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Balanced metrics on uniruled manifolds

Ionuţ Chiose, Rareş Răsdeaconu, and Ioana Şuvaina

We show that an n−dimensional Moishezon manifold is uniruled
if and only if it supports a balanced metric ωn−1 of positive total
scalar Chern curvature. A similar statement also holds true for
class C manifolds of dimension three.

Introduction

A compact complex manifold M is called uniruled if there exists a rational
curve passing through every point of M. A differential geometric characteri-
zation of uniruledness in complex dimension two was given by Yau [Ya]. He
proved that a Kähler surface S has Kodaira dimension −∞ (equivalently,
uniruled) if and only if it admits a Kähler metric ω of positive total scalar
curvature. This is equivalent to

(0.1)

∫
S
c1(KS) ∧ ω < 0,

where KS denotes the canonical line bundle of S.

The aim of this article is to extend Yau’s differential geometric charac-
terization in higher dimensions. In one direction, the existence of a Kähler
metric of positive total scalar curvature on projective uniruled manifolds
has been recently discussed by Heier and Wong [HW, Section 5], but a defi-
nite conclusion is elusive. Such metrics are known to exist on some uniruled
manifolds. Most notably, they exist on projective Mori fiber spaces of di-
mension three, as established by Demailly, Peternell and Schneider [DPS,
Proposition 4.9]. An approach to this existence question, which indicates
that in general the answer is negative, is proposed by the second author in
the case of rationally connected threefolds [Ră]. This suggests that instead
of searching for Kähler metrics of positive total scalar curvature on uniruled
manifolds, one should broaden the search to a larger class of metrics. To
detect a suitable such class of Hermitian metrics we follow Yau’s original
proof [Ya]. Yau’s approach to find Kähler metrics of positive total scalar
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curvature on uniruled surfaces relies on the minimal model theory. His proof
follows in two steps:

A) Bimeromorphic invariance: Yau shows that the existence of such met-
rics is an invariant property under bimeromorphic maps. In the case
of surfaces, the invariance under blow-ups suffices.

B) Existence of a Kähler metric of positive total scalar Chern curvature
on an exhaustive list of bimeromorphism classes of uniruled surfaces:
Yau proved the existence of Kähler metrics satisfying (0.1) on all ge-
ometrically ruled surfaces.

To extend Step A in higher dimensions, recall that any bimeromor-
phic map decomposes by the weak factorization theorem [AKMW, Theo-
rem 0.3.1] into a sequence of blow-ups and blow-downs with smooth centers.
A well-known fact is that, unlike uniruledness, the class of Kähler manifolds
of dimension greater than or equal to three is not closed under bimeromor-
phisms. We are led to consider a larger class of manifolds which is invari-
ant under bimeromorphisms. From the work of Alessandrini and Bassanelli
[AB1, AB2], it is known that the class of manifolds carrying balanced met-
rics, i.e., Hermitian metrics with co-closed Kähler form (see [Mi] and Sec-
tion 1), satisfies this property. In dimension two, any balanced metric is
in fact Kähler, but in higher dimensions there exist non-Kähler manifolds
which admit balanced metrics or Kähler manifolds which admit non-Kähler
balanced metrics. We prove:

Theorem A. Let X and Y be two bimeromorphic compact complex man-
ifolds of dimension n. If there exists a balanced metric ωn−1X on X such
that ∫

X
c1(KX) ∧ ωn−1X < 0,

then there exists a balanced metric ωn−1Y on Y such that∫
Y
c1(KY ) ∧ ωn−1Y < 0.

Demailly, Peternell and Schneider also asked if Step A can be accom-
plished for normal projective varieties [DPS, Problem 4.12]. Theorem A gives
a partial answer to their question.

An extension of Step B to uniruled manifolds of higher dimensions relies
on the state of the art of the minimal model program. For projective uniruled
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manifolds one can find a bimeromorphic simpler model in any dimension
[BCHM]. These bimeromorphic models are higher dimensional analogs of
the geometrically ruled surfaces, called Mori fiber spaces (see Section 3.2).
We show that every Mori fiber space admits Kähler metrics of positive total
scalar curvature, and we obtain:

Theorem B. Every n-dimensional, Moishezon, uniruled manifold X ad-
mits a balanced metric ωn−1 such that∫

X
c1(KX) ∧ ωn−1 < 0.

Recall that a compact complex manifold is Moishezon if it is bimero-
morphic to a projective manifold.

We provide two proofs for this result. One proof uses the minimal model
program. A second proof is based on ideas of Toma [To], and it relies on the
results of Boucksom, Demailly, Păun and Peternell [BDPP], bypassing the
minimal model program.

A generalization of the minimal model program to the class of Kähler
manifolds is known only in complex dimension three [HP1, HP2]. We prove
the following extension of Theorem B in dimension three:

Theorem C. Every uniruled threefold X of class C admits a balanced met-
ric ω2 such that ∫

X
c1(KX) ∧ ω2 < 0.

Recall that a complex manifold is called of class C if it is bimeromorphic
to a Kähler manifold. This class of manifolds is strictly larger than the class
of Kähler manifolds in dimension three or more, and it contains the class of
Moishezon manifolds. Every class C manifold carries balanced metrics by
[AB1, AB2].

The bimeromorphism invariance of the class of balanced manifolds in-
dicates that balanced metrics are natural to be considered as good replace-
ments of Kähler metrics in order to extend Yau’s differential geometric char-
acterization of uniruledness in higher dimensions. However, this is not the
only class of Hermitian metrics with such good properties. In fact, every
complex manifold admits Gauduchon metrics, that is positive (1, 1)-forms ω
such that ∂∂̄ωn−1 = 0 [Ga1]. Notice that every balanced metric is a Gaudu-
chon metric, while the converse is false. Moreover, from the positivity cri-
terion of Lamari [La1] and [BDPP, Corollary 0.3] one can see that every
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uniruled projective manifold admits Gauduchon metrics of positive total
scalar Chern curvature (see also Theorem D below). In Theorems B and C
we prove therefore a stronger result.

Conversely, Yau’s approach [Ya] can be adapted to show that the exis-
tence of a Kähler or a balanced metric of positive total scalar Chern cur-
vature on a complex manifold implies that the Kodaira dimension of the
manifold is −∞. One can easily see that uniruledness implies that Kodaira
dimension is −∞, but the converse is a well-known open problem. Heier
and Wong were able to show in [HW, Theorem 1.1] that every projective
manifold which admits a Kähler metric of positive total scalar curvature is
in fact uniruled. We extend here Theorem 1.1 of Heier and Wong [HW], and
combining with the results from Theorems B and C we provide the following
characterization of uniruledness:

Theorem D. Let X be an n-dimensional Moishezon manifold. The follow-
ing statements are equivalent:

i) KX is not pseudoeffective;

ii) X is uniruled;

iii) X admits a balanced metric of positive total scalar Chern curvature;

iv) X admits a Gauduchon metric of positive total scalar Chern curvature.

Moreover, the same statements hold true if n = 3 and X is of Fujiki class C .

The proof of the implications iv) =⇒ i) =⇒ ii) relies on the positivity
criterion of Lamari [La1, Théorème 1.2 (1)], and on remarkable results of
Boucksom, Demailly, Peternell and Păun [BDPP] and Brunella [Br].

We explore next the possibility of extending the above characterization
of uniruledness in terms of the positivity of the total scalar Chern curvature
of a balanced metric beyond class C . In general, the existence of a balanced
metric fails. However, in dimension three, a large class of uniruled manifolds
admitting such metrics is given by complex manifolds bimeromorphic to
twistor spaces [AHS]. We prove:

Theorem E. Every three dimensional complex manifold X bimeromorphic
to a twistor space admits a balanced metric ω2 such that∫

X
c1(KX) ∧ ω2 < 0.
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1. Total scalar curvatures

In this section we briefly recall some well-known background material in
complex differential geometry to introduce the terminology.

Let (M, g) be a Hermitian manifold and ω its Kähler form. On (M, g)
one can consider two canonical connections: the Levi-Civita connection, and
the Chern connection.

Let s denote the scalar curvature of the Levi-Civita connection. The
total scalar Riemannian curvature is defined as∫

M
sµg =

∫
M

sωn

n!
,

where µg =
ωn

n!
is the volume form.

Let sC denote the scalar curvature of the Chern connection associated
to the Hermitian metric g. The total scalar Chern curvature is defined by∫

M
sCµg.

The Ricci curvature form of the Chern connection represents the first Chern
class of M rescaled by a factor of 2π, and c1(M) = −c1(KM ), where KM is
the canonical line bundle of M. Since the scalar curvature is the trace of the
Ricci curvature form, we can write

(1.1)

∫
M
sCµg =

∫
M

sCω
n

n!
= − 2π

(n− 1)!

∫
M
c1(KM ) ∧ ωn−1.

A result due to Gauduchon [Ga2, page 506] (see also [LY, Corollary
1.11]) compares the total scalar Riemannian curvature and the total scalar
Chern curvature:

Proposition 1.1. Let (M, g) be a compact, complex manifold equipped with
a Hermitian metric. Then ∫

M
sCµg ≥

1

2

∫
M
sµg,

with equality if and only if the metric is Kähler.
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Corollary 1.2. Let (M, g) be a compact, complex manifold of dimension
n equipped with a Hermitian metric. If the scalar Riemannian curvature of
M is positive, then ∫

M
c1(KM ) ∧ ωn−1 < 0.

Definition 1.1. Let (M, g) be a compact complex manifold of complex
dimension n equipped with a Hermitian metric g, and let ω denote its Kähler
form. If dω = 0, then g is called a Kähler metric. A complex manifold which
admits a Kähler metric is called a Kähler manifold.

If g is a Kähler metric, then its Kähler form ω is a real, d-closed, strictly
positive (1, 1)-form. Conversely, given a smooth, strictly positive, d-closed
(1, 1)-form ω, there exists a Hermitian metric g whose Kähler form is ω. We
will use the notation (M,ω) to denote a Kähler manifold with prescribed
Kähler form.

Definition 1.2. Let (M, g) be a compact complex manifold of complex
dimension n equipped with a Hermitian metric g, and let ω denote its Kähler
form. If d(ωn−1) = 0, then g is called a balanced metric. A complex manifold
which admits a balanced metric is called a balanced manifold. We will use
the notation (M,ωn−1) to denote a balanced manifold.

Given a balanced metric of Kähler form ω, the (n− 1, n− 1)-form ωn−1

is real, strictly positive and d-closed. Conversely, it is an easy exercise in
linear algebra to see that given a real, strictly positive, d-closed (n− 1, n−
1)-form Ω, there exists a unique Hermitian metric of Kähler form ω such that
Ω = ωn−1 ([Mi, page 279]). Throughout the paper, by a balanced metric we
mean a real, d-closed, strictly positive (n− 1, n− 1)-form, denoted by ωn−1.

A Kähler manifold is balanced, and if n = 2 the converse is also true.
In higher dimensions the converse is false. A large class of counterexamples
is provided by the twistor spaces of closed anti-self-dual four-manifolds (see
Sect. 4). Another interesting class of non-Kähler balanced manifolds has
been found by Fu, Li and Yau. In [FLY], the authors showed that the complex
structures with trivial canonical bundles constructed by Lu and Tian [LT]
and Friedman [Fr] on connected sums of S3 × S3 carry a balanced metric.
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2. Positive cones in Bott-Chern and Aeppli cohomology
groups

In this section we recall the definitions of the Bott-Chern and Aeppli coho-
mology groups, and of the pseudoeffective and the nef cones. In the Kähler
case, these cohomology groups are isomorphic to the usual Dolbeault co-
homology groups due to the ∂∂̄-lemma. However, we prefer to work with
the Bott-Chern and Aeppli cohomology groups since the class of a d- or
i∂∂̄-closed positive current lies naturally in these cohomology groups, and,
moreover, the duality statements between the nef and pseudoeffective cones
(Theorem 2.4) can be naturally stated in this setting. For more details, see
[Sc].

Let X be a compact complex manifold of dimension n. The Bott-Chern
cohomology groups are defined as

Hp,q
BC(X,C) =

{α ∈ C∞p,q(X)|dα = 0}
{i∂∂̄β|β ∈ C∞p−1,q−1(X)}

,

and the Aeppli cohomology groups are

Hp,q
A (X,C) =

{α ∈ C∞p,q(X)|i∂∂̄α = 0}
{∂β + ∂̄γ|β ∈ C∞p−1,q(X), γ ∈ C∞p,q−1(X)}

Since all the operators involved in the definitions of the above cohomology
groups are real in bidegrees (p, p) the real cohomology groups Hp,p

BC(X,R)
and Hp,p

A (X,R) are well-defined. The above groups can be defined by using
smooth forms or currents. We use the notation [s] for the class of a d-closed
form or current s in H•,•BC and {t} for the class of a ∂∂̄-closed form or current t
in H•,•A . The groups Hp,q

BC(X,C) and Hn−p,n−q
A (X,C) are dual via the pairing

(2.1) Hp,q
BC(X,C)×Hn−p,n−q

A (X,C)→ C, ([α], {β})→
∫
X
α ∧ β

By an abuse of notation, we also denote by (α, β) the evaluation
∫
X α ∧

β, regardless of whether α and β denote appropriate forms, currents or
cohomology classes.

Definition 2.1 (Lelong [Le]). Let T be a current of bi-dimension (p, p).
We say that T is a positive current, and we write T ≥ 0, if T ∧ iα1 ∧ ᾱ1 ∧
· · · ∧ iαp ∧ ᾱp is a positive measure, for all smooth (1, 0)−forms α1, . . . , αp.
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For # ∈ {BC,A} and p ∈ {1, n− 1} we define the following cones:

1) the #−pseudoeffective cone

(2.2) E p
X,# = {γ ∈ Hp,p

# (X,R)|∃T ≥ 0, T ∈ γ},

where by T we denote here a current.

2) the #−nef cone

(2.3) N p
X,# = {γ ∈ Hp,p

# (X,R)|∀ε > 0,∃αε ∈ γ, αε ≥ −εωp}

where ω is the Kähler form of a fixed Hermitian metric on X and αε
denotes a smooth (p, p)−form.

Notice that all of the cones defined above are convex cones.

Remark 2.1. The pseudoeffective and nef cones E 1
X,BC and N 1

X,BC were
first introduced by Demailly [De, Definition 1.3], who stressed their impor-
tance. We adapt here his definitions to (n− 1, n− 1) Bott-Chern cohomol-
ogy classes and to (p, p) Aeppli cohomology classes, where p ∈ {1, n− 1}.

The following two lemmas are standard, and some of the statements
below are proved in [De, Proposition 6.1]. As they play a crucial part in our
argument, and for the reader’s convenience, we include their proofs.

Lemma 2.2. The cone E 1
X,BC is closed and N 1

X,BC ⊂ E 1
X,BC .

Proof. The proof of the lemma relies on the existence of Gauduchon metrics
on any compact complex manifold [Ga1]. That means X admits a Hermitian
metric g with Kähler form ω satisfying ∂∂̄ωn−1 = 0.

Indeed, suppose ([Tj ])j is a sequence of pseudoeffective classes repre-
sented by the closed positive currents Tj such that [Tj ]→ γ ∈ H1,1

BC(X,R).
Fix g a Gauduchon metric with Kähler form ω, and notice that

∫
X Tj ∧

ωn−1 depends only on the Aeppli cohomology class {ωn−1} and on the
BC-cohomology class [Tj ], not on the representative ω. Since the sequence
(
∫
X Tj ∧ ω

n−1)j is bounded, we can assume, after passing to a subsequence,
that (Tj)j is weakly convergent to a closed positive current T . Then γ =
[T ] ∈ E 1

X,BC .

To prove that N 1
X,BC ⊂ E 1

X,BC , let [α] ∈ N 1
X,BC , where α is a d-closed

smooth (1, 1)-form. Then, by definition, for every ε > 0, there exists
ϕε ∈ C∞(X,R) such that αε := εω + α+ i∂∂̄ϕε ≥ 0. Since

∫
X αε ∧ ω

n−1 is
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bounded for 0 < ε ≤ 1, we extract a weakly convergent subsequence (αεj )j ,
converging to a closed, positive current in class [α]. Hence [α] ∈ E 1

X,BC . �

Lemma 2.3. The cones N p
X,# are closed, where p ∈ {1, n− 1} and # ∈

{BC,A}.

Proof. Let {γj}j be a sequence, where γj ∈ N p
X,# and γj → γ in Hp,p

# (X,R).
In each cohomology class γj , we choose the unique harmonic representative
βj and let β be the unique harmonic representative in γ with respect to some
fixed Hermitian metric on X (see [Sc] for more on the harmonic forms in
the Bott-Chern and Aeppli cohomology groups 1). Then, from the standard
theory of elliptic operators, it follows that βj → β in the C∞ topology. This
immediately implies that γ is nef. Indeed, for every p ∈ {1, n− 1}, given
ε > 0, we can find jε such that β − βjε ≥ − ε

2ω
p. Since γjε (which is the

class of βjε) is nef, it follows that for every δ > 0 there exists a smooth
form λε,δ ∈ γjε such that λε,δ ≥ − δ

2ω
p. Notice now that, for every ε > 0 and

δ > 0, β − βjε + λε,δ is a smooth representative of γ which is ≥ − ε+δ
2 ωp.

Therefore γ is nef. �

Given V a real vector space, denote by V ∗ its dual. If C a convex cone
in V , we denote by C∗ ⊂ V ∗ its dual:

C∗ = {v∗ ∈ V ∗|v∗(c) ≥ 0,∀c ∈ C}.

By the Hahn-Banach Theorem, we have C∗∗ = C.

Theorem 2.4. Let X be a compact complex manifold of dimension n. Then

i) N 1
X,BC = (E n−1

X,A )∗,

ii) N n−1
X,A = (E 1

X,BC)∗.

Moreover, if X is balanced, then

iii) N 1
X,A = (E n−1

X,BC)∗,

iv) N n−1
X,BC = (E 1

X,A)∗.

Proof. The proof of the above statements either follows directly from [La1],
or the arguments in [La1] go through mutatis mutandis. For the convenience

1The Bott-Chern Laplacian was introduced by Kodaira and Spencer in [KS, page
71]. In op. cit., Schweitzer adapted this construction to define the Aeppli Laplacian
on the same model.
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of the reader we include the details in the cases ii), iii) and iv) which are
not covered by the results in [La1].

i) This is Théorème 1.2 (1) in [La1]. 2

ii) Clearly N n−1
X,A ⊂ (E 1

X,BC)∗. Conversely, (E 1
X,BC)∗ ⊂ N n−1

X,A is equiva-

lent to (N n−1
X,A )∗ ⊂ E 1

X,BC since E 1
X,BC is closed. Let [η] ∈ H1,1

BC(X,R)

be such that ([η], γ) ≥ 0, ∀γ ∈ N n−1
X,A . In particular, (η,Ω) ≥ 0 for any

positive i∂∂̄-closed (n− 1, n− 1) form Ω on X. Lemme 1.4 in [La1]
implies the existence of a distribution χ such that η + i∂∂̄χ ≥ 0, that
is [η] ∈ E 1

X,BC .

iii) The inclusion N 1
X,A ⊂ (E n−1

X,BC)∗ follows immediately. For the opposite
inclusion, we adapt the proof of Lemme 1.3 in [La1] to our situation.

Let {η} ∈ H1,1
A (X,R) be an Aeppli cohomology class such that

({η}, γ) ≥ 0, ∀γ ∈ E n−1
X,BC , and η ∈ C∞1,1(X,R) a representative.

We proceed by fixing a Hermitian metric on X, with Kähler form
φ. Let D ′n−1,n−1(X,R) denote the space of real currents of bidegree
(n− 1, n− 1) on X, and define

Cn−1 = {T ∈ D ′n−1,n−1(X,R)|T ≥ 0, (T, φ) = 1},

which is a convex, compact set.
The set V of all balanced metrics on X is an open convex cone in

E = {λn−1 ∈ C∞n−1,n−1(X,R)|dλn−1 = 0}.

We have (η, ωn−1) ≥ 0, ∀ωn−1 ∈ V . If (η, ωn−1) = 0, ∀ωn−1 ∈ V , then
(η, λn−1) = 0, ∀λn−1 ∈ E since V is open in E. From the duality be-
tween Hn−1,n−1

BC (X,R) and H1,1
A (X,R) it follows that {η} = 0 ∈ N 1

X,A.

We can therefore suppose that there exists ωn−10 ∈ V a balanced metric
such that (η, ω0) > 0. Let Dn−1 = Cn−1 ∩ E′, where

E′ = {T ∈ D ′n−1,n−1(X,R)|dT = 0}.

It is a convex, compact subset of D ′n−1,n−1(X,R) which is non-empty,
as it contains the balanced metrics. Without loss of generality, we can
assume that ωn−10 ∈ Dn−1, i.e., that (ωn−10 , φ) = 1.

2The cones N 1
X,BC and E n−1

X,A are the denoted by P 1
nef(X) and Πn−1, respectively

in [La1, Théorème 1.2 (1)].
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For ε > 0, set C(ε) = Cn−1 + εωn−10 and D(ε) = Dn−1 + εωn−10 . As
ωn−10 is d-closed, we have C(ε) ∩ E′ = D(ε). Since (η, T ) ≥ 0, ∀T ∈
Dn−1 and (η, ωn−10 ) > 0, it follows that (η, T ) > 0, ∀T ∈ D(ε). The
subspace

F = E′ ∩ {T ∈ D ′n−1,n−1(X,R)|(η, T ) = 0}

is closed in D ′n−1,n−1(X,R) and of codimension 1 in E′. Moreover,

C(ε) ∩ F = C(ε) ∩ E′ ∩ {T ∈ D ′n−1,n−1(X,R)|(η, T ) = 0}
= D(ε) ∩ {T ∈ D ′n−1,n−1(X,R)|(η, T ) = 0}
= ∅.

We can therefore separate C(ε) and F with a smooth (1, 1) form βε
which vanishes on F and is strictly positive on C(ε). If we let λε =
(η, ωn−10 )

(βε, ω
n−1
0 )

, then the (1, 1)-form η − λεβε is zero on E′. Therefore, from

the duality between H1,1
A (X,R) and Hn−1,n−1

BC (X,R), it follows that
there exists γε a smooth (1, 0)-form such that

η − λεβε = −∂̄γε − ∂γ̄ε

and the (1, 1)-form

η + ∂̄γε + ∂γ̄ε = λεβε

is strictly positive on C(ε). If T ∈ Cn−1, then T + εωn−10 ∈ C(ε) and
so

(η + ∂̄γε + ∂γ̄ε, T + εωn−10 ) = (η + ∂̄γε + ∂γ̄ε, T ) + ε(η, ωn−10 ) > 0.

Hence (η + ∂̄γε + ∂γ̄ε, T ) > −ε(η, ωn−10 ), ∀T ∈ Cn−1.
Set nowm = (η, ωn−10 ). If T is a positive non-zero current of bidegree

(n− 1, n− 1) on X, then 1
(T,φ)T ∈ C

n−1, therefore

(η + ∂̄γε + ∂γ̄ε, T ) ≥ −εm(T, φ), ∀T ≥ 0

which means η + ∂̄γε + ∂γ̄ε ≥ −εmφ. This implies that {η} ∈ N 1
X,A.

iv) If X is balanced, then E 1
X,A is closed (see Lemma 2.5 below). Clearly

N n−1
X,BC ⊂ (E 1

X,A)∗ and the other inclusion is equivalent to (N n−1
X,BC)∗ ⊂
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E 1
X,A since E 1

X,A is closed. We adapt the proof of Lemme 1.4 in [La1]
to our situation.

Let {θ} ∈ H1,1
A (X,R) be an Aeppli cohomology class such that

({θ}, γ) ≥ 0, ∀γ ∈ N n−1
X,BC , and θ ∈ C∞1,1(X,R) a representative. In par-

ticular, (θ, ωn−1) ≥ 0, ∀ωn−1 ∈ V , where V ⊂ C∞n−1,n−1(X,R) is the

cone of all balanced metrics on X. Assume there exists ωn−10 ∈ V
such that (θ, ωn−10 ) = 0. Let βn−1 ∈ C∞n−1,n−1(X,R) be a d-closed (n−
1, n− 1)-form on X. Set ωn−1t = (1− t)ωn−10 + tβn−1 and f(t) =
(θ, ωn−1t ). Then, there exists ε > 0 such that ωn−1t ∈ V for −ε ≤ t ≤ ε.
Therefore f(−ε) ≥ 0, f(ε) ≥ 0, f(0) = 0, and it follows that f ≡ 0,
and so (θ, βn−1) = 0, ∀βn−1 ∈ C∞n−1,n−1(X,R), with dβn−1 = 0. The

duality between Hn−1,n−1
BC (X,R) and H1,1

A (X,R) implies that {θ} =
0 ∈ E 1

X,A.

We can suppose now that (θ, ωn−1) > 0, ∀ωn−1 ∈ V . Set

U = {λn−1 ∈ C∞n−1,n−1(X,R)|λn−1 > 0}
E = {λn−1 ∈ C∞n−1,n−1(X,R)|dλn−1 = 0}
F = {λn−1 ∈ E|(θ, λn−1) = 0}.

Then U ∩ E = V and V ∩ F = ∅, and hence U ∩ F = ∅. By the Hahn-
Banach theorem, we can separate U and F by a current T of bide-
gree (1, 1) which is strictly positive on U and vanishes on F . Then T

is a positive current. Let ωn−1 ∈ V and define λ =
(θ, ωn−1)

(T, ωn−1)
. Then

θ − λT is zero on E and from the duality between H1,1
A (X,R) and

Hn−1,n−1
BC (X,R) it follows that there exists S a (1, 0)-current on X

such that

θ − λT = −∂̄S − ∂S̄.
Hence, the current θ + ∂̄S + ∂S̄ is positive and {θ} ∈ E 1

X,A. �

Let

KX = {[ω] ∈ H1,1
BC(X,R)| ω is a Kähler metric}

denote the Kähler cone of X. Similarly, we define the balanced cone:

BX = {[ω] ∈ Hn−1,n−1
BC (X,R)| ωn−1 is a balanced metric}.

Lemma 2.5. Let X be a compact complex manifold of dimension n.

i) If X is Kähler, then N 1
X,BC = K X . Moreover, E n−1

X,A is closed and we

have, N n−1
X,A ⊂ E n−1

X,A .
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ii) If X is balanced, then N n−1
X,BC = BX . Moreover, E 1

X,A is closed.

Proof. The proof is an adaptation of the arguments in Lemma 2.2.

i) Since KX ⊂ N 1
X,BC and N 1

X,BC is closed, we can see that K X ⊂
N 1
X,BC . Conversely, fix ω a Kähler metric and let η ∈ N 1

X,BC . Then

η + t[ω] ∈ KX for any t > 0 and η = lim
t→0

η + t[ω] ∈ K X . This proves

that KX = N 1
X,BC .

As in the proof of Lemma 2.2, we show that E n−1
X,A is closed and

N n−1
X,A ⊂ E n−1

X,A . Let ω be a Kähler metric on X and η ∈ E n−1
X,A . Let

Tj positive i∂∂̄-closed currents of bidegree (n− 1, n− 1) such that
{Tj} → η in Hn−1,n−1

A (X,R). Then the sequence (
∫
X Tj ∧ ω)j is

bounded, hence we can extract a subsequence (Tjk)k which is weakly
convergent to a positive i∂∂̄-closed current T and T ∈ η. Therefore
we have η ∈ E n−1

X,A . In order to prove the inclusion N n−1
X,A ⊂ E n−1

X,A , let

η ∈ N n−1
X,A . Then, by definition, η + ε{ωn−1} ∈ E n−1

X,A , and since E n−1
X,A

is closed, it follows that η = lim
ε→0

η + ε{ωn−1} ∈ E n−1
X,A .

ii) We have BX ⊂ N n−1
X,BC and, since N n−1

X,BC is closed, it follows that

BX ⊂ N n−1
X,BC . Conversely, fix ωn−1 a balanced metric on X and let

η ∈ N n−1
X,BC . Then η + t[ωn−1] ∈ BX for any t > 0 and therefore η =

lim
t→0

η + t[ωn−1] ∈ BX .

We show next that E 1
X,A is closed. Let ωn−1 be a fixed balanced met-

ric on X and consider a sequence (Sj)j of positive i∂∂̄-closed currents
of bidegree (1, 1) converging to η ∈ H1,1

A (X,R). Then the sequence
(
∫
X Sj ∧ ω

n−1)j is bounded and so there exists a subsequence (Sjk)k
converging weakly to a positive i∂∂̄-closed current S of bidegree (1, 1).
That means {S} = η ∈ E 1

X,A, and so the cone E 1
X,A is closed. �

Remark 2.6. If X is a Kähler manifold, we have a natural map $ : K →
B given by $([ω]) = [ωn−1]. Fu and Xiao [FX] showed that the map p is
injective [FX, Proposition 1.1]. Moreover, p is not always surjective. More
precisely, they provided examples of manifolds [FX, pages 11 and 12] where
BX \$(KX) 6= ∅.

We have natural morphisms

j1 : H1,1
BC(X,R)→ H1,1

A (X,R)
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and

jn−1 : Hn−1,n−1
BC (X,R)→ Hn−1,n−1

A (X,R)

which are isomorphisms if X is Kähler, due to the ∂∂̄-lemma.

Proposition 2.7. Let X be a compact Kähler manifold of dimension n.
Then

(2.4) jn−1(E
n−1
X,BC) = E n−1

X,A

and

(2.5) j1(N
1
X,BC) = N 1

X,A

Proof. The second statement follows from the first one by duality. From
Theorem 2.4, we have that (N 1

X,BC)∗ = E n−1
X,A since E n−1

X,A is closed. Corollary

0.3 in [DP] implies that the currents of the form jn−1([
∫
Y ω

p−1 ∧ •]), where
Y is a p-dimensional analytic subset of X and ω is a Kähler metric on X,
generate the cone E n−1

X,A . Since the currents
(∫
Y ω

p−1 ∧ •
)

are d-closed and

positive, we see that jn−1(E
n−1
X,BC) = E n−1

X,A . �

Remark 2.8. Given a compact complex Kähler manifold of dimension n,
Conjecture 2.3 in [BDPP] implies that jn−1(N

n−1
X,BC) = N n−1

X,A , i.e., that the

dual of the pseudoeffective cone E 1
X,BC is the closure of the cone of classes

of balanced metrics.

2.1. Néron-Severi groups

For a compact complex manifold X of dimension n we have natural maps

αp : Hp,p
BC(X,R)→ H2p

dR(X,R),

βp : H2p
dR(X,R)→ Hp,p

A (X,R),

γp : H2p(X,Z)→ H2p
dR(X,R).

Define the Néron-Severi groups

Hp,p
BC,NS(X,R) = α−1p (γp(H

2p(X,Z)))⊗Z R ⊂ Hp,p
BC(X,R)

and

Hp,p
A,NS(X,R) = βp(γp(H

2p(X,Z)))⊗Z R ⊂ Hp,p
A (X,R).



i
i

“3-Chiose” — 2019/8/19 — 14:43 — page 343 — #15 i
i

i
i

i
i

Balanced metrics on uniruled manifolds 343

If X is projective, then the canonical morphisms

H1,1
BC,NS(X,R)→ H1,1

A,NS(X,R)

and

Hn−1,n−1
BC,NS (X,R)→ Hn−1,n−1

A,NS (X,R).

are isomorphisms, and the standard notation for these groups are N1 or
NS1

X , and N1, respectively. The group NS1
X is generated by classes of di-

visors on X, and by the Hard Lefschetz Theorem, it follows that N1 is
generated by classes of curves on X.

Let the subscript NS denote the intersection of a cone (nef or pseudo-
effective) with the Néron-Severi groups.

Proposition 2.9. If X is compact Kähler of dimension n, then the pairing

(2.6) Hp,p
BC,NS(X,R)×Hn−p,n−p

A,NS (X,R)→ R, ([α], {β})→
∫
X
α ∧ β

is nondegenerate and all the equalities of Theorem 2.4 hold at the Néron-
Severi level. Moreover,

jn−1(E
n−1
BC,NS) = E n−1

A,NS

and

j1(N
1
BC,NS) = N 1

A,NS .

If X is projective, then

(2.7) jn−1(N
n−1
BC,NS) = N n−1

A,NS

and

(2.8) j1(E
1
BC,NS) = E 1

A,NS .

Proof. The only non-trivial statement is (2.8), as (2.7) follows by duality.
Let {T} ∈ E 1

A,NS where T is a positive, ∂∂̄-closed current, and let

j1([S]) = {T}, [S] ∈ H1,1
BC,NS(X,R). We want to show that [S] ∈ E 1

BC,NS .
For the proof, we follow [To].
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From [BDPP, Theorem 2.2] we see that it is enough to check that

([S], {p∗(A1 ∩ · · · ∩An−1)}) ≥ 0,

where p : Y → X is a proper modification of X and A1, . . . , An−1 are very
ample line bundles on Y . However, from Theorem 3 in [AB2], there exists
T ′, a positive pluriharmonic current on Y which is the total transform of T ,
and we have

([S], {p∗(A1 ∩ · · · ∩An−1)}) = ({T}, [p∗(A1 ∩ · · · ∩An−1])
= (T ′, A1 ∩ · · · ∩An−1)
≥ 0. �

Remark 2.10. Boucksom, Demailly, Păun and Peternell define [BDPP,
Definition 1.1] the pseudoeffective cone ENS as E 1

X,dR ∩NSR(X), where

NSR(X) = (H1,1
R (X) ∩H2(X,Z)/torsion)⊗Z R.

Formula (2.8) above implies in particular that, at the Néron-Severi level, the
pseudoeffective cones E 1

BC,NS , E 1
A,NS and ENS coincide via the canonical iso-

morphisms between the cohomology groups H1,1
BC,NS(X,R), H1,1

A,NS(X,R),
and NSR(X).

3. Uniruled manifolds and balanced metrics

3.1. Bimeromorphism invariance

We prove here that the existence of a balanced metric of positive total scalar
Chern curvature is an invariant property under bimeromorphisms.

Proof of Theorem A. By [AKMW], we can assume that p : Y → X is a blow-
up with smooth center C and let E be the exceptional divisor of p. Then
KY = p∗KX + aE, where a = codimX C − 1 > 0.

Suppose first that X admits a balanced metric ωn−1X which is negative
on the canonical line bundle of X. Let i : E → Y denote the inclusion. Since∫

Y
c1(E) ∧ p∗ωn−1X =

∫
E
i∗p∗ωn−1X =

∫
C
ωn−1X = 0,

we find that∫
Y
c1(KY ) ∧ p∗ωn−1X =

∫
Y
c1(p

∗KX) ∧ p∗ωn−1X =

∫
X
c1(KX) ∧ ωn−1X < 0.
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It is known that Y is also balanced [AB3], and if ωn−1Y is a balanced metric
on Y , then p∗ωn−1X + εωn−1Y is a balanced metric and∫

Y
c1(KY ) ∧ (p∗ωn−1X + εωn−1Y ) < 0,

for a small ε > 0.
Conversely, suppose that Y supports a balanced metric ωn−1Y such that

(3.1)

∫
Y
c1(KY ) ∧ ωn−1Y < 0.

and suppose that ∫
X
c1(KX) ∧ ωn−1 ≥ 0

for any balanced metric ωn−1 on X. Then∫
X
c1(KX) ∧ η ≥ 0

for any class [η] ∈ N n−1
BC,X . Therefore, by Theorem 2.4 iv), {c1(KX)} ∈ E 1

X,A,

i.e., there exists T a positive ∂∂̄-closed (1, 1)-current in the Aeppli coho-
mology class {c1(KX)}. From [AB2], it follows that there exists a positive
∂∂̄-closed current on Y denoted by T ′, which is the total transform of T.
This means that

T ′ ∈ {c1(p∗KX)} = p∗{c1(KX)}.

In particular, {c1(p∗KX)} ∈ E 1
Y,A and therefore

{c1(KY )} = {c1(p∗KX)}+ a{[E]} ∈ E 1
Y,A

which contradicts (3.1). �

3.2. Metrics on Mori fiber spaces

We start by recalling background definitions from the minimal model pro-
gram.

Definition 3.1. A compact complex variety Y is called Q−factorial if every
Weil divisor of Y is Q−Cartier.
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Let Y be normal variety such that mKY is Cartier for some m > 0, and
let f : Z → Y be a resolution of singularities. Up to numerical equivalence,
we can write

KZ ≡Q f
∗(KY ) +

∑
i

aiEi,

where the Ei’s are the f−exceptional divisors, and ai ∈ Q.

Definition 3.2. We say that Y has log-terminal singularities if ai > −1,
for all i.

It is well-known that this definition is independent of the choice of the
resolution [KM].

Definition 3.3. A normal compact complex variety Y with only Q−factorial
log-terminal singularities equipped with a map φ : Y → B is called a Mori
fiber space if the following conditions are satisfied:

i) The map φ is a morphism with connected fibers onto a normal variety
B with dimB < dimY.

ii) All the curves C in the fibers of φ are numerically proportional and
KY · C < 0.

3.2.1. The projective case. We give here a first proof of Theorem B
based on the the minimal model program. A second proof, circumventing
the minimal model program follows.

Proposition 3.1. Let φ : Y → B be a Mori fiber space, with Y and B
projective. Then, there exists an ample line bundle H on Y such that

KY ·Hn−1
Y < 0.

Proof. If dimB = 0, by Kleiman’s Ampleness Criterion −KY is ample, and
so KY ·Hn−1 < 0 for all ample line bundles on Y.

Assume now that dimB = b > 0 and fix an ample line bundle L on B,
and H0 an ample line bundle on Y. Let

Hm = mφ∗L+H0.
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Then Hm is an ample line bundle on Y for all m > 0, and

KY ·Hn−1
m = KY · (mφ∗L+H0)

n−1

= c(n, b)mbKY · (φ∗L)b ·Hn−1−b
0 +O(mb−1)

= c(n, b)mb(Lb)(KF ·Hn−1−b
0 ) +O(mb−1),

where c(n, b) is a positive integer depending only on n and b, and F denotes
the fiber of φ. By the relative version of Kleiman’s Ampleness Criterion [KM,
Theorem 1.44] we see that −KF is ample, and so KY ·Hn−1

m < 0 for m� 0.
Take now HY = Hm for some fixed m� 0. �

The first proof of Theorem B. LetX be a smooth, Moishezon, uniruled man-
ifold of dimension n > 0. Then there exists a smooth projective manifold Y
of dimension n bimeromorphic to X. Since uniruledness is preserved under
bimeromorphic transformations, Y is uniruled. According to [Ko, Theorem
IV.1.9], there exists a non-constant holomorphic map u : P1 → Y, such that
u∗TY is globally generated. Since we have an injection from OP1(2) = TP1 to
u∗TY , it follows that deg u∗TY ≥ 2, and so KY · u(P1) < 0. But the curve
u(P1) moves in a family covering X, and so by [BDPP, Theorem 0.2],
the canonical bundle KY is not pseudoeffective. This implies, according
to [BCHM, Corollary 1.3.3], that Y is birational to a Mori fiber space
φ : Z → B with Z and B projective. In general, Z is not smooth, and let
f : Ẑ → Z be a desingularization. Then, there exists an ample line bundle
HẐ on Ẑ such that

KẐ ·H
n−1
Ẑ

< 0.

Indeed, from Proposition 3.1, we know that there exists an ample line bundle
HZ on Z such that KZ ·Hn−1

Z < 0. Fix H0 be an ample line bundle on Ẑ.
For every m > 0, let

Hm = mf∗HZ +H0

Then Hm is an ample line bundle on Ẑ, and

KẐ ·H
n−1
m = (f∗KZ +

∑
i

aiEi) · (mf∗HZ +H0)
n−1

= mn−1KZ ·Hn−1
Z +O(mn−2) < 0,

for m sufficiently large. Take now HẐ = Hm for fixed m� 0. Since HẐ is
ample, the first Chern class of kHm is represented by the Kähler form of
a Hodge metric ωẐ for sufficiently large k. In particular, we found on Ẑ a
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Kähler metric ω such that∫
Ẑ
c1(KẐ) ∧ ωn−1

Ẑ
< 0.

Since Ẑ and X are smooth and bimeromorphic manifolds, we can apply now
Theorem A to conclude that X admits a balanced metric ωn−1 such that∫

X
c1(KX) ∧ ωn−1 < 0.

�

We give next a short second proof of Theorem B using the results pre-
sented in Section 2. In fact, for projective manifolds we can prove a slightly
more precise result:

Proposition 3.2. Let X be a uniruled projective manifold of dimension
n. Then there exists ωn−1 a balanced metric, [ωn−1] ∈ Hn−1,n−1

BC,NS (X,R) such
that

(3.2)

∫
X
c1(KX) ∧ ωn−1 < 0

Proof. Since X is uniruled, arguing as in the first proof of Theorem B,
we see that the canonical bundle KX is not pseudoeffective. Hence, as in
Remark 2.10, c1(KX) /∈ E 1

BC,NS . As a consequence, from Proposition 2.9 we

see c1(KX) /∈ E 1
A,NS . Theorem 2.4 now implies the existence of a balanced

metric ωn−1 with integral class whose pairing with c1(KX) is negative. �

The proof of Theorem B now follows from Proposition 3.2 and Theo-
rem A.

3.2.2. The Kähler case. The first proof of Therem B can be adapted in
Kähler setting.3

Proposition 3.3. Let φ : Z → S be a Mori fiber space where Z and S are
Kähler spaces. Then there exists a Kähler form η on Z such that

KZ · [ηn−1] < 0.

3Here we have to work with singular Kähler spaces. For the basic notions in the
theory of a Kähler space we refer the interested reader to the sections 2 and 3 in
[HP2].
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Proof. Fix ωS and ωZ Kähler forms on S and Z, respectively and consider
the family of Kähler forms

ηt = tφ∗ωS + ωZ , t > 0.

As in the proof of Proposition 3.1 we see that KZ · [ηn−1t ] < 0 for t� 0. We
omit the details. �

Proof of Theorem C. Let X be a smooth, uniruled, 3−dimensional mani-
fold of class C . That means there exists a uniruled, 3−dimensional, Kähler
manifold Y bimeromorphic to X.

According to Höring and Peternell [HP2, Theorem 1.1], Y is bimero-
morphic to a Kähler Mori fiber space Z as in Proposition 3.3. In general, Z
is not smooth. Let f : Ẑ → Z be a desingularization. By [Va, 1.3.1], Ẑ is a
smooth Kähler manifold. As in the first proof of Theorem B, we can find a
Kähler metric ω on Ẑ such that∫

Y
c1(KẐ) ∧ ω2 < 0.

Applying now Theorem A, we can conclude that X admits a balanced metric
with the property claimed in Theorem C. �

3.3. Characterization of uniruledness

In this very short section, we complete the characterization of uniruledness,
by proving a converse to Theorems B and C.

Proof of Theorem D. The implication ii) =⇒ iii) is the content of Theo-
rems B and C, while iii) =⇒ iv) is trivial. Morever, from the positivity
criterion of Lamari [La1, Théorème 1.2 (1)] (see also Theorem 2.4, part i))
we can see that iv) =⇒ i).

Finally, it remains to show that i) =⇒ ii). Since neither uniruledness nor
the pseudoeffectivity of the canonical divisor is affected by bimeromorphic
transformations, we may assume that either X is projective, or X is a non-
projective Kähler threefold. In the first case, the remarkable Corollary 0.3
in [BDPP] shows that X is uniruled, while in the second case we reach the
same conclusion using the equally remarkable Corollary 1.2 in [Br]. �



i
i

“3-Chiose” — 2019/8/19 — 14:43 — page 350 — #22 i
i

i
i

i
i
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4. Balanced metrics on twistor spaces

A large class of examples of uniruled complex manifolds is provided by the
manifolds bimeromorphic to the twistor spaces of closed anti-self dual four-
manifolds. These are compact complex manifolds of dimension three [AHS],
equipped with a one-parameter family of balanced metrics [Mi, Mu]. In this
section, we show that among these metrics there exists a balanced metric of
positive total Chern scalar curvature.

We start by recalling the construction of the twistors spaces.

Let (M, g) be an oriented Riemannian 4−manifold. Under the action of
the Hodge ?−operator

? : Λ2M → Λ2M,

one has a decomposition Λ2M = Λ+ ⊕ Λ− into self-dual and anti-self-dual
forms, corresponding to the (±1)− eigenvalues of ?.

Let R : Λ2 → Λ2 be the Riemannian curvature operator. Under the ac-
tion of SO(4), the Riemannian curvature operator decomposes as

R =
s

6
Id+W− +W++

◦
r,

where s denotes the scalar curvature, W± are the self-dual and anti-self-

dual components of the Weyl curvature operator, and
◦
r is the trace-free

Ricci curvature operator. The oriented Riemannian 4−manifold (M, g) is
said to be anti-self-dual (ASD) if W+ = 0. This definition is conformally
invariant, i.e. if g is ASD, so is ag for any smooth positive function a.

The twistor space of a conformal Riemannian manifold (M, [g]) is the
total space of the sphere bundle of the rank three real vector bundle of
self-dual 2−forms Z := S(Λ+). Let $ : Z →M be the projection onto M.
For every x ∈M, the fiber $−1(x) corresponds to the set of g−orthogonal
complex structures compatible with the given orientation. More precisely,
any such j defines the unit length self-dual form

ω(v, w) =
1√
2
g(v, jw).

The real six-dimensional manifold Z comes equipped with an almost
complex structure, that is an endomorphism J : TZ → TZ satisfying
J 2 = −1. The Levi-Civita connection ∇ of M gives rise to a splitting
TZ = H ⊕ V of the tangent bundle of Z into horizontal and vertical com-
ponents. At a point (σ, x) ∈ Z , the vertical distribution V consists of the
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vectors tangent to the fiber of $, which is an oriented metric 2−sphere, and
hence equipped with a compatible complex structure I. On the other hand,
the almost complex structure j associated to σ discussed above naturally
lifts to the horizontal distribution H . Then, J is defined as J = (j, I).
A remarkable result of Atiyah, Hitchin and Singer [AHS] asserts that J
is integrable if and only if the metric g is ASD. In such a case, the fibers
$−1(x), x ∈M are smooth rational curves, and so Z is uniruled.

We assume from now on that Z is the twistor space associated to a
closed, oriented 4-manifold M equipped with an ASD conformal class [g].
We fix g ∈ [g].

Let ht be the family of Riemannian metrics on Z defined by

(4.1) ht = $∗g + tgvert,

where t > 0, g is the metric of M and gvert is the restriction of the metric
induced on Λ+ to the vertical distribution V . Then $ : (Z , ht)→ (M, g) is
a Riemannian submersion with totally geodesic fibers. Moreover, the metrics
ht are compatible with J . Michelsohn states [Mi, Section 6] the existence
of balanced metrics on Z . A proof that the metrics ht are in fact balanced
follows from Corollary 3.5 and Lemma 4.1 in [Mu].

The Riemannian scalar curvature of the metrics ht is computed by Davi-
dov and Muškarov [DM]. More precisely, in [DM, Corollary 4.2] it is proved
that for every (σ, x) ∈ Z ,

sZ (σ, x) = sM (x) +
t

4
(‖R(σ)‖2 − ‖R−‖2x) +

2

t
,

where sZ and sM denote the scalar curvatures of Z and M, respectively,

and R− = s
12Id+W−+

◦
r is the restriction of R to Λ−. In particular, for

0 < t� 1, we see that the metric ht satisfies sZ > 0.

Proof of Theorem E. Let X be a complex manifold bimeromorphic to a
twistor space Z .

Let ωt be the Kähler 2-form of the balanced metric ht on Z defined
by (4.1). By Corollary 1.2, we have∫

Z
c1(Z ) ∧ ω2

t ≥
1

12π

∫
Z
sZ ω

3
t > 0,

for 0 < t� 1. The conclusion of Theorem E now follows from Theorem A.
�
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Remark 4.1. Twistor spaces of class C are rather scarce. Campana [Ca2],
and LeBrun and Poon [LP], independently proved that if the twistor space
Z of an ASD four-manifold M is of Fujiki class C , then Z is Moishezon
and M is homeomorphic to either S4 or the connected sum of n ≥ 1 copies
of CP2, the complex projective plane endowed with the opposite orientation.
However, a result of Taubes [Ta] asserts that every Riemannian manifold M
can be equipped with an ASD metric after taking the connected sum with
sufficiently many copies of CP2, hence the twistor spaces provide a large
family of balanced manifolds which are not of class C .
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