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Desingularization of Lie groupoids and

pseudodifferential operators

on singular spaces
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We study the integral kernels of certain natural operators on desin-
gularization (or blown-up) spaces. A useful desingularization Σ(X)
of a singular space X is obtained by successively blowing up the
lowest dimensional singular strata of X. To study integral kernel
operators on Σ(X), we introduce and study the “desingularization”
[[G : L]] ⇒ [M : L] of a Lie groupoid G ⇒M along an “A(G)-tame”
submanifold L of its space of units M , where A(G) denotes the Lie
algebroid of G. An A(G)-tame submanifold L ⊂M is one that has,
by definition, a tubular neighborhood on which A(G) becomes the
thick pull-back Lie algebroid of an algebroid on L. Here [M : L]
denotes the usual (real) blow-up of M with respect to L and M
is obtained from X by a sequence of blow-ups. (In particular, M
is an intermediate desingularization step between X and Σ(X).)
The construction of the desingularization [[G : L]] of G along L is
based on a canonical fibered pull-back groupoid structure result for
G in a neighborhood of the tame A(G)-submanifold L ⊂M (Theo-
rem 3.3). Technically, this local structure result is obtained by us-
ing an integration result of Moerdijk and Mrčun (Amer. J. Math.
2002). Locally, the desingularization [[G : L]] is defined using the
gauge adiabatic groupoid of Debord and Skandalis (Advances in
Math., 2014). The space of units of the desingularization [[G : L]] is
[M : L], the blow-up of M along L. The desingularization groupoid
[[G : L]] is constructed using a gluing construction of Gualtieri and
Li (IMRN 2014). The glueing construction is applied to a groupoid
that is Morita equivalent to the gauge-adiabatic groupoid and to
GMrL
MrL , the reduction of the given groupoid to the complement of
L. We provide an explicit description of the structure of the desin-
gularized groupoid [[G : L]] and we identify its Lie algebroid, which
is significant in analysis applications. We also discuss a variant of
our construction that is useful for analysis on asymptotically hy-
perbolic manifolds. We conclude with an example discussing the
groupoid associated to one of the simplest singularities, namely an
edge-type singularity. The resulting groupoid is related to the so
called “edge pseudodifferential calculus,” which is quite important
in applications. The paper also provides an introduction to Lie
groupoids for applications to analysis on singular spaces.
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Introduction

A typical approach to analysis on a singular space X is to successively
blow-up its lowest dimensional singular strata. Recall that the blow-up of a
smooth, compact manifold M with respect to a closed submanifold L ⊂M
replaces L with the unit sphere bundle SNL of the normal bundle NL→ L
of L in M . In this paper, we make an important step towards understanding
the integral kernels on the resulting final blown-up space Σ(X). Namely,
one has a good understanding of many natural integral kernel operators on
Σ(X) once one knows that they are obtained from a Lie groupoid [20, 35, 37,
53, 64], and in this paper we provide the essential step in the construction
of the natural groupoid on Σ(X).

More precisely, the resulting iterated blown-up space Σ(X) is a manifold
with corners that is endowed with a natural Lie algebroid A(X)→ Σ(X).
The main result of this paper is to provide the essential step in the con-
struction of a canonical groupoid GX with Lie algebroid A(GX) ' A(X).
We thus give a direct solution to the problem of integrating the natural Lie
algebroid A(X) on the iterated blown-up space Σ(X). This integration prob-
lem has been treated in a related, but more general context in [18, 19, 51].
However, the constructions of those papers are usually not explicit enough
and, moreover, may yield a different groupoid than the one that is needed
in analysis applications. The manifold M is an intermediate step between
X and Σ(X), and is thus obtained from X by a sequence of blow-ups. To
obtain the final construction of the groupoid on Σ(X) one has to perform
several times the desingularization procedure. Thus, from now on we shall
essentially forget the initial singular space X, and rather concentrate of a
single step (or desingularization) in the iterated blow-up procedure leading
from X to Σ(X) and its natural Lie groupoid GX .



i
i

“5-Nistor” — 2019/4/26 — 18:18 — page 163 — #3 i
i

i
i

i
i

Desingularization of Lie groupoids 163

On a technical level, the main thrust of this paper is to introduce and
study the desingularization of a Lie groupoid G ⇒M with respect to an
A(G)-tame submanifold L of its set of units M . The resulting groupoid has
as units [M : L], the blow-up of M with respect to L, and it has as space
of sections of its Lie algebroid the set rLC

∞([M : L])Γ(A(G)), where rL is
the distance to L, suitably smoothed outside L. Let us denote for any Lie
algebroid G by Lie(G) := Γ(A(G)), the spaces of sections of A(G). The main
properties of the desingularization groupoid [[G : L]] ⇒ [M : L] are therefore:

(1)
Lie([[G : L]]) = rLC

∞([M : L]) Lie(G) =: Γ([[A(G) : L]])

and [[G : L]]MrL
MrL = GMrL

MrL .

The desingularization groupoid [[G : L]] ⇒ [M : L] thus solves a constrained
integration problem. The integration problem is expressed in the condition
that Lie([[G : L]]) = rLC

∞([M : L]) Lie(G), that is, the first condition of
Equation (1). The constrain is provided by the second condition of that
equation. Using the notation introduced already, if X = M has only one
singular stratum L ⊂M , then Σ(X) = [M : L] and Γ(A(X)) = rLC

∞([M :
L]) Lie(G).

The constrains in this integration problems provides, in fact, more flex-
ibility in the construction of our Lie groupoid than other constructions.
Indeed, typically, the known integration constructions provide either the
smallest or the largest integrating groupoid. However, the “right groupoid”
for analysis in a specific situation may be neither the smallest nor the largest
integrating groupoid, but the one satisfying the constraint condition. In prac-
tical situations, both the blow-up of the base space and the desingularization
of the corresponding groupoid have to be performed several times.

Let us try to give here a quick idea of the details of our desingularization
procedure. To this end, we need to first introduce the concept of an “A-
tame submanifold.” Let A→M be a Lie algebroid over a manifold with
corners M and let L ⊂M be a submanifold. Recall that L is called A-tame
if it has a tubular neighborhood π : U → L in M such that the restriction
A|U is isomorphic to the thick pull-back Lie algebroid π↓↓(B), for some Lie
algebroid B → L. A tubular neighborhood of L in M is an open subset U ,
L ⊂ U ⊂M , together with a smooth vector bundle structure π : U → L,
with π the identity on L. Let G be a Lie groupoid with units M and Lie
algebroid A(G). Let L ⊂M be an A(G)-tame submanifold. The blow-up
[M : L] is then defined, since L is tame. Let us also assume that the fibration
π : U → L is a ball bundle over L. The reduction groupoid GUU will then have
a fibered pull-back groupoid structure (Theorem 3.3), and hence it can be
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replaced with a modification of the “gauge-adiabatic groupoid” [21] to define
the desingularization [[G : L]] of G along L. To this end, we use also a gluing
construction for Lie groupoids [25].

As it is hopefully apparent by now, our definition of the desingulariza-
tion of a Lie groupoid with respect to a tame submanifold is motivated by
the method of successively blowing-up the lowest dimensional strata of a sin-
gular space, which was successfully used in the analysis on singular spaces.
The successive blow-up of the lowest dimensional singular strata of a (suit-
able) singular space leads to the eventual removal of all singularities. This
approach was used in [8] to obtain a well-posedness result for the Poisson
problem in weighted Sobolev spaces on n-dimensional polyhedral domains
using energy methods (the Lax-Milgram lemma). To use the method of layer
potentials one would need also an understanding of the resulting integral
kernel operators. This is our main motivation for this paper.

In fact, our definition of the desingularization groupoid [[G : L]] provides
the necessary results for the construction of many integral kernel operators
on the resulting blown-up spaces as functions (or distributions) on [[G : L]]. It
turns out that quite general operators can be obtained using integral kernel
and pseudodifferential operators on the desingularization groupoid [1, 4–
6, 47, 53]. For example, by combining our desingularization construction
with the construction of psedodifferential operators on groupoids, one can
essentially recover the pseudodifferential calculi of Grushin [24], Mazzeo [44],
and Schulze [61, 62].

The blow-up procedure leads naturally to manifolds with corners, as fol-
lows: the blow-up of a smooth manifold with respect to a submanifold is
a manifold with boundary, but the blow-up of a manifold with boundary
along a tame submanifold is a manifold with corners of codimension two.
In general, the blow-up of a manifold with corners with respect to a tame
submanifold is a manifold with corners of higher maximum codimension
(i.e. rank). Thus, even if one is interested in analysis on smooth manifolds,
sometimes one is lead to consider also manifolds with corners. See, for ex-
ample, [8, 17, 32, 48] for further motivation and references. This paper will
thus provide the background for the construction of the integral kernel (or
pseudodifferential) operators on the resulting blown-up spaces. The results
of this paper may also turn out to be useful in index theory, although this
is not our main motivation. See however [20], where a related, but different
construction was used for some index problems. The construction in [20]
models a different type of singular spaces.
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The paper is organized as follows. The first section is devoted mostly to
background material. We thus review manifolds with corners and tame sub-
mersions and establish a canonical (i.e. fibration) local form for a tame sub-
mersion that generalizes to manifolds with corners the corresponding classi-
cal result in the smooth case. We then recall the definitions of a Lie groupoid,
of a Lie algebroid, and of the Lie algebroid associated to a Lie groupoid. We
do that in the framework that we need, that is, that of manifolds with cor-
ners. Almost all basic constructions and results on Lie groupoids and Lie
algebroids extend to the setting of manifolds with corners without any sig-
nificant changes. One must be careful, however, to use tame submersions
instead of (plain) submersions. One of the main results of this paper is the
construction of the desingularization of a Lie groupoid G along an A(G)-
tame submanifold. This requires several other, intermediate constructions,
such as that of the adiabatic (deformation) groupoid and of the thick pull-
back Lie algebroid. In the second section, we thus review and extend all
these examples as well as others, more basic ones that are needed in the
construction of the desingularization groupoid. In particular, we introduce
the so called “edge modification” of a groupoid using the gauge-adiabatic
groupoid of Debord and Skandalis [21]. We combine this with a gluing con-
struction due to Gualtieri and Li [25], which we also review and extend to our
setting. The third section contains most of our main results. We first prove
a local structure theorem for a Lie groupoid G with units M in a tubular
neighborhood π : U → L of an A(G)-tame submanifold L ⊂M using results
on the integration of Lie algebroid morphisms due to Moerdijk and Mrčun
[45]. More precisely, we prove that the reduction of G to U is isomorphic to
π↓↓(GLL), the fibered pull-back groupoid to U of the reduction of G to L. This
allows us to define the desingularization for this type of fibered pull-back
groupoids, in which case we obtain a groupoid that is Morita equivalent to
the gauge-adiabatic groupoid. The general case is obtained using the gluing
procedure mentioned above. We identify the Lie algebroid of the desingular-
ization as the desingularization of its Lie algebroid (the desingularization of
a Lie algebroid was introduced in [2]). We conclude with an example related
to the ‘edge’-calculus (see [33] and the references therein).

The paper is written such that it provides also an introduction to Lie
groupoids for students and researchers interested in applications to analysis
on singular spaces. This is the reason for which the first two sections contain
additional material that will explain the role of Lie groupoids. For instance,
we discuss the convolution algebras of some classes of Lie groupoids. We also
provide most of the needed definitions to make the paper as self-contained
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as possible. We also study in detail the needed classes of Lie algebroids and
Lie groupoids.

A note on notation and terminology

We shall use manifolds with corners extensively. They are defined in Sub-
section 1.1. We shall use the term smooth manifold to mean a C∞–manifold
without corners. We take the point of view that all maps, submanifolds, and
so on, will be defined in the same way in the corner case as in the smooth
case, except that all our submanifolds will be assumed to be closed. Some-
times, we need maps and submanifolds with special properties; they will
usually be termed “tame”, for instance, a tame submersion (of manifolds
with corners) will be a submersion of manifolds with corners that maps in-
ward pointing vectors to inward pointing vectors, and hence it has the prop-
erty that all its fibers are smooth manifolds. This property is not shared
by general submersions, however. Also, we use only real vector bundles and
functions, to avoid confusion and simplify notation. The results extend with-
out any difficulty to the complex case, when it makes sense. Moreover, all
our manifolds will be paracompact, but we do not require them to be Haus-
dorff in general. However, all the spaces of units of groupoids and the bases
of Lie groupoids will be Hausdorff. We also note that a “submanifold of a
manifold with corners” in the sense of this paper is not the same thing as
the more restrictive concept of a “submanifold with corners of a manifold
with corners” used in [4].
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1. Preliminaries on Lie algebroids

We now recall the needed definitions and properties of Lie groupoids and of
Lie algebroids. We shall work with manifolds with corners, so we also recall
some basic definitions and results on manifolds with corners. Few results
in this section are new, although the presentation probably is. We refer to
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Mackenzie’s books [38, 39] for a nice introduction to the subject, as well as
to further references and historical comments on Lie groupoids and on Lie
algebroids. See also [11, 42, 46, 57] for some of the more specialized results
used in this paper.

1.1. Manifolds with corners and notation

In the following, by a manifold, we shall mean a C∞-manifold, possibly
with corners. By a smooth manifold we shall mean a C∞-manifold without
corners. All our manifolds will be assumed to be paracompact. Recall [30,
32, 43] (and the references therein) that M is a manifold with corners of
dimension n if it is locally diffeomorphic to an open subset of [−1, 1]n with
smooth changes of coordinates. A smooth map h : [0, a)k × (−a, a)n−k →
[0, b)d × (−b, b)m−d is simply the restriction of a smooth map h̃ : (−a, a)n →
(−b, b)m such that h̃([0, a)k × (−a, a)n−k) ⊂ [0, b)d × (−b, b)m−d. A point p ∈
M is called of depth k if it has a neighborhood Vp diffeomorphic to [0, a)k ×
(−a, a)n−k, a > 0, by a diffeomorphism (i.e. a coordinate chart) φp : Vp →
[0, a)k × (−a, a)n−k mapping p to the origin: φp(p) = 0. Such a neighborhood
will be called standard. A function f : M →M1 between two manifolds with
corners will be called smooth if its components are smooth in all coordinate
charts.

A connected component F of the set of points of depth k will be called
an open face (of codimension k) of M . The maximum depths of a point in
M will be called the rank of M . Thus the smooth manifolds are exactly the
manifolds of rank zero. The closure in M of an open face F of M will be
called a closed face of M . The closed faces of M may not be manifolds with
corners on their own.

We define the tangent space to a manifold with corners TM as usual, that
is, as follows: the vector space TpM is the set of derivations Dp : C∞(M)→ R
satisfying Dp(fg) = f(p)Dp(g) +Dp(f)g(p) and TM is the disjoint union
of the vector spaces TpM , with p ∈M . Let v ∈ TpM be a tangent vector
to M at p ∈M . We say that v is inward pointing if, by definition, there
exists a smooth curve γ : [0, 1]→M such that γ′(0) = v (so, in particular,
γ(0) = p). The set of inward pointing vectors in v ∈ Tx(M) will form a closed
cone denoted T+

x (M). If, close to x, our manifold with corners is given by
the conditions {fi(y) ≥ 0} with dfi linearly independent at x, then the cone
T+
x (M) is given by

(2) T+
x (M) = {v ∈ TxM, dfi(v) ≥ 0}.



i
i

“5-Nistor” — 2019/4/26 — 18:18 — page 168 — #8 i
i

i
i

i
i

168 V. Nistor

Let M and M1 be manifolds with corners and f : M1 →M be a smooth
map. Then f induces a vector bundle map df : TM1 → TM , as in the smooth
case, satisfying also df(T+

z (M1)) ⊂ T+
f(z)M . If the smooth map f : M1 →

M is injective, has injective differential df , and has closed range, then we
say that f(M1) is a (closed) submanifold of M . All our submanifolds will
be closed, so we shall simply say “manifold” instead of “closed manifold.”
Except for the condition that our submanifolds be locally closed, we are thus
imposing the least restrictions on smooth maps and submanifolds, unlike
[30], for example. This is, of course, just a matter of taste, choice, and
terminology, and has no mathematical content, but allows us to navigate
easier through the jungle of the terminology for manifolds with corners. For
instance, a smooth map f between manifolds with corners is a submersion if,
by definition, the differential df = f∗ is surjective (as in the case of smooth
manifolds). However, we will typically need a special class of submersions
with additional properties, the tame submersions. More precisely, we have
the following definition.

Definition 1.1. A tame submersion h : M1 →M is a smooth map h :
M1 →M such that its differential dh is surjective everywhere (i.e. h is sub-
mersion in the usual sense) and

(dhx)−1(T+
h(x)M) = T+

x M1.

(That is, dh(v) is an inward pointing vector of M if, and only if, v is an
inward pointing vector of M1.)

We do not require our tame submersions to be surjective (although, as
we will see soon below, they are open, as in the smooth case). We shall need
the following lemma.

Lemma 1.2. Let h : M1 →M be a tame submersion of manifolds with
corners. Then x and h(x) have the same depth.

Proof. This is because the depth of x in M is the same as the depth of the
origin 0 in T+

x M1, which, in turn, is the same as the depth of the origin 0
in T+

h(x)M , since dhx is surjective and (dhx)−1(T+
h(x)M) = T+

x M1. �

The following lemma is probably known, but we could not find a suitable
reference, so we include a proof.

Lemma 1.3. Let h : M1 →M be a tame submersion of manifolds with
corners.
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(i) The rank of M1 is ≤ the rank of M .

(ii) For any m1 ∈M1, there exists an open neighborhood U1 of m1 in M1

such that U := h(U1) is open and the restriction of h to U1 is a fibration
U1 → U with fibers smooth manifolds (i.e. without corners).

(iii) Let L ⊂M be a submanifold, then L1 := h−1(L) is a submanifold of
M1 of rank ≤ the rank of L.

Proof. We have that (i) is a consequence of Lemma 1.2 and (iii) is a conse-
quence of (ii), so let us concentrate on proving (ii).

Let m1 ∈M1 be of depth k. We can choose a standard neighborhood
W1 of m1 in M1 and a standard neighborhood W of h(m1) in M such that
h(W1) ⊂W . Since our problem is local, we may assume that M1 = W1 =
[0, a)k × (−a, a)n1−k and that M = W = [0, b)k × (−b, b)n−k, a, b > 0, with
m1 and h(m1) being the corresponding origins. Note that both M and M1

will then be manifolds with corners of the same rank k, which is possible
since h preserves the depth (see Lemma 1.2). We can then extend h to
a map h0 : Y1 := (−a, a)n1 → Rn that is a (usual) submersion at 0 = m1

(not necessarily tame). By decreasing a, if necessary, we may assume that
h0 is a (usual) submersion everywhere and hence that h0(Y1) is open in
Rn. By standard differential geometry results, we can then choose an open
neighborhood V of 0 = h0(m1) in Rn and an open neighborhood V1 of 0 =
m1 in Y1 := (−a, a)n1 such that the restriction h1 of h0 to V1 is a fibration
h1 : V1 → V with fibers diffeomorphic to (−1, 1)n1−n. By further decreasing
V and V1, we may assume that V is an open ball centered at 0.

Next, we notice that our reductions mean that M ∩ V consists of the
vectors in V that have the first k components ≥ 0. By construction, we
therefore have that

h1(M1 ∩ V1) = h0(M1 ∩ V1) ⊂M ∩ V =
(

[0, b)k × (−b, b)n−k
)
∩ V.

Let U1 := M1 ∩ V1. We will show that we have in fact more, namely, that
we have

(3) U1 = h−11 (M ∩ V ) and h1(U1) = M ∩ V,

which will prove (ii) for U1 := M1 ∩ V1, since h1 : V1 → V is a fibration with
fibers diffeomorphic to (−1, 1)n1−n and h(U1) = h1(U1) = M ∩ V is open in
M .

Indeed, in order to prove the relations in Equation (3), let us notice that,
since h1 is surjective, it is enough to prove that U1 = h−11 (M ∩ V ), since
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that will then give right away that h1(U1) = M ∩ V . The relations in Equa-
tion (3) will be enough to complete the proof of (ii). Let us assume then,
by contradiction, that it is not true that U1 = h−11 (M ∩ V ). This means
that there exists p = (pi) ∈ V1 rM1 such that h1(p) = h0(p) ∈M ∩ V =(
[0, b)k × (−b, b)n−k

)
∩ V . Let us choose q = (qi) in M1 ∩ V1 of depth zero.

That means that q is an interior point of M1 ∩ V1. Then the two points
h1(p) = h0(p) and h1(q) = h0(q) = h(q) both belong to M , more precisely,

h1(p), h1(q) ∈M ∩ V =
(
[0, b)k × (−b, b)n−k

)
∩ V,

which is the first octant in a ball. Therefore h1(p) and h1(q) can be joined
by a path γ = (γi) : [0, 1]→M ∩ V , with p corresponding to 1 and q corre-
sponding to 0 (that is, γ(1) = h1(p) and γ(0) = h1(q)). All paths are assumed
to be continuous, by definition. Since h preserves the depth, h1(q) = h0(q) =
h(q) is moreover an interior point of M ∩ V . Therefore we may assume that
the path γ(t) consists completely of interior points of M for t < 1.

We can lift the path γ to a path γ̃ : [0, 1]→ V1 with γ̃(0) = q, γ̃(1) = p,
γ = h1 ◦ γ̃, since

h1 := h0|V1
: V1 → V

is a fibration. We have γ̃i(0) = qi > 0 for i = 1, . . . , k, since q = (qi) is an
interior point of V1 ∩M1. On the other hand, since p /∈M1, there exists at
least one i, 1 ≤ i ≤ k, such that γ̃i(1) = pi < 0. Since γ̃i(0) = qi > 0 and the
functions γ̃j are continuous, we obtain that the set

Z := ∪nj=1γ̃
−1
j (0) = {t ∈ [0, 1], there exists 1 ≤ j ≤ k such that γ̃j(t) = 0}

is closed and non-empty. Let t∗ = inf Z. Then t∗ ∈ Z, since Z is closed.
Moreover, t∗ > 0, since q = (qi) = (γ̃i(0)) is of depth zero, meaning that
γ̃j(0) > 0 for 1 ≤ j ≤ k, and hence that 0 /∈ Z. Using again γ̃j(0) > 0, we
obtain γ̃i(s) > 0 for all 0 ≤ s < t∗, by the minimality of t∗, since the functions
γ̃j are continuous. Hence γ̃(s) ∈M1 ⊂ Y1 for s < t∗. (Recall that h0 : Y1 :=
(−a, a)n1 → Rn and that we are assuming M1 = [0, 1)k × (−1, 1)n−k.) We
obtain that γ̃(t∗) ∈M1 ∩ V1, because M1 is closed in Y1. Therefore t∗ < 1,
because p = γ̃(1) /∈M1. Since γ̃j(t∗) = 0 for some j, we have that γ̃(t∗) is
a boundary point of M1, and hence it has depth > 0. Hence the depth of
γ(t∗) = h0(γ̃(t∗)) = h(γ̃(t∗)) is also > 0 since h preserves the depth. But this
is a contradiction since γ(t) was constructed to consist entirely of interior
points for t < 1. This proves (ii). �

We shall use the above result in the following way:
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Corollary 1.4. Let h : M1 →M be a tame submersion of manifolds with
corners.

(i) h is an open map.

(ii) The fibers h−1(m), m ∈M , are smooth manifolds (that is, they have
no corners).

(iii) Let us denote by ∆ ⊂M ×M the diagonal and by h× h : M1 ×M1

→M ×M the product map h× h(m,m′) = (h(m), h(m′)). Then
(h× h)−1(∆) is a submanifold of M1 ×M1 of the same rank as M1.

Proof. The first part follows from Lemma 1.3(ii). The second and third
parts follow from Lemma 1.3(iii), by taking L = {m} for (ii) and L = ∆ for
(iii). �

We shall use the following conventions and notations.

Notations 1.5. If E → X is a smooth vector bundle, we denote by Γ(X;E)
(respectively, by Γc(X;E)) the space of smooth (respectively, smooth, com-
pactly supported) sections of E. Sometimes, when no confusion can arise, we
simply write Γ(E), or, respectively, Γc(E) instead of Γ(X;E), respectively
Γc(X;E). If M is a manifold with corners, we shall denote by

Vb(M) := {X ∈ Γ(M ;TM), X tangent to all faces of M}

the set of vector fields on M that are tangent to all faces of M [32].

For further reference, let us recall a classical result of Serre and Swan
[31], which we formulate in the way that we will use.

Theorem 1.6 (Serre-Swan, [31]). Let M be a compact Hausdorff man-
ifold with corners and V be a finitely generated, projective C∞(M)-module.
Then there exists a real vector bundle EV →M , uniquely determined up
to an isomorphism, such that V ' Γ(M ;EV) as C∞(M)-module. We can
choose EV to depend functorially on V, in particular, any C∞(M)-module
morphism f : V → W ' Γ(M ;EW) induces a unique smooth vector bundle
morphism f̃ : EV → EW compatible with the isomorphisms V ' Γ(M ;EV)
and W ' Γ(M ;EW).

For instance, on can take EV to be the disjoint union of the sets V/ImV,
m ∈M , where Im := {f ∈ C∞(M)| f(m) = 0}, endowed with a suitable
topology and smooth structure. In particular, there exists a (unique up
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to an isomorphism) vector bundle T bM such that Γ(T bM) ' Vb(M) as
C∞(M)-modules [32], where Vb is as introduced in 1.5, and one can take
T bM := ∪m∈MVb/ImVb. By localization, we can use the Serre-Swan Theo-
rem also on non-compact manifolds.

1.2. Definition of Lie groupoids and Lie algebroids

Recall that a category C is given by a class of objects C(0), and, for any two
objects A and B in C(0), by a set of morphisms HomC(A,B) between them,
together with a composition

HomC(A,B)×HomC(B,C) 3 (φ, ψ)→ ψ ◦ φ ∈ HomC(A,C)

satisfying the usual axioms (such as “associativity” and existence of iden-
tity morphism idA ∈ HomC(A,A), for all objects A of C). A morphism φ ∈
HomC(A,B) is said to be invertible if there exists ψ ∈ HomC(B,A) such that
φ ◦ ψ = idB and ψ ◦ φ = idA. A standard example is given by the class of
all sets, with morphisms given by functions. A category is small if its class
of objects is a set.

The simplest version of the definition of a groupoid G is that it is a small
category in which every morphism is invertible. The class of objects of G,
denoted G(0), is thus a set. The set of morphisms G := G(1) is thus also a set.
For convenience, we shall denote M := G(0).

One typically thinks of a groupoid in terms of its structural morphisms.
First of all, the domain and range of a morphism give rise to maps d, r :
G →M . We shall therefore write d, r : G ⇒M (or, simply, G ⇒M) for a
groupoid with units M and domain and range maps d and r. Two morphisms
g, h ∈ G := G(1) are composable if, and only if, d(g) = r(h), and we shall
denote by µ(g, h) = gh their composition. It is a map

(4) µ : G(2) := {(g, h) ∈ G × G| d(g) = r(h)} → G.

The objects of G will also be called units and the morphisms of G will also
be called arrows. To the groupoid G there are also associated the inverse map
i(g) = g−1 and the embedding u : M → G, which associates to each object
of G its identity morphism. If M and G are manifolds with corners, if i is
smooth, and if d is a tame submersion of manifolds with corners, then r is
also a tame submersion of manifolds with corners. The structural morphisms
d, r, µ, i, u will then satisfy the following conditions [11, 39, 45, 57]:

1) d(gh) = d(h) and r(gh) = r(g), g, h ∈ G.
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2) g1(g2g3) = (g1g2)g3 for all gi ∈ G such that d(gi) = r(gi+1).

3) d(u(x)) = x = r(u(x)), for all x ∈M .

4) gu(d(g)) = g and u(r(g))g = g for all g ∈ G.

5) gi(g) = u(r(g)) and i(g)g = u(d(g)) for all g ∈ G.

Let us assume that M and G are manifolds with corners and that d and
r are tame submersions (of manifolds with corners). We then notice that, by
Corollary 1.4, the set G(2) of Equation (4) is a manifold with corners as well.
Also, if d is a tame submersion and i is a diffeomorphism, then r = d ◦ i is
also a tame submersion. Recall then the following fundamental definition

Definition 1.7. A Lie groupoid is a groupoid G ⇒M such that:

1) M and G are manifolds (possibly with corners) and M is Hausdorff.

2) The structural morphisms d, r, i, u are smooth.

3) d is a tame submersion and µ : G(2) → G is smooth.

Lie groupoids were introduced by Ehresmann. See [39] for a comprehen-
sive introduction to the subject as well as for more references. Note that G
is not required to be Hausdorff, as this will needlessly remove a large class of
important examples, such as the ones arising in the study of foliations [13].
However, all groupoids used in this paper will be either assumed or proved
to be Hausdorff. We shall use the following standard notation.

Notations 1.8. Let d, r : G ⇒M be a groupoid and K,L ⊂M , then we de-
note GK := d−1(K), GK := r−1(K), and GLK := r−1(L) ∩ d−1(K). We shall
also write Gx := d−1(x).

In particular, GKK is a groupoid with units K, called the reduction of G to
K. If K ⊂M is open, then GKK will be a Lie groupoid if G is a Lie groupoid.
In general, it will not be a Lie groupoid even if G is a Lie groupoid. If K ⊂M
is G-invariant, meaning that GKK = GK = GK , then GK will be a groupoid,
called the restriction of G to (the invariant subset) K.

We are interested in Lie groupoids since many operators of interest have
distribution kernels that are naturally defined on a Lie groupoid. This is
convenient since it yields a quick proof of the composition formula for these
natural operators. Let us introduce now the composition in the case of regu-
larizing operators. Let G ⇒M be a Lie groupoid and let us choose a metric
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on A(G). Let d, r : G ⇒M be a Lie groupoid and denote

(5) A(G) := ker(d∗ : TG → TM)|M = ∪x∈MTxGx.

That is A(G) is the restriction to the units of the kernel of the differential of
the domain map d. It is a vector bundle on M . We can use this metric and
the projections r : Gx →M that satisfy TGx ' r∗(A(G)) to obtain a family
of metrics gx on Gx. By constructions, these metrics will be right invariant.
The associated volume forms d volx on Gx will hence also be right invariant
for the action of G. Let us assume, for simplicity that G is Hausdorff (this
will be the case throughout the paper). We then define a convolution product
on C∞c (G) by the formula

(6) φ ∗ ψ(g) :=

∫
Gd(g)

φ(gh−1)ψ(h) d vold(g)(h).

A subgroupoid of a groupoid G is a subset H such that the structural
morphisms of G induce a groupoid structure on H. We shall need the notion
of a Lie subgroupoid of a Lie groupoid, which is closely modeled on the
definition in [39]. Recall that if M is a manifold with corners and L ⊂M is
a subset, we say that L is a submanifold of M if it is a closed subset, if it is
a manifold with corners in its own for the topology induced from M , and if
the inclusion L→M is smooth and has injective differential.

Definition 1.9. Let G ⇒M be a Lie groupoid. A Lie groupoid H⇒ L is
a Lie subgroupoid of G if L is a submanifold of M and H is a submanifold
of G with the groupoid structural maps induced from G. (So L and H are
closed subsets, according to our conventions.)

Lie groupoids generalize Lie groups. By analogy, a Lie groupoid G will
have an associated infinitesimal object A(G), the “Lie algebroid associated to
G.” To recall its definition, let us first recall the definition of a Lie algebroid.
See Pradines’ paper [56] for the original definition and Mackenzie’s books
[39] for a comprehensive introduction to their general theory.

Definition 1.10. A Lie algebroid A→M is a real vector bundle over a
Hausdorff manifold with corners M together with a Lie algebra structure on
Γ(M ;A) (with bracket [ , ]) and a vector bundle map % : A→ TM , called
anchor, such that the induced map %∗ : Γ(M ;A)→ Γ(M ;TM) satisfies the
following two conditions:

(i) %∗([X,Y ]) = [%∗(X), %∗(Y )] and
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(ii) [X, fY ]=f [X,Y ]+(%∗(X)f)Y , for all X,Y ∈Γ(M ;A) and f ∈C∞(M).

We shall write Xf instead of %(X)f in what follows.
Let A(G) = ∪x∈MTxGx, as in Equation (5). The groupoid G acts by right

translations on G (or, more precisely, on the fibers of d) in the sense that
if γ ∈ G has r(γ) = x and d(γ) = y, then the map Gx 3 h→ hγ ∈ Gy is a
diffeomorphism. The sections of A(G) identify with the space of d–vertical,
right invariant vector fields on G (that is, the vector fields on G that are
tangent to the submanifolds Gx := d−1(x) and are invariant with respect to
the natural action of G by right translations on the fibers of d). In particular,
the space of sections of A(G)→M has a natural Lie bracket that makes it
into a Lie algebroid, since the space of d–vertical vector fields on G is closed
under the Lie bracket and the Lie bracket is invariant for right translations.
This definition is due to Pradines [56].

Definition 1.11 (Pradines). Let G ⇒M be a Lie groupoid, then the Lie
algebroid A(G) is called the Lie algebroid associated to G. The anchor is the
differential of r restricted at the units.

Recall the following definition (see [39, 58]).

Definition 1.12. Let R be a commutative, associative, unital, real algebra
and let g be a Lie algebra and an R-module such that g acts by derivations
on R and the Lie bracket satisfies the compatibility relation

[X, rY ] = r[X,Y ] +X(r)Y, for all r ∈ R and X,Y ∈ g.

Then we say that g is an R-Lie-Rinehart algebra.

Let M be a compact manifold with corners. We thus see that the cate-
gory of Lie algebroids with base M is equivalent to the category of finitely-
generated, projective C∞(M)-Lie-Rinehart algebras, by the Serre-Swan The-
orem, Theorem 1.6. It is useful in Analysis to think of Lie algebroids as
coming from suitable Lie-Rinehart algebras.

Morphisms of Lie algebroids are tricky to define in general (see for
instance 4.3.1 of [39]), but we will need only special cases. For instance,
the isomorphisms of Lie algebroids are easy to define. Indeed, two alge-
broids Ai →Mi are isomorphic if there exists a vector bundle isomorphism
φ : A1 → A2 that preserves the corresponding Lie brackets. The other case
of morphisms of Lie algebroids that we will consider will be that of a Lie
algebroid morphisms over M . They are obtained when M1 = M2 = M .
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Definition 1.13. Let Ai →M be two Lie algebroids with anchor maps
ρi : Ai → TM . A morphism over M of A1 to A2 is a vector bundle morphism
φ : A1 → A2 that induces the identity over M and is compatible with the
anchor maps and the Lie brackets. More precisely, %2(φ(X)) = %1(X) and
φ([X,Y ]1) = [φ(X), φ(Y )]2 for all sections X and Y of A1.

See 3.3.1 of [39] for more details. This definition is easily dualized to
C∞(M)-Lie-Rinehart algebras by requiring that φ induces a C∞(M)-linear
Lie-algebra morphism g1 → g2. Unless explicitly stated otherwise, we will
consider in this paper only morphisms of Lie algebroids over M (thus mor-
phisms that induce the identity on the base), with the exception when the
morphism is an isomorphism that comes from the action of a Lie group. The
same convention applies to the isomorphisms of Lie groupoids.

The following simple remark will be useful in the proof of Theorem 3.17.

Lemma 1.14. Let A→M be a Lie algebroid and f ∈ C∞(M) be such that
{f = 0} has an empty interior. Then fΓ(M ;A) ⊂ Γ(M ;A) is a Lie sub-
algebra and there exists a Lie algebroid, denoted fA, such that Γ(fA) :=
Γ(M ; fA) ' fΓ(A), as C∞(M)-Lie-Rinehart algebras.

Proof. The proof of the Lemma relies on a simple calculation, which nev-
ertheless will be useful in what follows. Let X,Y ∈ Γ(A) := Γ(M ;A). We
have

(7) [fX, fY ] = fX(f)Y − fY (f)X + f2[X,Y ] ∈ Γ(fA).

The assumption that the interior of {f = 0} be empty guarantees that the
multiplication by f is an isomorphism Γ(A)→ fΓ(A). In particular, we can
choose, fA = A as a vector bundle, but with a different bracket on fA:
[X,Y ]fA = X(f)Y − Y (f)X + f [X,Y ]. �

For further reference, let us recall also the isotropy of a Lie algebroid.

Definition 1.15. Let % : A→ TM be a Lie algebroid on M with anchor
%. Then the kernel ker(%x : Ax → TxM) of the anchor is the isotropy of A at
x ∈M .

It is known that the isotropy at any point is a Lie algebra.
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1.3. Direct products and pull-backs of Lie algebroids

For the purpose of proving Theorems 3.3 and 3.22 below, we need a good
understanding of thick pull-back Lie algebroids and of their relation to vector
bundle pull-backs. We thus recall the definition of the thick pull-back of a Lie
algebroid and of the direct product of two Lie algebroids. We use a simplified
approach that is enough for our purposes, however, more details can be
found in [39]. We therefore adapt accordingly our notation and terminology.
For instance, we shall use the term “thick pull-back of Lie algebroids” (as
in [4]) in order to avoid confusion with the ordinary (i.e. vector bundle)
pull-back, which will also play a role in what follows. For example, vector
bundle pull-backs appear in the next lemma, Lemma 1.16, which states that
a constant family of Lie algebroids defines a new Lie algebroid. We first
make the following observations.

Lemma 1.16. Let A2 →M2 be a vector bundle and M1 be another man-
ifold. Let A := p∗2(A2) be the vector bundle pull-back of A2 to the product
M1 ×M2 via projection p2 : M1 ×M2 →M2. If A2 →M2 is a Lie alge-
broid, then A→M1 ×M2 is also Lie algebroid with [f ⊗X, g ⊗ Y ] = fg ⊗
[X,Y ] for all f, g ∈ C∞(M1) and X,Y ∈ Γ(A2), where we regard C∞(M1)⊗
Γ(M2, A2) ⊂ Γ(M1 ×M2, A) in the obvious natural way.

Proof. This follows from definitions. �

Remark 1.17. A slight generalization of Lemma 1.16 would be that if g
is an R-Lie-Rinehart algebra and R1 is another ring, then R1 ⊗ g (tensor
product over the real numbers) is an R1 ⊗R-Lie-Rinehart algebra, except
that, in our case, we are really considering also completions (of R1 ⊗R and
of R1 ⊗ g) with respect to the natural topologies.

We now make the Lie algebroid structure in Lemma 1.16 more explicit.

Remark 1.18. The isomorphism Γ(M1 ×M2;A) ' C∞(M1; Γ(M2;A2))
identifies the Lie bracket on the space of sections of the vector bundle
A→M1 ×M2 of Lemma 1.16 with

[X,Y ](m) := [X(m), Y (m)],

wherem ∈M andX,Y ∈ Γ(M1 ×M2;A) ' C∞(M1; Γ(M2;A2)), so that the
evaluations X(m), Y (m) ∈ Γ(M2;A2) are defined. The anchor identifies with
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the composition

A := p∗2(A2)→ p∗2(TM2) = M1 × TM2 ⊂ T (M1 ×M2),

where the first map is induced by the anchor of A2.

We now introduce products of Lie algebroids [39] (our notation is slightly
different from the one in that book).

Corollary 1.19. Let Ai →Mi, i = 1, 2, be Lie algebroids and let p∗1(A1)
and p∗2(A2) be their vector bundle pull-backs to M1 ×M2 with their natural
Lie algebroid structures (introduced in Lemma 1.16). Then

A1 �A2 := p∗1(A1)⊕ p∗2(A2) ' A1 ×A2 →M1 ×M2

has a natural Lie algebroid structure A1 �A2→M1×M2 such that Γ(M1;A1)
and Γ(M2;A2) commute in Γ(M1 ×M2;A1 �A2). We notice that Γ(M1 ×
M2; p

∗
i (Ai)) is thus a sub Lie algebra of Γ(M1 ×M2;A1 �A2), i = 1, 2.

The Lie algebroid A1 �A2 just defined is called the direct product Lie
algebroid (see, for instance, [39]) and is thus isomorphic, as a vector bundle,
to the product A1 ×A2 →M1 ×M2. We shall need the following important
related construction. The following definition is from [27], pages 202–203.
See [39] for more details.

Definition 1.20 (Higgins-Mackenzie). Let A→ L be a Lie algebroid
over L with anchor % : A→ TL. Let f : M → L be a smooth map and define

A⊕TL TM := {(ξ,X) ∈ A× TM, %(ξ) = f∗(X) ∈ TL}.

Assume A⊕TL TM defines a smooth vector bundle over M . Then we define
the thick pull-back Lie algebroid of A by f by f↓↓(A) := A⊕TL TM , with
the obvious anchor and bracket.

As we will see shortly, it is easy to verify that if f is a tame submersion
of manifolds with corners, then f↓↓(A) is defined and is a Lie algebroid. The
anchor and bracket will be made fully explicit in that case. We shall use
Lemma 1.3(ii) to reduce the proof of this fact to the case of products, which
we treat first.
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Lemma 1.21. Let A→ L be a Lie algebroid over a manifold with corners
L and let Y be a smooth manifold. If f denotes the projection L× Y → L,
then

f↓↓(A) ' A� TY ' f∗(A)⊕ (L× TY ),

the first isomorphism being an isomorphism of Lie algebroids and the second
isomorphism being simply an isomorphism of vector bundles. The bundle
L× TY → L× Y is the pull-back vector bundle of TY → Y to L× Y via
the projection L× Y → Y .

Proof. The result follows from Corollary 1.19 and Definition 1.20. �

Thus, in general, the Lie algebroid pull-back (or thick pull-back) f↓↓(A)
will not be isomorphic to the vector bundle pull-back f∗(A). The following
was stated in the smooth case in [39].

Proposition 1.22. Let f : M → L be a surjective tame submersion of man-
ifolds with corners and A→ L be a Lie algebroid. Then the thick pull-back
f↓↓(A) is defined (that is, it is a Lie algebroid). Let Tvert(f) := ker(f∗ :
TM → TL), then Tvert(f) ⊂ f↓↓(A) is an inclusion of Lie algebroids and
f↓↓(A)/Tvert(f) ' f∗(A) as vector bundles.

Proof. This is a local result, so it follows from Lemmas 1.3 and 1.21. �

2. Constructions with Lie groupoids

We now introduce some basic constructions using Lie groupoids.

2.1. Basic examples of groupoids

We continue with various examples of constructions of Lie groupoids and
Lie algebroids that will be needed in what follows.

We begin with three basic examples. Most of these examples are exten-
sions to the category of manifolds with corners of some examples from the
category of locally compact spaces. The category of locally compact spaces
will not be considered separately, however. Recall the definition of the con-
volution product on C∞c (G) from Equation (6).

Example 2.1. Any Lie group G is a Lie groupoid with associated Lie
algebroid A(G) = Lie(G), the Lie algebra ofG. Let us assumeG unimodular,
for simplicity, then the product on C∞c (G) = C∞c (G) is simply the convolution
product with respect to a Haar measure.
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At the other end of the spectrum, we have the following example.

Example 2.2. Let M be a manifold with corners and let G(1) = G(0) =
M , so the groupoid of this example contains only units. We shall call a
groupoid with these properties a space. We have A(M) = M × {0}, the zero
vector bundle over M . The product on C∞c (G) = C∞c (M) is nothing but the
pointwise product of two functions.

We thus see that the category of Lie groupoids contains the subcategory
of Lie groups and the subcategory of manifolds (possibly with corners). The
last basic example is that of a product.

Example 2.3. Let Gi ⇒Mi, i = 1, 2, be two Lie groupoids. Then G1 × G2 is
a Lie groupoid with units M1 ×M2. We have A(G1 × G2) ' A(G1) �A(G2),
by Proposition 4.3.10 in [39].

We shall need some more specific classes of Lie groupoids. The goal is to
successively build more and more general examples that will lead us to our
desired desingularization procedure. We proceed by small steps, mainly due
to the complicated nature of this construction, but also because particular
or intermediate cases of this construction are needed on their own. The
following example is crucial in what follows, since it will be used in the
definition of the desingularization groupoid.

Example 2.4. Let G be a Lie group with automorphism group Aut(G) and
let P →M be a principal Aut(G)-bundle. Then the associated fiber bun-
dle G := P ×Aut(G) G (with fiber G) is a Lie groupoid called a Lie group
bundle or a bundle of Lie groups. We have d = r : G →M and A(G) '
P ×Aut(G) Lie(G) in this example. We shall be concerned with this exam-
ple especially in the following two particular situations. Let π : E →M be
a smooth real vector bundle over a manifold with corners. Then each fiber
Em := π−1(m) is a commutative Lie group, and hence E is a Lie groupoid
with the corresponding Lie group bundle structure. A related frequently
used example is obtained as follows. Let R∗+ = (0,∞) act on the fibers of
the vector bundle π : E →M by dilation. This yields, for each m ∈M , the
semi-direct product Gm := Em oR∗+. Then G := ∪Gm is a Lie group bun-
dle, and hence has a natural Lie groupoid structure. Typically, we will use
this construction for E = A(H), the Lie algebroid of some Lie groupoid
H, in which case these constructions appear in the definitions of the adia-
batic groupoid and of the edge modification, and hence in the definition of
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the desingularization of a Lie groupoid. Equation (6) becomes the fiberwise
group convolution product.

Example 2.5. Let M be a smooth manifold (thus M does not have cor-
ners). Then we define the pair groupoid of M as G := M ×M , a groupoid
with units M and with d the second projection, r the first projection,
and (m1,m2)(m2,m3) = (m1,m3). We have A(M ×M) = TM , with anchor
map the identity map. A related example is that of PM , the path groupoid of
M , defined as the set of fixed end point homotopy classes of paths in M . It
has the same Lie algebroid as the pair groupoid: A(PM) = TM , but it leads
to differential operators with completely different properties (and hence to
a different type of Analysis). See [25] for a description of all groupoids inte-
grating TM .

Remark 2.6. Let G := M ×M be the pair groupoid for a smooth manifold
M . The product on C∞c (G) = C∞c (M ×M) is then simply the product of
integral kernels. Indeed, let us fix a metric on A(M ×M) = TM and hence
a volume form (i.e. measure) d vol on M . Then Equation (6) becomes

(8) φ ∗ ψ(x, z) =

∫
M
φ(x, y)ψ(y, z) d vol(y).

This is the reason why the pair groupoids are so basic in our considerations.
(In fact, any Radon measure on M with full support could be considered.)

We need to recall the concept of a morphism of two groupoids, because
we want equivariance properties of our constructions.

Definition 2.7. Let G ⇒M and H⇒ L be two groupoids. A morphism
φ : H → G is a functor of the corresponding categories.

More concretely, a morphism φ : H → G is required to satisfy φ(gh) =
φ(g)φ(h). Then there will also exists a map φ0 : L→M such that d(φ(g)) =
φ0(d(g)), r(φ(g)) = φ0(r(g)), and φ(u(x)) = u(φ0(x)). If G ⇒M andH⇒ L
are Lie groupoids and the groupoid morphism φ : H → G is smooth, we shall
say that φ is a Lie groupoid morphism.

If Γ is a Lie group and G ⇒M is a Lie groupoid, we shall say that Γ acts
on G if there exists a smooth map α : Γ× G → G such that, for each γ ∈ Γ,
the induced map αγ : G 3 g → α(γ, g) ∈ G is a Lie groupoid morphism and
αγαδ = αγδ.

We now recall the important construction of fibered pull-back groupoids
[27, 28].
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Example 2.8. Let f : M → L be a function and d, r : H⇒ L be a groupoid
(so L is the set of units of H), the fibered pull-back groupoid f↓↓(H) is then

f↓↓(H) := {(m, g,m′) ∈M ×H×M |f(m) = r(g), d(g) = f(m′)}.

It is a groupoid with units M and with d(m, g,m′) = m′, r(m, g,m′) = m,
and product (m, g,m′)(m′, g′,m′′) = (m, gg′,m′′). We shall also sometimes
write M ×f H×f M = f↓↓(H) for the fibered pull-back groupoid. We shall
use this construction in the case when f is a tame submersion of manifolds
with corners and H is a Lie groupoid. Then f↓↓(H) is a Lie groupoid (the
fibered pull-back Lie groupoid). Indeed, to see that d is a tame submersion,
it is enough to write that f is locally a product, see Lemma 1.3(ii). The
groupoid f↓↓(H) is a subgroupoid of the product M ×M ×H of the pair
groupoid M ×M and H. Also by Proposition 4.3.11 in [39], we have

(9) A
(
f↓↓(H)

)
' f↓↓

(
A(H)

)
(see Definition 1.20). Thus the Lie algebroid of the fibered pull-back groupoid
f↓↓(H) is the thick pull-back Lie algebroid f↓↓

(
A(H)

)
and hence it contains

as a Lie algebroid the space ker(f∗) of f -vertical tangent vector fields on M .
We note that if a Lie group Γ acts (smoothly by groupoid automorphisms)
on H⇒ L and if the map f : M → L is Γ-equivariant, then Γ will act on
f↓↓(H).

2.2. Adiabatic groupoids and the edge-modification

Our desingularization uses in an essential way adiabatic groupoids. In this
subsection, we shall thus recall in detail the construction of the adiabatic
groupoid Gad associated to a Lie groupoid G, as well as some related con-
structions [13, 21, 29, 53]. For the purpose of further applications, we stress
the smooth action of a Lie group Γ (by Lie groupoid automorphisms) and
thus the functoriality of our constructions.

Let G be a Lie groupoid with unitsM and Lie algebroid A := A(G)→M .
The adiabatic groupoid Gad associated to G will have units M × [0,∞). We
shall define Gad in several steps: first we define its Lie algebroid, then we
define it as a set, then we recall the unique smooth structure that yields
the desired Lie algebroid, and, finally, we show that this construction is
functorial and thus preserves group actions.

2.2.1. The Lie algebroid of the adiabatic groupoid. We first define
a Lie algebroid Aad →M × [0,∞) that will turn out to be isomorphic to
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A(Gad), as in [53]. As vector bundles, we have

Aad := A× [0,∞)→M × [0,∞).

That is, Aad is the vector bundle pull-back of A→M to M × [0,∞) via the
canonical projection π : M × [0,∞)→M . To define the Lie algebra struc-
ture on the space of sections of Aad, let X(t) and Y (t) be sections of Aad,
regarded as smooth functions [0,∞)→ Γ(M ;A(G)). Then

(10) [X,Y ](t) := t[X(t), Y (t)].

Let us denote by π∗(A) the Lie algebroid defined by the vector bundle pull-
back, as in Lemma 1.16. Thus we see that Aad ' π∗(A) as vector bundles
but not as Lie algebroids. Nevertheless, we do have a natural Lie algebroid
morphism (over M × [0,∞), not injective!)

(11) Aad ' tπ∗(A)→ π∗(A),

where the second Lie algebroid is defined by Lemma 1.14 and the iso-
morphism is by Equation (10). The induced map identifies Γ(Aad) with
tΓ(π∗(A)), however.

2.2.2. The underlying groupoid of Gad. We shall define the adiabatic
groupoid Gad as the disjoint union of two Lie groupoids, denoted G1 and G2,
which we define first. This will also define the groupoid structure on Gad
(but not the smooth structure yet!). We let G1 := A(G)× {0} with the Lie
groupoid structure of a bundle of commutative Lie groups A(G)× {0} →
M . (That is G1 is simply a vector bundle, regarded as a Lie groupoid as
in Example 2.4.) The groupoid G2 is given by G2 := G × (0,∞), with the
product Lie groupoid structure, where (0,∞) is regarded as a space (as in
Example 2.2). As a set, we then define the adiabatic groupoid Gad associated
to G as the disjoint union

(12) Gad := G1 t G2 :=
(
A(G)× {0}

)
t
(
G × (0,∞)

)
.

We endow Gad with the natural groupoid structure d, r : Gad →M × [0,∞),
where d and r restrict on each of G1 and G2 to the corresponding domain
and range maps, respectively.

2.2.3. The Lie groupoid structure on Gad. We endow Gad := G1 ∪ G2
with the unique smooth structure that makes it a Lie groupoid with Lie



i
i

“5-Nistor” — 2019/4/26 — 18:18 — page 184 — #24 i
i

i
i

i
i

184 V. Nistor

algebroid Aad, as in [51]. We proceed as in [13, 21, 29] using a (real version
of) the “deformation to the normal cone” considered in those papers. Let
us make that construction explicit in our case. We thus choose connections
∇ : Γ(TGx)→ Γ(TGx ⊗ T ∗Gx) on all the manifolds Gx := d−1(x), x ∈M . As
in [53], we can choose these connections such that the resulting family of
connections is invariant with respect to right multiplication by elements in
G. (One way to achieve this is to consider an embedding of A(G) into a
trivial bundle. This gives an equivariant family of embeddings of each TGx
into a trivial bundle, and then we can choose the corresponding orthogonal
connections.) This gives rise to a smooth map exp∇ : A = A(G)→ G that
maps the zero section of A(G) to the set of units of G. There exists a neigh-
borhood U of the zero section of A(G) on which exp∇ is a diffeomorphism
onto its image. Let us define then W = WU ⊂ A× [0,∞) = Aad to be the
set of pairs (X, t) ∈ A× [0,∞) such that tX ∈ U and define Φ : W → Gad
by the formula

(13) Φ(X, t) :=

{
(exp∇(tX), t) ∈ G × (0,∞) if t > 0

(X, 0) ∈ A(G)× {0} if t = 0.

We define the smooth structure on Gad such that both the image of Φ and
the set G × (0,∞) are open subsets of Gad, with the induced smooth struc-
tures on WU and G × (0,∞) coinciding with the original ones. We obtain
a manifold structure on Gad since transition functions are smooth. The fact
that the resulting smooth structure makes Gad a Lie groupoid follows from
the differentiability with respect to parameters (including initial data) of
solutions of ordinary differential equations. This smooth structure does not
depend on the choice of the connection ∇, since the choice of a different con-
nection would just amount to the conjugation with a local diffeomorphism ψ
of G in a neighborhood of the units. By construction, the space of sections of
A(Gad) identifies with tΓ(π∗(A)), and hence A(Gad) ' Aad, as desired. (Note
that by [51, 53], it is known that there exists a unique Lie groupoid structure
on Gad such that the associated Lie algebroid is Aad and in this remark we
have done nothing but to make more explicit the construction in [51].)

2.2.4. Actions of Lie groups. The following lemma states that the adi-
abatic construction is compatible with Lie group actions.

Lemma 2.9. Let Γ be a Lie group and assume that Γ acts on G ⇒M , then
Γ acts on Gad as well.
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Proof. We use the notation in 2.2.2. We obtain immediately an action of Γ
on each of G1 and G2. To see that this extends to an action on the adiabatic
groupoid, we need to check the compatibility with the coordinate map Φ.
Let V be a compact neighborhood of the identity in Γ. We can choose an
open neighborhood U1 ⊂ U of the set of units of G such that the action of Γ
on M maps V × U1 to U . Then V ×WU1

maps to WU and the resulting map
is smooth by the invariance of the smooth structure on Gad with respect to
the choice of connection. More precisely, denoting all the actions induced by
γ ∈ Γ by αγ , we obtain

αγ
(

exp∇(t))
)

= expαγ(∇)
(
t(αγ)∗(X)

)
= expαγ(∇)

(
(αγ)∗(tX)

)
.

�

2.2.5. Extensions of the adiabatic groupoid construction. We shall
need two slight generalizations of the adiabatic groupoid construction. We
shall use the reduction of a groupoid G to a subset K, which, we recall, is
denoted GKK := r−1(K) ∩ d−1(K).

Example 2.10. Let again M and L be manifolds with corners and f :
M → L be a tame submersion of manifolds with corners. Let H⇒ L be a
Lie groupoid with adiabatic groupoid Had ⇒ L× [0,∞). Let G := f↓↓(H) =
M×fH×fM be the fibered pull-back groupoid. Then the adiabatic groupoid
of G with respect to f has units M × [0,∞) and is defined by

Gad,f := f↓↓1 (Had),

where f1 := (f, id) : M × [0,∞)→ L× [0,∞). Unlike Gad, the groupoid Gad,f
will not be a bundle of Lie groups at time 0, but will be the fibered pull-back
of the Lie groupoid A(H)→ L, regarded as a bundle of Lie groups, by the
map f : M → L. More precisely, let X := M × {0}, which is an invariant
subset of the set of units of M × [0,∞). Then the restriction of Gad,f to X
satisfies

(14) (Gad,f )X 'M ×f A(H)×f M =: f↓↓
(
A(H)

)
.

Remark 2.11. We use the notation in Example 2.10. If H = L× L, then
G = M ×M (so both H and G are pair groupoids in this particular case)
and Gad,f at time 0 will be the fibered pull-back to M of the Lie groupoid
A(H) = TL→ L. In this particular case, the associated differential operators
on Gad,f model adiabatic limits, hence the name of these groupoids (this
explains the choice of the name “adiabatic groupoid” in [53]).
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For the next example, we shall need to introduce an action of R∗+ on the
groupoid in the last example, as in [21].

Remark 2.12. We use the same setting and notation as in Example 2.10
above and let R∗+ = (0,∞) act by dilations on the time variable [0,∞). This
action induces a family of automorphisms ofHad, as in [21] if we let s ∈ R∗+ =
(0,∞) act by s · (g, t) = (g, s−1t) on (g, t) ∈ H × (0,∞) ⊂ Had. Referring to
Equation (13) that defines a parametrization of a neighborhood of A(H)×
{0} ⊂ Had, we obtain

s · Φ(X, t) := s · (exp∇(tX), t) := (exp∇(tX), s−1t)

= (exp∇(s−1tsX), s−1t) =: Φ(sX, s−1t).

By setting t = 0 in this equation, we obtain by continuity that the action of
s on (X, 0) is s(X, 0) = (sX, 0).

We shall use this remark to obtain a (slight extension of a) construction
in [21]. Recall that if a Lie group Γ acts on a Lie groupoid G ⇒M , then the
semi-direct product [39, 45] G o Γ is defined by

(i) G o Γ = G × Γ, as manifolds.

(ii) G o Γ has units M (same as G).

(iii) (g1, γ1)(g2, γ2) := (g1γ1(g2), γ1γ2), when g1γ1(g2) is defined in G.

Example 2.13. We use the notation in Example 2.10 and in Remark 2.12.
In particular, we denote f1 := (f, id) : M × [0,∞)→ L× [0,∞). The action
of R∗+ commutes with f1 and induces an action on Gad,f := f↓↓1 (Had) and we
let

E(M,f,H) := Gad,f oR∗+ := f↓↓1 (Had) oR∗+ = f↓↓1 (Had oR∗+),

be the associated semi-direct product groupoid. The space of units of
E(M,f,H) is M × [0,∞). The groupoid Had oR∗+ was introduced and stud-
ied in [21] under the name gauge adiabatic groupoid.

Let us spell out in detail the structure of the groupoid E(M,f,H).

Remark 2.14. To describe E(M,f,H) as a set, we shall describe its reduc-
tions to M × {0} and to M × (0,∞) (that is, we shall describe its reductions
at time t = 0 and at time t > 0). Let us endow A(H) with the Lie groupoid
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structure of a (commutative) bundle of Lie groups with units L× {0}.
Then, at time t = 0, E(M,f,H) is the semi-direct product f↓↓(A(H)) o
R∗+ ' f↓↓(A(H) oR∗+), with R∗+ acting by dilations on the fibers of A(H).
That is

E(M,f,H){0}×M ' (M ×f A(H)×f M) oR∗+(15)

= M ×f (A(H) oR∗+)×f M

Thus E(M,f,H)M×{0} is the fibered pull-back to M × {0} via f of a bundle
of solvable Lie groups on L. On the other hand, the complement, that is, the
reduction of E(M,f,H) to M × (0,∞) is isomorphic to the product groupoid
f↓↓(H)× (0,∞)2, where the first factor in the product is the fibered pull-
back of H to M and the second factor is the pair groupoid of (0,∞).

For the pair groupoid G = M ×M with M smooth, compact, the ex-
ample of the adiabatic groupoid is due to Connes [13] and was studied
in connection with the index theorem for smooth, compact manifolds. See
[13, 21, 53] for more details.

The construction of the edge modifications is equivariant.

Lemma 2.15. Let us assume with the same notation that a Lie group Γ
acts on H⇒ L and that the tame submersion f : M → L is Γ invariant.
Then Γ acts on E(M,f,H) in a way that is compatible with the structure
provided by Remark 2.14.

Proof. The group Γ acts on Had by Lemma 2.9. This action commutes with
the action of R∗+ by naturality. Hence we obtain an action of Γ on Had oR∗+.
The result follows since f : M → L is Γ invariant. �

2.3. Glueing Lie groupoids

We shall need to “glue” two Lie groupoids along an open subset of the set
of units above which they are isomorphic. This can be done under certain
conditions, and we review now this construction following Theorem 3.4 in
[25].

Let Gi ⇒Mi, i = 1, 2, be two Lie groupoids. (Thus, the sets of units,
Mi, are Hausdorff manifolds, possibly with corners.) Let us assume that we
are given open subsets Ui ⊂Mi such that the reductions (Gi)UiUi , i = 1, 2, are

isomorphic via an isomorphism φ : (G1)U1

U1
→ (G2)U2

U2
that covers a diffemor-

phism U1 → U2, also denoted by φ. We define M := M1 ∪φM2 as follows.
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Let us consider on the disjoint union M1 tM2 the equivalence relation ∼φ
generated by x ∼φ φ(x) if x ∈ U1. Then M1 ∪φM2 := M1 tM2/ ∼φ. We de-
fine similarly

(16) H := G1 ∪φ G2 := (G1 t G2)/ ∼φ .

We shall denote by U c1 := M1 r U1 the complement of U1 in M1 and by

U1 ∩ G1U c1G1 := {x ∈ U1|(∃)g ∈ G1, d(g) = x, r(g) /∈ U1},

the G1-orbit (or saturation) of U c1 in M1. We shall use a similar notation
for G2.

Proposition 2.16. Let us assume that the set φ(U1 ∩ G1U c1G1) does not
intersect U2 ∩ G2U c2G2 and that M := M1 ∪φM2 is a Hausdorff manifold
(possibly with corners). Then the set H of Equation (16) has a natural Lie
groupoid structure with units M . We have Gi ' (H)Mi

Mi
.

Proof. This is basically a consequence of the definitions. We define the do-
main map d : H →M by restriction to each of the groupoids Gi, which is
possible since h ∼ h′ implies d(h) ∼ d(h′). We proceed similarly to define
the range map r.

Let us identify Gi with subsets of H, for simplicity. Hence now U1 = U2

and φ is the identity. To define the product of gj ∈ H, j = 1, 2, just note that
the assumptions ensure that, if gj ∈ Gj , for j = 1, 2, with d(g1) = r(g2) ∈
M , then, first of all, x := d(g1) = r(g2) ∈M1 ∩M2 = U1 = U2. Next, either
r(g1) ∈ U1 or d(g2) ∈ U2 = φ(U1) = U1, because otherwise

d(g1) = r(g2) ∈ U1 ∩ G1U c1G1 ∩ G2U c2G2,

which is in direct contradiction with the hypothesis. This means that, in
fact, gj ∈ Gi, for the same i, and we can define the multiplication using the
multiplication in Gi. �

One of the differences between our result, Proposition 2.16, and Theo-
rem 3.4 in [25] is that we are not starting with a Lie algebroid that needs
to be integrated, and hence we do not have to consider orbits. The paper
[25] also contains a discussion of the gluing procedure in the framework of
manifolds and many other useful results.
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3. Desingularization groupoids

We now introduce our desingularization of a Lie groupoid along a tame
submanifold of its unit space. We also identify its Lie algebroid and prove
some other properties of the desingularization.

3.1. A structure theorem near tame submanifolds

A tubular neighborhood of L in M is an open subset U , L ⊂ U ⊂M , together
with a smooth vector bundle structure π : U → L, with π the identity on L.
In the framework of manifolds with corners, a tubular neighborhood is thus
one that is locally of the form

L0 ' L0 × {0} ⊂ L0 × Rn → L0,

as in the smooth case. For example, if we let ∆M := {(m,m)|m ∈M} ⊂
M ×M , where M is a manifold with (non-empty) boundary, then ∆M is a
submanifold of M ×M in the sense of this paper, but is not a submanifold
with corners of M ×M in the sense of [4]. Moreover, ∆M does not have a
tubular neighborhood in M ×M (recall that we are working in the smooth
category).

We can now introduce the following definition that is central for what
follows.

Definition 3.1. Let A→M be a Lie algebroid over a manifold M . Let
L ⊂M be a submanifold of M such that there exists a tubular neighborhood
U of L in M with projection map π : U → L. We shall say that L is an A-
tame submanifold of M if there exists a Lie algebroid A1 → L such that the
restriction of A to U is isomorphic to the thick pull-back Lie algebroid of
A1 to U via π, that is,

(17) A|U ' π↓↓(A1),

via an isomorphism that is the identity on U . Both M and L may have
corners.

Remark 3.2. We note that, by Proposition 1.22, we have that the Lie
algebroid A1 of Definition 3.1 satisfies A1 ' (A/ ker(π∗ ◦ %))|L, and hence
A1 is determined up to an isomorphism by A. We also have that the joint
map (d, r) : G →M ×M is transverse to L× L. This transversality property
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follows from the A-tameness of L, which in turn implies that, for every g ∈ U ,
we have that

(d∗, r∗)(TgG) ⊃ Td(g)U × Tvert,r(g)π.
Note however, that the condition that (d, r) be transverse to L× L does not
involve in an obvious way the Lie algebroid structure of A(G), so it is not
clear whether this condition is sufficient for L to be A(G)-tame.

Recall that if G ⇒M is a groupoid and K ⊂M , then GKK := r−1(K) ∩
d−1(K) is the reduction of G to K. We shall repeatedly use the fact that,
if L ⊂ K, then (GKK )LL = GLL . Also, recall that a topological space is called
simply-connected if it is path connected and its first homotopy group π1(X)
is trivial. A groupoid G is called d-simply connected if the fibers Gx := d−1(x)
of the domain map are simply-connected.

Here is one of our main technical results that provides a canonical form
for a Lie groupoid in the neighborhood of a tame submanifold. All the iso-
morphisms of Lie groupoids are smooth morphisms.

Theorem 3.3. Let G ⇒M be a Lie groupoid and let L ⊂M be an A(G)-
tame submanifold of M . Let U ⊂M be a tubular neighborhood of L as in Def-
inition 3.1, with π : U → L ⊂ U the associated structural projection. Then
the reduction groupoids GLL and GUU are Lie groupoids. Assume, furthermore,
that the fibers of π : U → L are simply-connected. Then there exists an iso-
morphism

GUU ' π↓↓(GLL) := U ×π GLL ×π U
of Lie groupoids that is the identity on the set of units U .

Proof. First of all, we have that GLL is a Lie groupoid by [39, Proposition
1.5.16] since the joint map (d, r) : G →M ×M is transverse to L× L by Re-
mark 3.2. Then, the fibered pair groupoid H := U ×π U = {(u1, u2)|π(u1) =
π(u2)} is a Lie groupoid with Lie algebroid Tvertπ = ker(π∗). The assumption
that the fibers of π : U → L are simply-connected shows that H is d-simply
connected. Since Tvertπ is contained in A(G)|U as a Lie subalgebroid, by
the definition of a A(G)-tame submanifold, Proposition 3.4 of [45] (which
extends right away to manifolds with corners see also [51]) gives that there
exists a morphism of Lie groupoids over U

(18) Φ : H := U ×π U → GUU .

Recall that “over U” means that Φ preserves the units, in the sense that
d(Φ(γ)) = d(γ) and r(Φ(γ)) = r(γ). In particular, Φ is injective.
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Let (u1, u2) ∈ U × U with π(u1) = π(u2). Then (u1, u2) ∈ H := U ×π U .
In particular, (π(u), u)∈L×πU ∈H for any u∈U . Let g(u) :=Φ(π(u), u)∈
Φ(H) ⊂ G, so that g : U → G is a smooth map, since Φ is smooth. Then, for
any γ ∈ r−1(U) ∩ d−1(U) =: GUU and any u ∈ U , we have

d(g(u)) = d(π(u), u) = u, r(g(u)) = r(π(u), u) = π(u) ∈ L,
hγ := g(r(γ))γg(d(γ))−1 ∈ GLL , and

Ψ(γ) := (r(γ), hγ , d(γ)) ∈ U ×π GLL ×π U.

The map Ψ is the desired isomorphism. �

3.2. The edge modification

We shall now use the structure theorem, Theorem 3.3, to introduce a desin-
gularization of a Lie groupoid G ⇒M in the neighborhood of a tame sub-
manifold L of its set of units M . We need, however, to first discuss the
(real) blow-up of a tame submanifold. We use the standard approach, see
for example [2, 32].

Notations 3.4. In what follows, L will be a tame submanifold of a manifold
with corners (to be specified each time), that is, a submanifold with the
property that it has a tubular neighborhood U with structural projection
π : U → L. We let S := ∂U . We shall denote by NL the normal bundle of
L in M . We assume that U identifies with the set of vectors of length < 1
in NL, for some arbitrary metric. In particular, S ' SNL, the set of unit
vectors in NL, and U r L ' S × (0, 1).

We now recall the definition of the real blow-up of a manifold with
respect to a tame submanifold. We use the notation introduced in 3.4. Let
us assume that L is a tame submanifold of a manifold with corners M .
Informally, the real blow-up or, simply, the blow-up of M along L is the
manifold with corners obtained by removing L from M and by gluing back
S ' SNL in a compatible way. The following definition formalizes this idea.

Definition 3.5. Let L be a tame submanifold of a manifold with corners
M . We use the notation introduced in 3.4 and we let φ be the diffeomorphism
U r L ' S × (0, 1). Then the real blow-up of M along L, denoted [M : L] is
defined by glueing M r L and S × [0, 1) using φ, that is,

(19) [M : L] := (M r L) ∪φ (S × [0, 1)) =
(
(M r L) t S × [0, 1)

)
/ ∼φ,



i
i

“5-Nistor” — 2019/4/26 — 18:18 — page 192 — #32 i
i

i
i

i
i

192 V. Nistor

where ∼φ is the equivalence relation generated by φ(x) ∼φ x, as in Subsec-
tion 2.3.

Remark 3.6. By construction, there exists an associated natural smooth
map

κ : [M : L]→M,

the blow-down map, which is uniquely determined by the condition that it
be continuous and it be the identity on M \ L. For example,

(20) [Rn+k : {0} × Rk] ' Sn−1 × [0,∞)× Rk,

with r ∈ [0,∞) representing the distance to the submanifold L = {0} × Rk
and Sp denoting the sphere of dimension p (the unit sphere in Rp+1). Locally,
all blow-ups that we consider are of this form. In Equation (19), the blow-
down map is simply κ(x′, r, x′′) = (rx′, x′′) ∈ Rn × Rk.

The definition of the blow-up in this paper is the one common in Analysis
[2, 8, 24, 32, 44]; it is different, however, from the one in [7, 25, 55], where
one replaces L with PN = SNL/Z2 instead of S := SNL. We are ready
now to introduce the desingularization of a Lie groupoid with respect to a
tame submanifold in the particular case of a suitable pull-back.

Definition 3.7. Let π : E → L be a euclidean vector bundle. We choose
U ⊂ E to be the set of vectors of length < 1 and S := ∂U ⊂ E, as before.
The various restrictions of π will also be denoted by π. Let H⇒ L be a Lie
groupoid and G := π↓↓(H) = U ×π H×π U . Then the edge modification of G
is the fibered pull-back groupoid

E(S, π,H) := (S ×π Had ×π S) oR∗+ ' S ×π (Had oR∗+)×π S.

Remark 3.8. The edge modification is thus a particular case for f = π :
M = S → L of the example 2.13. It is a Lie groupoid with units S × [0,∞).
We extend in an obvious way the definition of the edge modification to
groupoids isomorphic to groupoids of the form G = π↓↓(H) = U ×π H×π U .

It will be convenient to fix the following further notation.

Notations 3.9. In what follows, G ⇒M will denote a Lie groupoid and
L ⊂M will be an A(G)-tame submanifold. The sets U and S := ∂U have
the same meaning as in 3.4. In particular, π : U → L is a tubular neigh-
borhood of L that is chosen as in Definition 3.1, and hence has simply
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connected fibers. Using Theorem 3.3, we obtain that the reduction GUU is,
up to an isomorphism, of the form π↓↓(H) := U ×π H×π U , and hence its
edge-modification E(S, π,H) is defined. (Note that H is determined by G:
H = GLL .) Let M1 = S × [0, 1), which is an open subset of the set S × [0,∞)
of units of E(S, π,H). We let G1 := E(S, π,H)M1

M1
, the reduction of E(S, π,H)

to M1, and U1 := U r L = S × (0, 1) ⊂M1. Similarly, G2 := GMrL
MrL denotes

the reduction of the groupoid G to M r L.

Remark 3.10. Using the notation and assumptions of Definition 3.7 and
the notation introduced in 3.4 and 3.9, we have that the reduction of G1 to
U1 (which, by the definition of G1 is the reduction of E(S, π,H) to U1 :=
U r L = S × (0, 1) ⊂M1) is isomorphic to

(21) (G1)U1

U1
' (E(S, π,H))U1

U1
' (S ×π H×π S)× (0, 1)2 ' U1 ×π H×π U1,

where (0, 1)2 is the pair groupoid. Since the reduction of G to U is isomorphic
to U ×π H×π U , by Theorem 3.3, it follows that the reduction of G to
U1 is isomorphic to U1 ×π H×π U1. Hence the reduction of G2 to U1 is
also isomorphic to U1 ×π H×π U1. We thus obtain an isomorphism of Lie
groupoids

(22) φ : (G1)U1

U1
→ (G2)U1

U1
' U1 ×π H×π U1.

We are thus in position to glue the groupoids G1 and G2 along their isomor-
phic reductions to U1 using Proposition 2.16 (for U2 = U1).

We can now define the desingularization of a groupoid with respect to a
tame submanifold.

Definition 3.11. Let L ⊂M be an A(G)-tame manifold. Let us use the
notation we have just defined in Remark 3.10. The desingularization of G
along L is the groupoid obtained by glueing the groupoids G1 and G2 along
their isomorphic reductions to U1 = S × (0, 1), using Proposition 2.16. We
shall denote this desingularization groupoid by [[G : L]].

Remark 3.12. We note that the hypothesis of Proposition 2.16 are satis-
fied because U c1 is an invariant subset of M1.

Remark 3.13. To summarize the construction of the desingularization,
let us denote by φ the natural isomorphism of the following two groupoids:
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E(S, π,H)U1

U1
(reduction to U1 ' S × (0, 1)) and GU1

U1
= (G2)U1

U1
. Then

(23) [[G : L]] := E(S, π,H)U1

U1
∪φ GMrL

MrL =: G1 ∪φ G2 = (G1 t G2)/ ∼φ .

One should not confuse [[G : L]] with [G : L], the blow-up of the manifold G
with respect to the submanifold L.

Recall that κ : [M : L]→M denotes the blow-down map, see Remark 3.6.
The following result is crucial in studying the desingularization [[G : L]].
Recall that we endow A(H)→ L with the Lie groupoid structure of a bundle
of Lie groups, that S = ∂U = κ−1(L) = [M : L] r (M r L) is a closed subset
of [M : L]. As agreed, here U is the given tubular neighborhood of L and
π : S → L denotes the natural (fiber bundle) projection, as in 3.4 and 3.9.

Proposition 3.14. The space of units of [[G : L]] is [M : L] and S :=
κ−1(L) is a [[G : L]]-invariant subset of [M : L] with complement [M : L] r
S = M r L. Also,

[[G : L]]S ' π↓↓
(
A(H) oR∗+

)
and [[G : L]]MrL = GMrL

MrL .

Proof. When we glue groupoids, we also glue their units, which gives that
the set of units of [[G : L]] is indeed M1 ∪φM2 =: [M : L]. We have that
S ' S × {0} is a closed, invariant subset of the set S × [0, 1) of units of
G1 := E(S, π,H)M1

M1
, the reduction of E(S, π,H) to M1. Moreover, S is an

invariant subset of the desingularization of G1 with respect to L, and hence
also an invariant subset for [[G : L]]. (See also Remark 3.12.) Since (G1)S =
G1 r G2, we have

[[G : L]]S = (G1)S = E(S, π,H)S .

The rest follows from the construction of [[G : L]] and the discussion in
Example 2.13, Remark 2.14, and, especially, Equation (15). �

Similar structures arise in other situations; see, for instance, [16, 23, 33,
40, 41, 49, 52, 60, 63]. See also the discussion at the end of Example 2.4.
Proposition 3.14 is important in Index theory and Spectral theory because
it gives rise to exact sequences of algebras [15, 52].

The local structure of the desingularization construction is discussed in
Subsection 4.2. We now show that the desingularization is compatible with
Lie group actions.

Proposition 3.15. Let us assume that a Lie group Γ acts on M such that
it leaves invariant the tame submanifold with corners L ⊂M . Then Γ acts
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on [M : L] as well. If, moreover, L is A(G)-tame for some groupoid G ⇒M
on which Γ acts, then we obtain that Γ acts on [[G : L]] also.

Proof. The action on [M : L] is obtained by the same argument as in the
proof of Lemma 2.9 by considering a compact neighborhood of the identity
in Γ. We now show that Γ acts on [[G : L]]. Since M r L is Γ-invariant, Γ
will act on G2 := GMrL

MrL . By Lemma 2.15, Γ acts on E(S, π,H). These actions
coincide on the common domain, and hence Γ acts on [[G : L]]. �

3.3. The Lie algebroid of the desingularization

We can now describe the Lie algebroid of the desingularization [[G : L]] of a
Lie groupoid G with respect to an A(G)-tame submanifold L ⊂M .

Notations 3.16. In the following, A→M will be a Lie algebroid and L ⊂
M will be an A-tame submanifold of M . Also, rL : M → [0,∞) will be a
function that is smooth and > 0 on M r L and coincides with the distance
to L close to L. Also, [M : L] will continue to denote the blow-up of M
along L.

We notice that the function rL lifts to a smooth function on [M : L] (not
just continuous, as on M), which is the main reason for introducing the
blow-up [M : L]. Recall the definition of R-Lie-Rinehart algebras 1.12. We
have the following extension of [2, Theorem 3.10] that was proved originally
for Lie manifolds.

Theorem 3.17. Let W := C∞([M : L])⊗C∞(M) rLΓ(M ;A), where we use
the notation 3.16. Then W is a finitely generated, projective C∞([M : L])-
module with the property that the given Lie bracket on C∞c (M r L;A) ⊂ W
extends to W. Hence, there exists a Lie algebroid B → [M : L] such that
Γ([M : L];B) ' W.

We shall denote [[A : L]] := B the Lie algebroid introduced in Theo-
rem 3.17. The isomorphism Γ([M : L];B) ' W is an isomorphism of vector
bundles inducing the identity over [M : L] and an isomorphism of Lie alge-
bras, hence it is an isomorphism of C∞([M : L])-Lie-Rinehart algebras.

Proof. The proof follows the lines of the proof of Theorem 3.10 in [2], using
the A-tameness of L in order to construct the Lie algebra structure on
Γ(M ;A). We include the details for the benefit of the reader, taking also
advantage of the results in Subsection 1.2. In particular, we shall use the local
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product structure of the thick pull-back of Lie algebroids, Corollary 1.19 and
Lemma 1.21.

We have that Γ(M ;A) is a finitely generated, projective C∞(M)-module,
hence rLΓ(M ;A) is a finitely generated, projective C∞(M)-module, and
hence W := C∞([M : L])⊗C∞(M) rLΓ(M ;A) is a finitely generated, projec-
tive C∞([M : L])-module. It remains to define the Lie bracket onW. We shall
prove, in fact, more than that, namely, we shall obtain in Equation (28) a
local structure result for W, which will be formalized in a few corollaries
that will follow the proof.

We shall use the notation introduced in 3.4. In particular, π : U → L,
L ⊂ U is the tubular neighborhood used to define the thick pull-back al-
gebroid π↓↓(A1) ' A|U , as in the definition of a tame submanifold, Defini-
tion 3.1. The problem is local, so we may assume that U = L× Rn and that
π is the first projection. Since A is the thick pull-back of the Lie algebroid
A1 → L to U , we have by Lemma 1.21 that

(24) A|U ' π↓↓(A1) ' A1 � TRn = π∗(A1)⊕ (L× TRn).

We want to lift the sections of A on U to the blow-up [U : L]. This is, of
course, possible for the sections of π∗(A1)→ U , but not for the sections of
L× TRn → L. This is why we need to multiply with the factor rL.

Let us consider first the simplified case when L is reduced to a point.
We then use a lifting result for vector fields from Rn to

R0 := [Rn : 0] = Sn−1 × [0,∞).

Let r(x) := |x| denote the distance to the origin in Rn. We recall [2] that a
vector field X ∈ rΓ(Rn, TRn) lifts to the blow-up R0 and the resulting lift
is tangent to the boundary of the blow-up (which, we recall, is Sn−1). Thus

C∞(R0)⊗C∞(Rn) rΓ(Rn, TRn) ' Vb(R0)(25)

' Γ(R0;TS
n−1 � T b[0,∞))

' Γ(R0;TS
n−1)⊕ rΓ(R0;T [0,∞)),

where Vb(R0) is as defined in 1.5.
Let us come back now to the case of a general L. Again since the problem

is local, we may also assume that rL : M = U = L× Rn → [0,∞) is given
by rL(x, y) = r(y). Hence

M1 := [M : L] = L× [Rn : 0] = L× Sn−1 × [0,∞).
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We now identify the spaces of sections of the vector bundles of interest us-
ing Equation (24), the isomorphisms below being isomorphisms of C∞(M1)-
modules

W := C∞(M1)⊗C∞(M) rLΓ(M ;A)(26)

' C∞(M1)⊗C∞(M) rLΓ(M ;A1 � TRn)

' C∞(M1)⊗C∞(M)

(
rLΓ(M ; p∗1(A1))⊕ rLΓ(M ; p∗2(TRn))

)
' C∞(M1)⊗C∞(L) rLΓ(L;A1)⊕ C∞(M1)⊗C∞(M) rLΓ(M ; p∗2(TRn)).

Next, Equation (25) gives

C∞(M1)⊗C∞(M) rLΓ(M ; p∗2(TRn))

' C∞(M1)⊗C∞(Rn) rLΓ(Rn;TRn)

' C∞(M1)⊗C∞(R0) C
∞(R0)⊗C∞(Rn) rLΓ(Rn;TRn)

' C∞(M1)⊗C∞(R0) Vb(R0)

' C∞(M1)⊗C∞(R0)

(
rΓ(R0;T [0,∞))⊕ Γ(R0;TS

n−1)
)
.

Let pi be the three projections of M1 := L× Sn−1 × [0,∞) onto its three
components and let A1 → L, A2 := T [0,∞)→ [0,∞), and A3 := TSn−1 →
Sn−1, be the corresponding three Lie algebroids (with the last two being sim-
ply the tangent bundles of the corresponding spaces). Since C∞(M1)⊗C∞(L)

rLΓ(L;A1) ' rLΓ(M1; p
∗
1(A1)), the above calculations then identify W with

the submodule

W ' rLΓ(M1; p
∗
1(A1))⊕ rLΓ(M1; p

∗
2(A2))⊕ Γ(M1; p

∗
3(A3))(27)

⊂ Γ(M1; p
∗
1(A1))⊕ Γ(M1; p

∗
2(A2))⊕ Γ(M1; p

∗
3(A3))

' Γ(M1;A1 �A2 �A3).

More precisely, let us denote by p := (π, rL) : M1 := [M : L]→ L× [0,∞)
the natural fibration, where rL is the distance to L, as before. Let rL(A1 �
A2) be as in Lemma 1.14. Then

(28) [[A : L]] ' p↓↓
(
rL(A1 �A2)

)
.

This equation is the local structure result we had anticipated. It just re-
mains to show that W is closed under the Lie bracket defined on the dense,
open subset M r L ⊂ [M : L]. Indeed, this follows from Equation (28) and
Lemma 1.14. �
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Definition 3.18. Let us use the notation introduced in 3.16 and in Theo-
rem 3.17. Then the Lie algebroid [[A : L]] = B defined in that theorem will
be called the desingularization Lie algebroid of A with respect to L.

Remark 3.19. In [25], Gualtieri and Li introduced the “lower elementary
modification” [A : B]lower of a Lie algebroid A→M with respect to a Lie
subalgebroid B → L, with L a submanifold of M and B ⊂ A|L. It is defined
by

Γ([A : B]lower) := {X ∈ Γ(A)|X|L ∈ Γ(B)}.

One can see right away that their modification is different from ours. In
fact, if B 6= A|L, one can see that the right hand side of the equation is a
projective C∞(M)-module if, and only if, L is of codimension one in M . In
that case (codimension one) one obtains a vector bundle over the same base
M , and not over the blow-up manifold [M : L].

We have to following consequence of the proof of Theorem 3.17.

Corollary 3.20. Let π : M → L be a vector bundle, let A1 → L be a Lie
algebroid, and let A = π↓↓(A1). Let A2 := T [0,∞), let rL : [M : L]→ [0,∞)
be as in 3.16, and let p := (π, rL) : [M : L]→ L× [0,∞) be the natural fi-
bration. Let rL(A1 �A2) be as in Lemma 1.14. Then

[[A : L]] ' p↓↓
(
rL(A1 �A2)

)
.

Proof. Locally, this reduces to Equation (27) (but see also Equation (28)).
�

A more general form of Corollary 3.20 is the following corollary, which
is a direct consequence of the proof of Theorem 3.17 (see Equation (27)).

Corollary 3.21. Using the notation of Theorem 3.17 and of its proof (sum-
marized to a large extend in Corollary 3.20), we have that W be the set of
sections ξ of A over M r L such that, in the neighborhood of every point of
M1 := [M : L], ξ is the restriction of a section of

(29) rLΓ(M1; p
∗
1(A1))⊕ rLΓ(M1; p

∗
2(A2))⊕ Γ(M1; p

∗
3(A3)).

Here is now another of our main results. Recall the definition of the
desingularization [[G : L]] of a Lie groupoid G along an A(G)-tame subman-
ifold L ⊂M , Definition 3.11.
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Theorem 3.22. Let G be a Lie groupoid with units M and L ⊂M be an
A(G)-tame submanifold L ⊂M . Then the Lie algebroid of [[G : L]] is canon-
ically isomorphic to [[A(G) : L]] by an isomorphism that induces the identity
on [M : L].

Proof. Recall the notation introduced in 3.9. In particular, G2 ⊂ [[G : L]]
denotes the reduction of G to U2 := M r L. We have that G2 = [[G : L]]|U2

as well, and hence,

A([[G : L]])|U2
= A(G2) = A(G)|U2

= [[A(G) : L]]|U2
.

(This simply means that, up to an isomorphism, nothing changes outside L.)
Recall that U is the distinguished tubular neighborhood of L used to define
the desingularization groupoid [[G : L]]. Also, G1 is the edge modification of
G and hence G1 is the reduction of [[G : L]] to U1 := [U : L]. See 3.9 and
Proposition 2.16. It suffices then to show that A([[G1 : L]])|U1

= [[A(G1) :
L]]|U1

, because then

(30) A([[G : L]])|U1
= A([[G1 : L]])|U1

= [[A(G1) : L]]|U1
= [[A(G) : L]]|U1

.

Let π : U → L denote the projection, as before. Without loss of gener-
ality, we may assume that M = U , that π : M = U → L is a vector bundle,
and hence that G = π↓↓(H). It follows that A(G) ' π↓↓A(H), by Proposition
4.3.11 in [39] (used already in Example 2.8).

We use the notation of Corollary 3.20. Let pi be the two projections of
L× [0,∞) onto its components. Let A2 = T [0,∞). Then we have that

(31) A(Had) ' rp∗1(A(H)) ⊂ A(H) �A2,

by Equation (11) (see also Equation (10)). Next, the Lie algebroid of the
semi-direct product Had oR∗+ is

(32) A(Had oR∗+) ' rp∗1(A(H))⊕ rp∗2(A2) ' r(A(H) �A2),

by Equation (31) and since the action of R∗+ on [0,∞) has infinitesimal
generator r∂r, r ∈ [0,∞). Finally, the fibered pull-back p↓↓(Had oR∗+) of
Had oR∗+ to [M : L] via the projection p := (π, r) : [M : L]→ L× [0,∞) is
isomorphic to [[G : L]], since U = M . It has Lie algebroid

p↓↓
(
r(A(H) �A2)

)
.
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That is,

A([[G : L]]) ' A(p↓↓(Had oR∗+))

' p↓↓A(Had oR∗+) ' p↓↓
(
r(A(H) �A2)

)
' [[A(G) : L]],

where the last isomorphism is by Corollary 3.20, since A(G) ' π↓↓A(H). �

Remark 3.23. The above theorem, Theorem 3.22, is the raison d’être for
our definition of a desingularization of a Lie groupoid. Indeed, there are good
reasons in Analysis and Poisson Geometry for considering generalized polar
coordinates in the form of coordinates on the blow-up space [M : L] (think
of cylindrical coordinates, which amount to the blow-up of a line in the three
dimensional Euclidean space). This is especially convenient when studying
the conformal change of metrics that replaces the original metric g with r−2L g.
Some of the vector fields on the base manifold become singular in the new
coordinates (in our language, they do not lift to the blow-up). Multiplying
them with the distance function rL eliminates this singularity and does not
affect too much the resulting differential operators. At the level of metrics,
this corresponds to the conformal change of metric g → r−2L g mentioned
above. We are thus lead to study vector fields of the form rLV, where V is
a given Lie algebra of vector fields (a finitely generated, projective module
in all our examples). This motivates our definition of the desingularization
of Lie algebroids. In Analysis, one may want then to integrate the resulting
desingularized Lie algebroid. Relevant result in this sense were obtained in
[18, 51]. However, what our results show is that, if one is given a natural
groupoid integrating the original (non-desingularized) Lie algebroid (with
sections V), then one can construct starting from the initial groupoid a
new groupoid that will integrate the desingularized Lie groupoid and at the
same time preserve the basic properties of the original groupoid (such as the
structure of the orbits).

Related to the above remark, let us mention that it would be interesting
to see, given a Poisson groupoid structure on G, whether this structure lifts
to a Poisson groupoid structure on [[G : L]] (probably not). Some possibly
relevant results in this direction can be found in [25, 34, 46, 55].

4. Extensions and examples

This final section contains an extension of the results of the last subsection
to asymptotically hyperbolic spaces and an example related to the so called
“edge calculus.”
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4.1. The asymptotically hyperbolic modification

One can consider also the case when L ⊂M has a tubular neighborhood
that is not a ball bundle, but something similar. Let us assume then that
L ⊂M is a face of codimension n = 1 that is a manifold with corners in its
own. We assume that the neighborhood U of L is such that U ' L× [0, 1),
with π : U ' L× [0, 1)→ L being the projection onto the first component.
Then our methods extend without change in this case, the result being quite
similar. Theorem 3.3 and its proof extend without change to this setting, and
so does the definition of [[G : L]] as well as the result on its structure and Lie
algebroid. One just has to consider S := L. This example is related to the
study of asymptotically hyperbolic spaces, see, for instance [3, 10, 22, 26, 37]
and the references therein.

4.2. The local structure of the desingularization
for pair groupoids

Let us see what these constructions become in the particular, but important
case when we apply these constructions to the pair groupoid. For the purpose
of further reference, let us introduce the groupoid Hk defined as the semi-
direct product with R∗+ of the adiabatic groupoid (Rk)2ad of the pair groupoid
(Rk)2, that is,

Hk := (Rk)2ad oR∗+ = Rk ×G t
(
Rk × (0,∞)

)2
,

where G is the semi-direct product Rk oR∗+ and t denotes again the disjoint
union.

Example 4.1. Let us assume that G := Rn+k × Rn+k is the pair groupoid
and that L = Rk × {0} ⊂ Rn+k =: M . This gives H = L× L. We have
A(G) = TRn+k, and hence L is an A(G)-tame submanifold. We are, in fact, in
the setting of Definition 3.7, with E = M and π : E → L the natural projec-
tion. We have already seen that [M : L] ' Sn−1 × [0,∞)× Rk. By definition
[[G : L]] := π↓↓(Hk). Thus

[[G : L]] =
(
Sn−1

)2 ×Hk ' (Sn−1)2 × [Rk ×G t (Rk × (0,∞)
)2]

'
(
Sn−1

)2 × Rk ×G t
(
Sn−1 × Rk × (0,∞)

)2
,
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where the first set in the disjoint union corresponds to the restriction to
S, all sets of the form X2 represent pair groupoids, and G = Rk oR∗+, as
before.

The case of an asymptotically hyperbolic modification is completely sim-
ilar.

Example 4.2. The simplest case is the one that models a true hyperbolic
space, that is, L = Rk and M = L× [0,∞). Then we have [[G : L]] = Hk.

4.3. An example: the ‘edge calculus’ groupoid

Let us conclude with one of the simplest non-trivial examples, in which we
consider the desingularization of a groupoid with a smooth set of units over
a smooth manifold M with respect to a (closed) submanifold L ⊂M . Thus
neither the large manifold nor its submanifold have corners. This example
is the one needed to recover the pseudodifferential calculi of Grushin [24],
Mazzeo [44], and Schulze [61].

Remark 4.3. Let M be a smooth, compact, connected manifold (so M
has no corners). Recall the path groupoid of M , consisting of homotopy
classes of end-point preserving paths [0, 1]→M . It is a d-simply-connected
Lie groupoid integrating TM (that is, its Lie algebroid is isomorphic to
TM), so it is the maximal d-connected Lie groupoid with this property.
On the other hand, the minimal groupoid integrating TM is G = M ×M .
In general, a d-connected groupoid G integrating TM will be a quotient of
P(M), explicitly described in [25] (see also [45]). For analysis questions, it
is typically more natural to choose for G the minimal integrating groupoid
M ×M . We notice that in analysis one has to use sometimes groupoids that
are not d-connected [12].

We shall fix in what follows a smooth, compact, connected manifold M
(so M has no corners) and a d-connected Lie groupoid G integrating the Lie
algebroid TM →M . The following example is related to the so-called “edge
calculus”of [24, 44, 61].

Example 4.4. Let L ⊂M be an embedded smooth submanifold with tubu-
lar neighborhood U that we identify with the set of vectors of length < 1 in
NL, the normal bundle to L in M , as in 3.4. We denote by π : S := ∂U → L
the natural projection. Then recall that the blow-up [M : L] of M with
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respect to L is the disjoint union

[M : L] := (M r L) t S,

with the topology of a manifold with boundary S. We have that L is au-
tomatically A(G) = TM -tame, so we can define [[G : L]] (Definition 3.11),
which is a Lie groupoid with base [M : L]. Pseudodifferential operators
on the resulting groupoid [1, 6, 47, 53] can be used to recover the pseu-
dodifferential calculi of Grushin [24], Mazzeo [44], Schulze [61], and oth-
ers. See also Coriasco-Schulze [14], Guillarmou-Moroianu-Park [26], Lauter-
Moroianu [36], Lauter-Nistor [37], and many others.

Let us spell out the structure of [[G : L]] in the simple case of the edge
calculus, in order to better understand the desingularization construction.

Remark 4.5. We continue to use the notation introduced in Example 4.4.
By the definition of the groupoid [[G : L]], the open set U0 := M r L = [M :
L] r S is a [[G : L]]-invariant subset and the restriction [[G : L]]U0

coincides
with the reduction GU0

U0
. In particular, if G = M ×M , then [[G : L]]U0

=

GU0

U0
= U0 × U0, the pair groupoid. On the other hand, the restriction of

[[G : L]] to S := [M : L] r U0 is a fibered pull-back groupoid defined as fol-
lows. We consider first TL→ L, regarded as a bundle of (commutative) Lie
groups. We let R∗+ act on the fibers of TL→ L by dilation and define the
bundle of Lie groups GS → L by GS := TLoR∗+ → L, that is, the group
bundle over L obtained by taking the semi-direct product of TL, by the ac-
tion of R∗+ by dilations. (See also Example 2.4.) Then [[G : L]]S := π↓↓(G). In
particular, [[G : L]]S does not depend on the choice of integrating groupoid
G of Remark 4.3.

Remark 4.6. Let us choose G := M ×M . As mentioned above, if a Lie
group acts on M leaving L invariant, then it will act on G, and hence also
on [G : L], by Proposition 3.15. This yields hence also an action of Γ on the
edge calculus [24, 44, 59, 61]. See also [33, 54, 63, 65].

Remark 4.7. By choosing G := P(M), one obtains a “covering edge calcu-

lus,” that is, a calculus that is on the universal covering manifold M̃ →M ,
is invariant with respect to the group of deck transformations, and respects
the edge structure along the lift of L to M̃ . In particular, we see that if G
is the path groupoid and the fundamental group is not trivial, the groupoid
[[G : L]] is not Morita equivalent to the gauge adiabatic groupoid of [21]. In
general, if U does not intersect all orbits of G on M , then [[G : L]] will not be
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Morita equivalent to the gauge-adiabatic groupoid. See [50] for applications
of the covering calculus.

By iterating this construction as in [2], one obtains integral kernel oper-
ators on polyhedral domains. It would be interesting to extend this example
to the pseudodifferential calculus on manifolds with boundary [9].
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