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Quantitative regularity for
p-harmonic maps

AARON NABER, DANIELE VALTORTA, AND GIONA VERONELLI

In this article, we study the regularity of minimizing and station-
ary p-harmonic maps between Riemannian manifolds. The aim is
obtaining Minkowski-type volume estimates on the singular set
8(u)={z s.t. u is not continuous at x}, as opposed to the weaker
and non quantitative Hausdorff dimension bounds currently avail-
able in literature for generic p.

The main technique used in this paper is the quantitative strat-
ification, which is based on the study of the approximate symme-
tries of the tangent maps of u. In this article, we generalize the
study carried out in [4] for minimizing 2-harmonic maps to generic
p € (1,00). Moreover, we analyze also the stationary case where
the lack of compactness makes the study more complicated.

In order to understand the degeneracy intrinsic in the behaviour
of stationary maps, we study the defect measure naturally associ-
ated to a sequence of such maps and generalize the results obtained
in [I0].

By using refined covering arguments, we also improve the es-
timates in the case of isolated singularities and obtain a definite
bound on the number of singular points. This result seems to be
new even for minimizing 2-harmonic maps.
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1. Introduction

In this article, we study the regularity of minimizing and stationary p-
harmonic maps between Riemannian manifolds, for p € (1,00). That is,
given two compact Riemannian manifolds M and N, where N has empty
boundary, we consider the critical points of the functional

By(w) = [ 1vap,

and focus on the local regularity of u. The singular set of such a function is
defined as

S(u) ={r € M s.t. uis not continuous at =} .

Similar to the 2-harmonic case [I0] we will introduce the notion of a de-
fect measure for limits of such mappings. We will use this in conjunction
with the quantitative stratification technique to prove effective Minkowski-
type estimates not only on 8(u), but also on the regularity scale of u (see
Definition , which roughly speaking controls the regularity of u in a
neighborhood of every point. As a corollary we obtain sharp integrability
conditions for Vu. See Theorems and for complete statements.

1.1. Definitions and notation

For the reader’s convenience, we recall the standard definitions of p-harmonic
maps. Let M and N be two smooth compact Riemannian manifolds, N
without boundary, and M of dimension m. We will always assume that
N is isometrically embedded in some Euclidean space R™ (note that n is
not the dimension of N), and we will denote by W1P(M, N) the Sobolev
space of maps u € WHP(M,R"™) such that u(z) € N a.e. in M. A map u €
WLP(M, N) is said to be a weakly p-harmonic map if it (weakly) satisfies
the equation

Ap(u) = div (|vuyp—2 vu) — — [VulP2 I[1(w)(Vu, V),

where 11 is the second fundamental form of N. Equivalently, such a map has
the property that for every smooth vector field £ : M — R"™ with compact
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support
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where II is the nearest point projection on N defined on a tubular neighbor-
hood of the manifold inside the ambient Euclidean space. If in addition, u
is a critical point with respect to variations in its domain of definition, then
it is called a stationary p-harmonic map. In particular, a stationary map is
a weakly p-harmonic map satisfying

4
dt

Eutesm, ) = | [ [Vutes,ta@ppav =o

t=0

for all smooth compactly supported x : M — TM. Here by exp,(-) we mean
the exponential map centered at = which sends 7,,(M) into M. If M C R™,
then evidently exp, (tx(z)) = = + tx(z). Note that a weakly p-harmonic map
in C*(M, N) is necessarily stationary.

Finally, we define u to be a minimizing p-harmonic map, or more simply
a p-minimizer, if ¥ minimizes the p-energy in the class of WP maps with
the same trace on OM.

An important tool in the study of such maps is the normalized energy,

defined as
Ou(z,r) = T‘pm/ |Vul? .
B, (x)

This quantity turns out to be monotone (or almost monotone) for stationary
maps.

Throughout the paper, we will use the standard notation |p| to denote
the integral part of a real number, i.e., the biggest integer < p.

1.2. Background

The regularity of p-harmonic maps has been extensively studied in litera-
ture, in particular when p = 2. One should also be careful in separating the
minimizing and the stationary case. Note that by Sobolev embedding w is
continuous if p > m, making p < m the only interesting case.

In [15] it was proved that the singular set S(u) for 2-minimizers has
Hausdorff dimension at most m — 3, and outside the singular set the map
u is actually smooth. Their proof is based on a dimension reduction ar-
gument and on an important e-regularity theorem according to which if
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O(z,2r) < e(m, N), then u is smooth on B,(z). Additionally, under the ad-
ditional assumption that there exist no continuous 2-minimizers v : S* — N
for ¢ =2,...,k, they can improve the Hausdorff dimension estimates to
m—k—2.

For generic p # 2, the situation is similar, although in this case the lack
of uniform ellipticity makes C'1'® estimates the best regularity one can hope
for, as opposed to smooth estimates. Indeed, in [§] the authors extend the
e-regularity theorem to this case and prove that S(u) is a set of Hausdorff
dimension < m — |p| — 1 outside of which u is C1<.

More recently, in [4] the Hausdorff dimension estimates of [I5] were im-
proved to Minkowski dimension estimates in the p = 2 case. Indeed, the esti-
mates of [4] allow for the first L? estimates on the gradient and Hessian of so-
lutions to be proved, and more importantly the first L? estimates on the reg-
ularity scale of solutions. In particular, given a 2-minimizer u : By(0) — N
with fBz(O) |Vul? < A, [] shows that for every e > 0

(1) Vol(B,(8(u) N B1(0))) < C(m, N, A, e)r37¢.

The key new ingredient for the proof in [4] was the introduction of the
quantitative stratification.

The goal of this paper is to introduce the quantitative stratification
techniques to the generic p context, and to use these results to prove similar
effective estimates for p-harmonic maps between Riemannian manifolds. To
do this it will be necessary for us to develop the notion of a defect measure,
which will allow us to study limits of p-harmonic maps.

Indeed, note that many arguments in the proofs of these results rely on
some compactness properties enjoyed by the family of p-minimizers. That
is, if a sequence w; of p-minimizers converges weakly in the WP sense to
some u, then the convergence is actually strong and u is a p-minimizer (see
[11] or [17, section 2.9]).

Stationary maps do not enjoy this compactness property, and thus are
in general worse behaved than minimizing ones. Regardless Bethuel proved
in [1] an e-regularity theorem for stationary 2-harmonic maps. This makes
it possible to estimate that 7™ 2(8(u)) = 0. A sharp estimate in this case
is still an interesting open problem.

The technique used by Bethuel is difficult to generalize for arbitrary p,
and in fact a full-blown e-regularity theorem is not available in literature.
To the best of our knowledge, the most general result is the one in [21],
which assumes that the target space N is a homogeneous space with a
left invariant metric. In this case, the authors are able to generalize the
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e-regularity theorem and obtain as a corollary that H™ P(8(u)) = 0, where,
as in the minimizing case, u is C1® outside of its singular set.

Just as Bethuel’s result, this result is based on the duality between BMO
and Hardy spaces, and on a special choice of gauge which allow to exploit this
duality to conclude a polynomial decay for 6(x,r) when 6(z,1) < e. How-
ever, when p # 2, finding this gauge presents nontrivial technical difficulties,
which are easily overcome if the target space has some special structure.

Note that similar results are available when IV is a round sphere, see for
example [7], [20], [18], [12], [19], [14].

Regarding the lack of compactness for stationary maps, an interesting
study has been carried out in [10] when p = 2. Given a W12 weakly conver-
gent sequence of stationary maps u; — u, one can define

\Vui|? de — |Vul*dz + v,

where the convergence is in the weak sense of measures. The nonnegative
measure v is the defect measure, and it is clear that u; converges strongly
in W12 to v if and only if v is null. In [I0], the author studies the measure-
theoretical properties of the measure v, focusing in particular on its relation
with the n — 2 Hausdorff measure and its rectifiability, and via dimension
reduction arguments he is able to prove that if such a measure exists, then
there exists also a smooth nonconstant stationary 2-harmonic map h : S —
N. Thus in case such a map did not exist, stationary maps would enjoy
the same compactness properties of minimizers, and thus also the same
regularity properties. This fact is used in [2, corollary 1.26] to prove an
estimate similar to for 2-stationary maps.

In this paper we will similarly introduce the defect measure for limits of
stationary p-harmonic maps, and we will see it enjoys all the same properties
enjoyed by the defect measure for 2-harmonic maps. We will use it as in [2]
corollary 1.26] to give regularity estimates for some stationary harmonic
maps.

1.3. Main results

In this article, we generalize the quantitative stratification technique intro-
duced in [4] to generic p € (1,00), and use it to obtain regularity estimates
for both minimizers and stationary maps. To do this we introduce and study
the defect measure associated to a sequence of stationary p-harmonic maps.
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For the sake of convenience, we will assume that the base manifold M
is a smooth Riemannian manifold with

(2) sec(M)| <1,  inj(M)>2.

Before stating the results, we define two conditions on the target mani-
fold N under which we will be able to obtain improved regularity results.

Definition 1.1. We say that a compact manifold N satisfies condition
if

(A) A nonconstant continuous p-minimizing maps
uw:8" =N i=|pl,...,a.

We say that a compact manifold /N satisfies condition if

(B) A nonconstant continuous p-stationary maps

u:S8" =N i=|p],...,b.
1.3.1. Results for minimizers. In the minimizing case, by combining
the quantitative stratification with the e-regularity theorem in [§] we obtain

the following Minkowski-type estimates

Theorem 1.2. Let u be a p-minimizing map u : Bo(0) C M — N, where
N is compact (without boundary) and

/ IVulP dV < A.
B»(0)

If m > |p] + 1, then for everyn > 0, there exists a constant C(m, N, A,p,n)
such that for every r >0

Vol (B, (8(u)) N B1(0)) < Crpl+i—n,
Under the additional assumption , we can improve the result to
Vol (B,(8(u)) N B1(0)) < Crot?77.

As a corollary of the proof, we will obtain the following integrability
properties.
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Corollary 1.3. Under the hypotheses of the previous theorem, for all e > 0,
Vu € LPIT1=¢(B1(0)) with

[ < Cm AN o),
B1(0)
Moreover, under the additional assumption (A]), Vu € L***7¢(B1(0)) with

/ Vul*t2¢ < C(m, A, N, p,e)
B, (0)

In the borderline case m = |p]| + 1, it is known that the singularities are
isolated (see for example [8, [15]). Using a refined covering argument, we are
able to improve the previous estimate to an effective finiteness of the number
of singularities for the map u. This result appears to be new even if p = 2.

Theorem 1.4. Let u be a p-minimizing map u : By(0) C M — N, where
N is compact (without boundary) and

/ IVulP dV < A.
B»(0)

Suppose that m = |p| + 1 or that, under the additional assumption ,
m = a+ 2. Then there exists a constant C(p, N, A) such that

#8(u) N B1(0) < C(p,A,N).

Remark 1.5. As it is evident, the lower bound on the injectivity radius
and the sectional curvature of the manifold M in are arbitrary. Indeed,
by scaling and covering it is immediate to see that all the results in this
section hold for a generic smooth manifold, up to letting C' depend also on
the lower bounds on curvature and injectivity radius.

Remark 1.6. As mentioned before, the case m < p is not interesting since
Sobolev embedding implies immediately Holder continuity, and by standard
arguments one gets effective C1® regularity from it. The borderline case
m = pis also not very difficult to deal with ([I7, section 3.6]). For the reader’s
convenience, we will briefly sketch a quick self-contained argument to prove
these statements in Theorem [2.79

1.3.2. Results for stationary maps. As for the stationary case, we
will start by generalizing the study of the defect measure in [10] to a generic
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p € (1,00). An essential tool in this study is the e-regularity theorem, and
given that for p # 2 such a theorem has been proved only if the target N
is a compact homogeneous space with a left invariant metric (see [21]), we
will restrict our study to this case. It is worth noticing that the e-regularity
theorem is the only part where the homogeneity of N plays a role, the rest
of the arguments are valid for any compact target manifold.

Using blow-ups and dimension reduction arguments, we will prove that
the defect measure can be nonzero only if p is an integer and if there exists a
C1@ stationary p-harmonic map from SP to N. Thus if we assume that p is
not an integer or that such a map doesn’t exist, we recover all the regularity
results proved in the minimizing case. In particular, we obtain

Theorem 1.7. Let u: B2(0) — N be a stationary p-harmonic map, where

N is a smooth compact homogeneous space with a left invariant metric. If p
s not an integer, then for all € > 0:

Vol (B,(8(w)) N B1(0)) < C(m, N, p,e)rPlH1=c

Moreover, for all p and under the additional assumption , we can improve
the previous estimate to

Vol (B,(8(u)) N B1(0)) < Crb2-n,

As in the minimizing case, we also prove the following integrability re-
sults.

Corollary 1.8. Under the hypotheses of the previous theorem, for all e > 0,
Vu € LPIH1=¢(B,(0)) with

/ [Vl P < O(m, AN, p,e).
B, (0)
Moreover, under the additional assumption , Vu € L¥27¢(B1(0)) with
[ vl < Clm AN ).
B, (0)

Also the estimates for the borderline case carry over immediately.

Theorem 1.9. Under the hypothesis of the previous theorem, suppose that
p is not an integer and m = |p| + 1, or that, for any p, m = b+ 2 under
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the additional assumption . Let u be a stationary p-harmonic map u :
By(0) — N, where

/ IVulP dV < A.
B-(0)

Then
#8(u) N B1(0) < C(p,A,N).

Remark 1.10. For the sake of simplicity, we will only deal with the case u :
By(0) C R™ — N. Given the local nature of the quantitative stratification,
with simple modifications the results hold verbatim also for Riemannian
manifolds with . The most important modifications needed for the general
case will be pointed out in the study of p-minimizing maps (Section, while
for p-stationary maps we refer to the analysis made by Lin for p = 2, see
[10], Section 5.

1.4. Sketch of the proof

In this section, we will briefly sketch the main ideas involved in the quanti-
tative stratification.

It is well known that the monotonicity of the normalized energy 6, (z, -)
implies the existence of (not necessarily unique) tangent maps for u at ev-
ery point (see for example [I7]). Tangent maps are necessarily homogeneous
weakly harmonic maps, and one says that a tangent map is k-symmetric if
it is homogeneous and invariant wrt a k-dimensional subspace of R™ (for
precise definitions, see Section . This allows to define a standard strat-
ification of the domain of v based on the number of symmetries of tangent
maps. More precisely, for any integer k € [0,m] we define 8* as the set of
points z such that all tangent maps at x are not k + 1 symmetric.

In a manner similar to [3] and [4], we will define a quantitative stratifi-
cation which refines the standard one. Roughly speaking, for fixed r,n > 0
the quantitative stratification separates the points x based on the number
of n-almost symmetries of an approximate tangent map of u at scales > r;
for a more precise statement see Definition [1.22

The essential point of this paper is to prove Minkowski-type volume
estimates on the quantitative strata, as opposed to the weaker Hausdorff
estimates on the standard ones.
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The key ideas involved in proving the estimates for the quantitative
stratification are the energy decomposition, the e-reqularity theorem and
cone-splitting.

In general, cone-splitting is the principle that, in the presence of conical
structure, an object which is symmetric with respect to two distinct points
automatically enjoys a higher order symmetry.

For example, in the setting of this article homogeneity with respect to
a point plays the role of conical structure. A function h is said to be ho-
mogeneous wrt to a point, or equivalently 0-symmetric at a point, if it is
constant on the rays through that point. It is immediate to see that if h is
homogeneous with respect to two distinct points, then it is automatically
constant on all lines parallel to the one joining these points.

In our terminology, we can rephrase this by saying that if a function is 0-
symmetric at two distinct points, then the function is actually 1-symmetric.
Using a simple compactness argument, it is possible to turn this statement
into a quantitative cone-splitting for p-harmonic maps (see Proposition [2.1)).
Roughly speaking, we will prove that if a function is almost 0-symmetric at
two reasonably distant points, then it is actually almost 1-symmetric.

The e-regularity theorem provides a link between the strata 8* and the
singular set 8(u). Indeed, we will show that if a minimizing map u is close
enough in the appropriate sense to an (m — |p])-symmetric function, then
Vu is bounded, and u does not have singular points in its domain. Equiva-
lently, 8(u) C 8™~ PJ-1,

The energy decomposition will exploit this by decomposing the space
B1(0) based on which scales u looks almost 0-symmetric. On each such
piece of the decomposition, nearby points automatically either force higher
order symmetries or an improved covering of the space. By the e-regularity
theorem, if a function has enough approximate symmetries then it is regular,
and thus we obtain a good covering of the singular set in each piece of the
decomposition. The final theorem is obtained by noting that, thanks to the
monotonicity properties of the normalized energy, there are far fewer pieces
to the decomposition than might apriori seem possible.

The volume estimates on the singular points are an easy corollary of the
estimates on the quantitative strata and a e-regularity type theorems from
[8,[15] for the minimizing case, and from [I], 21] for the stationary one. Note
that in the stationary case and for generic p, the e-regularity theorem has
been proved only for homogeneous target manifolds. For this reason, we will
restrict our study to this setting.
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1.4.1. Regularity scale. Actually the main estimates will not just be on
8(u), but on B,(u), an even bigger set. Indeed, we will be able to bound
not only the size of the singular points, but also the size of the points where
the gradient is big. Since the precise definition of B, (u) is rather technical
(see , here we only point out that

S(u) C B(u) C {z st. [Vul(y) <r' Vye By(z)}°

Since the techniques described above are quantitative in nature, it should not
be surprising that we are able to obtain these kind of quantitative results.

By using a refined covering, we will also improve the estimates in the
case of isolated singularities and obtain a definite bound on the number of
singular points.

1.5. Preliminary properties

In this section we recall some of the basic properties related to normalized
energy and homogeneous maps.

Definition 1.11. For ue WH?(B;(0), N), and for all 2, such that B,(z) C
B1(0), define

Ou(z,r) = rp_m/ |VulP dV .
B, (z)

A crucial property of stationary (and thus also of minimizing) p-harmonic
maps is the monotonicity of 6(x,r) wrt r. The monotonicity follows from
this well-known first variational formula (see for example [10] eq. 1.3]).

Proposition 1.12. Letu be a stationary p-harmonic map u : B1(0) CR™ —
N. Then for all smooth compactly supported vector fields § € C>°(B1(0), R™),

(3) / [VulP—2 [|Vu]2 §i —pViuVju| 9;67dV = 0.
B, (x)

Proposition 1.13. Letu be a stationary p-harmonic map u : B1(0) CR™ —
N, then the normalized p-energy is monotone nondecreasing in . In partic-
ular for a.e. r > 0:

2

Oul” 15> 0.

d
4 —0 = prP ™ P2 |22
(4) 0@ ) =pr /BBT(@!W\ o




122 A. Naber, D. Valtorta, and G. Veronelli

Remark 1.14. If u is defined on a Riemannian manifold, then é(z, r) is not
monotone but only “almost” monotone in the following sense: there exists a
constant C' depending on m, N and p such that e“"6(z,r) is monotone for
all » <inj(M). See [8| section 7] for details in the minimizing case (the sta-
tionary case is completely analogous). This version of almost monotonicity
is enough for all our purposes.

As it is clear from equation , the normalized energy is very much
related to homogeneous maps, of which we recall the definition here.

Definition 1.15. We say that h € WYP(R™, N) is a homogeneous function
of degree zero wrt the origin if for a.e. A > 0 and z € R™:

h(Az) = h(x),

or equivalently if % = 0. We say that h is a k-symmetric function if A is ho-
mogeneous of degree zero and there exists a subspace V' of R of dimension
k such that

h(x +y) = h(x)
fora.e. x e R™ and y € V.

Remark 1.16. For simplicity, from now on we will use the terms 0-sym-
metric, homogeneous and homogeneous of degree zero as equivalent.

Evidently, h is m-symmetric if and only if it is a.e. constant.

Remark 1.17. By simple considerations, it is easy to see that the class of
homogeneous functions h : R™ — N is closed in the LP topology for any p <
00. Moreover, if h is homogeneous wrt the points {x;}, then h is symmetric
wrt the affine space spanned by these points.

We define also almost homogeneous functions according to their close-
ness to homogeneous functions. Before doing so, we define the blow-ups T, .

Definition 1.18. For z € B1(0) and r <1, define T}, : B1(0) CR™ — N
by

T (y) = u(@+ry).

For ease of notation we will write T, instead of T}/, when no ambiguity is
possible.
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Remark 1.19. In case M is a Riemannian manifold, it is natural to re-
place the Euclidean blow-up with the one given by the exponential map. In
particular, in this case we would define T, : B1(0) C T,(M) — R by

Ty (y) = u(expg(ry)) -

Remark 1.20 (Scale invariance). From the definition of normalized en-
ergy, it is immediate to see that @ is scale-invariant. In other words

Ou(z,7) = 072 (0,1).

Definition 1.21. We say that u is (k,€,r, x)-symmetric if there exists a
k-symmetric map h such that

][ d (T, h)’dv <e.
B1(0) ’

With this definition, we can define the strata Sg’r by:

Definition 1.22. Given a p-minimizing map u, an integer & > 0 and r,n >
0, we define

87]’;7,“ ={z € B1(0) s.t. Vse[r,1], u is NOT (k+1,n,s,x)-symmetric}.
2. Minimizing maps

The aim of this chapter is to prove the volume estimates on the strata
Sg’r for p-minimizers, and use them to prove regularity results. We start by
proving a quantitative cone-splitting theorem (one could call it an “almost”
cone-splitting).

2.1. Cone-splitting theorem

The cone-splitting theorem is the quantitative version of Remark Us-
ing a simple compactness argument, we see that if w is almost symmetric
with respect to a set of points, and if this set of points “almost spans” a k
dimensional space, then u is almost & symmetric.

Proposition 2.1. Let u be a p-minimizing map with fBz(o) |Vul? < A, and
fiz some n, 7 > 0. Then there exists € = e(m, N, A, p,n, T) such that if

1) wis NOT (k + 1,n,r, z)-symmetric;
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2) u is (0, €, 2r, x)-symmetric;

then there exists a k-dimensional plane V' such that
{y s.t. u is (0,€2r,y)-symmetric} N B.(x) C B (V),

where By(S) ={z s.t. d(x,S) <r} is the tubular neighborhood of radius r
around the set S.

Proof. For convenience, we fix £ = 0 and r = 1. Suppose by contradiction
that the proposition is false. Then for each fixed n and 7, we can find a
sequence of p minimizing maps u; and a sequence of points :L'(()Z), .. ,xgrl €
By (0) such that

1) o = 0,

2) w; is (O,i_1,2,x§-i)) symmetric for all j,

3) forall j=1,....k+1,d <x§i),span (x(()i),ajgi), . ,xﬁl)) >,

4) fBz(O) \Vuz|p < A

By compactness, u; (sub)converges weakly in the WP sense to a function
u. According to [8, Corollary 2.8], since u; are p-minimizers the convergence
is also strong WP sense, and it is a minimizer by [L1] (see also [17, section
2.9]). A

Moreover, by passing to a subsequence if necessary, we have lim; xy) =
xj, and span(xj)g‘f’ié is a k + 1 dimensional subspace.

The almost homogeneity properties of u; imply that u is homogeneous
with respect to all z; on Ba(x;) D Bi(0), and thus it is k + 1 symmetric
on Bj(0). Since u; converges to u, for i sufficiently large u; has to be (k +
1,7,1,0) symmetric, which is a contradiction. O

2.2. Energy pinching and almost homogeneity

An immediate consequence of the monotonicity property (or better, of equa-
tion (), is that if 6, (2, r1) = 6, (z,72), then u is homogeneous wrt z on the
annulus B, (z) \ By, (x). By a simple compactness argument, we can prove
that if the normalized energy is sufficiently pinched, i.e. if 6(z,r) — 0(z, xr)
is small enough, then wu is almost homogeneous. This gives a very powerful
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characterization of almost homogeneous functions, specially given the mono-
tonicity of #. Indeed, if we consider a sequence of scales r;, = x~*, by mono-
tonicity only for a bounded number of k the difference 6(x,ry) — 0(z, rx41)
can be big. This proves that, for each z, p-minimizers are almost homoge-
neous wrt = at all but a bounded number of scales.

Theorem 2.2. Let u be a p-minimizer with fBQ(o) |VulP dV < A, z € B1(0)
and r < 1. Then for every € > 0, there exists = §(m, N, A, p,e) and 0 <
X = x(m, N, A,p,e) < 1/2 such that

O(x,r) —0(x,xr) <9
implies that u is (0, €, 7, x)-symmetric.

Proof. Given the scale-invariant nature of this statement, we can assume
without loss of generality that x = 0 and » = 1. Consider a sequence of p-
minimizers u; with [ Ba(0) |Vu;|P < A and

0,,(0,1) —6,,(0,i7 1) <i™t.

By weak compactness, we can assume that u; (sub)converges weakly in
WLP(B1(0)) to some wu.

In order to prove that u is homogeneous, consider that u; are p-minimizers.
Thus w; converge strongly to u, and in particular 6§(r) is constant for
r € (0,1). Thus u is homogeneous on Bi(0).

Alternatively, one can use an argument similar to the proof of [I5]
Lemma 2.5] to prove the homogeneity of the tangent map. O

In case of a Riemannian manifold, the previous statement needs to be
tweaked a little. Indeed, the limit function u in the previous proof is de-
fined on B;(0) C T(M) and it minimizes the p-energy with respect to the
metric on the manifold, not with respect to the standard Euclidean met-
ric. Moreover, since # in this case is only almost monotone, u need not be
homogeneous. For these reasons, we also need r in the previous theorem to
be effectively small, so that the geodesic ball B,.(0) is close enough to the
Euclidean ball with the same radius.
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Theorem 2.3. Let u: B2(0) C M — N be a p-minimizer with
/ |[VulPdV < A, z € B1(0)
B;(0)

and r < 1. Then for every € > 0, there exists
d=0(m,N,A,pye), ro=ro(m,N,A,p,e€)
and 0 < x = x(m, N, A, p,¢e) < 1/2 such that r < rg and
O(x,r) —0(x,xr) <§
implies that u is (0, €,r, x)-symmetric.

Proof. The proof proceeds as in the Euclidean case. In particular, by con-
tradiction we build a sequence u; which minimize the Riemannian p-energy
on B;-1(0). By the almost monotonicity of 6, and by the assumptions ,
the sequence T; = T, has a uniform WLP(B;(0)) bound. Thus T} has a
weakly convergent subsequence.

The strong convergence of T; and the fact that T is a Euclidean p-
minimizer can be proved by a simple adaptation of [I5, Proposition 4.7
and Proposition 5.2]. Alternatively, one can use the technique of e-almost
minimizers developed in [I1] (see also [17) section 2]). O

Remark 2.4. Since rg depends only on m, N, A, p, the extra assumption
r < rg does not change in a significant way any of the volume estimates we
want to prove.

2.3. e-regularity theorem

The last important ingredient needed for the proof of our main theorems
is the so-called e-regularity theorem for p-minimizers. This theorem states
that if u is close enough to a constant in the LP sense, then u is regular.
More precisely we have

Theorem 2.5 (e-regularity theorem). [8, Corollary 2.7, Theorem 3.1]
Let w be a p-minimizing map w: B2(0) — N. Then for every A > 0, there
exists constants 6(A,m, N,p) >0, a(m,N,p) >0 and C(m,N,p) > 0 such
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that if
/ [VulPdV < A and / d(u,w)PdV <4,
B->(0) B»(0)

where w is any fized point w € N, then f is (1,«)-Holder continuous on
B1(0) and

1flleras, ) < C-

The authors is [8] use the e-regularity theorem and the monotonicity of
0 to prove that the Hausdorff dimension of §(u) is bounded above by m —
|p| — 1. In particular, this implies that all m — |p] symmetric p-minimizers
are constant. Using this and a simple compactness argument, we can improve
the e-regularity theorem to the following version.

Theorem 2.6. Let u be a p-minimizing map u : Ba(0) — N with

/ |VulP dV < A.
B1(0)

There exists constants e(A,m,N,p) >0 and a(m, N,p) > 0 such that if u
is (m — |p],€,1,0)-symmetric then u is (1, «)-Holder continuous on B1(0)
and

[ullcra By <1

Proof. This theorem follows from the previous one and an easy compactness
argument.

Suppose by contradiction that this theorem is false. Then there exists
a sequence of p-minimizing maps u; and a sequence of m — |p| symmetric
maps h; such that

/ |Vu;[PdV <A and / d(ug, hi)PdV <i™",
Bl(o) Bl(o)

but for which fBl(o) d(ui, w)PdV > € for all w € N.

Given the compactness of N, h; has a subsequence which converges
strongly in LP(B1(0)) to an m — |p] symmetric function h. Moreover, u; has
a subsequence which converges strongly in WP(B1(0)) to a p-minimizer u.

Thus h = u is an m — |p| symmetric p-minimizer, which is necessarily
constant by [8]. The previous theorem then ensures that u; converges to h
also in the sense of C1®/2 and this concludes the proof. O
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Under the additional assumptions , we can improve the previous
results and show that any almost m — a — 1 symmetric map is constant.

Corollary 2.7. Suppose that condition holds, and let u be a p-mini-
mizing map u : Ba(0) — N with fBz(O) |VulP dV < A. There exists constants
e(A,m,N,p) >0 and a(m,N,p) >0 such that if u is (m —a—1,¢,1,0)-
symmetric then u is (1, a)-Holder continuous on Bi(0) and

”VUHCLQ(BI(O)) <1l

Proof. A key element in the proof of the previous theorem is that all mini-
mizing p-harmonic maps which are (m — |p|)-symmetric are necessarily con-
stant. In the next lemma, we show using a standard argument that under
assumption any (m — a — 1)-symmetric minimizing map is constant.
The rest of the proof carries over immediately. 0

Lemma 2.8. Under the additional assumptions (Al), all (m —a — 1)-sym-
metric p-minimizing maps h : R™ — N are constant.

Proof. Suppose by contradiction that there exists such a map h with a sin-
gularity, and let S be its invariant subspace of dimension > m —a — 1. By
invariance, the map h induces a minimizing map h: ROt — N.If the origin
is the only isolated singularity of h, then it is immediate to obtain a contin-
uous p-minimizing map h:S"— N , which is trivial by assumption, thus A
would be constant.

We finish the proof by induction. If h has a singularity at x &€ S, then by
the e-regularity theorem 6y, (z,0) > €. Let h’ be a tangent map at x, thus A’ is
a nonconstant minimizing map which is easily seen to be invariant both with
respect to S and with respect to the subspace generated by x. In other words
h'is (m — a)-symmetric. By the previous argument, A’ induces a minimizing
map from R® to N, and this map cannot have an isolated singularity at the
origin. If this map had other singularities, by induction we would obtain a
minimizing map with one more symmetry. Since m — [p| symmetric maps
are necessarily constant, the proof is finished. O

2.4. Regularity scale

Given the scale-invariant properties of the problem we are focusing on, it is
convenient to define some scale-invariant quantities measuring the regularity
of the function u.
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Definition 2.9. Let o = a(m, N, p) > 0 be the one given by Theorem
We define the scale-invariant norm |[luf|, . of u at the point  at scale r as

T SUDPyeB, (z) {|Vu(y) ’}

ey =3+t supesyen, o { RS i we CH(B@)

400, otherwise.

We define also the regularity scale by
rule) = sup {ull,, <1} .
r>0

Remark 2.10. Note that this definition is scale-invariant, in the sense that
HT;"THO | = llull,,.. Moreover |||, . is monotone in 7. In particular, if r <'s,
then

lullg, < llullgs -

Definition 2.11. Let u be a p-minimizing map as in the statement of
Theorem [2.13] and r > 0. Define the set

B, (u) = {x € Bi(0) st |Torlly, = llull,, > 1}
={x € B1(0) s.t. ry(z) <r}.

We can restate the e-regularity theorem in the following form.

Theorem 2.12. Let u be a p-minimizing map u : B2(0) — N, where N is
compact (without boundary) and

/ IVulP dV < A.
B, (0)

Then there exists a positive € = e(m, N, A, p) such that, for all r <1,
8(u) N B1(0) € B, (u) N By (0) C 87 P/~ (w) N By (0).
Under the additional assumption , we can improve the previous result to

8(u) N By(0) C By (u) N B1(0) € 877 *(u) N By(0).
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Proof. The inclusion 8(u) N B1(0) C B, (u) N B1(0) is immediate, while the
inclusion

C
s w) N BUO)] < B (w) N Bi(0))°
is just a scale-invariant form of Theorem and Corollary O

2.5. Volume estimates on the strata

By applying the quantitative stratification technique (see [4]), we now prove
effective volume bounds on the singular strata &, .. In the next section, we
will see how these bounds imply effective regularity estimates on the map u.

Theorem 2.13. Let u be a p-minimizing map as in the statement of Theo-
rem . Then for everyn > 0, there exists a constant C'(m, N, A,p,n) such
that

Vol (BT(SZ;,T(u)) N Bl(O)) < Ok,

The scheme of the proof is the following: fix v = ¢, 2 0, where ¢g =

co(m) is the dimensional geometrical constant appearing in the proof of
Lemma Up to increase the value of ¢y, we can suppose that v < 1/10.
We will prove that there exists a covering of Sﬁﬁj made of nonempty open
sets in the collection {@Zﬁj}. Each set @Zﬁj is the union of a controlled
number of balls of radius ~7.

This will give the desired volume bound. In particular:

Lemma 2.14 (Decomposition Lemma). There exists co(m),c1(m) >0
and D(m, N,~v,A,p,n) > 1 such that for every j € N:

1) 85; i N B1(0) is contained in the union of at most 3P nonempty open

k
sets C?ij

2) FEach Ggﬁj is the union of at most (c1y~™)P (coy™*)7=P balls of radius
’Yj

Once this lemma is proved, Theorem follows easily.

Proof of Theorem [2.13, Since we have a covering of Sf; .+ N B1(0) by balls
of radius 17, it is easy to get a covering of B, (87’; vf> N B1(0). In fact it is
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sufficient to double the radius of the original balls. Now it is evident that:
Vol [Bwj (Sgﬁj) N Bl(O)} < 4P ((clfy_m)D(c(w_k)j_D> W 2™ ('yj)m

where w,, is the volume of the m-dimensional unit ball. By plugging in the
simple rough estimates

. -\ —n/2
P < c(m, N, A,p,n) (+7) "7
(c17™™)P (coy ™)™ < e(m, N, A, p,n),

and using the definition of v, we obtain the desired result. O

2.5.1. Proof of the decomposition Lemma. Now we turn to the proof
of the Decomposition Lemma. In order to do this, we define a new quantity
which measures the non-homogeneity of u at a certain scale.

Given u as in Theorem and € > 0, we divide the set Bi(0) into
two subsets according to the behaviour of the points with respect to their
quantitative symmetry. In particular, define

L, (u) ={x € B1(0) s.t. w is (0,¢,r/(5Y),x)-symmetric},
Hye(u) = Ly (u)© .

Next, to each point z € B;(0) we associate a j-tuple 77(z) of numbers {0, 1}
in such a way that the i-th entry of 77(z) (which will be denoted by T (x))
is 1if v € Hyi (u), and zero otherwise. Then, for each fixed j-tuple T7, set:

E(TV) = {z € B1(0) st. T(x) =T}

Also, we denote by 77~ the (j — 1)-tuple obtained from 77 by dropping the
last entry, and set |Tj‘ to be number of 1 in the j-tuple 77, i.e., !Tj(x)‘ =
3:1 Tij ().
We will build the families {(‘Zsﬁa} by induction on a =0,...,7 in the
following way. For a = 0, {(‘37";770} consists of the single ball B;(0).

2.5.2. Induction step. For fixed a < j, suppose that by induction we
k

- ny Tt
T. Label the sets of balls in the family {G’ﬁﬁa} by all the possible a-tuple
T¢. We will build Gfgﬁa (T*) inductively as follows. For each ball B..-1(y)
in {Gfma,l(Tafl)} take a minimal covering of Bya-1(y) N Sfm] N E(T*) by

balls of radius v* centered at points in Bya-1(x) N sz i N E(T%). Note that

have already built the family {C? , and consider all the 2% a-tuples
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it is possible that for some a-tuple T, the set E(T?) is empty, and in this
case {CF . (T")} is the empty set.

Now we need to prove that the minimal covering satisfies points 1 and
2 in Lemma .74l We will do this in the next three lemmas.

Remark 2.15. For the moment let € > 0 be an arbitrary fixed small quan-
tity. Its value will be chosen in order to apply Proposition [2.1] with n as in
the statement of Theorem and 7 = 10~ 1.

2.5.3. Point 1 in Lemma. As we will see below, we can use the mono-
tonicity of 6 to prove that for every 77, E(17) is empty if ‘TJ | > D. Since for

every j there are at most ( f)) < 4P choices of j-tuples which do not satisfy
such a property, the first point will be proved.

Lemma 2.16. There exists D=D(e,y, m, N, A, p) such that E(T7) is empty
if [T7] > D.

Proof. For s < r, we set
Wy r(z) = 0(x,r) —0(z,s) > 0.

If (s4,7;) are disjoint intervals with max{r;} < 1/3, then by monotonicity of
0

(5) Z W, (2) < 0(x,1/3) — 8(z,0) < C(m,p,A).

Let x = x(m,N,A,p,e) be given by Theorem and let A € N be
such that 44 < x. Consider intervals of the form (7*~!/5,7"+4=1/5) for
i=1,2,...00. By Theorem there exists a ¢ independent of x such that

i1
W15 yiva-1/5(2) <0 = uis (0,¢, T,x)—symmetric.

in particular = € L, ¢, so that, if ¢ < j, the i-th entry of T7 is necessarily
zero. By equation , there can be only a finite number of i’s such that
W.yim1/5 yi+a-1/5(2) > 0, and this number D is bounded by:

C(m,p,A)

(6) D < A=

This completes the proof. O
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2.5.4. Point 2 in Lemma. The proof of the second point in Lemma [2.14
is mainly based on Proposition [2.1} In particular, for fixed k& and 7 in the
definition of Snﬁj, € is chosen in such a way that Proposition can be
applied with 7 = 107!5. Then we can restate the lemma as follows:

Lemma 2.17. Let T = 0. Then the set G = 87]; i N Byamr(z) N E(T7) can

be covered by co(m)y~* balls centered in G of radius Y.

Proof. First of all, note that since 73 = 0, all the points in E(T7) are in
Lo (u).

The set G is contained in Byg-1,¢ (V*) N Bya-1(z) for some k-dimensional
subspace V*. Indeed, if there were a point z € G, such that z ZBio-14a (VFYn
Ba-1(x), then by Proposition (applied with 7=10"1y and r=10"1y2"1)
the map u would be (k + 1,7, 10714271 x)-symmetric. Since 10717271 > 47,
this contradicts = € S’g e 1018 standard geometry that VF N B.a-1(x) can
be covered by co(m)~y ~k balls of radius 107 and by the trlangle inequality
it is evident that the same balls with radius v* cover the whole set G. [J

If instead T2 = 1, then without any effort we can say that G = S77 yi N
B.a-1(x) N E(T7) can be covered by c1(m)y~™ balls of radius v*. Now by a
simple induction argument the proof is complete.

Lemma 2.18. Fach (nonempty) (‘3 s 18 the union of at most

(ery™™)P(con ")~
balls of radius ¥7.

Proof. Fix a sequence 77 and consider the set GZ » (T7). By Lemma [2.16
we can assume that ’TJ‘ < D, otherwise there is nothing to prove since
(i’f; s (T7) would be empty. '

Consider that for each step a, if Ty = 0, in order to get a (minimal)
covering of Bya-1(x )ﬂSk N E(T7) for By-i(z) € G . (T7), we require
at most (coy~*) balls of radlus ~. If T = 1, we need (017 ) balls. Since
the latter situation can occur at most D times, the proof is complete. [

2.6. Regularity estimates

In this section, we collect the main theorems for minimizing maps. As antic-
ipated in the introduction, we obtain estimates not only on the singular set,
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but also quantitative estimates on the regularity scale and, as a corollary,
sharp integrability conditions for the minimizers u.

First of all, we stress that the regularity properties of the minimizers
strongly depend on p and m. For example, it is well known that if m < |p],
then all p-minimizers have no singular points, and thus are C1® functions.
Moreover, as shown in [I7], section 3.6], one can prove that there exist uni-
form C“ bounds on « depending only on m, A, N.. In the following theorem,
we give a short proof of this statement.

Theorem 2.19. If m < |p|, then there exists a constant C(p, A, N) such
that

/ Vul’ <A = [[Vullcoo(p, o) < C-
B»(0)

Under the additional assumption , if m < a+ 1, then there exists a con-
stant C(p, A, N) and an exponent a(m, N,p) > 0 such that

/ Vul? <A = || Vullgoa(s, o) < C-
B, (0)

Proof. By Theorem there exist € and « such that if u is (0, €, r, ) sym-
metric, then |[ul|, . < 1. By Theorem we can rephrase this last property
as follows: there exist 8,y > 0 such that

Oz, 1) = 0(x,xr) <6 = |ull,, <1.

Now we argue in a way similar to the proof of Lemma Consider the
sequence of scales 7, = x*. By monotonicity, there exists a K(p, A, N) < oo
such that 6(z,r;) — 6(z,r541) < for some 0 < k < K. This implies that
ull, ., <1, and thus we obtain the desired bounds.

Using Corollary [2.7] instead of Theorem [2.6] we prove the second state-
ment. g

Naturally, the interesting case is when m > |p| + 1. As a corollary of the
estimates obtained in the previous section, we can prove the main theorem.

Theorem 2.20. Let u: Bo(0) — N be a minimizing p-harmonic map with
fB2(O) |[VulP dV < A. For everyn > 0, there exists a constant C(m, A, N,p,n)
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such that
() Vol(Bi(S(w)) N Bi(0) < Vol (Bo(B,(w)) N By (0)) < Crlrl+1-n,

Moreover, under the additional assumption (Al), we can improve the previous
estimate to

Vol (B,(8(w)) N B1(0)) < Vol (By(B,(u)) N By(0)) < Cret2=n.

This theorem is a corollary of the estimates in Theorem and The-
orem With this estimate, it is immediate to prove the following sharp
integrability theorem.

Corollary 2.21. Letu: By(0) — N be a minimizing p-harmonic map with
Jpa(o) IVulP dV < A For all e > 0, Vu € LWPIH17¢(B,(0)) with

[ < Cm AN,
B1(0)
Moreover, under the additional assumption (A]), Vu € L**7¢(B1(0)) with
/ IVu|T?7¢ < C(m,A,N,p,e).
B (0)

Proof. The proof is an immediate corollary of the regularity scale estimates.
Indeed, let 7 = €/2 > 0 and consider that for all » > 0 we have by

Vol ({z st. |Vu(z)|>r1}) < Crlplti=c/2 — gplpl+i=epe/2

This immediately gives the desired integral estimates on |Vul. ]

Note that the integrability is sharp. Indeed, consider the map u : B1(0) C
R™ — §™~1 defined by u(z) = x/ |z|. This map is p-harmonic if m > p, but
|Vu| ¢ L™(B1(0)). Thus we cannot improve the integrability to |p| + 1.

2.7. Improved regularity for m = |p] + 1

In this section, we focus on the special case m = |p|+1 (or m=a+2
under the additional assumptions ) In this situation, it is known that
singular points are isolated (see for example [8]). We improve this result to
an effective finiteness, which is new even in the case p = 2. The next lemma
describes the property that makes this case special.
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Lemma 2.22. Let m = |p| + 1, or let m = a + 2 under the additional as-
sumption . There exists n(p, A, N) such that if u is (0,n,r, x)-symmetric
and (2r)2—™ fBz,«(CE |Vul? < A, then u does not have singular points in the
annulus Ay(z) = Bz(z) \ Bz(z).

Proof. We will only deal with the case m = |p| + 1, the other being com-
pletely analogous. Moreover, by scale and translation invariance, we can
assume that x = 0 and r = 1.

Consider by contradiction a sequence of minimizers u; which are (0,7,
1,0)-symmetric and such that fBz(o) IVu|? < 272A, and let z; be a singular
point of u; inside the annulus B1(0) \ By /2(0). By passing to a subsequence,
we can assume that u; — u in the strong WP sense and that z; — x, where
x is a singular point for uw. Since u is a homogeneous minimizing map, and
since m = |p] + 1, it cannot have a singular point away from the origin. [

As an immediate corollary, we can prove that all points in S(u) are
isolated.

Lemma 2.23. Under the hypothesis of the previous lemma, the singular
points of u are locally finite.

Proof. Given the monotonicity of 8, for each = there exists an r, such that
O(x,ry) —0(x,0) <6.

Then by applying the previous lemma to all » < r,, we obtain that u is
continuous on B, (z)\ {z}. This proves that the 8(u) is an isolated close
set, thus locally finite. a

By refining this lemma, we prove a uniform upper bound on the number of
singular points.

Theorem 2.24. Suppose that m = |p| + 1, or that m = a + 2 under the

additional assumption . Let uw be a p-minimizing map u: B1(0) = N,
where

/ [Vul?dV < A.
B, (0)

Then

#8(u) N By (0) < C(p, A, N).
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Proof. Consider the sequence of scales 7, = 27%. By an argument similar to
the one in Lemmal[2.16] for each fixed z there exists at most C(p, A, N) “bad
scales”, i.e., scales for which w is not continuous on A, ().

For any fixed u, the number of singular points in Bj(0) is finite by the
previous lemma. Let Sy be this number, we will prove by induction a uniform
upper bound on Sj.

2.7.1. Induction step. Define T; to be an infinite vector of zeros and
ones, and let |7 =322, T'(1).

For i = 1, consider all the balls of radius 27! centered at = € 8(u) N
B;1(0), and refine this covering of 8(u) by considering only a maximal sub-
covering such that By-:(z;) are disjoint. By simple volume estimates the
number of balls in this covering is at most ¢(m).

Consider a ball in this covering that contains the largest number of
singular points, say Ba-1(z1), containing S singular points. If S} = Sy =
#8(u), equivalently if Bs-1(z1) contains all the singular points, then set
T1 = 0, otherwise set 17 = 1. In this second case,

So > 51 > C(m)fl&).

Moreover there exists y; € 8(u) N B1(0) \ Ba-1(z1). Thus for each z €
By-1(x1), either 1 or y; are in By(z) \ B1(z).

We repeat the process by covering B;—($Z) N 8(u) with balls of radius
2711 Since singular points are finite, in a finite number 7 of steps we obtain
S; = 1, hence we stop. Evidently we have the estimate:

So < ¢(m)!T!

In order to get a bound on |T'|, consider the singular point x;. If T'(z) = 1,
then by construction there exists a singular point z; such that

27 < d(z,m7) < 27072

The bound on the number of bad scales ensures that |T'| < 3C(p, A, N). This
concludes the proof. O

3. Stationary maps
The study of the regularity of p-stationary harmonic maps is a little more

complicated than in the minimizing case. There are two important differ-
ences: first of all, a sequence of p-stationary maps which is WP weakly
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convergent may not converge strongly (as opposed to the minimizing case).
For this reason, we generalize the study of the defect measure carried out in
[10].

It is worth mentioning also the work [9], where the author studies the
regularity of a class of p-minimizing functions. Some of the results available
in this article are similar to the results we get here, for example the fact
that the defect measure can be nonzero only if p is an integer.

Moreover, in the stationary case a full-blown e-regularity theorem like
has not been proved yet, even though it seems very plausible to be
valid. Note that, only for p = 2, this problem has been completely solved
by Bethuel in [I] (see also [13]), however the gauge techniques used in these
papers are not easily adapted for generic p.

3.1. e-regularity theorem

Some partial results are available in literature under stricter assumptions.
For example, see [7], [20], [18], [12], [19], [14]. In [20] an e-regularity theorem
is proved assuming that the target the standard sphere, and in [14] under
the strong assumption that the map is W?P. To the best of our knowledge,
the most general result in this direction is the following, which assumes
homogeneity of the target space.

Theorem 3.1. [21, Corollary 3.2] Let N be a smooth compact homogeneous
space with a left invariant metric. Then there exists e(m, N, p),a(m, N, p) >
0 such that if u is a p-stationary harmonic map with 0(x,2r) < €, then u €
CL(B(r)).

As an immediate corollary, we can obtain also estimates on the (scale-
invariant) C1® norm of u.

Corollary 3.2. Let N be as above, and let u : Bo(0) C R™ — N be a p-
stationary harmonic map. There exist positive constants e(m,N,p) and
a(m, N,p) such that if (x,2r) < €, then

V() - Vuly)
bl , = r [Vullgogs o+ sup { LIONWY
' co(B-(O) z,yE€B, () |:E - y|

Proof. The proof is obtained through a simple contradiction and compact-
ness argument. O

Using a simple covering argument (see [5], section 2.4.3]), we can obtain
the following regularity theorem.
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Theorem 3.3. [21, Theorem 2] Let u be a stationary p-harmonic map
u: Bs(0) = N, where N is a compact homogeneous manifold with a left
invariant metric. Then for some a(n,p, N) > 0, u € C1¥(B1(0) \ Z), where
Z is a closed set with H™ P(Z) = 0. In particular, if p > n, then u is a C1®
function on the whole domain.

Remark 3.4. Note that this result is not quantitative, meaning that there
is no upper bound on |Vu| of any kind.

Indeed, even if u € C1%(B \ Z), there is no uniform local bound on |Vu|
on B\ Z. A counterexample can be found in [10, Example 1.1]. Let u be a
a nonconstant stationary m-harmonic map from R™, which has no singular
points. Since such maps are conformal invariant in R™, it is easy to build a
sequence u; with m-energy independent of i such that u; — const in W™
but

|Vul™dV — ¢dy ,

where the convergence is weak in the sense of measure. Evidently, in such a
situation there can be no uniform upper bound on [Vu,]|.

However, one can easily tweak the previous argument to get effective
C1® away from a set of Minkowski dimension m — p.

Theorem 3.5. Let u: B3(0) — N be a stationary p-harmonic map, where
N is a compact homogeneous manifold with a left invariant metric. Then

Vol (B, (u)) < C(m, N, p)r® / VP .
B>(0)

Proof. The theorem is an easy consequence of the inclusion
B, (u) C {x € B1(0) s.t. O(xz,r)>€}.

Let B, (x;) be pairwise disjoint balls with centers in B, (u) such that B, (u) C
\U; Bsr(2;). Then the number N of such balls is bounded above by

Ner™™P < Z/ IVulPdV < A,
i 7 Br(w:)

and the thesis follows immediately. O

The example before shows that this result is in some sense sharp.
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The aim of the following sections is to prove that the following result
can be improved if p is not an integer, or else if there exists no continuous
nonconstant stationary p-harmonic map from S? into N.

Since stationary m-harmonic maps into symmetric targets are regular
if the domain has dimension m, the following theorem about removable
singularities should not be surprising.

Theorem 3.6. [12, Theorem 5.1] Let u : B1(0) \ {0} C R™ — N be an m-
harmonic map in C*(B1(0)\ {0}). If u € WH™(B1(0)), the singularity in 0
s removable.

3.2. The defect measure

As we have seen, weak convergence of stationary maps does not imply strong
convergence. The defect measure studied in [10] gives a quantitative tool to
measure how far the convergence is from being strong. In this section we
study some of the properties of the defect measure. Most of the results are
easy generalizations of the equivalent results available in [10, section 1] for
the p = 2 case, thus sometimes we will refer the reader to this article for the
proofs.

The aim of this section is to show that the defect measure is absolutely
continuous wrt the H™ P Hausdorff measure, and that it satisfies all the
properties needed in order to apply the Federer’s dimension reduction argu-
ment (see [16, Appendix Al).

Remark 3.7. Throughout this section the e-regularity theorem will
be an essential tool. Thus we will always assume to work with p-stationary
maps u : B3(0) — N, where the target space N is a compact homogeneous
manifold with a left invariant metric.

Let H(A) be the set of stationary p-harmonic maps u : B2(0) — N such
that 6,(x,2) <A for all x € B1(0), and H(A) be its weak closure in the
WP sense (recall that in this case the weak closure coincides with the weak
sequential closure). Since 0(x,2) < (3/2)™7P#(0, 3), it is easy to see that

0,(0,3) < <§>mpA . ueH(A).

Consider a sequence u; € H(A) and the corresponding sequence of mea-
sures |Vu;|P dV. Given the uniform bound on the p-energies of w;, up to
passing to a subsequence, we can write that u; — v in the weak WP sense,
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and also that |[Vu;[P dV — du in the sense of weak convergence of measures.
Note that by Fatou’s lemma we can write

|Vu; [P dV — dp = |VulP dV + dv,

where v, a nonnegative Radon measure, is defined to be the defect measure.

Let M(A) be the set of Radon measures du which can be obtained in
this way. Note that M(A) is closed under weak convergence in the sense of
measures.

Following the study of the defect measure in [I0], we generalize the
results of this article to generic p € (1,00), and not only p = 2. Since all the
proofs in this section are similar to the ones in [10], we will sketch only the
more complex ones.

Theorem 3.8. Let u; be a sequence in H(A) such that u; — u in WHP and
|Vu;| dV — du. Define the set

Y= m {x € B1(0) s.t. liminfrp_m/ ( )|Vui\pdV > e} ,
B,.(x

1—00
r>0

where € = €(m, N, p) is chosen according to Theorem . Then
1) ¥ is a closed subset of B1(0),

2) X has bounded m — p Minkowski content, more precisely
Vol(B,(X)) < C(m,N,p, A)r"™ P,
3) ¥ = supp(v) Using(u), where
sing(u) = {z € B1(0) s.t. u is not C"* around x}

is the singular set of u,

4) dv is absolutely continuous wrt H™ P. Moreover for almost all x € 3

wrt HM™P, dv = f(x)H™P|y where e < f(x) < C(n,A),

Proof. The proof of this theorem is based on standard covering arguments
and the monotonicity of the normalized p-energy for stationary harmonic
maps, which in turn easily yields the monotonicity of the quantity 6, (z,r) =
rP="dp(By(x)). In the following, we sketch the main arguments in the proof.
For more details, we refer the reader to [10, Lemma 1.5 and Lemma 1.6].
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Point (1) follows easily from the e-regularity theorem. Indeed, if ¢ ¥,
then there exists a positive r, such that 0, (z, 2r;) < e. This implies that u;
has uniform C1® bounds on B, (), and thus B, (z) NY = (.

The uniform volume bound can be obtained by the same covering argu-
ment used in the proof of Theorem [3.5

As for point (3), if z € B1(0) \ ¥, then the uniform C** bounds given by
the e-regularity theorem imply that u; converge in the C! sense to w. Thus
u is C1* around z and x ¢ supp(v) U sing(u). On the other hand, if x € ¥\
sing(u), then there exists a radius r, small enough such that for all s < r,,
sp—m st(m) |Vul? < €/4. Thus sP~™v(Bs(x)) > 0, and so x € supp(v).

The last point follows from the monotonicity of the energy. Indeed, for
all x € B1(0) and r < 1, we have P~ u(B,(z)) < u(Bi(z)) < A, thus u is
absolutely continuous wrt H™P. In particular, there exists a function f
such that p = f(z)H™P|y.

Moreover, by [5 section 2.4.3], lim sup,._,o r’~™ fBr(w) |VulP =0 for H™P
a.e. x € 2. Thus we obtain the thesis. O

By Proposition [1.13] it is easy to see that if 6, (z,r) = 0, (x,0), then u is
a homogeneous function on B, (x). The next lemma, which is an immediate

generalization of [10, Lemma 1.7], shows that the same property holds for
any measure dy € M(A).

Lemma 3.9. Let u; be a sequence in H(A) such that u; — u in WP and
|Vu;[P de — dp = |VulP dz + dv. Suppose also that for some r; — 0,

0“(0,1) — 6“(0,1;) = 0.
Then both p and v are homogeneous measures, meaning that
dp = r™ P ldrdo(6) ,
where the measure o is invariant wrt r, and O,u = 0 for a.e. r € (0,00).
Proof. Consider the measures
|Vug|P dV = |Vug [P r™tdrdd = v P~ rdrdoy(r, 6).
By the monotonicity formula, the limit function u is homogeneous because

Oru = 0 a.e. away from the origin. Thus p is homogeneous if and only if v
is homogeneous.
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We want to prove that for almost every r, R, and every smooth test
function ¢ : S™ 1 - R

/ $(0)do(r, 0) = / 6(0)do(R, ) .
S'HL*I

gm—1
In order to do that, let ¥ a standard mollifier, i.e., let ¥ be a function

such that supp(y) C [-1,1], ¥ > 0 and [ ¢ = 1.
For a > €, define the functions

ucte) = 1o (122,

€

Ex(a,e) = /000 - &(0)q,cdoy(r,0)dr .

Note that, for a.e. r € (0, 00),

hH(l) Ex(a,€) =: Eg(a) = ¢(0)doy(a,0).
€— Sn—1

In order to prove that do(r,#) is invariant wrt r, we will show that its
derivative in r is zero, at least in a weak sense. Consider that

(8) %Ek(a,e) - /OOO Snl(ﬁ(e)i‘wa’Edak(r’ 0)dr

:—/m ()0, b0 cdoy(r, 0)dr
0o Jgn

Set for simplicity o(r,8) = 1q.(r)$(#), and consider the vector field
(which is smooth for € < a)

& (x) = () |zP"" .

By equation (3]),

/ V[P (\VUHZ 0ij — pviukvjuk) 9€1dV =0,
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which immediately yields

/ |Vuk|p_2 (’VUHQ 5@' - pviukvj'uk>

x (il 4 4 (p = m)g o2 210 + a6y ) AV =0,

// Vg 8, porP~™Hrm=Larqg
—p / VP2 (Vug | V) P~ 0w r™ L drdd
“plp—m) [ [ (a2 o drd
+ O// OrP™™ Vg P ™ Ldrdd = 0.
Equivalently
190 0., 0)ras
—plo = m) [ [ G0t O)r (Va2 0, drdg
+p / (Vg P2 |0ur|? Optha 4 (0)rP drdd
4 [ [ 19072 (T sunl T 0(0) g0 Bt .

By equation , the derivative of E can be expressed as

d _ _
9 B(a,¢) = p(m — p) / Pacd(O) Y (Va2 |0y up? drdb

da
0 [[ 1902 Qs 2060} 2drd0
d p—2 2 v

tro |Vug P~ |0pug|” ta,ep(0)rPdrded .
Integrating this equation on [s,t] we get
Ex(s,€) — Ex(t,e) = p(m — p)/ da // Vacp(O)rP? (Vg [P~2 | 0pup,|? drdd

t
—p/ da // ]Vuk]pfz 89uk3ruk¢a7589¢(9)rp72d7“d6
t

t
+p [// |vuk|p_2 |aruk|2 ﬂJa,eqb(H)rpdrdH .
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By letting € — 0, we obtain (at least a.e. in s and t):

Ex(s) — Ex(t) = p(m — p) / ' da / o(0)a” ™ [VuglP~2 |0, dO

—p/ da/|Vuk|p2 Doy, OruyOpp(0)aP2dh
t
t

Ty [ [ 19l 0. ¢<9>rpcw]

s

Note that, by ,

9) 0<p(m—p) /t Cda / B(0)aP ™ |Vug|P~? |0,ug|* df
< ¢lloe (m = p)[Ok(t) — Ok(s)],

(10) / da / Vg, [P 2 agukarukam(e)ap?de‘
t
1/2
< ( / AV |V |2 lﬁruk]2>
B.(0)\B:(0)
1/2
X ( / AV P~ |V [P~2 =2 | Opu | \39<b!2>
B:(0)\Bs(0)
< s/ Tgl| o AV (Ok(t) — 01(s))
t
(1) [ [ ¢<0>rpdrd0} < N6l (1000)] + 104(5)]) -

Thus we obtain that, for a.e. s,t > 0,
k:hm ¢(9) (dak(t, 9) - dak(s, 9)) =0.
—00

Let 7, be a translation in the radial coordinate by a. This implies that for
every a:

lim 74(dogdr) —dogdr =0 =  74(dodr) = dodr.

k—o0

Thus we have proved the invariance of the measure do, and in turn the
homogeneity of du and dv. O
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This lemma will play a crucial role in proving a generalization of Theo-
rem for stationary functions and in the dimension reduction properties
of the space M(A) explained in the following section.

3.3. Dimension reduction arguments

In this section, we show that the dimension reduction argument proved in
[16, Theorem A.4] can be applied to the measures in M(A). As a corollary,
we will prove that if p is not an integer, then there cannot be any defect
measure, and if p is an integer, M(A) contains a constant multiple of H™P|,,
where L is some m — p dimensional subspace of R™.

Definition 3.10. Given p € M(A), y € B1(0) and r <2, we define the
Radon measure

pyr(A) =" Pu(y +rA).

It is clear from the definition that p,,, € M(A) for every r > 0 sufficiently
small, and since M(A) is closed under weak convergence of measure, given
any sequence 1, — 0, there always exists a subsequence such that iy, —
ty0 € M(A) (note that p, o may depend on the sequence ry,). '

Definition 3.11. Let JF be the set of closed subsets of B;(0) C R™. Define
the map 7: M(A) — F by 7(p) = 3, where ¥ is the set defined in Theo-
rem [3.8

The following lemma generalizes [10, Lemma 1.7] and is the key to prov-
ing the dimension reduction properties.

Lemma 3.12. Let p € M(A), y € B1(0) and A <2. Then

1) M(A) is closed under rescaling, meaning that ju, x belongs to M(A),

2) given any sequence A\, — 0, there exists a subsequence A, such that
fy, — 0 E€MA)  with  fo,=p Yr>0,

3) m(pyn) = A7 (w(p) — ),

4) if p is absolutely continuous wrt the n-dimensional Lebesgue measure,
then m(p) = 0
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5) if pux — p, then for every e > 0, there exists k(e) such that for k > k:
m(ur) C {z € B1(0) s.t. d(z,m(p)) <€} .

Remark 3.13. Note that properties 1 to 5 coincide with properties A.1,
A.2 and A.3 in [16].

Proof. Properties 1 and 3 follow directly from the definitions given above,
while property 4 is an easy consequence of the definition of m(u) = X given
in Theorem [3.8

Property 2 is a direct consequence of Lemma [3.9] and the monotonicity
of 0. First of all, observe that

Ou(,r) = """ (B, ()

is a monotone nondecreasing quantity for all u € M(A). Moreover 0,,(z,r) =
0u,.,(0,1), and thus 6;(0,r) = 05(0,0) for all r» > 0.

Consider a sequence of functions w; € H(A) such that |Vw;|’ dV — f.
The weak convergence implies that for all e and r > 0

lim 6,,(0,1) = lim |Vw;|P dV

< ﬂ(Bl-i-E(O)) = (1 + e)mipeﬂ((x O) ’
lim 6, (0,r) = lim rp_m/ |Vw;|P dV
1—00 1—00 BT(O)
2 " (Br(1-¢)(0)) = (1 — €)™ 7765(0,0).

In other words, for every r > 0 lim;_,o 6y, (0,1) — 0y, (0,7) = 0, and property
2 follows directly from Lemma (3.9

As for property 5, the proof is a simple application of the e-regularity
theorem. Let p; be a sequence of measures in M(A), and consider the se-
quence of compact sets 7(u;). By Hausdorff compactness principle, up to
passing to a subsequence, 7(u;) — E, where F is a closed set and the con-
vergence is the Hausdorff convergence in R™. This in particular implies that
for every € > 0, there exists k() such that for k > k:

m(uk) C {z € B1(0) s.t. d(z, E) <€} .

We are left to prove that E' C w(u). Let x € E, then there exists a sequence
x; € w(u;) such that x; — x in the usual Euclidean sense. By definition of
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(@), O, (2,0) > €, and by monotonicity of 6, for all » >0 and for all i,
O, (xi,m) > €.
This immediately implies that for all § > 0 and for all » > 0:

Op(z,r+0) = (r+ 6" (Brys())

p—m p—m
> <T+5) lim 0, (x;,7r) > (1—&—5) €.
r 1—>00 r

Thus we can conclude that 0;(z,0) >0 <= 65(z,0) > €, and thus z €
~(p). =

As an application of this lemma, we can apply the dimension reduction
argument in [16, Appendix A] and prove that if there exists a nonzero de-
fect measure, then M(A) contains a measure p which is exactly a constant
multiple of the m — p Hausdorff measure on an m — p dimensional subspace
of R™. As a corollary, we obtain that there cannot be any nonzero defect
measure if p is not an integer.

Proposition 3.14. Suppose that there exists some sequence u; € H(A)
such that |[Vu;|P dV — |[Vu|P dV + dv, where dv # 0. Then p must be an
integer, and there exists a sequence w; € H(A) such that

w; — const , |Vw;|PdV — dv,

where dv is a constant multiple of the m — p Hausdorff measure on a m — p
subspace of R™,

Proof. By point (4) in Theorem the measure dv is absolutely continuous
wrt H™ P and nonzero. Thus there exists a point x € ¥ with positive m — p
density (see [6, 2.10.19]). Specifically we have

HP(S N By(x))

rm—p

(12) lim sup >0

r—0

Hee P(XN By, (x))

= dX\;— 0 s.t. kl;rglo )\Zl_p >0,
where
_ > diam(C;) "7
H"P(A) = inf ey | ———2%
o) =t { S (25E)

st. C;jCR™ and A CU;C; and diam(Cj) < r}.
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By Lemma up to passing to a subsequence, iz ), — [, where [i is
homogeneous (and thus we can extend the definition of i to the whole R™).

Let ¥ = 7m(fi) be the singular set of ji. We are going to show that this
set must have positive m — p Hausdorff measure. Indeed, suppose by contra-
diction that H™ P(¥) = 0, which is equivalent to H5 ’(X) = 0. Then for
every 0 > 0 there exists a family of balls B, (z;) = B; such that Y C U;B;
and Y, p" P < 4. Note that ¥ is a compact set, thus, by Lemma for all
k sufficiently large such that also X = m(p,,», ) is contained in U; B;. Since
T(kan) = Ay (m(p) — ) = A, (£ — ), this contradicts (12).

Define the set S to be the invariant subspace of p, i.e.,

S={yeR™ st. fiyrx=p YA>0}.

It is evident that 0 € S. Moreover, by homogeneity of fi, S is a vector sub-
space of R,

Let d € N be its dimension. If d < m — p, then there exists a point = €
¥\ S with positive m — p density. Let r;, — 0 be such that fi;,, converges
weakly to some measure /' with H™P(w(u')) > 0.

For all y € S, fig4yx = fizx, and so pj , = p'. This proves that S is an
invariant subspace for p’ as well. Moreover, also z belongs to the invariant
space of 4. Indeed

N;:,l = lim fig4p0,, = lim Hoary/(14ry) = va

where the limits are in the weak measure sense. Note that 6, (0,7) =
0n(x,0) > e for all r, thus 0 is a singular point for p'.

Thus, if d < m — p, then there exists x4/ € M such that its invariant sub-
space S’ has dimension d + 1 and all points in S are singular points.

3.3.1. If p is not an integer. By applying induction on d to the previous
argument, we can find a measure g € M with an invariant set S of dimension
m — |p] > m — p containing only singular points. This contradicts the fact
that the singular set of y/ must have Hausdorff dimension m — p. Thus, as
long as p is not an integer, there cannot be any nonzero defect measure.
Moreover, the singular set of all p € M must have zero m — p Hausdorff
measure, and actually its Hausdorff dimension must be < m — [p].

3.3.2. If p is an integer. By applying induction on d to the previous
argument, we can find a measure y € M with an invariant set S of dimension
d = m — p containing only singular points. Note that the singular set ¥ of u
coincides with S. Indeed, S C ¥, and if there existed some z € ¥\ S, then we
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could apply the blow-up arguments discussed above to obtain a homogeneous
measure p' € M with invariant subspace S’ of dimension d + 1 with S’ C Y/,
which is impossible.

Now consider a sequence u; € H(A) with |Vu;|P dV — dp and u; — u in
the weak WP sense. It is easy to see that for every e, > 0 and every z € S:

limsup 0y, (z,1) < / du
k Biie(z)

= (146" Pu(x,r) = (14 €)™ 776,(0,0),

liminf 0,, (x,r) > rmp/ dip
k B.(1—o)(z

= (1= )™ P0,,(2,0) = (1 — €)™P8,(0,0).

Thus for each z € S, there exists a sequence r; — 0 such that 6, (z,1) —
Ou, (z,7) — 0. By Lemma both u and the defect measure v are homo-
geneous wrt every point x € S, and thus S is an invariant set for both u
and dv.
In particular, v induces a homogeneous p-harmonic map w : RP \ {0} —
N with finite p-energy. By the removable singularity Theorem U can
be extended to a C® map on the whole RP. Moreover, since this map is
continuous and homogeneous, it has to be constant.
As for the measure dv, its support must be the invariant subspace S,
and thus dv(A) = cH™P(ANS), where c is either 0 or some constant > e.
O

3.4. Defect measure and p-harmonic spheres for integer p

Here we study the case where p is an integer, following the analysis made
by Lin in [10].
We want to show that

Proposition 3.15. If there exists a nonzero defect measure, then there
exists a nonconstant C® p-harmonic map v: SP — N. As a corollary, if
such a map does not exist then reqularity of stationary p-harmonic maps
1MPTOVES.

Remark 3.16. As the referee pointed out to us, this proposition has al-
ready been proved in [22], where the author studies limits of solutions to the
generalized Ginzburg-Landau functional. Also in this article, the technique
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is based on [I0]. For the sake of completeness, here we present a similar
proof.

Proof. Let w; be one of the sequences of maps in H(A) given by Proposi-
tion such that w; — const and |Vw;|? dV — dv, where dv is a constant
multiple of the m — p Hausdorff measure on a m — p subspace of R™ (say
R™™P C R™P x RP). Let 79 = 0 and 2%, i = 1,...,m be the canonical basis
for R™. Since the defect measure is a constant multiple of H™ P|gm-», for
al0<r<Rand k=0,...,(m—p) it holds

OV(:r:k,r) = Qy(l‘k,R).

Accordingly, the monotonicity formula (|1.13|) gives

(13) lim 6y, (2%, R) — 0y, (2%, 7)
1—00
—m 12
= lim p Y — a:k’p |V, [P~2 9w dV(y) =0,
1—»00 Br(z*)\B,(z*) ank

where 9, is the exterior normal derivative with respect to the point z*.
For any k =1,...,(m — p), it is easy to see that for all f:

0 0 0
) =1y = w0l gty [y - | 2L ute).

Fix any r > 0, then

Va2 | 2% v = [ w2 |24 gy
B(o)| i Ok - A,| il ok
2
+ / Vw2 |24 gy
B,(0) Ou*
2
+/ |Vwi\p_2 8wi
Br(xk) 8.73k ’

where A, = B1(0) \ (B,(0) U B,(2¥)). As i goes to infinity, the first integral
converges to zero because by

Owi

1
- Vw:|P~2
2 /Ar [Vl Ok

2
dv < / |Vwi|p_2|y—0|2|3nowi|2 dv
B> (0)\B,-(0)

2 k|2 2
+ |Vw;| ‘y—x ‘ | O, wi|“dV — 0.
By (x*)\Br(z*)
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As for the second integral, we can estimate

/ ‘sz“p_2
B,.(0)

< / Vwr2 [y — O |Ongwil? dV
B,(0)

8U)Z' 2
ozxk

av

2
+/ |Vwi|p_2‘y—xk‘ |8nkwi|2dV
B,(0)

< 7"2/ IVw; > + 4/ [Vw; [P~ 0, wil* dV .
B.(0) Ba(z%)\ B (z*)

In a similar way, we can estimate the third integral. Since r > 0 is arbitrary,
we obtain that for every k =1,...,(m —p)

ow; |?

(14) lim ViP~2 |52 dv =0,

1—>00 Bl(O) a.’l}

We now proceed as in in [I0, Lemma 3.1]. Set Xi = (z1,...,ZTm—p),
Xo = (Tm—pt1s---,Tm), and
ow;
=3 [ |28 o i,
Z o i

defined on B™7P(0,1/2). By fi = 0in LY(B™7P(0,1/2)). Theorem
ensures that w; is C1* in a neighborhood of { X7} x BP(0,1/2) for H™ P-a.e.

point X; € B™P(0,1/2). In particular we can choose a sequence { X!},
of such points. The weak-L! estimate for the Hardy-Littlewood maximal
function says that

1
bup— fi(X1)dX, > A
Hm | Bm=P(X{,7)| Jpm-n(xi) e
C(m —p)
<—— Milm@n—ro1/2)

for all positive A. Then

(15) suprpm/ fi(X1)dX; — 0, as i — oo.
r>0 Bm—»(Xir)

Let ¢y > 0 be such that Corollary works on Bs(0) with » =3/2 and
let ¢(n) be a dimensional constant chosen in such a way that B™ (0, 3) x
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BP(0, 3) can be covered with ¢(n)/2 balls of radius 1/2. Fix § > 0. Since there
exists a nonzero defect measure, then |Vw;| can not be uniformly bounded
on B™P(X%,6/2) x BP(0,9). Hence by Corollary

max 5p_m/ |Vw;|P dV > €,
X2€Br(0,1/2) Bm—?(Xi,86)x BP(X2,8)

for all i large enough. On the other hand, since w; is C»* in a neighbor-
hood of { X%} x BP(0,1/2), the e-regularity gives that for every i there exists
0(7) > 0 such that

o / V[P dV < 2,
Bm=r(X},0)xB?(X2,) QC(n)

V0 < & < d(i), VX9 € BP(0,1/2).

Then for i large enough we can find a sequence {d;} of positive numbers,
6; — 0 as i — 00, such that

VP dV = —2

c(n)’

Moreover the maximum is achieved at some X4 € BP(0,1/4), since otherwise
for all i large enough (such that ¢; < 1/8),

(16) max 6" /
X2€Br(0,1/2) Bm=2(X{,6;)x BP(X2,6;)

/ |[Vw;[?dV > C(n,p,e) >0,
B™-»(0,1)x(B?(0,1/2)\B»(0,1/8))

contradicting the assumption that w; — const in
Ch(B™P(0,1) x (BP(0,1/2) \ B"(0,1/8))).

Now, set Q; = (X%, X3%), R; = 1/(46;) (so that R; — 0o as i — 00) and
define the p-stationary maps v;(y) = w;(Q; + ;) on

B™P(0, R;) x B™ (0, Ry).

The convergence in (|15)) can be read as

m—p 2
(17) V;:= sup Rpm/ Z [V [P2 81}]:, dv — 0,
0<R<2R; Bm-#(0,R)xB»(0,2R:) 13 O

as 1 — 00.
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From we deduce that

€0

(18) )

/ |V’U¢‘p dVv =
B™-»(0,1)xBr(0,1)

‘V?)Z'|p dVv

= max /
Y2€B?(—4R:X},2R;) JBm-r(0,1)x BP(Y3,1)

\Vvi|p dVv

= max /
Y2€B7(0,Ri—1) Jpm-r(0,1)x B?(Y3,1)

Finally, since w; € H(A) for all 4, then for every 0 < R < R;,

(19) sup

/ VP dV < AR™P,
i JBm-»(0,R)xBr(0,R)

Since R; is increasing, this latter ensures that, for every positive R, up to ex-
tract a subsequence v; weakly converges in W1? on B™P(0, R) x BP(0, R).
Hence by a diagonalisation process we can find a map v € W’lif (R™, N) such
that, up to extract a subsequence, v; — v in W1P(B™~P(0, R) x BP(0, R))
for all R > 0. Moreover, thanks to the lower semicontinuity of the p-energy

(20) IVolP dV < AR™ P VR.

/Bmp(O,R)xBP(O,R)
Let € C2°(B™P(0,1)x BP(0,1)) such that 0<¢ <1, p=11in B™P(0,3/4) x
BP(0,1/2) and |V¢| < 8. Set

Fi(a) = Vuil? (z + a)p(x)dV (z),

/Bm—P(O,l)xBP(O,l)

for a € B™P(0,3) x BP(0, R; — 1). The divergence formula (3)), Hélder in-
equality, (18]) and give that

oF;
8ak

o IVul? (2 4 a)o(a)dv ()

/Bm—P(O,l)xBP(O,l)

=p Vi P72 (z + a)Vivi(z + a)Vivi(z + o) Vie(z)dV (z)

/B'"Lp(o,1)pr(o,1)

< Sp/ Vi (z + a)dV
Bm—»(0,1)xBr(0,1)

2
(x4 a)dV — 0, as i — oo,

Vi

oxk

m—p
X |V P2 (x—l—a)‘
/B"LP(O,I)XBP(O,I) Z

k=1
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uniformly on compact sets, for each k =1,...,(m — p). Then, for i large
enough

2
/ |V P (2)dV (x) < 2F;(0) < ﬂ, Va e B™P(0,3) x BP(0,3),
Bn(a,1/2) c(n)

and by the choice of ¢(n)

/ Vil (Y, Ya + B)dV (Yir , Ya) < o, Vb € BP(0, Ri — 3).
Bm—r(0,3)x Br(0,3),

Hence Corollary yields that for all positive R, as ¢ — 0o, v; — v up to
a subsequence in C1 (B™(0,3/2) x BP(0, R)). The limit map v is a CH*
p-harmonic map defined on B™P(0,3/2) x RP which is non-constant since
by strong convergence

/ Vol (z)dV (2) = —>-.
Bm-2(0,1)xB»(0,1)

Moreover taking limits in and it is clear that

7 ov

2
Dk dv =0,

VolP~?

/Bmp(o,R) xR? 15

i.e., v induces a nonconstant C® p-harmonic maps from R? to N which,
thanks to , has finite p-energy. By a conformal change, v can be seen as
a nonconstant, C%* p-harmonic map from SP \ 0 to N with finite p-energy.
Given the removable singularity theorem v is a C1® p-harmonic map
from the entire SP into N. O

3.5. Regularity estimates

As we have seen, an important difference between stationary and minimizing
maps is that a weakly convergent sequence of stationary maps need not
converge strongly, while this is true in the minimizing case. However, by
analyzing the defect measure, we have concluded that

Lemma 3.17. Let u; be a WP weakly convergent sequence of stationary
p-harmonic maps u; : Bo(0) — N, where N is a compact homogeneous space
with a left invariant metric. If p is not an integer, or if there are no non-
constant C stationary p-harmonic maps from SP — N, then wu; converges
strongly to its limit, which is a stationary p-harmonic map.
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This lemma allows us to reproduce all the results studied in the mini-

mizing case, in particular Propositions Thus, under these
assumptions, stationary p-harmonic maps enjoy the same regularity proper-

ties of minimizing maps.

Theorem 3.18. Letu : B2(0) — N be a stationary p-harmonic map, where
N is a smooth compact homogeneous space with a left invariant metric. If p
is not an integer, then for all € > 0:

Vol (B,(8(w)) N B1(0)) < Vol (Br(B, (1)) N B1(0)) < C(m, N, p, e)rPl+1=c.

Moreover, for any p under the additional assumption , we can improve
the previous estimate to

Vol (B, (8(u)) N B1(0)) < Vol (B,(B,(u)) N B1(0)) < Crot2=m,

As in the minimizing case, we get the following sharp integrability re-
sults.

Corollary 3.19. Under the hypothesis of the previous theorem, if p is not
an integer then for all € >0, Vu € LWPI+1=¢(B,(0)) with

[ 19 < Clm AN g,
B,(0)

Moreover, for all p and under the additional assumption , Vu €
L¥*27¢(B1(0)) with

/ Va2 < Cm, A, N, p,e).
B1(0)

Also the improved covering arguments of Section carry over imme-
diately to the stationary case.

Theorem 3.20. Under the hypothesis of the previous theorem, suppose that
p is not an integer and m = |p| + 1, or that m = b+ 2 under the additional
assumption . Let uw be a stationary p-harmonic map u: B2(0) — N,
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where

/ IVulP dV < A.
B5(0)

Then

#8(u) N B1(0) < C(p, A, N).
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