
i
i

“8-Wiemeler” — 2019/8/22 — 23:04 — page 491 — #1 i
i

i
i

i
i

Communications in
Analysis and Geometry
Volume 27, Number 2, 491–509, 2019

Smooth stability and sphere theorems

for manifolds and Einstein manifolds

with positive scalar curvature

Wilderich Tuschmann and Michael Wiemeler

Leon Green obtained remarkable rigidity results for manifolds of
positive scalar curvature with large conjugate radius and/or injec-
tivity radius. Using Ck,α convergence techniques, we prove several
differentiable stability and sphere theorem versions of these results
and apply those also to the study of Einstein manifolds.

1. Introduction

In 1963, Leon Green proved the following remarkable result:

Theorem 1.1 (Green [23]). Let M be an n-dimensional closed Rieman-
nian manifold whose scalar curvature and volume satisfy the inequality∫

M
scalM dvolM ≥ n(n− 1) VolM.

Then the conjugate radius of M is bounded from above by conjM ≤ π, and
equality holds here if and only if M is isometric to a spherical space form of
constant sectional curvature one.

Green’s theorem implies in particular the following rigidity result:

Corollary 1.2. A closed Riemannian n-manifold with scalar curvature
scalM ≥ n(n− 1) and injectivity radius equal to π is isometric to the n-
dimensional unit sphere Sn(1).

Thus, when replacing diameter by injectivity radius, this latter rigid-
ity result can be viewed as a scalar curvature analogue to the well-known
maximal diameter sphere theorems for sectional curvature ≥ 1 and Ricci
curvature ≥ n− 1 obtained by Toponogov [41] in 1959 and Cheng [17] in
1975.
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492 W. Tuschmann and M. Wiemeler

In view of Grove-Shiohama’s celebrated diameter sphere theorem for pos-
itive sectional curvature (see [27]) and the wealth of other sphere theorems
for manifolds of positive sectional and of positive Ricci curvature (see, e.g.,
[4], [31], [14], [37], [2], [8], [18], [22], [26], [29], [33], [34], [36], [39], [42], [44]),
it is therefore natural to ask which conditions on the injectivity radius, or,
more generally, conjugate radius, of a closed Riemannian n-manifold M with
positive scalar curvature will guarantee stability of Green’s above-mentioned
results in the sense that M can still be recognized as being homeomorphic,
or even diffeomorphic, to the standard n-sphere or, respectively, to an n-
dimensional spherical space form.

Of course, stability results which actually imply diffeomorphism are of
much more significance in this context than merely topological ones. This
is, in particular, also due to the fact that exotic spheres with positive scalar
curvature are known to abound. Indeed, any homotopy sphere of dimension
n 6≡ 1, 2 mod 8, n 6= 4, admits a metric of positive scalar curvature. In the
other dimensions, for n ≥ 9, all homotopy spheres which bound spin mani-
folds admit metrics of positive scalar curvature. These constitute half of all
of the homotopy spheres in these dimensions. These results follow from a
combination of results from [1, Corollary 2.7], [32, Proof of Theorem 2] and
[40]. (For more on curvature properties of exotic spheres see also the survey
[30].)

The first main result of this note and its corollaries provide positive an-
swers to whether Green’s rigidity results are differentiably stable as follows:

Theorem 1.3. For all n ∈ N, C, λ0, λ1, i0 > 0 and 0 ≤ β < 1 there exists
ε = ε(n,C, λ0, λ1, i0, β) > 0 such that every closed n-dimensional Rieman-
nian manifold M with∫

M
scalM dvolM ≥ n(n− 1) VolM conjM ≥ π − ε

RicM ≥ −λ0 ‖∇RicM ‖ ≤ λ1

VolM ≤ C

(π − conjM)β
injM ≥ i0

is diffeomorphic to a spherical space form.

To put this result into further perspective, let us mention that it yields in
particular various new recognition and stability theorems for closed mani-
folds with positive curvatures.

First, we have the following new sphere theorem for manifolds with mean
positive scalar curvature:
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Corollary 1.4. For all n ∈ N and λ1, d > 0 there exists ε = ε(n, λ1, d) > 0
such that every closed n-dimensional Riemannian manifold M with

∫
M

scalM dvolM ≥ n(n− 1) VolM injM ≥ π − ε

diamM ≤ d ‖∇RicM ‖ ≤ λ1

is diffeomorphic to the standard n-sphere.

Since Berger’s initial studies in the 1960s (see [5], [6]), much work in
Riemannian geometry has also been devoted to the problem of classifying
all Einstein manifolds which satisfy further other curvature conditions. For
example, Berger proved in this context in particular the following isolation
result for the standard round spheres, namely: If (M, g) is a closed simply
connected Einstein manifold of dimension n which is strictly 3n/(7n− 4)-
pinched, then M is, up to scaling, isometric to the standard n-sphere (com-
pare [10, Section 0.33]). Moreover, Brendle showed that compact Einstein
n-manifolds, n ≥ 4, with positive isotropic curvature have constant sectional
curvature (see [13]).

For Einstein manifolds with positive Einstein constant, we obtain (for
a more general version see Theorem 4.1 below) the following differentiable
stability result, which does not require any further curvature bounds:

Corollary 1.5. For all n ∈ N there exists ε = ε(n) > 0 such that every
closed simply connected n-dimensional Einstein manifold M with Einstein
constant n− 1 and conjugate radius conjM ≥ π − ε is diffeomorphic to the
standard n-sphere.

Notice here also that in [11] families of inequivalent Einstein metrics with
positive Einstein constant were constructed on the (4m+ 1)-dimensional
Kervaire spheres, where m ≥ 2. The Kervaire spheres are known to be exotic
in dimensions n 6= 2k − 3, where k ≥ 3. The authors of [11] also conjectured
that such metrics exist on all odd dimensional homotopy spheres which
bound parallelizable manifolds. This conjecture is true in dimensions less
than or equal to 15 by [12].

If we only have a positive lower bound on the Ricci-curvature we obtain:
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Theorem 1.6. For all n ∈ N and k > 0 there exists ε = ε(n, k) > 0 such
that every closed n-dimensional Riemannian manifold M with

|π1(M)| ≤ k
RicM ≥ n− 1

conjM ≥ π − ε

is diffeomorphic to an Einstein manifold with Einstein constant n− 1.

We conjecture that a manifold M as in the theorem above is actually
also already diffeomorphic to a spherical space form. This conjecture is in
part motivated by the following fact: For each n ∈ N there exists an ε(n) > 0
such that every closed n-manifold M with injM ≥ π − ε and RicM ≥ n− 1
is diffeomorphic to a sphere. This follows from the following argument. An
inequality relating the injectivity radius of a manifold to its volume due to
Berger [7] implies that the volume of a manifold with injectivity radius close
to π is close to the volume of the round sphere with radius one. Therefore,
by a result of Cheeger and Colding [16, Theorem A.1.10], it follows that M
is diffeomorphic to a sphere.

For manifolds with positive sectional curvature we obtain:

Corollary 1.7. For all n ≥ 4 and k, δ > 0 there exists ε = ε(n, k, δ) > 0
such that every closed n-dimensional Riemannian manifold M with

|π1(M)| ≤ k

secM ≥ 1− 3

n+ 2
+ δ

RicM ≥ n− 1

conjM ≥ π − ε

is diffeomorphic to a spherical space form.

Remark 1.8. The lower bound on the conjugate radius of M in Theo-
rem 1.3 cannot be replaced by a lower bound on the diameter.

This is due to the following fact: any manifold M of dimension at least
three which admits a metric of scalar curvature > c > 0 admits a metric
of scalar curvature > c′(c) > 0 and arbitrarily large diameter. Indeed, one
can construct such a metric as follows: By results which were independently
proven by Gromov and Lawson [25] and Schoen and Yau [38], we can assume
that M has a metric of positive scalar curvature which is a ’torpedo’ metric
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in the neighborhood of a point p ∈M . We can then choose this torpedo to
be arbitrarily long without decreasing the scalar curvature.

The main ingredients in the proofs of the above results consist of using
Ck,α convergence techniques, developed in particular by Anderson [2] and
Anderson and Cheeger [3], and appropriate modifications of Green’s original
arguments along with convergence properties of the injectivity and conjugate
radius.

Remark 1.9. We actually expect that one can remove the bounds on the
covariant derivative of the Ricci curvature and the volume in Theorem 1.3
without effecting the conclusion of the theorem. However, any sort of con-
vergence theory for scalar curvature has still to emerge, and all techniques
which are currently at disposal require these additional bounds for the proof
to work.

Namely, the bound on the covariant derivative is needed to construct a
sequence of Riemannian manifolds which converges in C2,α-topology. This
strong form of convergence guarantees that certain geodesics and the conju-
gate radii of these manifolds will converge. The volume bound is necessary
for showing that a certain sequence of integrals over the tangent unit sphere
bundles of the manifolds converges.

Remark 1.10. If one has a sequence of Riemannian manifolds which satisfy
a two-sided sectional curvature bound and a lower bound on the conjugate
radii, then using Ricci-flow one can smooth this sequence, so that all the
manifolds in the sequence satisfy two-sided bounds on the Ricci-curvature
and its covariant derivatives. But it is completely unclear what happens to
the conjugate radii of the manifolds. The only thing one knows about it
is that there is some lower bound. For the proof of Theorem 1.3 we need
that the sequence of conjugate radii converges to π. Therefore we cannot
replace the bounds on the Ricci-curvature and its covariant derivatives by a
two-sided sectional curvature bound.

Remark 1.11. Recently it has been shown by Gromov [24] that if a se-
quence of C2-metrics gi on a manifold with scalgi ≥ n(n− 1) converges in
the C0-topology to a C2-metric g, then we have scalg ≥ n(n− 1). Since the
injectivity radius is upper semi-continuous in C1-topology, a version of The-
orem 1.3 which only needs a bound on the Ricci-curvature and not on its
covariant derivative would follow from Green’s theorem, if one can guarantee
that the limit metric is at least of class C2.
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The remaining parts of the present note are structured as follows: After
recalling relevant preliminaries in Section 2, Section 3 is devoted to the
proofs of Theorem 1.3 and Corollary 1.4. The final Section 4 is concerned
with the proofs of Corollary 1.7, Theorem 1.6, and a more general version
of Corollary 1.5.

It is our pleasure to thank Aaron Naber for helpful comments, especially
for pointing out to us that a reference, which we used in the first version of
this note in the proof of Theorem 4.2, actually contained incorrect results
so that we had to furnish a different proof of Theorem 4.2. In addition, we
would like to thank a first referee whose comments led us to Lemma 2.4
and thus to a significant improvement of the main result, Theorem 1.3, from
both-sided bounds on the Ricci curvature to now just a lower one.

2. Preliminaries

Let us first recall Green’s theorem in its original version as well as its proof,
since we will have to refer to them in our later considerations.

Theorem 2.1 ([23, Theorem 5.1], [9, Proposition 5.64]). Let M be a
closed Riemannian manifold of dimension n with conjugate radius conjM ≥
a. Then

VolM ≥ a2

n(n− 1)π2

∫
M

scalM dvolM .

Moreover, equality holds if and only if M has constant sectional curvature
π2/a2.

Proof. Let γ : [0, a]→M be a geodesic. Since conjM ≥ a, the index form
I(X,X) is non-negative for any vector field X along γ with X(0) = 0 and
X(a) = 0. In particular, in the special case X(t) = sin(πta )V (t), where V (t)
is a parallel vector field along γ, it follows that∫ a

0

(
π2

a2
cos2

πt

a
−K(γ′(t), V (t)) sin2 πt

a

)
dt ≥ 0.

LetX1, . . . , Xn−1 be n− 1 pairwise orthogonal vector fields as above. Adding
up the above integrals, we obtain:∫ a

0

(
(n− 1)

π2

a2
cos2

πt

a
− Ric(γ′(t), γ′(t)) sin2 πt

a

)
dt ≥ 0.

Now we integrate this inequality over all geodesics of length a. To do so,
we fix some notation: Let ζt be the geodesic flow on the unit sphere bundle
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SM associated to the tangent bundle of M . Moreover, let µ1 be the canon-
ical measure induced by g on SM . Note that µ1 is invariant under ζt and
that γ′(t) = ζt(u), where γ is the geodesic with γ′(0) = u. Applying Fubini’s
theorem, we obtain:

0 ≤
∫
SM

∫ a

0

(
(n− 1)

π2

a2
cos2

πt

a
− Ric(ζt(u), ζt(u)) sin2 πt

a

)
dtdµ1

= Vol(M) Vol(Sn−1)(n− 1)
π2

a2

∫ a

0
cos2

πt

a
dt

−
∫
SM×[0,a]

Ric(u, u) sin2 πt

a
dtdµ1

= Vol(M) Vol(Sn−1)(n− 1)
π2

a2

∫ a

0
cos2

πt

a
dt

−
∫
SM

Ric(u, u) dµ1

∫ a

0
sin2 πt

a
dt

= Vol(M) Vol(Sn−1)(n− 1)
π2

a2

∫ a

0
cos2

πt

a
dt

−
∫
M

∫
SmM

Ric(u, u) dσ dvolM

∫ a

0
sin2 πt

a
dt,

where σ is the canonical measure on SmM and Vol(Sn−1) is the volume of
the (n− 1)-dimensional sphere of radius one.

A general formula for quadratic forms on Euclidean space yields∫
SmM

Ric(u, u) dσ = Vol(Sn−1)
1

n
scalM (m).

Now the first claim follows since∫ a

0
cos2

πt

a
dt =

∫ a

0
sin2 πt

a
dt.

In the case where one actually has equality in the above inequality, it
follows that I(Xi, Xi) = 0 for all i. Therefore all vector fields Xi are Jacobi
fields, and hence it follows that M has constant curvature π2/a2. �

As corollaries to the above theorem, one immediately obtains Theo-
rem 1.1 and Corollary 1.2.

We also recall the concept of Ck,α convergence for pointed complete
Riemannian manifolds. Further details on these concepts can be found in,
e.g., [35, Chapter 10].
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A sequence of pointed complete Riemannian manifolds (Mi, pi, gi) con-
verges in the pointed Ck,α topology to a pointed manifold (M∞, p∞, g∞)
if for every R > 0 there is a domain Ω ⊃ BR(p∞) ⊂M∞ and if, for large
i, there are embeddings Fi : Ω→Mi such that Fi(Ω) ⊃ BR(pi) and such
that the pull-backs F ∗i gi converge on Ω to g∞ in the Ck,α Hölder topology.
If there is an upper bound d for the diameters of all of the Mi, then, for
R > d, BR(p∞) (and therefore also M∞) will be diffeomorphic to Mi if i
is sufficiently large. Therefore, in this case one can also speak about mere
(unpointed) Ck,α convergence.

Anderson proved a Ck,α precompactness theorem for manifolds with
bounded Ricci curvature. To state it, we introduce the following notation:

For n ∈ N, i0 > 0, λ0, . . . , λk > 0, we denote by M(n, i0, λ0, . . . , λk) the
class of n-dimensional pointed complete Riemannian manifolds M with

‖∇i RicM ‖ ≤ λi for i = 0, . . . , k

injM ≥ i0.

We can now state Anderson’s result.

Theorem 2.2 ([2]). The class M(n, i0, λ0, . . . , λk) is precompact in the
pointed Ck+1,α topology.

In the case where there is only a lower Ricci curvature bound, the fol-
lowing precompactness result has been shown by Anderson and Cheeger
[3].

Theorem 2.3. Let λ ∈ R and i0, d > 0. Denote by N (n, i0, d, λ) the class of
n-dimensional closed Riemannian manifolds M with RicM ≥ λ, injM ≥ i0
and diamM ≤ d.

Then the class N (n, i0, d, λ) is precompact in the C0,α topology.

For the application of the above compactness results in our situation we
need the following lemma.

Lemma 2.4. Let λ1, i0 > 0 and n ∈ N. Then there is a constant λ0(λ1, i0, n)
such that for every n-dimensional complete Riemannian manifold M with
‖∇RicM ‖ ≤ λ1 and conjM ≥ i0 one has RicM ≤ λ0.
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Proof. Assume that there are x ∈M and Y ∈ TxM with ‖Y ‖ = 1 and

Ric(Y, Y ) > (n− 1)
π2

i20
+ λ1i0 = λ0.

Let γ : [0, i0]→M be the geodesic with γ(0) = x and γ′(0) = Y . Then it
follows from the bound on the covariant derivative of the Ricci-tensor and
the mean value theorem, that, for all t ∈ [0, i0], Ric(γ′(t), γ′(t)) > (n− 1)π

2

i20
.

Therefore it follows as in the proof of Myer’s diameter estimate [35, p. 171]
that the first conjugate point of x along γ has distance less than i0 to x.
This contradicts the assumption that conjM ≥ i0. �

3. Proof of the main result

Now we can prove our main theorem.

Theorem 3.1. For all n ∈ N, C, λ0, λ1, i0 > 0 and 0 ≤ β < 1 there exists
ε = ε(n,C, λ0, λ1, i0, β) > 0 such that every closed n-dimensional Rieman-
nian manifold M with∫

M
scalM ≥ n(n− 1) VolM conjM ≥ π − ε

RicM ≥ −λ0 ‖∇RicM ‖ ≤ λ1

VolM ≤ C

(π − conjM)β
injM ≥ i0

is diffeomorphic to a spherical space form.

Proof. Assume that the theorem is not true. Then, for some n ∈ N, C, λ0,
λ1, i0 > 0 and 0 ≤ β < 1, there is a sequence of closed n-dimensional Rie-
mannian manifolds (Mi, gi), such that∫

Mi

scalMi
dvolMi

≥ n(n− 1) VolMi lim
i→∞

conjMi = π

RicMi
≥ −λ0 ‖∇RicMi

‖ ≤ λ1

VolMi ≤
C

(π − conjMi)β
injMi ≥ i0

and such that none of the Mi are diffeomorphic to spherical space forms.
Note that by Lemma 2.4, we may assume that ‖RicMi

‖ ≤ λ0.
By Theorem 2.2, after choosing points pi ∈Mi and passing to a subse-

quence if necessary, one may assume that the manifolds (Mi, pi) converge
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in the pointed C2,α topology to a pointed smooth manifold (M∞, p, g∞)
equipped with a C2,α metric g∞.

Let R > 0 and BR(p) ⊂M∞ the ball of radius R in M∞. Then we may
assume that the metrics gi are defined on BR+π(p) and that they converge
in C2,α topology to g∞.

Let x ∈ BR(p) and v ∈ TxM∞ − {0}. Then the unit speed geodesics γi
with respect to the metrics gi with initial values γi(0) = x and γ′i(0) =
v/
√
gi(v, v) and length less than or equal to π converge uniformly in C1

topology to a geodesic γ∞ for the metric g∞.
Moreover, the Ricci curvatures of gi converge uniformly to the Ricci cur-

vatures of the limit metric g∞. Hence, RicMi
(γ′i(t), γ

′
i(t)), t ∈ [0, π], converges

uniformly to RicM∞(γ′∞(t), γ′∞(t)).
Let ai = conjMi. Then π = limi→∞ ai = a∞ [21], and by the above dis-

cussion we have:

lim
i→∞

∫ ai

0

(
π2

a2i
(n− 1)− RicMi

(γ′i(t), γ
′
i(t))

)
sin2 π

ai
t dt

=

∫ π

0

(
(n− 1)− RicM∞(γ′∞(t), γ′∞(t))

)
sin2 t dt ≥ 0

Moreover, as in the proof of Green’s theorem one now computes:

0 ≤
∫
SMi

∫ ai

0

(
π2

a2i
(n− 1)− RicMi

(ζti (u), ζti (u))

)
sin2 π

ai
t dt dµi

=

(
Vol(Mi)

π2

a2i
(n− 1)− 1

n

∫
Mi

scalMi
dvolMi

)
Vol(Sn−1)

∫ ai

0
sin2 π

ai
t dt

≤ Vol(Mi)
π2 − a2i
a2i

(n− 1) Vol(Sn−1)

∫ ai

0
sin2 π

ai
t dt

≤ C

(π − ai)β
π2 − a2i
a2i

(n− 1) Vol(Sn−1)

∫ ai

0
sin2 π

ai
t dt→ 0

as i→∞. Here µi denotes the canonical measure induced by gi on the unit
sphere bundle over Mi associated to TMi, and Vol(Sn−1) stands for the
volume of the (n− 1)-dimensional unit sphere.

Since µi converges on SMi|BR(p) to µ∞, it follows that

A =

∫ π

0

(
(n− 1)− RicM∞(γ′∞(t), γ′∞(t))

)
sin2 t dt = 0.

Let V be a parallel vector field along γ∞ with V ⊥ γ′. Let W (t) =
V (t) sin t. Then the index form of W is bounded above by A. Therefore
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W is a Jacobi field. Hence it follows that g∞ has constant sectional curva-
ture 1 on BR(p). Since R can be chosen to be arbitrarily large, it follows
that (M∞, g∞) has constant curvature 1. Therefore M∞ is diffeomorphic to
a spherical space form.

This is a contradiction and, hence, the proof is complete. �

We now give a proof of Corollary 1.4:

Corollary 3.2. For all n ∈ N and λ1, d > 0 there exists ε = ε(n, λ1, d) > 0
such that every closed n-dimensional Riemannian manifold M with

∫
M

scalM dvolM ≥ n(n− 1) VolM injM ≥ π − ε

diamM ≤ d ‖∇RicM ‖ ≤ λ1

is diffeomorphic to the standard n-sphere.

Proof. At first we show that we have a two-sided Ricci curvature bound
for the considered manifolds. For this we may assume that injM ≥ π

2 . By
Lemma 2.4, we have an upper bound for the Ricci curvature on M . The
bound on the covariant derivative of the Ricci curvature, implies that the
norm of the derivative of the scalar curvature on M is bounded by a constant
which only depends on λ1. Moreover, by the lower bound on the integral of
the scalar curvature, we get that there is a point x ∈M with scal(x) ≥
n(n− 1). Therefore a global lower bound on the scalar curvature follows
from the mean value theorem and the upper diameter bound. This bound
only depends on λ1 and d. From the upper bound on the Ricci curvature, it
now follows that there is also a lower bound on the Ricci curvature.

This lower bound on Ricci curvature and the Bishop–Gromov Volume
Comparison Theorem imply that the upper diameter bound of M also yields
an upper volume bound v for M . Therefore we can take C = v and β = 0 and
apply the theorem. This shows that M is diffeomorphic to an n-dimensional
spherical space form with injectivity radius π. However, the only such space
form is the standard n-sphere. �

We also have the following corollary.
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Corollary 3.3. For all n ∈ N and λ1, v > 0 there exists ε = ε(n, λ1, v) > 0
such that every closed n-dimensional Riemannian manifold M with∫

M
scalM dvolM ≥ n(n− 1) VolM injM ≥ π − ε

VolM ≤ v ‖∇RicM ‖ ≤ λ1

is diffeomorphic to the standard n-sphere.

Proof. In view of Corollary 3.2, it is sufficient to show that the diameter of
all the manifolds, which satisfy the bounds in the statement of the corollary,
is bounded by a constant d(v, n). We may assume that injM ≥ π/2. Then it
follows from [19, Proposition 14] that the volume of geodesic balls of radius
π/4 is bounded from below by a constant C(n) > 0 which only depends on
the dimension of the manifold. Let γ : [0, d]→M be a minimizing geodesic
between two points in M which realize the diameter of M parametrized by
arc-length. Then γ([0, d]) can be covered by [2d/π] disjoint geodesic balls of
radius π/4. Therefore we have

VolM ≥ [2d/π]C(n).

Hence it follows that the diameter of M is bounded from above by some
d(v, n). �

4. Applications

In this section we apply the results from the previous section to the study
of manifolds with positive Ricci and positive sectional curvature as well as
to Einstein manifolds.

Our first result below directly implies the sphere theorem Corollary 1.5
in the introduction:

Theorem 4.1. For all n, k ∈ N there exists ε = ε(n, k) > 0 such that every
closed n-dimensional Einstein manifold M with Einstein constant n− 1,
order of the fundamental group |π1(M)| ≤ k and conjugate radius conjM ≥
π − ε is diffeomorphic to an n-dimensional spherical space form.

Proof. Notice first that
∫
M scalM dvolM ≥ n(n− 1) VolM and that VolM ≤

VolSn. Moreover, we may assume that conjM ≥ π
2 .

Let M̃ be the Riemannian universal covering of M . By [33, Theorem 3.1],
there is an i0 > 0 which does only depend on the dimension and the lower
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bounds for the Ricci curvatures and the conjugate radius of M̃ , such that
inj M̃ ≥ i0. Since M̃ →M is a finite k-sheeted covering, we have injM ≥
1
k inj M̃ ≥ i0

k .
Since ‖∇RicM ‖ = 0, we can now apply Theorem 1.3, which then gives

the desired conclusion. �

If we do not assume that the Ricci curvature is constant, we obtain
Theorem 1.6 from the introduction.

Theorem 4.2. For all n ∈ N and k > 0 there exists ε = ε(n, k) > 0 such
that every closed n-dimensional Riemannian manifold M with

|π1(M)| ≤ k
RicM ≥ n− 1

conjM ≥ π − ε

is diffeomorphic to an Einstein manifold with Einstein constant n− 1.

Proof. Let (Mi, gi) be a sequence of closed Riemannian n-manifolds with
RicMi

≥ n− 1, ai = conjMi and limi→∞ ai = π.
As in the proof of the previous theorem, one sees that there is an i0 > 0

such that injMi > i0. Therefore, by Theorem 2.3, we may assume that the
Mi converge in C0,α topology to a manifold (M∞, g∞). In particular, we
may assume that M∞ is diffeomorphic to Mi for sufficiently large i and that
the metrics gi converge in C0,α topology to the metric g∞.

By Green’s theorem, we now have

n(n− 1) ≤ 1

VolMi

∫
Mi

scalMi
dvolMi

≤ n(n− 1)π2

a2i
→ n(n− 1) as i→∞.

Hence for a vector field X on M∞ with ‖X‖∞ ≤ 1 and i sufficient large, we
have

1

VolMi

∫
Mi

|RicMi
(X,X)− (n− 1)‖X‖2i | dvolMi

=
1

VolMi

∫
Mi

RicMi
(X,X)− (n− 1)‖X‖2i dvolMi

≤ 1

VolMi

∫
Mi

(scalMi
−n(n− 1))‖X‖2i dvolMi

≤ 2

VolMi

∫
Mi

scalMi
−n(n− 1) dvolMi

→ 0 as i→∞.
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Here the first inequality follows because, for x ∈M and all Y ∈ TxMi,

RicMi
(Y, Y )− (n− 1)‖Y ‖2i ≥ 0.

Moreover we have scalMi
(x)=

∑n
j=1 RicMi

(Yj , Yj), where Y1, . . . , Yn is a or-
thonormal basis of TxMi with X(x) = ‖X(x)‖iY1. Therefore it follows that

scalMi
(x)‖X(x)‖i − n(n− 1)‖X(x)‖i

=

n∑
j=1

(RicMi
(Yj , Yj)‖X(x)‖2i − (n− 1)‖X(x)‖2i )

≥ RicMi
(X(x), X(x))− (n− 1)‖X(x)‖2i .

Hence, we have limi→∞ ‖RicMi
−(n− 1)gi‖L1 = 0. Now, as in [8, Proof

of Proposition 3.29, Step 3], it follows from elliptic regularity theory that
g∞ is a smooth Einstein metric with Einstein constant n− 1.

For the convenience of the reader, we give an outline of this argument.
Let h ∈ L1,p for p large with ‖h‖L1,p = 1. By the Hölder inequality and the
Sobolev embedding theorem, we have∫

M∞

〈RicMi
−(n− 1)gi, h〉 dvolM∞

≤ ‖RicMi
−(n− 1)gi‖L1‖h‖L∞

≤ K(p, n)‖RicMi
−(n− 1)gi‖L1‖h‖L1,p → 0

as i→∞. Therefore it follows that g∞ is a weak L1,p solution of the Einstein
equation.

In harmonic coordinates, the Einstein equation is given by the elliptic
system

gkj∞
∂2g∞,rs
∂xk∂xj

+Q(g∞, ∂g∞) = (RicM∞)rs = (n− 1)g∞,rs,

where Q is a quadratic term in g∞ and the first derivatives of g∞.
Since g∞ ∈ C0,α ∩ L1,p for large p, we have locally uniform C0,α bounds

on gkj∞ and Lp/2 bounds on Q and g∞,rs.
Elliptic regularity gives uniform bounds on ‖g∞‖L2,p/2 , for large p. There-

fore g∞ is contained in L2,p/2 ∩ C1,α. By continuing in this process, we get
from elliptic regularity that g∞ is real analytic in harmonic coordinates.

Hence, g∞ is a smooth Einstein metric. �



i
i

“8-Wiemeler” — 2019/8/22 — 23:04 — page 505 — #15 i
i

i
i

i
i

Smooth stability and positive scalar curvature 505

From the proof of the above result one also obtains what is Corollary 1.7
in the introduction:

Corollary 4.3. For all n ≥ 4 and k > 0 there exists ε = ε(n, k) > 0 such
that every closed n-dimensional Riemannian manifold M with

|π1(M)| ≤ k

secM ≥ 1− 3

n+ 2
RicM ≥ n− 1

conjM ≥ π − ε

is diffeomorphic to a spherical space form or a locally symmetric manifold
finitely covered by CPm, n = 2m.

If n = 4, we can replace the lower bound on the sectional curvature by

the bound secM ≥ 2−
√
2

2 to get the same conclusion.

Proof. Consider, as in the proof of Theorem 1.6, a sequence (Mi, gi) of n-
manifolds satisfying the above bounds. Then a subsequence will converge
in C0,α topology to an Einstein manifold (M∞, g∞) with Einstein constant
n− 1.

Because secMi
≥ 1− 3

n+2 , we have secM∞ ≥ 1− 3
n+2 . Therefore it follows

from Theorem 1.1 (ii) of [43] that M∞ is isometric to a locally symmetric
manifold finitely covered by Sn or CPm.

If M has dimension four, we get the same conclusion with the improved
lower bound on the sectional curvature from results of de Araujo Costa [20,
Theorem 1.2 (b)].

Hence the corollary follows. �

Remark 4.4. If we assume, in the situation of Corollary 4.3, that secM ≥
1− 3

n+2 + δ, with δ > 0, then by Corollary 3.1 of [43] M will be diffeomor-
phic to a spherical space form. Of course, in this case ε will also depend
on δ.

In dimension three a statement similar to Corollary 4.3 follows from
work of Hamilton [28].

It is asserted in [15] that a four-dimensional Einstein-manifold with Ein-
stein constant 3 and sectional curvature bounded from below by 1

4 is iso-
metric to a locally symmetric manifold. Given this, one can further improve
the lower bound on the sectional curvature in the four-dimensional case of
our corollary.
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Theorems 4.1 and 4.2 also suggest the following conjecture:

Conjecture 4.5. Under the assumptions of Theorem 4.2, M is actually
diffeomorphic to a spherical space form.

The problem which occurs if one wants to prove this conjecture is the
following: In the proof of Theorem 4.2 one only has convergence in C0,α

topology. The conjugate radius is not lower semi-continuous in this topology.
If it were upper semi-continuous in this topology, then the conjecture would
follow from Theorem 4.2 and Green’s Theorem.
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