure, in particular, the ball of radius two centered at the vertex, denoted
by B2. The key observation is that if the girth of a vertex is large, B2 is
essentially a tree, see Proposition 2.2, which is intuitively non-positively
curved. By using the Bochner type identity (2), one obtains the sufficient
and necessary condition for CD(0,∞) in that case, see Corollary 2.6, which
yields the following classifications.
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622 B. Hua and Y. Lin

Theorem 1.2. Let G be an unweighted normalized graph with infx∈V dx ≥
2 and Gir(x0) ≥ 5 for some x0 ∈ V. Then G satisfies the CD(0,∞) condition
if and only if G is either the infinite line PZ or the cycle graphs Cn for n ≥ 5,
see Figure 1.

Figure 1: Theorem 1.2.

It is remarkable that if all vertex degrees are at least two, to derive the
classification we only assume the girth of a vertex is large. For the general
case below, a stronger assumption that the girth of the whole graph is large
is needed.

Theorem 1.3. Let G be an unweighted normalized graph with girth at least
5. Then G satisfies the CD(0,∞) condition if and only if G is one of the
following:

(a) The path graphs Pk (k ≥ 1), the cycle graphs Cn (n ≥ 5), the infinite
line PZ, or the infinite half line PN, see Figure 2.

(b) The star graphs Starn (n ≥ 3), or Stari3 (1 ≤ i ≤ 3),

where Stari3 is the 3-star graph with i edges added, 1 ≤ i ≤ 3, see Figure 3.

For physical Laplacians, we also obtain the classification results, see Sec-
tion 4. Note that, similar results for physical Laplacians have been obtained
in Cushing, Liu and Peyerimhoff [12, Corollary 6.9].

The organization of the paper is as follows: In next section, we introduce
the definitions for graphs, Γ-calculus, and criteria for curvature dimension
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Large girth and curvature dimension condition 623

Figure 2: Theorem 1.3.

Figure 3: Theorem 1.3.

conditions for graphs with large girth. In Section 3, we study normalized
graphs and prove the classification results, Theorem 1.2 and 1.3. The last
section is devoted to physical Laplacians.

2. Graphs

2.1. Combinatorial and weighted graphs

Let (V,E) be a (finite or infinite) undirected graph with the set of vertices
V and the set of edges E, i.e. two-elements subsets in V. The graph is called
simple if there is no self-loops and multiple edges. The graph is called locally
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624 B. Hua and Y. Lin

finite, if the combinatorial degree dx <∞ for any x ∈ V. We say a vertex
x is a pending vertex if dx = 1. For any subsets A,B ⊂ V, we denote by
E(A,B) := {{x, y} ∈ E : x ∈ A, y ∈ B} the set of edges between A and B.
For vertices x and y, a walk from x to y is given by

x = x0 ∼ x1 ∼ · · · ∼ xk = y,

where xi ∈ V for 1 ≤ i ≤ k − 1 and k is the length of the walk. A graph is
said to be connected if for any x, y ∈ V there is a walk from x to y. The
minimal length of walks from x to y is called the (combinatorial) distance
between them, denoted by d(x, y). In this paper, we only consider undirected,
connected, locally finite simple graphs.

A cycle of length k, k > 2, is a walk,

x0 ∼ x1 ∼ · · · ∼ xk = x0,

satisfying xi 6= xj for all 0 ≤ i < j ≤ k − 1. A graph is called a tree if it
contains no cycles.

Definition 2.1. The girth of a vertex x in (V,E), denoted by Gir(x), is
defined as the minimal length of cycles passing through x. (If there is no
cycle passing through x, then we define Gir(x) =∞.) The girth of a graph
is defined as infx∈V Gir(x).

For any x ∈ V, r ∈ N0, we denote by Br(x) := {y ∈ V : d(y, x) ≤ r} the
ball of radius r centered at x, and by Sr(x) := {y ∈ V : d(y, x) = r} the cor-

responding sphere. For our purposes, we define a graph, denoted by B̂2(x),
consisting of the set of vertices in B2(x) and the set of edges {{x, y} ∈ E :

x ∈ B1(x) or y ∈ B1(y)}. That is, B̂2(x) is obtained by removing edges in
E(S2(x), S2(x)) from the induced subgraph B2(x). The following proposition
is elementary and useful.

Proposition 2.2. For a graph (V,E) and x ∈ V, B̂2(x) is a tree if and only
if Gir(x) ≥ 5.

Proof. =⇒: Suppose B̂2(x) is a tree and Gir(x) ≤ 4. Let C = {xi} be a cycle

of minimal length passing through x of length≤ 4. Then C is a cycle in B̂2(x)

which contradicts to that B̂2(x) is a tree.

⇐=: Conversely, suppose that Gir(x) ≥ 5 and B̂2(x) is not a tree, then

there is a cycle C = {xi} in B̂2(x). We divide it into two cases:
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Large girth and curvature dimension condition 625

Case 1. If the cycle C contains no vertices in S2(x), then it is included in
B1(x). The cycle C passes through an edge e = (xj , xj+1) in E(S1(x), S1(x)).

(Otherwise it will be contained in the graph B̂1(x) obtained by removing
edges E(S1(x), S1(x)) from the induced subgraph B1(x) which is a tree. A
contradiction.) Now we have a cycle {x, xj , xj+1} of length 3 which contra-
dicts to Gir(x) ≥ 5.

Case 2. S2(x) ∩ C 6= ∅. Let xk ∈ S2(x) for some k and, without loss of

generality, denote xk−1 ∼ xk ∼ xk+1 in C. Since in B̂2(x) there is no edges
connecting vertices in S2(x), the consecutive neighbors of xk in C, xk−1 and
xk+1, are hence contained in S1(x). Thus, {x, xk−1, xk, xk+1} is a cycle of
length 4. A contradiction.

�

As mentioned in the introduction, for a combinatorial graph (V,E), we
assign weights on the set of vertices V and edges E respectively, m : V →
(0,∞) and µ : E → (0,∞), to obtain a weighted graph G = (V,E,m, µ).
In the following we always write G abbreviately for a weighted graph. For
convenience, we extend the function µ on E to the total set V × V, µ :
V × V → [0,∞), by

(x, y) 7→

{
µxy, for x ∼ y,
0, for x 6∼ y.

So that we may write for x ∈ V,∑
y

µxyf(x, y) =
∑
y∼x

µxyf(x, y)

in the following context. The Laplacian of a weighted graph G is defined
as in (1) which can be identified with the generator of a standard Dirichlet
form associated to the weighted graph G, see [25].

2.2. Gamma calculus

We introduce the Γ-calculus and curvature dimension conditions on graphs
following [32].

Given f : V → R and x, y ∈ V, we denote by ∇xyf := f(y)− f(x) the
difference of the function f on the vertices x and y. First we define two
natural bilinear forms associated to the Laplacian ∆.
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626 B. Hua and Y. Lin

Definition 2.3. The gradient form Γ, called the “carré du champ” opera-
tor, is defined by, for f, g ∈ C(V ) and x ∈ V ,

Γ(f, g)(x) =
1

2
(∆(fg)− f∆g − g∆f)(x)

=
1

2m(x)

∑
y

µxy∇xyf∇xyg.

For simplicity, we write Γ(f) := Γ(f, f). Moreover, the iterated gradient
form, denoted by Γ2, is defined as

Γ2(f, g) =
1

2
(∆Γ(f, g)− Γ(f,∆g)− Γ(g,∆f)),

and we write Γ2(f) := Γ2(f, f) = 1
2∆Γ(f)− Γ(f,∆f).

Now we prove the Bochner type identity on graphs.

Proof of Proposition 1.1. For any function f and x ∈ V,

∆Γ(f)(x) =
∑
y

µxy
mx

Γ(f)(y)−DxΓ(f)(x)

=
∑
y,z

µxyµyz
2mxmy

(∇yzf)2 −DxΓ(f)(x)

=
∑
y,z

µxyµyz
2mxmy

[
(∇yzf)2 − (∇xyf)2

]
+
∑
y

µxy
2mx

(Dy −Dx)(∇xyf)2

= (I) +
∑
y

µxy
2mx

(Dy −Dx)(∇xyf)2.

For the first term on the right hand side of the equation, we write

(I) =
∑
y,z

µxyµyz
2mxmy

{
(∇yzf −∇xyf)2 + 2∇xyf(∇yzf −∇xyf)

}
=

1

2
|D2f |2(x) +

∑
y

µxy
mx
∇xyf∆f(y)−

∑
y

µxy
mx

Dy(∇xyf)2

=
1

2
|D2f |2(x) + 2Γ(f,∆f) + (∆f(x))2 −

∑
y

µxy
mx

Dy(∇xyf)2.

Combining the above equations, we prove the proposition. �
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Large girth and curvature dimension condition 627

Now we can introduce curvature dimension conditions on graphs.

Definition 2.4. Let K ∈ R, n ∈ (0,∞]. We say a graph G satisfies the
CD(K,n) condition at x ∈ V, denoted by CD(K,n, x), if for any f ∈ C(V ),

(3) Γ2(f)(x) ≥ 1

n
(∆f(x))2 +KΓ(f)(x).

A graph is said to satisfy CD(K,n) condition if the above inequality holds
for all x ∈ V.

2.3. Criteria for curvature dimension conditions

By Proposition 1.1, we have the following criterion for the curvature dimen-
sion condition of a vertex with large girth.

Theorem 2.5. If Gir(x) ≥ 5, then CD(K,n, x) holds if and only if for any
f ∈ C(V ),

(4) (1− 2

n
)(∆f(x))2 ≥

∑
y

µxy
mx

(
Dx + Dy

2
− 2µxy

my
+K

)
(f(y)− f(x))2.

Proof. Since the terms ∆f,Γ(f) and Γ2(f) are all invariant by adding a con-
stant to f , it suffices to check the curvature conditions at x ∈ V for functions
f satisfying f(x) = 0. Note that the right hand side of (3) only depends on
the values of f on B1(x). Set Wf := {g ∈ C(V ) : g|B1(x) = f |B1(x)}. It suf-
fices to prove the following

inf
g∈Wf

Γ2(g) =
∑
y

µ2xy
mxmy

f(y)2 +
1

2
(∆f(x))2(5)

− 1

4

∑
y

µxy
mx

(Dx + Dy)f(y)2.

By the formula in (2), it suffices to minimize |D2g|2(x) under the same

constraints. Note that B̂2(x) is a tree by Proposition 2.2, i.e. for any z ∈
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S2(x) there is a unique path from z to x. For g ∈Wf ,

|D2g|2(x) =
∑
y∈V

µxy
mxmy

∑
z∈S2(x)∪{x}

µyz|g(z)− 2f(y)|2

=
∑
y∈V

µxy
mxmy

 ∑
z∈S2(x)

µyz|g(z)− 2f(y)|2 + µyx|2f(y)|2
 .

The first equality follows from the fact that the nontrivial terms in the
summation are all in the form x ∼ y ∼ z, and hence z ∈ S2(x) ∪ {x}. Then
it is easy to see that the infimum over g ∈Wf is attained by setting g(z) =
2f(y) for any z ∈ S2(x) where y is the unique vertex in S1(x) such that
x ∼ y ∼ z. This proves (5) and hence the theorem. �

For the curvature conditions at x ∈ V, it suffices to verify the inequality
(4) for all functions f with f(x) = 0. Note that the inequality only involves
the values of f on S1(x). From now on, we label the vertices in S1(x) as
{y1, . . . , yM} where M = dx. Any function f on S1(x) can be understood as
an M -tuple

(Y1, . . . , YM ) := (f(y1), . . . , f(yM )),

and the space of functions on S1(x) is identified with an M -dimensional
vector space RM indexed by the vertices of S1(x).

For any x, y ∈ V with x ∼ y, we denote

(6) αxy :=
mx

µxy

(
Dx + Dy

2
− 2µxy

my

)
,

which will be a key quantity in our argument, see the corollary below.

Corollary 2.6. If Gir(x) ≥ 5, then CD(0,∞, x) holds if and only if(∑
yi∼x

µxyi
mx

Yi

)2

≥
∑
yi∼x

µxyi
mx

(
Dx + Dyi

2
− 2µxyi

myi

)
Y 2
i , ∀ Yi ∈ R,

or equivalently,

(7)

(∑
yi∼x

Yi

)2

≥
∑
yi∼x

αxyiY
2
i , ∀ Yi ∈ R,

where αxyi is defined in (6).
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Proof. The first inequality is equivalent to (4) for K = 0, n =∞. The second
one follows from the first one by setting Y ′i =

µxyi

mx
Yi for all yi ∼ x and rename

Y ′i as Yi. �

Corollary 2.7. Let x be a pending vertex, i.e. dx = 1, in a weighted graph
G. Then CD(0,∞, x)

1) always holds for normalized Laplacian, and

2) holds for unweighted physical Laplacian if and only if dy ≤ 5, for y ∼ x.

Proof. By the inequality (7), CD(0,∞, x) is equivalent to

mx

my

(
1

2

µy
µx
− 2

)
≤ 1

2
,

where y ∼ x. This proves the corollary. �

The following calculus lemma will be useful in our setting.

Lemma 2.8. Let {ai}1≤i≤N , ai ≥ 0, and c > 0. The inequality,(
Y +

N∑
i=1

Yi

)2

+

N∑
i=1

aiY
2
i ≥ cY 2,

cannot hold for all Y, Yi ∈ R (1 ≤ i ≤ N) if one of the following holds:

1) c ≥ 1.

2) c > 0 and aj = 0 for some j ∈ {1, . . . , N}.

Proof. Suppose it holds for all Y and Yi.
(1) c ≥ 1. For any t ∈ R, setting Yi = tY, 1 ≤ i ≤ N, we have

Y 2(1 +Nt)2 +
∑
i

ait
2Y 2 ≥ cY 2.

This yields 2Nt+ (N2 +
∑
ai)t

2 ≥ c− 1 ≥ 0. It is not true for

t ∈
(
−2N(N2 +

∑
ai)
−1, 0

)
.

(2) c > 0 and aj = 0 for some j. Let Yi = 0 for all i 6= j and 1 ≤ i ≤ N.
Then

(Y + Yj)
2 ≥ cY 2.

This yields a contradiction by setting Y = −Yj 6= 0. �
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Lemma 2.9. If Gir(x) ≥ 5 and CD(0,∞, x) hold for a vertex x in a
weighted graph G. Suppose that dx ≥ 2, then

αxy < 1, ∀ y ∼ x.

Proof. Without loss of generality, consider y = y1 ∼ x. Then setting Yi = 0,
for all i ≥ 2 in (7), we have

αxy1 ≤ 1.

Suppose that αxy1 = 1. For the terms on the right hand side of (7), we
eliminate those with positive coefficients on the right hand side, and move
those with negative coefficients to the left hand side. This reduces to the
case (1) in Lemma 2.8. This yields a contradiction and proves the strict
inequality. �

For any x ∈ V, we define

Qx := {y ∈ V : y ∼ x, αxy > 0} and qx := ]Qx.

In fact the set Qx consists of those neighbors of x which contribute positive
terms on the right hand side of (7).

Lemma 2.10. If Gir(x) ≥ 5 and CD(0,∞, x) hold for a vertex x in a
weighted graph G. Then qx ≤ 1.

Proof. Suppose that qx ≥ 2. Without loss of generality, pick y1, y2 ∈ Qx. By
setting Yj = 0 for all 3 ≤ j ≤M in (7), we have

(Y1 + Y2)
2 ≥ αxy1Y 2

1 + αxy2Y
2
2 ≥ αxy1Y 2

1 , ∀ Y1, Y2 ∈ R.

This is impossible by (2) in Lemma 2.8. �

3. Normalized Laplacians

In this section, we consider the curvature dimension conditions for normal-
ized Laplacians. For unweighted normalized Laplacians, a corollary of The-
orem 2.5 reads as follows.

Corollary 3.1. Let G be an unweighted normalized graph, and for some
x ∈ V, Gir(x) ≥ 5. Then CD(0,∞, x) is equivalent to

(8)

(∑
yi∼x

Yi

)2

≥ dx
∑
yi∼x

(
1− 2

dyi

)
Y 2
i , ∀ Yi ∈ R.
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In this setting, αxy = dx

(
1− 2

dy

)
for any y ∼ x and Qx = {y ∼ x : dy ≥

3} for all x ∈ V. By Lemma 2.10, we know that qx ≤ 1 if Gir(x) ≥ 5 and
CD(0,∞, x) hold.

Lemma 3.2. Let G be an unweighted normalized graph. For some x ∈ V,
dx ≥ 2, Gir(x) ≥ 5 and CD(0,∞, x) hold. If qx = 1, then dx = 2, dy1 = 3
and dy2 = 1 where yi ∼ x, i = 1, 2.

Proof. Without loss of generality, let y1 ∈ Qx, i.e. dy1 ≥ 3, and S1(x) =
{y1, . . . , yM} with M = dx, where dyi ≤ 2, for all i 6= 1. By Lemma 2.9,
αxy1 < 1. By this inequality,

dy1 < 2

(
1− 1

dx

)−1
≤ 4,

which yields that dy1 = 3, and

dx <

(
1− 2

dy1

)−1
= 3,

which implies dx = 2. Hence S1(x) = {y1, y2}.
For the case of dy2 = 2, by (8),

(Y1 + Y2)
2 ≥ 2

3
Y 2
1 , ∀ Y1, Y2 ∈ R,

which is impossible by setting Y1 = −Y2 6= 0, or (2) in Lemma 2.8.
For the case of dy2 = 1, by (8),

(Y1 + Y2)
2 + 2Y 2

2 ≥
2

3
Y 2
1 , ∀ Y1, Y2 ∈ R,

which is true and proves the lemma. �

Combining Corollary 2.7, Lemma 2.10 with Lemma 3.2, we have the
following.

Lemma 3.3. Let G be an unweighted normalized Laplacian with Gir(x) ≥ 5
for some x ∈ V . Then CD(0,∞, x) holds if and only if we have the following
cases:

1) dx = 1, and dy is arbitrary for y ∼ x.
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2) dx = 2, and either (a) dy1 = 3 and dy2 = 1, or (b) dy1 ≤ 2 and dy2 ≤ 2,
where yi ∼ x, i = 1, 2.

3) dx ≥ 3, and dy ≤ 2 for all y ∼ x.

Proof. =⇒: The case (1) follows from Corollary 2.7. For qx = 0, i.e. dy ≤ 2
for all y ∼ x, (8) always holds. For qx = 1, we apply Lemma 3.2. Hence, we
obtain the cases (2) and (3).
⇐=: It is easy to check case by case. �

Now we are ready to classify the graph with large girth which has non-
negative curvature dimension condition. The first case is that the degree of
all vertices are at least two.

Proof of Theorem 1.2. =⇒: Applying Lemma 3.3 at the vertex x0, noting
that infx∈V dx ≥ 2, we have dx0

≥ 2, dy = 2 for all y ∼ x0.
We claim that dx0

= 2. Suppose not, i.e. dx0
≥ 3. Pick a neighbor of x0,

say y1. Noting that dy1 = 2 and Gir(x0) ≥ 5, we have Gir(y1) ≥ 5. Now we
may apply Lemma 3.3 to y1, and obtain that dx0

= 2. A contradiction.
Hence dx0

= 2,dy = 2 for all y ∼ x0. This yields that Gir(y) ≥ 5 for
y ∼ x0. Using the same argument at y, we have that dz = 2 for z ∼ y. Con-
tinuing this process, by the connectedness of the graph we conclude that
dx = 2, ∀x ∈ V.
⇐=: This is obvious.
This proves the theorem. �

Next we classify the general cases without any restrictions on vertex
degrees.

Proof of Theorem 1.3. =⇒: We claim thatW3 := ]{x ∈ V : dx ≥ 3} ≤ 1. Sup-
pose it is not true. Let x1, x2 be two distinct vertices with dxi

≥ 3, i = 1, 2.
Then by the connectedness, there is a walk connecting them, x1 = z0 ∼ z1 ∼
· · · ∼ zN = x2 with N ≥ 1. Applying Lemma 3.3 at the vertex x1, we have
dz1 ≤ 2 and N ≥ 2, which implies that dz1 = 2 since z1 lies in the walk con-
necting x1 and x2. Applying Lemma 3.3 at the vertex z1, we obtain that
dx1

= 3 and dz2 = 1. This yields a contradiction since z2 lies in the walk and
proves the claim.

For the case of W3 = 0, we get the classification (a) in the theorem.
Let W3 = 1 and dx0

≥ 3 for x0 ∈ V. By Lemma 3.3, dy ≤ 2 for any y ∼
x0. We divide it into cases:

Case 1. dx0
≥ 4. Applying Lemma 3.3 at any y ∼ x, we have dy = 1.

Hence the graph is Starn, n ≥ 4.
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Case 2. dx0
= 3. For any y ∼ x0 satisfying dy = 2, applying Lemma 3.3

to y, we get dz = 1 for z ∼ y (z 6= x). Hence we obtain Star3, or Stari3,
i = 1, 2, 3. This gives the classification (b).
⇐=: It is easy to check case by case.
This proves the theorem. �

4. Physical Laplacians

In this section, we consider unweighted physical Laplacians and have a corol-
lary of Theorem 2.5 as follows.

Corollary 4.1. Let G be an unweighted physical graph and for x ∈ V
Gir(x) ≥ 5. Then CD(0,∞, x) is equivalent to

(9)

(∑
yi∼x

Yi

)2

≥
∑
yi∼x

(
dx + dy

2
− 2

)
Y 2
i , ∀ Yi ∈ R.

In this setting, αxy = dx+dy

2 − 2 for any y ∼ x and Qx = {y ∈ V : y ∼
x,dx + dy ≥ 5} for all x ∈ V.

Lemma 4.2. Let G be an unweighted physical graph and for x ∈ V, Gir(x) ≥
5. Then CD(0,∞, x) holds if and only if we have the following cases:

1) dx = 1, and dy ≤ 5 for y ∼ x.

2) dx = 2, and dyi ≤ 2 for yi ∼ x, i = 1, 2.

3) dx = 3, and dyi = 1 for all yi ∼ x, 1 ≤ i ≤ 3.

Proof. =⇒: Without loss of generality, we may assume dx ≥ 2 by Corol-
lary 2.7 and denote S1(x) = {y1, . . . , yM} with M = dx. By Lemma 2.10,
qx ≤ 1. We divide it into cases:

Case 1. qx = 1. Without loss of generality, let y1 ∈ Qx. By Lemma 2.9,
we have

5 ≤ dx + dy1 < 6,

which yields dx + dy1 = 5. Then dx = 2, 3 or 4. The case dx = 4 can be
excluded by dx + dy2 ≤ 4 since qx = 1.
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Suppose dx = 2. Then dy1 = 3,dy2 ≤ 2. For dy2 = 2, the equation (9)
reads as

(Y1 + Y2)
2 ≥ 1

2
Y 2
1 , ∀ Y1, Y2 ∈ R,

which is impossible. For dy2 = 1, we have

(Y1 + Y2)
2 ≥ 1

2
Y 2
1 −

1

2
Y 2
2 , ∀ Y1, Y2 ∈ R, ,

which is also wrong.
Suppose dx = 3. Then dy1 = 2,dy2 = dy3 = 1. Then the equation (9) has

the form

(Y1 + Y2 + Y3)
2 ≥ 1

2
Y 2
1 , ∀ Y1, Y2, Y3 ∈ R,

which is excluded by (2) in Lemma 2.8.
Case 2. qx = 0. That is, dx + dyi ≤ 4 for all yi ∼ x. This implies that

dx ≤ 3. For the case of dx = 2, we have dyi ≤ 2, for i = 1, 2. This gives the
case (2) in the lemma. For the case of dx = 3, dyi = 1, for 1 ≤ i ≤ 3. That
is the case (3).
⇐=: It is easy to check case by case.
This proves the lemma. �

By this lemma, following the arguments as in Theorem 1.2 and 1.3, one
can prove the following results for unweighted physical Laplacians. We omit
the proofs here.

Theorem 4.3. Let G be an unweighted physical graph with infx∈V dx ≥ 2
and Gir(x0) ≥ 5 for some x0 ∈ V. Then G satisfies the CD(0,∞) condition
if and only if G is either the infinite line PZ or the cycle graphs Cn for n ≥ 5.

Theorem 4.4. Let G be an unweighted physical graph with girth at least
five. Then G satisfies the CD(0,∞) condition if and only if G is one of the
following:

1) Pk (k ≥ 1), Cn (n ≥ 5), PZ, or PN.

2) Star3.
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tions of graphs, arXiv:1606.01496, (2016).

[13] M. DeVos and B. Mohar, An analogue of the Descartes-Euler formula
for infinite graphs and Higuchi’s conjecture, Trans. Amer. Math. Soc.
359 (2007), no. 7, 3287–3301.

[14] M. Erbar and J. Maas., Ricci curvature of finite Markov chains via
convexity of the entropy, Arch. Ration. Mech. Anal. 206 (2012), no. 3,
997–1038.

[15] M. Fathi and Y. Shu, Curvature and transport inequalities for Markov
chains in discrete spaces, arXiv:1509.07160, (2015).

[16] C. Gong and Y. Lin, Properties for CD inequalities with unbounded
Laplacians, arXiv:1512.02471, (2015).

[17] M. Gromov, Hyperbolic Groups, 75–263, Essays in group theory,
M.S.R.I. Publ. 8, Springer (1987).

[18] Y. Higuchi, Combinatorial curvature for planar graphs, Journal of
Graph Theory 38 (2001), no. 4, 220–229.

[19] P. Horn, Y. Lin, S. Liu, and S.-T. Yau, Volume doubling, Poincaré
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