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We rephrase some well-known results in Donaldson-Thomas theory
in terms of (formal families of) Frobenius type and CV-structures
on a vector bundle in the sense of Hertling. We study these struc-
tures in an abstract setting, and prove a convergence result which
is relevant to the case of triangulated categories. An application to
physical field theory is also briefly discussed.
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1. Introduction

1.1. Formal infinite-dimensional picture

Frobenius manifolds are (complex or real) manifolds endowed with a special
structure on their tangent bundle. They were introduced by Dubrovin (see

287
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e.g. [D]) and play a key role in quantum cohomology, the enumerative theory
of rational curves on algebraic varieties.

There is a notion of Frobenius type structure on a general holomorphic
bundle, due to Hertling [H]. A particular Frobenius type structure on an
auxiliary infinite-dimensional bundle plays an important role in Donaldson-
Thomas theory, the enumerative theory of semistable objects in abelian
and triangulated categories. This is essentially a rephrasing of results of
Bridgeland-Toledano Laredo [BT1], Joyce [J], Kontsevich-Soibelman [KS].
This Frobenius type structure lives in an infinite-dimensional bundle K →
Stab(C) over the space of stability conditions on the category C and is given
by a collection of holomorphic objects (∇r, C,U ,V, g) with values in K,
satisfying a set of PDEs. It turns out that the endomorphism U and the
Higgs field C are given by the central charge Z of a stability condition
and its differential, while the flat connection ∇r and endomorphism V are
roughly the same as the holomorphic generating function f(Z) for counting
invariants introduced by Joyce [J]. In particular we have V(Z) = ad f(Z) for
a certain Lie algebra structure on the fibres of K. The graded components
of the Joyce function are given by the matrix elements g(xα,V(xβ)) over a
natural basis of sections of K, where g is the quadratic form on K given by
the Frobenius type structure.

In the important case when C is a triangulated category the above con-
struction is always purely formal, even in the simplest examples. The graded
components g(xα,V(xβ)) of f(Z) are formal infinite sums, and nothing is
known about their convergence or even in general how to regard them as
formal power series. This is essentially because of the shift functor [1] : C → C
which preserves the class of semistable objects and induces a symmetry of
Donaldson-Thomas invariants DT(α,Z) = DT(−α,Z) for all classes α in
the Grothendieck group K(C). This convergence problem for holomorphic
generating functions was first discussed in [J]. Notice that on the contrary
when C is abelian and sufficiently simple (i.e. of finite type) all sums become
finite, and one can even work fully at the motivic level (see [BT1]).

1.2. CV-structure

The Frobenius type structure embeds in a richer structure introduced by
Hertling [H] and called a CV-structure after Cecotti-Vafa. This is suggested
naturally by the physical work of Gaiotto, Moore and Neitzke [GMN]. The
CV-structure lives on the same bundle K and is given by a collection of
non-holomorphic objects (D,C, C̃,U ,Q, κ, h) with values in K, satisfying a
set of PDEs. In particular the endomorphism Q is a deformation of V, as
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we have

lim
λ→0
Q(λZ) = V(Z)

(see Proposition 2.9). So in the CV-structure the Joyce function f(Z) is nat-
urally deformed to the operator Q(Z). When C is a triangulated category the
above construction is also purely formal. The matrix elements g(xα,Q(xβ))
are ill-defined infinite sums.

1.3. Formal families

Suppose that C is triangulated and admits a heart of a bounded t-structure
A which is finite, with n distinct isomorphism classes of simple objects.
Let U(A) ⊂ Stab(C) denote the interior of the set of stability conditions
supported on A. The set U(A) is given by stability conditions with heart A
and central charge Z mapping the effective cone K>0(A) to the open upper
half-plane H. On U(A) both the Frobenius type and CV-structures can
be regarded naturally as formal families of structures defined on a formal
neighborhood of 0 ∈ Cn. In particular the ill-defined Joyce function f(Z)
and operators V(Z), Q(Z) become naturally well-defined formal power series
fs(Z), Vs(Z) and Qs(Z) in an auxiliary set of parameters s = (s1, . . . , sn).
This is part of the general results Propositions 3.17, 3.18. The original ill-
defined expressions are recovered for s = (1, . . . , 1), modulo convergence.
In this paper we study the convergence problem for the matrix elements
g(xα,Qs(Z)(xβ)), the CV-deformation of (the graded components of) the
Joyce function.

1.4. Abstract setting and convergence

We will work in an abstract setting modelled on the case of a triangu-
lated category discussed above. This has the advantage of being fully rig-
orous, independently of the foundational problems of Donaldson-Thomas
theory for 3CY (Calabi-Yau, dimension 3) triangulated categories, and is
achieved by working with abstract continuous families of stability data
in the sense of [KS] Section 2.3. Thus we fix a lattice Γ with a choice
of skew-symmetric integral form and an “effective” strictly convex cone
Γ+ ⊂ Γ. We state all our results simply in terms of a suitable function
DT: Γ×Hom+(Γ,C)→ Q defined on the product of Γ with the cone of
“positive” central charges Hom+(Γ,C), given by central charges mapping
Γ+ to the open upper half-plane H. The function DT(α,Z) should be lo-
cally constant in strata of Hom+(Γ,C), it should satisfy the wall-crossing
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formulae of [JS, KS] across different strata, and moreover it should enjoy
the symmetry DT(α,Z) = DT(−α,Z), induced by the shift functor [1] in the
categorical case. The conditions on DT(α,Z) are summarised in the notion
of the double of a positive continuous family of stability data parametrised
by Hom+(Γ,C)1, see Definition 3.8. So DT(α,Z) is modelled on the restric-
tion of the Donaldson-Thomas invariants of a 3CY triangulated category to
a domain U(A).

Just as in the categorical case such DT(α,Z) give rise to formal families
of Frobenius type and CV-structures, and so to functions fs(Z) and op-
erators Vs(Z), Qs(Z), with limλ→0Qs(λZ) = Vs(Z), see Propositions 3.17
and 3.18. The matrix elements g(xα,Qs(Z)(xβ)) are well-defined formal
power series and, provided they converge in a neighbourhood of s=(1, . . . , 1),
their evaluation g(xα,Q(1,...,1)(Z)(xβ)) is the natural CV-deformation of the
graded components of the Joyce functions f(1,...,1)(Z).

Theorem 1.1. Fix a central charge Z0 ∈ Hom+(Γ,C). Suppose that
DT(α,Z0) grows at most exponentially for α ∈ Γ (in the sense of Defini-
tion 3.5). Then for all ρ > 0 there exists λ̄ such that for λ > λ̄ all the formal
power series g(xα,Qs(λZ0)(xβ)) converge for ||s|| < ρ. Let U ⊂ Hom+(Γ,C)
denote an open subset such that the exponential growth condition for
DT(α,Z) holds uniformly and all Z ∈ U are uniformly bounded away from
zero on elements of the cone Γ+. Then for all sufficiently large λ the CV-
deformations of the Joyce functions, given by g(xα,Q(1,...,1)(λZ)(xβ)), are
well defined and real-analytic on U , and uniformly bounded as α varies in Γ
for fixed β.

One may expect that in fact we have |g(xα,Q(1,...,1)(λZ)(xβ))| → 0 as
||α|| → ∞ in some fixed norm on Γ⊗ R and for fixed β, but the methods of
the present paper are not sufficient to establish this. Although we have stated
our main result in terms of the operators Qs it will be clear from the proof
that the same statement holds for the full CV-structure. The exponential
growth condition for DT type invariants has been investigated in detail, see
e.g. [W]. It is especially interesting from a physical point of view, see e.g.
[CS] for a recent contribution. Note that a large class of 3CY categories
with uniformly bounded DT invariants (to which Theorem 1.1 applies) is
discussed in [BS].

1Recently Bridgeland proposed the much nicer name “variation of BPS structure”
for this notion.
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1.5. Application to physical field theory

Our methods in this paper are inspired by the fundamental physical work
of Gaiotto, Moore and Neitzke [GMN]. We comment on the similarities and
differences in Remark 6.5. Because of this close link our results also say
something about certain infinite sums which appear in formal expansions of
expectation values of line operators in [GMN], and we will discuss this in
Section 7 (the problem of giving a precise meaning to such expansions was
first pointed out explicitly in [N] Section 4.2.1). In particular these formal
expansions actually give well defined distributions on tori with values in the
dual of the charge lattice (see Corollary 7.1).

1.6. Plan of the paper

Section 2 offers a more detailed introduction to the Frobenius type and
CV-structures appearing in Donaldson-Thomas theory in a formal context.
Section 3 discusses the abstract rigorous approach outlined above. The proof
of Theorem 1.1 is given in Section 6 and is based on explicit formulae for
Frobenius type and CV-structures in terms of graph integrals (given in Sec-
tion 4), uniform estimates on graph integrals (derived in Section 5), and a
functional equation (studied in Section 6). Section 7 briefly discusses the
application to physical field theories. This paper is based on the isomon-
odromy perspective developed in [BT1, BT2] and in [FGS]. We have tried
to make the exposition self-contained apart from some proofs from these
works which are not reproduced here.

Acknowledgements

We are grateful to Arend Bayer, Tom Bridgeland, Kwokwai Chan, Mario
Garcia-Fernandez, Kohei Iwaki, Andy Neitzke and Tom Sutherland for help-
ful discussions related to this paper. Our work greatly benefitted from the
workshops “Current Developments in Mirror Symmetry”, TSIMF Sanya,
2014 and “Geometry from Stability Conditions”, Warwick, 2015. We are
grateful to their respective organisers Maxim Kontsevich, Yan Soibelman
and Arend Bayer, Tom Bridgeland for the invitation. The research leading
to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC Grant Agreement No. 307119.



i
i

“2-Stoppa” — 2019/8/9 — 18:36 — page 292 — #6 i
i

i
i

i
i

292 A. Barbieri and J. Stoppa

2. Formal infinite-dimensional picture

This Section explains the infinite-dimensional picture of Frobenius type and
CV-strucures for Donaldson-Thomas theory. Although some parts of it are
purely formal, this Section contains essential motivation for our later ab-
stract treatment, and at the same time collects some basic definitions.

We fix a category C and assume that there are well-defined numerical
Donaldson-Thomas invariants DT(α,Z) enumerating objects in C with class
α ∈ K(C) which are semistable with respect to a choice of stability condi-
tion Z. In particular C should be Calabi-Yau and three-dimensional (3CY).
We refer to [JS, KS] for foundational results. When C is triangulated 3CY
one should work with stability conditions in the sense of Bridgeland [B] and
assume that there are invariants satisfying the assumptions described in [J]
Section 1. In particular the shift functor [1] : C → C preserves the class of
semistable objects and induces a symmetry of Donaldson-Thomas invari-
ants DT(α,Z) = DT(−α,Z). Notice that in this case our notation Z for a
stability condition is really a shortcut for the pair (A, Z) of a heart of a
bounded t-structure and a central charge Z ∈ Hom(K(A),C).

2.1. Frobenius type structure

One can use Donaldson-Thomas theory to attach to C a Frobenius type
structure on an infinite-dimensional bundle over the space of stability con-
ditions Stab(C). This is essentially a rephrasing of results in [BT1, J, KS].
To explain this fact we start by recalling the definition of a Frobenius type
structure on an arbitrary bundle, due to Hertling ([H] Definition 5.6 (c)).

Definition 2.1. A Frobenius type structure on a holomorphic vector bundle
K →M is a collection of holomorphic objects (∇r, C,U ,V, g), with values
in the bundle K, where

• ∇r is a flat connection,

• C is a Higgs field, that is a 1-form with values in endomorphisms, with
C ∧ C = 0,

• U ,V are endomorphisms,

• g is a symmetric nondegenerate bilinear form,
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satisfying the conditions

∇r(C) = 0,

[C,U ] = 0,

∇r(V) = 0,

∇r(U)− [C,V] + C = 0(2.1)

plus the conditions on the “metric” g

∇r(g) = 0,

g(CXa, b) = g(a,CXb),

g(Ua, b) = g(a,Ub),
g(Va, b) = −g(a,Vb).(2.2)

Going back to our category C we denote by 〈−,−〉 the integral bilinear
form on K(C) given by the Euler pairing. In the 3CY case this is skew-
symmetric. The group-algebra C[K(C)] endowed with the twisted commu-
tative product and Lie bracket induced by 〈−,−〉 becomes a Poisson algebra,
known as the Kontsevich-Soibelman algebra. It is generated by monomials
xα, α ∈ K(C) with commutative product xαxβ = (−1)〈α,β〉xα+β and bracket
[xα, xβ] = (−1)〈α,β〉〈α, β〉xα+β. A central charge Z ∈ Hom(K(C),C) can be
regarded as an endomorphism (in fact a commutative algebra derivation) of
C[K(C)] acting by Z(xα) = Z(α)xα.

Joyce [J] introduced a holomorphic generating function for Donaldson-
Thomas invariants. It is a formal infinite sum f(Z) of elements fα(Z) =
f̃α(Z)xα of C[K(C)]. Morally it defines a holomorphic function on Stab(C)
with values in

∏
αCxα, encoding the Donaldson-Thomas invariants which

enumerate semistable objects in C. One can reinterpret this construction as
giving a Frobenius type structure in the sense of Definition 2.1 on a trivial
infinite-dimensional vector bundle K → Stab(C).

Definition 2.2. The choice of bundle K → Stab(C) is given by:

• when C is abelian and finite we denote by K>0(C) the cone of effec-
tive classes and let K be the trivial bundle over Stab(C) with fibre

̂C[K>0(C)], the completion along the ideal generated by the classes of
simple objects [S1], . . . , [Sn];

• when C is abelian but not finite, or when C is triangulated we let K
be the trivial bundle over Stab(C) with fibre

∏
α∈K>0(C) Cxα, respec-

tively
∏
α∈K(C)\{0}Cxα. In both cases all the constructions below are
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a priori ill-defined, and we work with formal infinite sums ignoring all
convergence questions, just as in [J] Section 5.

When summing over elements α of K(C) we will always assume α 6= 0.

Proposition 2.3. Let K → Stab(C) be our trivial infinite-dimensional vec-
tor bundle (in particular we have ∂̄Kxα = 0). Fix a constant g0 ∈ C∗. Then
there are (∇r, C,U ,V), satisfying the conditions (2.1), given by

∇r = d+
∑
α

ad fα(Z)
dZ(α)

Z(α)
,

C = −dZ,
U = Z,

V = ad f(Z).

If moreover C is triangulated we can complete these to a Frobenius type
structure with the choice

g(xα, xβ) = g0δαβ.

Notice that here we use the Lie algebra structure on C[K(C)] just to de-
scribe endomorphims of K, i.e. we work with a vector bundle not a principal
bundle.

Remark 2.4. The function Z(α)−1fα(Z) extends across to locus where
Z(α) = 0, see [J] Section 5.

Proof. Let us first clarify our choice of Higgs field. For all γ ∈ K(C) the
function Z 7→ Z(γ) is a local holomorphic function on Stab(C). So we can
define a 1-form with values in endomorphisms by

dZ(X)xγ = (XZ(γ))xγ

for all local holomorphic vector fields X. One checks that dZ ∧ dZ = 0.
To check (2.1), (2.2) one uses repeatedly a PDE satisfied by the functions

fα(Z) (see [J] equation (4)),

(2.3) dfα(Z) =
∑

β,γ∈K(C)\{0}, α=β+γ

[fβ, fγ ]d logZ(γ).

Flatness of ∇r and covariant constancy of V follow from the same compu-
tations as in [J] Section 4 (in particular equations (71) - (73)). The other
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conditions follow from straightforward computations. As an example we have

∇r(dZ) = d2Z + ad
∑
α

fα(Z)
dZ(α)

Z(α)
∧ dZ

+ dZ ∧ ad
∑
α

fα(Z)
dZ(α)

Z(α)

where ∧ denotes the composition of endomorphisms combined with the
wedge product of forms. Now d2Z = 0, and evaluating on a section xβ gives
a 2-form with values in K

∇r(dZ)xβ =
∑
α

[fα(Z), xβ](Z(α))−1dZ(α) ∧ dZ(β)

+
∑
α

[fα(Z), xβ](Z(α))−1dZ(α+ β) ∧ dZ(α).

But we have dZ(α+ β) = dZ(α) + dZ(β) and the vanishing ∇r(dZ)xβ = 0
follows for all β.

As an example of a condition involving the quadratic form g in the
triangulated case we check skew-symmetry of V. We have

g(Vxα, xβ) =
∑
γ

f̃γ(Z)(−1)〈γ,α〉〈γ, α〉gα+γ,β

= g0

∑
γ

f̃γ(Z)(−1)〈γ,α〉〈γ, α〉δα+γ,β

= g0(−1)〈β,α〉〈β, α〉f̃β−α(Z).

Similarly

g(xα,Vxβ) = g0(−1)〈α,β〉〈α, β〉f̃α−β(Z).

In the 3CY case we have fα−β(Z) = fβ−α(Z) because of the shift functor.
�

There is a standard construction of a “first structure” flat connection from a
Frobenius type structure. In the Donaldson-Thomas case this has a further
scale invariance property.

Lemma 2.5. Let p : Stab(C)× P1
z → Stab(C) denote the projection. Let λ ∈

R+ denote a scaling parameter. The meromorphic connection on p∗K →
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Stab(C)× P1
z given by

∇r +
C

z
+

(
1

z2
U − 1

z
V
)
dz

is flat and invariant under the rescaling Z 7→ λZ, z 7→ λz. In particular the
Joyce function f(Z) has the “conformal invariance” property f(λZ) = f(Z).

Proof. Flatness of the connection follows from the conditions (2.1). Invari-
ance under the rescaling is equivalent to the property f(λZ) = f(Z) which
is established in [J] Section 3. �

2.2. Convergence problem for triangulated C

The K(C)-graded components of f(Z) can be described explicitly. Let
(UC[K(C)],⊗) denote the universal enveloping algebra of (C[K(C)], [−,−]).
There are explicit formulae for the product ⊗, and one has in particular

xα1
⊗ · · · ⊗ xαk = c(α1, · · · , αk)xα1+···+αk

where c(α1, · · · , αk) ∈ Q is given by a sum over connected trees T with
vertices labelled by {1, . . . , k}, endowed with a compatible orientation,

(2.4) c(α1, · · · , αk) =
∑
T

1

2k−1

∏
{i→j}⊂T

(−1)〈αi,αj〉〈αi, αj〉.

Joyce proves that there exist holomorphic functions with branch-cuts Jn :
(C∗)n → C such that

fα(Z) =
∑

α1+···+αk=α,Z(αi)6=0

Jn(Z(α1), . . . , Z(αk))

×
∏
i

DT(αi, Z)xα1
⊗ · · · ⊗ xαk

and so one has

fα(Z) = f̃α(Z)xα,
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where the holomorphic function f̃α(Z) is given by

f̃α(Z) =
∑

α1+···+αk=α,Z(αi) 6=0

c(α1, . . . , αk)Jn(Z(α1), . . . , Z(αk))(2.5)

×
∏
i

DT(αi, Z).

The crucial point is that the jumps of the functions Jn(z1, . . . , zn) across
their branch-cuts can be chosen so as to cancel the jumps of the Donaldson-
Thomas invariants DT(αi, Z) across walls in Hom(K(C),C). The functions
Jn(z1, . . . , zn) are universal, i.e. they do not depend on the underlying cat-
egory C.

When C is triangulated there is a symmetry DT(α,Z) = DT(−α,Z)
induced by the shift functor [1], so the explicit formula (2.5) always in-
volves summing over infinitely many decompositions α1 + · · ·+ αk = α with
c(α1, . . . , αk)

∏
i DT(αi, Z) 6= 0, as soon as DT(αi, Z) 6= 0 for at least two

linearly independent αi. We do not know an example where (2.5) is known
to converge. Indeed the convergence question is a priori ill-posed since no
specific summation order has been fixed. The convergence problem for f(Z)
seems especially hard because of the conformal invariance property of
Lemma 2.5.

2.3. CV-structure

The Frobenius type structure of Proposition 2.3 is part of a more complicated
(formal) structure called a CV-structure (after Cecotti and Vafa) in [H].
This point of view is also suggested naturally by [GMN]. To discuss it we
introduce the preliminary notion of a DCC̃-structure, which is also due to
Hertling ([H] Definition 2.9).

Definition 2.6. A (DCC̃)-structure on a C∞ complex vector bundle K →
M is the collection of C∞ objects (D,C, C̃) with values in K where

• D is a connection,

• C is a (1, 0)-form with values in endomorphisms of K,

• C̃ is a (0, 1)-form with values in endomorphisms of K;
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satisfying the conditions

(D′′ + C)2 = 0, (D′ + C̃)2 = 0,

D′(C) = 0, D′′(C̃) = 0,

D′D′′ +D′′D′ = −(CC̃ + C̃C)(2.6)

where D′ and D′′ are the (1, 0) and (0, 1) parts of D respectively.

Lemma 2.7. Let K → Stab(C) be the vector bundle of Definition 2.2. Then
there is a (DCC̃)-structure on K given by

D′ = ∇r, D′′ = ∂̄K ,

C = −dZ, C̃ = dZ̄.

Proof. Let ∂̄K denote our fixed (trivial) complex structure on K, with
∂̄K(xα) = 0. The condition (D′′ + C)2 = 0 says that K is holomorphic and
C is a holomorphic Higgs bundle on it, which we know already from Propo-
sition 2.3. Then D′(C) = 0 says that C is flat with respect to ∇r, which we
also know already. The condition (D′ + C̃)2 = 0 says that∇r is flat (known),
(dZ̄)2 = 0 and ∇r(dZ̄) = 0 (easily checked). The condition D′′(C̃) = 0 be-
comes ∂̄K(dZ̄) = 0 and can be checked e.g. in local coordinates on Stab(C)
given by zk = Z(αk) where α1, . . . , αk is a basis for K(C). Finally in our
case one checks that we have separately CC̃ + C̃C = 0 and D′D′′ +D′′D′ =
0. �

We can now recall the notion of a CV-structure introduced in [H] Defi-
nition 2.16.

Definition 2.8. A CV-structure on a C∞ complex bundle K →M is a
collection of C∞ objects (D,C, C̃, κ, h,U ,Q) with values in K where

• (D,C, C̃) is a (DCC̃)-structure,

• κ is an antilinear involution with D(κ) = 0 which intertwines C and
C̃, κCκ = C̃,

• h is a hermitian (not necessarily positive) metric, which satisfies
D(h) = 0, h(CXa, b) = h(a, C̃X̄b) for (1, 0) fields X and which is real-
valued on the real subbundle KR ⊂ K defined by κ,

• U and Q are endomorphisms,
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satisfying the conditions

[C,U ] = 0,

D′(U)− [C,Q] + C = 0,

D′′(U) = 0,

D′(Q) + [C, κUκ] = 0,

Q+ κQκ = 0,

h(Ua, b) = h(a, κUκb),
h(Qa, b) = h(a,Qb).(2.7)

Let us go back to the case of our bundle K → Stab(C). Let ι denote the
involution of K acting as complex conjugation, combined with xα 7→ x−α in
the triangulated case. Let ψ be a fixed endomorphism of K. Then we can
make the following ansatz on part of the data of a CV-structure on K:

• κ is the conjugate involution Adψ(ι),

• the pseudo-hermitian metric h is given by h(a, b) = g(a, κ(b)) where g
is the quadratic form of Proposition 2.3,

• U is the endomorphism Z as in Proposition 2.3,

• the Higgs field C is given by −dZ as in Proposition 2.3, and the anti-
Higgs C̃ is given by κCκ.

Proposition 2.9. Let K → Stab(C) be the vector bundle of Definition 2.2.

(a) There exist endomorphisms ψ(Z), Q(Z) and a connection D on K
such that the choices of C, C̃, κ, h, U above together with D and Q
give a CV-structure on K (in the abelian case only the conditions not
involving h are satisfied). Moreover ψ and Q induce fibrewise deriva-
tions of C[K(C)] as a commutative algebra.

(b) Fix Z and let λ ∈ R+ denote a scaling parameter. Then

lim
λ→0
Q(λZ) = V,

where V = ad f(Z) is the endomorphism of Proposition 2.3 (i.e. es-
sentially the Joyce holomorphic generating function).

Proof. We will explain a rigorous approach and prove a rigorous result
(which applies to sufficiently simple abelian and triangulated categories)
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in Section 3 and Proposition 3.18. The present formal statement can be
“proved” (in the same sense as Proposition 2.3) by the same arguments pro-
vided we work with formal infinite sums, ignoring convergence questions. �

There are explicit formulae for the matrix elements

g(xα,Q(xβ)), g(xα, ψ(xβ))

which are very similar to (2.5), see Section 4. When C is triangulated these
are always formal infinite sums. They are not known to converge in general
and indeed the convergence question is a priori ill-posed since no specific
summation order has been fixed.

In the light of Proposition 2.9 (b) it is natural to make the following
definition.

Definition 2.10. The CV-deformation of the Joyce holomorphic generat-
ing function f(Z) is the operator Q(Z) given by Proposition 2.9 (a).

There is an analogue of Lemma 2.5, which gives a new point of view on
the conformal invariance property f(λZ) = f(Z). It follows from the proof
of Proposition 3.18.

Lemma 2.11. Let (D,C, C̃, κ, h,U ,Q) be the CV-structure of Proposition
2.9. Let p : Stab(C)× P1

z → Stab(C) denote the projection, and suppose
λ ∈ R+ is a scaling parameter. The meromorphic connection on p∗K →
Stab(C)× P1

z given by

D +
C

z
+ zC̃ +

(
1

z2
U − 1

z
Q− κUκ

)
dz

is flat. Under the scaling Z 7→ λZ, z = λz, λ→ 0 it flows to the flat con-
nection of Lemma 2.5.

3. Formal families of structures

Starting with the present Section we study the Frobenius type and CV-
structures of Donaldson-Thomas theory in a rigorous abstract setting.

3.1. Stability data

Fix a finite rank lattice Γ with a skew-symmetric bilinear form 〈−,−〉. We
denote by n the rank of Γ.
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Definition 3.1. We introduce coefficients c(α1, . . . , αk) given by (2.4). No-
tice that these only depend on (Γ, 〈−,−〉).

Definition 3.2. A central charge Z is a group homomorphism Γ→ C.
A spectrum is a function of the form

(α,Z) 7→ Ω(α,Z) ∈ Q

for all α ∈ Γ and Z varying in an open subset U of a linear subspace of
Hom(Γ,C).

A distinguished ray2 `α(Z) ⊂ C∗ is a ray of the form R>0Z(α) such that
Ω(α,Z) 6= 0.

We say that the spectrum Ω is

• positive if there exists a Z-basis {γi} of Γ such that Ω(α,Z) vanishes
unless α is a nonzero positive integral combination of the γi. In this
case we say that {γi} is a positive basis for Ω;

• symmetric if

Ω(α,Z) = Ω(−α,Z)

for all α ∈ Γ, Z ∈ U .

• the double of a positive spectrum if Ω is symmetric and there is a posi-
tive spectrum Ω̃ such that Ω(α,Z) = Ω̃(±α,Z) for all α ∈ Γ,
Z ∈ U .

Definition 3.3. Let {γi} be a fixed basis for Γ. The locus of positive central
charges Hom+(Γ,C) ⊂ Hom(Γ,C) is given by central charges mapping {γi}
to the open upper half plane H ⊂ C.

In the notation of the introduction we have the “effective cone” Γ+ given
by nonzero positive linear combinations of the {γi} and Hom+(Γ,C) is given
by central charges mapping Γ+ to H. Recall that in the categorical situation
described in the introduction, when A is a finite heart of a 3CY triangulated
category C, Γ+ is given by K>0(A) and there is a natural positive basis
given by the classes of simple objects [S1], . . . , [Sn]. When well defined the
corresponding symmetric spectrum provided by Donaldson-Thomas theory
is the double of a positive spectrum.

2The opposite of a “BPS ray” in physics terminology. Recently Bridgeland pro-
posed the name “active ray”.
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Definition 3.4. We say that Z ∈ Hom(Γ,C) and Ω satisfy the support
condition if there exists a constant c > 0 such that picking a norm || − || on
Γ⊗ R we have

(3.1) |Z(α)| > c||α||

for all α ∈ Γ with Ω(α,Z) 6= 0. The condition does not depend on the specific
choice of norm.

The support condition was first introduced by Kontsevich-Soibelman in
[KS] Section 1.2, where its geometric relevance (related to special Lagrangian
geometry) was also discussed. Note that if Ω is positive or the double of a
positive spectrum parametrised by Hom+(Γ,C) then the support condition
is automatically satisfied on Hom+(Γ,C). It holds uniformly on all subsets
of Hom+(Γ,C) where Z is bounded away from zero on the elements of a
positive basis {γi}.

Definition 3.5. We say that a spectrum Ω grows at most exponentially at
Z if there is a λ > 0 such that

(3.2)
∑
α∈Γ

|Ω(α,Z)| exp(−|Z(α)|λ) <∞.

The spectra coming from Donaldson-Thomas theory share a crucial
property: they are continuous, that is they define continuous families of sta-
bility data (in the sense of [KS] Section 2.3) on the Kontsevich-Soibelman
graded Lie algebra modelled on the underlying lattice (Γ, 〈−,−〉). Here we
discuss this property briefly and refer to [KS] Section 2 for more details.

Definition 3.6. The Kontsevich-Soibelman Poisson algebra gΓ is the (as-
sociative, commutative) group algebra C[Γ] endowed with the twisted mul-
tiplication and Lie bracket induced by 〈−,−〉: gΓ is generated by xα, α ∈ Γ,
with commutative product xαxβ = (−1)〈α,β〉xα+β and bracket [xα, xβ] =
(−1)〈α,β〉〈α, β〉xα+β. We will write exp∗ for the commutative algebra expo-
nential in gΓ when this may be confused with the exponential of a derivation.

One checks that gΓ is indeed Poisson, i.e. inner Lie algebra derivations
are commutative algebra derivations. A central charge Z defines an endo-
morphism of gΓ by Z(xα) = Z(α)xα. This is in fact a commutative algebra
derivation.
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Definition 3.7. Fix a basis {γi} as above. We write g>0 ⊂ gΓ for the
monoid generated by xα where α is nonzero and has nonnegative coeffi-
cients with respect to the basis. We let ĝ>0 be the completion of g>0 along
the ideal (xγ1

, . . . , xγn).

Let DT(α,Z) denote the Möbius transform of Ω,

(3.3) DT(α,Z) =
∑

k>0,k|α

1

k2
Ω(k−1α,Z).

Definition 3.8. The family of stability data on gΓ parametrised by U cor-
responding to the spectrum Ω is the gΓ-valued function given by

(α,Z) 7→ DT(α,Z)xα.

Assume every Z ∈ U satisfies the support property. We say that the family
of stability data on gΓ is continuous in the sense of [KS] if for every strictly
convex cone V ⊂ C∗ the product

(3.4)

→,Z∏
`⊂V

exp

 ∑
Z(α)∈`

DT(α,Z)xα


is locally constant as a function of Z, where

→,Z∏
denotes the operation

of writing the ensuing group elements from left to right according to the
clockwise Z-order. (Making this local constancy fully precise is a rather
technical matter for which we refer to [KS] Section 2.3, but roughly speaking
(3.4) should be constant in Z as long as no distinguished rays enter or leave
V , when we compute it imposing an arbitrary upper bound on all ||α||).

We say that the spectrum Ω is continuous if the corresponding family of
stability data on gΓ is. We say that the family of stability data DT(α,Z) is
positive, symmetric, or the double of a positive family if the corresponding
condition is satisfied by the underlying spectrum Ω(α,Z) given by inverting
(3.3),

Ω(α,Z) =
∑
k|α

1

k2
m(k) DT(k−1α,Z)

where m denotes the Möbius function.

It will be important for us to regard the group element in (3.4), under
suitable conditions, as a product of explicit “symplectomorphisms”.
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Definition 3.9. A central charge Z ∈ Hom(Γ,C) is generic if elements
xα, xβ with Z(α), Z(β) lying on the same ray ` have vanishing Lie bracket
(i.e. 〈α, β〉 = 0). We say that Z is strongly generic if Z(α), Z(β) lying on the
same ray ` implies that α, β are linearly dependent. We write Homsg(Γ,C)
for the locus of strongly generic central charges.

For Ω ∈ Q, β ∈ Γ let TΩ
β denote the operator given by

TΩ
β (xα) = xα(1− xβ)〈β,α〉Ω

(acting on a suitable pro-finite algebra containing gΓ, see [KS] Section 2.5).
In fact TΩ

β is a Poisson automorphism (it preserves the Lie bracket). This
follows from the identity

TΩ
β = exp

−Ω
∑
k≥1

[xkβ,−]

k2

 .

(the exponential of a derivation). Kontsevich-Soibelman [KS] Section 2.5
noticed that for generic Z there is a factorisation

(3.5) exp

 ∑
Z(β)∈`

−DT(β, Z)[xβ,−]

 =
∏

Z(β)∈`

T
Ω(β,Z)
β .

The continuity condition becomes the constraint that the product of Poisson

automorphisms
∏→,Z
`⊂V

∏
Z(β)∈` T

Ω(β,Z)
β is locally constant. In particular it

remains constant in the locus of generic central charges (even when crossing
the nongeneric locus) as long as no distinguished rays enter or leave V (again
see [KS] Section 2.5 for the technicalities of making this fully precise).

The notion of a continuous family of stability data with values in g
makes sense quite generally for a Γ-graded Lie algebra g over Q (see [KS]
Section 1.2). It will be important for us to consider continuous families with
values in the Lie algebra gΓ[[s1, . . . , sn]] endowed with the Poisson Lie bracket
extended from gΓ by C[[s1, . . . , sn]]-linearity.

Let {γi} be a basis for Γ and introduce formal parameters s=(s1, . . . , sn).
For α ∈ Γ we write α =

∑
i aiγi and sα for the Laurent monomial

∏
i s
ai
i .

Set [α]± =
∑

i[ai]±αi where [ai]± denote the positive and negative parts.
In particular s[α]+−[α]− is a monomial (not just a Laurent monomial). Let
J ⊂ gΓ[[s]] denote the ideal generated by s1, . . . , sn.
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Definition 3.10. With a fixed choice of basis as above we write TΩ
β,s for

the element of Aut(gΓ[[s]]) given by

TΩ
β,s(xα) = xα(1− s[β]+−[β]−xβ)〈β,α〉Ω

Lemma 3.11. Let Ω be the double of a positive spectrum. Fix a positive ba-
sis {γi}. Suppose that Ω is continuous, parametrised by Hom+(Γ,C). Then
the family of automorphisms TΩ

β,s ∈ Aut(gΓ[[s]]) comes from a continuous
family of stability data with values in gΓ[[s]] via the construction in (3.5).

In particular the products
∏→,Z
`⊂V

∏
Z(α)∈` T

Ω(α,Z)
α,s for all fixed strictly con-

vex sectors V remain constant in the locus of generic central charges in
Hom+(Γ,C) (even when crossing the nongeneric locus) as long as no rays
supporting a nonvanishing factor enter or leave V .

Proof. Suppose that Ω is the double of a positive, continuous spectrum
parametrised by Hom+(Γ,C). Then the continuity condition given by con-
stancy of the formal Lie group element (3.4) holds if and only if it holds for
all strictly convex cones V contained in the open upper half-plane H. On
such a cone V ⊂ H the constancy condition for (3.4) is compatible with the
extra grading by s by the Baker-Campbell-Hausdorff formula. �

Remark 3.12. The idea of working with such formal families is natural
from the point of view of scattering diagrams described e.g. in [GPS].

Definition 3.13. Let Ω be a positive, continuous spectrum parametrised
by Hom+(Γ,C) and fix a positive basis. The corresponding Joyce function
f(Z) is the ĝ>0-valued function with graded components f̃α(Z)xα given by
the expression (2.5). This is well-defined because there are only finitely many
possible decompositions in (2.5) for each fixed α ∈ Γ>0.

Definition 3.14. Let Ω be the double of a positive, continuous spectrum
parametrised by Hom+(Γ,C). The corresponding Joyce function fs(Z) is the
function with values in gΓ[[s]] with Γ-graded components f̃αs (Z)xα, where

f̃αs (Z) =
∑

α1+···+αk=α,Z(αi)6=0

c(α1, . . . , αk)J(Z(α1), . . . , Z(αk))(3.6)

×
∏
i

s[αi]+−[αi]− DT(αi, Z).

This is well-defined because there are only finitely many decompositions in
(3.6) modulo JN for N � 1.
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3.2. Formal families of Frobenius type and CV-structures

Fix a basis {γi} of Γ. We consider a spectrum Ω which is either positive
with respect to {γi} or the double of such a positive spectrum.

Definition 3.15. We introduce a holomorphic bundle K → Hom+(Γ,C)
given by:

• if Ω is positive, K is the trivial bundle with fibre ĝ>0;

• if Ω is the double of a positive spectrum, K is the trivial bundle with
fibre gΓ[[s]].

Although our main result Theorem 1.1 only concerns the double of a
positive spectrum, for the sake of completeness we summarise the results in
the case of a positive spectrum in the following Proposition. The part con-
cerning the Frobenius type structure follows from the results of [BT2], while
the claims about the CV-structure are proved exactly as in Proposition 3.17
below, working with ĝ>0 rather than gΓ[[s]].

Proposition 3.16. Let Ω be a positive, continuous spectrum parametrised
by Hom+(Γ,C). Let K → Hom+(Γ,C) be the vector bundle of Definition 3.15.
Then the obvious analogues of Propositions 2.3, 2.9 and Lemmas 2.5, 2.11
hold.

Turning to the double of a positive spectrum, the construction of a formal
family of Frobenius type structures follows from the results of [BT2], so we
only give a sketch of the proof.

Proposition 3.17. Let Ω be the double of a positive, continuous spectrum
parametrised by Hom+(Γ,C). Let K → Hom+(Γ,C) be the vector bundle of
Definition 3.15, with fibre gΓ[[s]]. Then there is a C[[s]]-linear Frobenius type
structure on K with flat holomorphic connection given by

∇rs = d+
∑
α

ad fαs (Z)
dZ(α)

Z(α)
,

with residue endomorphism

Vs = ad fs(Z)
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and with C,U , g given by −dZ,Z and the quadratic form of Proposition 2.3,
extended by C[[s]]-linearity. In other words the equations (∇rs)2 =0 and (2.1)–
(2.2) hold as identities of formal power series in the formal parameters
s1, . . . , sn.

In particular the coefficients of the formal power series (3.6) in s are
well-defined holomorphic functions on Hom+(Γ,C).

Proof (sketch). It follows from Lemma 3.11 and the results of [BT2] (on the
explicit inverse of a certain Stokes map) that the functions fαs (Z) satisfy the
PDE (2.3) as formal power series in s. Then the corresponding Frobenius
type structure is constructed as in the proof of Proposition 2.3. �

Let ι denote the involution of K acting as complex conjugation combined
with xα 7→ x−α. Note that ι is an anti-linear commutative algebra automor-
phism. Let ψs be a fixed invertible endomorphism of K. Then we can make
the following ansatz on part of the data of a C[[s]]-linear CV-structure on K:

• κs is the conjugate involution Adψs
(ι),

• the pseudo-hermitian metric hs is given by h(a, b) = g(a, κs(b)) where
g is the quadratic form in Proposition 2.3,

• U is the endomorphism Z extended by C[[s]]-linearity,

• the Higgs field C is given by −dZ extended by C[[s]]-linearity, and the
anti-Higgs field C̃s by κsCκs.

Proposition 3.18. Suppose we are in the situation of Proposition 3.17.

(a) There exist C[[s]]-linear endomorphisms ψs and Qs and a connection
Ds on K such that the choices of C, C̃s, κs, hs, Us above together
with Qs give a C[[s]]-linear CV-structure on K. In other words the
equations 2.6 and 2.7 hold as identities of formal power series in s.
Moreover ψs and Qs induce fibrewise C[[s]]-linear derivations of gΓ[[s]]
as a commutative algebra.

(b) We have

lim
λ→0
Qs(λZ) = Vs,

where Vs = ad fs(Z) is the endomorphism of Proposition 3.17 (i.e. es-
sentially the formal family of Joyce holomorphic generating functions
given by (3.6)).
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Proof. We consider the family of automorphisms of the commutative alge-

bra gΓ[[s]] induced by T
Ω(α,Z)
α,s for a fixed Z ∈ Homsg(Γ,C) ∩Hom+(Γ,C). In

[FGS] Section 3 the corresponding Riemann-Hilbert factorization problem
for a map X : C∗ → Aut(gΓ[[s]]) is studied. This is the problem of finding a
function X(z) with values in Aut(gΓ[[s]]) such that, for all N ≥ 1 and α ∈ Γ,
the class of X(z)(xα) in gΓ[[s]]/JN is a holomorphic function of z in the
complement of the distinguished rays ` with ` 6= `±α(Z), and for z0 ∈ ` we
have

X(z+
0 )(xα) = X(z−0 ) ◦

∏
Z(β)∈`

T
Ω(β,Z)
β,s (xα) mod JN

where z±0 denote the limits in the counterclockwise, respectively clockwise
directions. Note that by working modulo JN there are only finitely many
branch-cuts. In [FGS] Lemma 3.10 a distinguished explicit solution X(z) is
constructed, satisfying some additional properties (this construction is very
much inspired by ideas in [GMN]). We denote this distinguished family of
solutions as Z varies in Homsg(Γ,C) ∩Hom+(Γ,C) by X(z, Z), and also set3

X̃(z, Z) = X(z, Z) ◦ expD(gΓ[[s]])(−z−1Z − zZ̄).

Consider the flat connection on Hom+(Γ,C)× P1
z given by

∇tr = d− dZ

z
+ zdZ̄ +

(
1

z2
Z − Z̄

)
dz.

We may regard ∇tr as a flat connection on the trivial vector bundle with
fibre gΓ[[s]]/JN . Together with g(a, ι(b)) it defines a CV-structure on the
trivial vector bundle with fibre gΓ[[s]]/JN on Hom+(Γ,C). We pull back ∇tr
locally on a sector Σ between consecutive branch-cuts by X̃(z, Z) mod JN

to the locally defined flat connection

∇str|Σ = d− 1

z
X̃ · dZ + zX̃ · dZ̄ + dZX̃ ◦ X̃−1

+

(
1

z2
X̃ · Z − X̃ · Z̄ + ∂zX̃ ◦ X̃−1

)
dz.

By [FGS] Sections 3.7 and 3.9, ∇str glues over different sectors Σ and is
induced by the class mod JN of a well-defined real-analytic flat connection

3In [FGS] X̃(z, Z) is denoted by Y (z, Z). In the present paper we have reserved
the latter symbol for a flat section of the connection given by (3.9) below in order
to simplify the notation, see Proposition 4.2.
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on gΓ[[s]]→ Hom+(Γ,C)× P1
z of the form

∇str(Z) = d+ B(0)(Z) +
1

z
B(−1)(Z) + zB(1)(Z)

+

(
1

z2
A(−1)(Z) +

1

z
A(0)(Z) +A(1)(Z)

)
dz.

Moreover the A(i), B(i) are derivations (respectively 1-forms with values in
derivations) of gΓ[[s]] and we have

A(1)(Z) = −ιA(−1)(Z)ι, A(0)(Z) = −ιA(0)(Z)ι,

B(1)(Z) = ιB(−1)(Z)ι, B(0)(Z) = ιB(0)(Z)ι.(3.7)

By [FGS] Section 3.7 the limit X̃0(Z) = limz→0 X̃(z, Z) is well-defined, and
we have

X̃−1
0 · ∇str(Z) = d+ AdX̃−1

0
B(0)(Z)− 1

z
dZ + zAdX̃−1

0
B(1)(Z)(3.8)

+

(
1

z2
Z +

1

z
AdX̃−1

0
A(0) + AdX̃−1

0
A(1)

)
dz.

Notice that by (3.7) and (3.8) we have

AdX̃−1
0
A(1) = −AdX̃−1

0
AdιA(−1)

= −AdX̃−1
0

Adι AdX̃0
(Z),

AdX̃−1
0
B(1) = AdX̃−1

0
Adι B(−1)

= AdX̃−1
0

Adι AdX̃0
(−dZ),

so using the conjugate involution κ = AdX̃−1
0

(ι) we may rewrite (3.8) as

X̃−1
0 · ∇str(Z) = d+ AdX̃−1

0
B(0)(Z)− 1

z
dZ + zκ(−dZ)κ

+

(
1

z2
Z +

1

z
AdX̃−1

0
A(0) − κZκ

)
dz.

Then the flat connection X̃−1
0 · ∇str(Z) together with κ define the required

gΓ[[s]]-linear CV-structure, with D = d+ AdX̃−1
0
B(0)(Z), C = −dZ, C̃ =

κ(−dZ)κ, U = Z, Q = −AdX̃−1
0
A(0), h(a, b) = g(a, κb). The automorphism

in the statement of the Proposition is given by ψs(Z) = X̃−1
0 (Z).
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The limit

lim
λ→0
Q(λZ) = V(Z)

is proved in [FGS] Theorem 4.2. We provide a sketch of the argument. Since
they are constructed from a solution to the Riemann-Hilbert factorization
problem, the family of connections on P1

z

(3.9) d+

(
1

z2
Z − 1

z
Qs(λZ)− λ2κs(λZ)Zκs(λZ)

)
dz

parametrised by Hom+(Γ,C) are isomonodromic, with constant general-
ized monodromy at z = 0 for generic Z given by rays ` with Stokes factors∏
Z(β)∈` T

Ω(β,Z)
β,s (xα). One checks that the limit as λ→ 0 is well-defined and

equals

d+

(
1

z2
Z − 1

z
lim
λ→0
Qs(λZ)

)
dz.

The result follows from a uniqueness result proved in [BT2]. �

Corollary 3.19. The statement of Lemma 2.11 holds for the Frobenius
type and CV-structures constructed in Propositions 3.17 and 3.18.

Definition 3.20. We write ∇s(Z, λ) for the family of meromorphic con-
nections on P1 given by (3.9).

4. Explicit formulae

In this Section we give an explicit formula for the operatorQs(Z). We always
assume that we fix a continuous symmetric spectrum Ω parametrized by
Hom+(Γ,C) which is the double of a positive spectrum. We also assume
that a positive basis {γi} has been fixed.

4.1. Explicit formula for flat sections

In the rest of the paper we write T for a finite rooted tree, with vertices
decorated by elements of Γ. We assume that T is connected unless we state
explicitly otherwise. Denote the root decoration by αT . The operation of
removing the root produces a finite number of new connected, Γ-decorated
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trees T 7→ {Tj}. We introduce holomorphic functions with branch-cuts

HT : C∗ ×Hom+(Γ, C) ∩Homsg(Γ,C)× R≥0 → C∗

attached to trees by the recursion
(4.1)

HT (z, Z, λ) =
1

2πi

∫
`αT

dw

w

z

w − z
exp(−Z(αT )w−1 − λ2Z̄(αT )w)

∏
j

HTj (w),

with the initial condition H∅ = 1. We also introduce weights WT (Z) ∈ Γ⊗Q
attached to trees by

(4.2) WT (Z) =
1

|Aut(T )|
DT(αT , Z)αT

∏
{v→w}⊂T

〈α(v), α(w)〉DT(α(w), Z).

We can pair WT (Z) with β ∈ Γ to obtain 〈β,WT (Z)〉 ∈ Q. We extend this
pairing to possibly disconnected trees T with finitely many connected com-
ponents Ti by setting

〈β,WT (Z)〉 =
∏
i

〈β,WTi(Z)〉.

Definition 4.1. A distinguished sector Σ is the inverse system under in-
clusion of sectors ΣN between consecutive distinguished rays ` such that∑

Z(α)∈`

DT(α,Z)s[α]+−[α]−xα /∈ JN .

This is well defined because for each N there are only finitely many distin-
guished rays for which the above sum does not vanish modulo JN .

Proposition 4.2. The automorphism Ys(z, Z, λ) of gΓ[[s]] acting by

Ys(z, Z, λ)(xβ) = xβ exp∗
∑
T

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v)

= xβ
∑

disconnectedT

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v)(4.3)

induces a flat section of ∇s(Z, λ) on each distinguished sector Σ.

Proof. This is proved in [FGS] Section 4 (see in particular Section 4.3). Note
that in the notation of the proof of Proposition 3.18 we have Ys(z, Z, λ) =
X̃−1

0 (λZ) ◦X(λz, λZ). �
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4.2. Explicit formula for coefficients

We proceed to discuss explicit formulae for the coefficients of ∇s(z, Z, λ)
rather that its flat sections. Let As ∈ D(gΓ[[s]]) denote the opposite of the
connection 1-form of ∇s(z, Z, λ), so

∂zYs(z, Z, λ) = As Ys(z, Z, λ)

(where the right hand side is given by the composition of linear maps).
Locally As is given by the composition of linear maps (∂zYs)Y

−1
s , where

∂zYs(xα) = ∂z(Ys(z, Z, λ)(xα))

= Ys(z, Z, λ)(xα)
∑
T

〈α,WT (Z)〉∂zHT (z, Z, λ)

×
∏
v∈T

s[α(v)]+−[α(v)]−xα(v).

Notice that a map of the form (∂zY )Y −1 where Y takes values in automor-
phisms of a commutative algebra is automatically a derivation.

Because of its specific form Ys can be inverted explicitly via multi-
variate Lagrange inversion. Recall that this gives a concrete way to in-
vert self-maps of a ring of formal power series R[[ξ1, . . . , ξm]] of the form
ξi 7→ ξi exp(−Φi(ξ1, . . . , ξm)) for some Φi(ξ1, . . . , ξm) ∈ R[[ξ1, . . . , ξm]], where
R is a ground C-algebra.

To reduce the problem of explicitly inverting Ys to a multivariate La-
grange inversion we notice that since Ys is a commutative algebra auto-
morphism it is enough to calculate Y −1

s (xγi) for i = 1, . . . , n. We may then
try to apply a Lagrange inversion formula over the base ring R = C[[s]]. A
further technical difficulty arises since Ys is a self-map of a ring of Laurent
polynomials C[[s]][x±1

γ1
, . . . , x±1

γn ] over C[[s]] rather than formal power series.
To remedy this we introduce 2n auxiliary parameters ξ = (ξ1, . . . , ξ2n) and
set for α ∈ Γ

ξα =

n∏
i=1

ξ
[αi]+
i

2n∏
j=n+1

ξ
−[αj ]−
j .

Consider the auxiliary problem of inverting the self-map of C[[s]][[ξ]] given by

(ξ1, . . . , ξ2n) 7→ (F1(ξ), . . . , F2n(ξ)), Fi(ξ) = ξi exp(−Φi(ξ))
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where we choose

Φi(ξ) = −
∑
T

〈γi,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−ξα(v)

for i = 1, . . . , n, respectively

Φi(ξ) =
∑
T

〈γi,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−ξα(v)

for i = n+ 1, . . . , 2n. If we can solve this then specialising ξi = xγi for i =
1, . . . , n, respectively ξi = x−1

γi for i = n+ 1, . . . , 2n determines the inverse
Y −1
s completely. Going back to the auxiliary problem, suppose that we can

solve the equations

(4.4) Ei(ξ) = ξi exp (Φi(E1(ξ), . . . , E2m(ξ))) .

Then we have

Fi(E1, . . . , E2m) = Ei exp (−Φi(E1, . . . , E2m)) = ξi,

so the inverse is given by (ξ1, . . . , ξ2m) 7→ (E1(ξ), . . . , E2m(ξ)).

Lemma 4.3. There exist unique Ei(ξ) ∈ C[ξ][[s]] solving (4.4). Moreover
for each multi-index k ∈ Z2m

>0 the coefficient of ξk in Ei(ξ) is given by

(4.5) [ξk]Ei(ξ) = [ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)

 .

Proof. Regard Φi(ξ) as formal power series in ξ1, . . . , ξ2m with coefficients
in C[[s]]. Applying the multivariate Lagrange inversion formula in a version
due to Good (see e.g. [Ge] Theorem 3, equation (4.5)) over the ground ring
C[[s]] shows that there exists a unique solution (E1, . . . , E2m) of (4.4) where
Ei ∈ C[[s]][[ξ]] are given by (4.5). That we have in fact Ei(ξ) ∈ C[ξ][[s]] follows
from the definition of Φi(ξ). �

For a multi-index k ∈ Z2m
>0 , k = (k1, . . . , k2m) we set

[k] =

m∑
i=1

(ki − km+i)γi ∈ Γ.

Note that we have
∏m
i=1 x

ki
γi

∏m
j=1 x

−kj+m
γj = ±x[k] for a unique choice of sign,

depending only on k. We denote this sign by (−1)k.
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Corollary 4.4. For i = 1, . . . ,m and α ∈ Γ we have

g(xα, Y
−1
s (xγi)) = g0

∑
[k]=α

(−1)k[ξk]Ei(ξ)

= g0

∑
[k]=α

(−1)k[ξk] det(δpq + ξp∂qΦp(ξ))ξi

× exp

−∑
j

kjΦj(ξ)

 ∈ C[[s]].

Corollary 4.5. For i = 1, . . . ,m we have

As(z, Z, λ)(xγi) =
∑
α∈Γ

∑
[k]=α

(−1)k[ξk] det(δpq + ξp∂qΦp(ξ))ξi(4.6)

× exp

−∑
j

kjΦj(ξ)


× Y (xα)

∑
T

〈α,WT (Z)〉∂zHT (z, Z, λ)

×
∏
v∈T

s[α(v)]+−[α(v)]−xα(v) ∈ gΓ[[s]].

In particular the CV-deformation Qs(λZ) is the derivation of gΓ[[s]] deter-
mined by

Qs(λZ)(xγi) = Resz=0As(xγi).

5. Estimates on graph integrals

In this Section we study the graph integrals HT (z, Z, λ). We fix a tree T and
z∗ ∈ C∗ which does not belong to any of the rays `α(v) for v ∈ T . We will
write

HT (Z, λ) = H(z∗, Z, λ).

Proposition 5.1. Let T be a Γ-labelled rooted tree with n vertices. Then
there exist universal constants λ̄, C1, C2 > 0, depending only on the constant
in the support condition (3.1) (in particular, independent of n, z∗), such that

(5.1) |HT (Z, λ)| ≤ Cn1 exp

(
−C2

∑
v∈T
|Z(α(v))|λ

)
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for all λ > λ̄.

The crucial point is that the estimate (5.1) holds up to the boundary of
Homsg(Γ,C) where some distinguished rays collide, and irrespective of the
presence of accumulation points for the set of distinguished rays for a fixed
central charge Z.

We now collect some necessary preliminaries to the proof of Proposi-
tion 5.1. For nonzero α ∈ Γ, λ > 0 we introduce a function

uα,λ(s) =
1

s
exp(−λ|Z(α)|(s−1 + s))χ(0,+∞).

Notice that uα,λ ∈ C∞(R) ∩ Lp(R) for all 1 ≤ p ≤ ∞.

Definition 5.2. We denote by H the Hilbert transform on the real line,
a bounded linear operator mapping Lp(R) to itself for 1 < p <∞ (by a
theorem of M. Riesz, see e.g. [H] Section 3.2). In particular we have by
definition

H[uα,λ](s) = pv

∫ ∞
0

dw

w

1

s− w
exp[−λ|Z(α)|(w−1 + w)].

By the Riesz theorem H[uα,λ](s) lies in Lp(R) for 1 < p <∞. Standard
regularity results imply that H[uα,λ](s) is in C1(Rs × Rλ>0) and that we can
differentiate under the H operator. One can check by explicit computation
that H[uα,λ] as well as ∂sH[uα,λ] lie in L∞(Rs × Rλ>0).

We consider a class of functions defined iteratively by

(5.2) τsluα,λ(s)

k∏
i=1

H[vi](s)

where τ ∈ C∗, l = 0, 1 and each vi is again of the form (5.2) for some αi ∈ Γ.
Examples include uα0,λ

∏k
i=1H[uαi,λ] as well as uα0,λH[uα1,λH[uα2,λ · · · ]].

Lemma 5.3. Let u be a function of the form (5.2), with m corresponding
lattice elements α1, . . . , αm (not necessarily distinct). Then there are con-
stants C1, C2, λ̄1, independent of m, depending only on τ and a common
lower bound on |Z(α1)|, . . . , |Z(αm)|, such that for all λ > λ̄1 we have

||u(s)||L1 ≤ Cm1
m∏
i=1

exp(−C2|Z(αi)|λ).
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Proof. We will argue by induction on m. Using the specific form (5.2) of u
we find

||u(s)||L1 ≤
k∏
i=1

||H[vi](s)||∞||τsluα,λ(s)||L1

provided all the H[vi] are bounded. By explicit computation (for exam-
ple using the Laplace approximation for exponential integrals) the factor
||τsluα,λ(τs)||L1 has the required uniform exponential decay dominated by
C1 exp(−C2|Z(α)|λ) for some fixed uniform C2 and all sufficiently large C1.
So we focus on ||H[vi](s)||∞. By an elementary Sobolev embedding we have

||H[vi](s)||∞ ≤ c1||H[vi]||W 1,2

so we start by controlling the L2 norms ||H[vi]||L2 , ||∂sH[vi]||L2 . By L2

boundedness of H and the fact that it commutes with ∂s we find

||H[vi]||L2 ≤ c2||vi||L2 , ||∂sH[vi]||L2 ≤ c2||∂svi||L2 ,

that is

||H[vi]||∞ ≤ c1c2||vi||W 1,2 .

We have reduced the problem to finding exponential bounds on ||vi||L2 and
||∂svi||L2 . Writing

vi = τis
liuβ,λ(s)

ki∏
j=1

H[wj ](s)

we get

||vi||L2 ≤
ki∏
j=1

||H[wj ](s)||∞||τisliuβ,λ(s)||L2 ,

||∂svi||L2 ≤
ki∑
r=1

||H[∂swr](s)||L2

∏
j 6=r
||H[wj ](s)||∞||τisliuβ,λ(s)||∞

+

ki∏
j=1

||H[wj ](s)||∞||∂s(τisliuβ,λ(s))||L2
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≤ c3

 ki∑
r=1

||∂swr(s)||L2

∏
j 6=r
||H[wj ](s)||∞||τisliuβ,λ(s)||∞

+

ki∏
j=1

||H[wj ](s)||∞||∂s(τisliuβ,λ(s))||L2

 .

Notice that we chose the L2 norm for the factor H[∂swr](s) rather than
the supremum norm so that no further derivatives are required to con-
trol this. By explicit computation (e.g. Laplace approximation) the factors
||τisliuβ,λ(s)||L2 , ||τisliuβ,λ(s)||∞ and ||∂s(τisliuβ,λ(s))||L2 are all dominated
by C1 exp(−C2|Z(β)|λ) for some fixed uniform C2 and all large C1. Assum-
ing inductively that we have the required exponential bounds on the norms
||wj ||L2 , ||∂swj ||L2 for all j = 1, . . . , ki the inequalities above imply a bound
(denoting by mi the number of lattice elements αij attached to vi, counted
with their multiplicities)

||vi||W 1,2 ≤ cmi

4

mi∏
j=1

exp(−C2|Z(αij)|λ).

Taking the product over i = 1, . . . ,m yields the result, with C1 = c4. �

Proof of Proposition 5.1. In the course of the proof we use the notation sv
for v ∈ T to denote positive real integration variables. Hopefully these will
not be confused with the parameters s of our formal families; the latter never
appear in the present Section. Parametrising the ray `α(v) for v ∈ T by

λ−1(|Z(α(v))|)−1Z(α(v))sv, sv ∈ R>0

for each v ∈ T turns HT (Z, λ) into an iterated integral along the positive real
line (0,+∞). Pick a vertex w ∈ T with unique incoming vertex v distinct
from the root. There is a corresponding factor in HT (Z, λ) given by

(2πi)−1

∫ ∞
0

dsw
τwsv

τwsv − sw
uα(w),λ(sw),

with

τw =
|Z(α(w))|
Z(α(w))

Z(α(v))

|Z(α(v))|
.

Let c1, δ > 0 denote positive constants to be determined independently of
T (in particular, independently of n). Suppose that there is an edge {v →
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w} ⊂ T such that | Im(τw)| < δ. Choose the edge for which Im(τw) is the
smallest possible in T (that is, such that the sine of the convex positive
angle between the corresponding rays `α(v), `α(w) is less than δ, and the
smallest among edges in T ). Notice that by our minimal choice of v → w
there are no further rays `α(w′) with w → w′ between `α(v) and `α(w). We
claim that for sufficiently small δ there is a uniform c1 such that

|HT (Z, λ)| ≤ c1(|HT,1(Z, λ)|+ |HT,2(Z, λ)|),

where the iterated integrals HT,1(Z, λ) and HT,2(Z, λ) are obtained by re-
placing the factor

(2πi)−2

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)

∫ ∞
0

dsw
τwsv

τwsv − sw
uα(w),λ(sw)(5.3)

attached to the subgraph {o→ v → w} ⊂ T (denoting by o the unique ver-
tex mapping to v) by the Hilbert transform

(5.4) (2πi)−2

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)svH[uα(w),λ](sv)

in the case of HT,1(Z, λ), respectively by

(5.5) (2πi)−1

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)uα(w),λ(sv)

in the case of HT,2(Z, λ). This holds because by the classical Sokhotski-
Plemelj theorem in complex analysis (see e.g. [H] Section 3.2) the limit of
the factor (5.3) as τw → 1 is given by the sum of the principal value part
(5.4), and the residue part (5.5), with suitable signs (determined by whether
Im(τw)→ 0 from below or above). The τw → 1 limit holds uniformly for all
α(v), α(w), so the claim follows.

Notice that we can estimate the residue part (5.5) by

||uα(w),λ||∞
∣∣∣∣(2πi)−1

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)

∣∣∣∣ .
Let T2 be the rooted, Γ-labelled tree obtained from T by contracting the
edge {v → w} ⊂ T to a single vertex decorated by α(v). By the estimate
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above we have

|HT,2(Z, λ)| ≤ ||uα(w),λ||∞|HT2
(Z, λ)|),

so

(5.6) |HT (Z, λ)| ≤ c2(|HT,1(Z, λ)|+ ||uα(w),λ||∞|HT,2(Z, λ)|).

On the other hand edges {v → w} ⊂ T for which we have a fixed lower
bound | Im(τw)| ≥ δ > 0 can be “integrated out”: let T3 ⊂ T be the (rooted,
Γ-labelled) subtree obtained by chopping out the (rooted, Γ-labelled) subtree
T4 ⊂ T with root w. Then there is a constant c3, depending only on δ, such
that

|HT (Z, λ)| ≤ c3|HT3
(Z, λ)||HT,4(Z, λ)|,

wherer HT,4(Z, λ) equals essentially HT4
(Z, λ), but with root factor in the

integral replaced with ∫ ∞
0

dswuα(w),λ(sw).

We can now proceed inductively applying the two steps described above,
decreasing the number of vertices of T or increasing the number of H opera-
tors inserted. The process stops in a finite number of steps, yielding residual
functions Hi(Z, λ) for a finite set of indices i ∈ I, with cardinality |I| ≤ 2n,
such that

|HT (Z, λ)| ≤ cn4

(∑
i∈I
|Hi(Z, λ)|

)

where c4 > 0 does not depend on T . By construction each |Hi(Z, λ)| is
bounded by a finite product of factors of the form ||uα(w),λ||∞ or ||u(s)||L1 ,
where u belongs to the class of functions (5.2). So by Lemma 5.3 and re-
peated application of (5.6) each |Hi(Z, λ)| is bounded by

Cn1 exp

(
−C2

∑
v∈T
|Z(α(v))|λ

)

for absolute constants C1, C2 and all λ > λ̄ (independently of T ). The bound
(5.1) now follows with that same C2, λ̄ and taking the constant C1 in the
statement to be 2C1c4 in our present notation. �
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6. Functional equation and convergence

In this Section we complete the proof of our main result Theorem 1.1. We
fix a continuous symmetric spectrum Ω parametrised by Hom+(Γ,C) which
is the double of a positive spectrum.

Definition 6.1. Fix constants c1, c2, λ > 0 and a collection of formal power
series Sα(s) ∈ C[[s]] for α ∈ Γ. Define a new collection F [S]β(s) ∈ C[[s]] for
β ∈ Γ by

F [S]β(s) =
∏
α∈Γ

(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−Sα(s))|〈β,α〉||Ω(α,Z)|.

Let us write S(0) for the family of constant formal power series

S0
β(s) = 1 ∈ C[[s]].

for all β ∈ Γ. We define inductively for i ≥ 0

S
(i+1)
β (s) = F [S(i)]β(s).

Lemma 6.2. Fix ρ̄ > 0. There exists λ̄ > 0, depending only on ρ̄ and the
constants in the support and exponential growth conditions (3.1), (3.2), such

that for λ ≥ λ̄ all the formal power series S
(i)
β (s) converge for ||s|| < ρ̄, uni-

formly for i ≥ 0.

Proof. We argue by induction on i. For r > 0 we write Br = {s ∈ Cn : ||s|| <
r} for the open ball. Pick a norm || − || on Γ⊗ C. Suppose that ρ̄ > 0,

λ̄ > 0 and c3 > 0 are constants such that S
(i)
α (s) converges absolutely and

uniformly in compact subsets of Bρ̄ and moreover we have

(6.1) |S(i)
α (s)| < c3e

||α||.

for all s ∈ Bρ̄, λ > λ̄, α ∈ Γ. In the case of S0 we can choose the constants
ρ̄, λ > 0 arbitrarily, while c3 is a positive constant that only depends on the
choice of norm || − ||.

The infinite product∏
α∈Γ

(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s))|〈β,α〉||Ω(α,Z)|
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converges absolutely and uniformly in compact subsets of Bρ̄ if and only if
this happens for the series

(6.2)
∑
α∈Γ

|〈β, α〉||Ω(α,Z)| log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s)).

There is a uniform constant c4 > 0 such that for all sufficiently large λ,
depending only on the constant in the support condition (3.1) and the in-
ductive bound (6.1), the series (6.2) is bounded by

(6.3) c4||β||
∑
α∈Γ

||α|||Ω(α,Z)|c1 exp(−c2|Z(α)|λ)c3ρ̄
[α]+−[α]−e||α||.

This bound is independent of i. If the spectrum Ω(α,Z) has at most ex-
ponential growth then the series (6.3) converges for all sufficiently large λ,
depending only on ρ̄, the support condition (3.1) and the exponential growth
condition (3.2). Moreover for all sufficiently large λ, depending only on (3.1),
(3.2), the sum of the series is bounded by ||β|| log c3, from which we get

|S(i+1)
β (s)| < c3e

||β||

in Bρ̄. So if we choose our initial λ̄ sufficiently large, depending only on ρ̄
and the conditions (3.1), (3.2), the induction goes through. �

Let T denote a Γ-labelled rooted tree as usual. We write depth(T ) for the
length of the longest oriented path in T . Let us denote by µ|Ω|(α,Z) the
Möbius transform of the function |Ω(α,Z)|,

µ|Ω|(α,Z) =
∑

k>0, k|α

1

k2
|Ω(k−1α,Z)|.

Note that in general µ|Ω|(α,Z)xα is not a continuous family of stability
data in gΓ, and |Ω(α,Z)| is not a continuous spectrum. This is completely
irrelevant for our purposes, since we will only use the obvious bound

|DT(α,Z)| ≤ µ|Ω|(α,Z).

Let us introduce weights W̃T (Z) ∈ Γ⊗Q by

W̃T (Z) =
1

|Aut(T )|
µ|Ω|(αT , Z)αT

∏
{v→w}⊂T

〈α(v), α(w)〉µ|Ω|(α(w), Z).
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Lemma 6.3. We have

S
(i)
β (s) =

∑
disconnectedT, depth(T )≤i

c
|T |
1 |〈β, W̃T (Z)〉|

× exp

(
−c2

∑
v∈T
|Z(α(v))|λ

)∏
v∈T

s[α(v)]+−[α(v)]− .

Proof. We write

S
(i+1)
β = exp

∑
α∈Γ

|〈β, α〉||Ω(α,Z)|

× log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s)).

The result follows from expanding

log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s))

as a formal power series and arguing by induction, starting from S
(0)
α = 1

for all α, precisely as in [FGS] Section 3.6. �

Corollary 6.4. Fix c1, c2, ρ̄ > 0. There exists λ̄ > 0, depending only on ρ̄
and the constants in the support and exponential growth conditions (3.1),
(3.2), such that for all λ ≥ λ̄ the formal power series

∑
disconnectedT

c
|T |
1 |〈β, W̃T (Z)〉| exp

(
−c2

∑
v∈T
|Z(α(v))|λ

)∏
v∈T

s[α(v)]+−[α(v)]−

converges for ||s|| < ρ̄.

Proof of Theorem 1.1. We show first that, under the assumptions of the
Theorem, for all sufficiently large λ, depending only on ρ̄ and the constants
in the support condition (3.1) and the exponential bound (3.2) all the for-
mal power series g(xα, Y (z, Z, λ)(xβ)) converge absolutely and uniformly for
||s|| < ρ̄.

By our explicit formula (4.3) for the action of Y (z, Z, λ)(xβ) it remains
to prove that there exists λ̄ > 0 as above such that for all λ > λ̄ and β ∈ Γ
the complex-valued formal power series∑

disconnectedT :
∑
v∈T α(v)=α

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−

converges for ||s|| < ρ̄.



i
i

“2-Stoppa” — 2019/8/9 — 18:36 — page 323 — #37 i
i

i
i

i
i

DT Frobenius type, CV-structures and convergence 323

We will in fact prove a statement which is independent of α: we claim
that there exists λ̄ > 0 as above such that for all λ > λ̄ and β ∈ Γ the
complex-valued formal power series∑

disconnectedT

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−

(summing over all decorated trees, without the constraint that
∑

v∈T α(v)
is fixed) converges for ||s|| < ρ̄. By Proposition 5.1 and the comparison prin-
ciple it is enough to prove the claim for the formal power series
(6.4) ∑

disconnectedT

C
|T |
1 |〈β, W̃T (Z)〉| exp(−C2

∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]−

for all β, where C1, C2 are the constants in (5.1). By Corollary 6.4 we can
ensure that this converges for ||s|| < ρ̄ by choosing λ̄ large enough, depending
only on ρ̄ and (3.1), (3.2) as required.

To extend the convergence statement to the matrix elements of the con-
nection 1-form As we rely on our explicit formula (4.6). Plugging the ex-
pansion for Ys(xγi) in (4.6) one checks that each Γ-graded component of
As(xγi) is given by a finite product of factors which are infinite sums over
decorated, disconnected trees and are all dominated by a sum of the form
(6.4) for possibly larger but fixed constants C1, C2. �

Remark 6.5. As we mentioned our proof of Theorem 1.1 is very much in-
spired by the work of Gaiotto, Moore and Neitzke in mathematical physics
[GMN]. In [GMN] appendix C an integral operator is studied, and the proof
of a convergence property for its iterations is sketched using functional an-
alytic techniques. In our present situation we cannot follow this approach
directly, since we wish to prove a convergence result that holds uniformly
as Z approaches the boundary of the strongly generic locus Homsg(Γ,C).
More precisely the estimate [GMN] (C.20) needed for the contraction prop-
erty cannot hold uniformly as we approach the boundary ∂Homsg(Γ,C),
since it is based on saddle point approximations such as [GMN] (C.10),
(C.11) which do not hold uniformly as Z → ∂Homsg(Γ,C). One can get
estimates similar to (C.10), (C.11) that depend on the number of vertices
of the underlying diagram as in Proposition 5.1, but this is not enough to
establish [GMN] (C.20). In the present paper we have replaced the integral
operator with the algebraic operator F acting on formal power series, and
proved a convergence result for its iterations for which the type of expo-
nential decay of the functions HT (z, Z, λ) established in Proposition 5.1 is
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sufficient. Proposition 5.1 follows in turn from a combination of classical
estimates on the Hilbert transform operator, combinatorial considerations,
and elementary Sobolev embeddings. Recently C. Garza has informed us of
his very interesting work in progress towards proving much stronger results
in the functional-analytic framework of [GMN].

7. Application to field theory

We discuss briefly the original physical setup of [GMN]. In that context
one studies the low-energy effective Lagrangian of a class of N = 2 super-
symmetric gauge theories on R3 × S1

R (a circle of radius R). This is known
to be given by a supersymmetric sigma-model with values in a noncom-
pact hyperkähler fibred manifold M→ B. The generic fibre is isomorphic
to Γ⊗ R/Z, where Γ is the lattice of electro-magnetic charges, with a natural
skew-symmetric pairing 〈−,−〉. The gauge theory naturally specifies func-
tions on the smooth locus Bo ⊂ B (where the fibres are smooth), the central
charge Z : Bo → Γ∨ ⊗ C (which also encodes the energy scale at which we are
looking) and the locally constant BPS spectrum Ω: Bo → Γ∨ ⊗Q. The spec-
trum Ω can in fact be realized as the set of Donaldson-Thomas invariants of
a 3CY category C. This is expected from general physical principles (real-
izing the gauge theory as the field theory limit of a suitable string theory),
and was proved mathematically for a large class of theories in [Su, BS].

In [GMN] a set of preferred holomorphic Darboux coordinates for the
target metric is found. These coordinates are expressed in terms of a local
trivialization of the fibration as formal pairings 〈β,

∑
α cαe

iθα〉 where β ∈
Γ and θα denotes an angular coordinate on the fibre dual to α ∈ Γ. The
coefficients cα are functions on Bo with values in Γ, given in turn by a sum
over trees

cα =
∑

T :
∑
v α(v)=α

1

|Aut(T )|
αTGT (z, Z,R)(7.1)

×
∏

{v→w}⊂T

〈α(v), α(w)〉
∏
v

DT(α(v), Z)

where DT and Ω are related by (3.3). The functions GT (z, Z,R) are deter-
mined explicitly in [GMN] and depend nontrivially on the radius R and a
twistor parameter ζ ∈ C∗. They are closely related to our HT (z, Z, λ) above.
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Denoting by Bsg ⊂ Bo the locus of generic central charges in Bo, the func-
tions GT : C∗ × Bsg × R>0 → C∗ are defined inductively by
(7.2)

GT (ζ, Z,R) =
1

2πi

∫
`αT

dw

w

w + ζ

w − ζ
exp(−RZ(αT )w−1−RZ̄(αT )w)

∏
j

GTj (w),

with the initial condition G∅ = 1 (recall that with the sign conventions of
this paper we have `αT = R>0Z(αT )).

In general the series (7.1) contains infinitely many terms. This is because
of the symmetry DT(α,Z) = DT(−α,Z), expressing the physical fact that
every BPS particle of charge α ∈ Γ has a CPT conjugate antiparticle of
charge −α. In [GMN] no order of summation is specified a priori for (7.1),
so unless the series is absolutely convergent the convergence problem is ill-
defined. Following the arguments of Sections 5 and 6 verbatim, with the new
choice of integration kernel (7.2), and in particular recalling that the proof
of Theorem 1.1 gives an estimate on the series (6.4) which is independent of
α, we find a corresponding result for the series (7.1).

Corollary 7.1. Fix ζ∗ ∈ C∗ which does not lie on a distinguished ray. For
large enough R, independent of α, depending only on the support and expo-
nential growth condition, the series (7.1) for the cα converges absolutely and
uniformly. Moreover there is a common bound |〈β, cα〉| < C, independent of
α. It follows that for large enough R the formal expansion 〈− ,

∑
α cαe

iθα〉
actually gives a well defined distribution on the torus Γ⊗ R/Z with values
in Γ∨.
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