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Volume growth, entropy and stability for

translating solitons

Qiang Guang

We study volume growth, entropy and stability for translating soli-
tons of mean curvature flow. First, we prove that every complete
properly immersed translator has at least linear volume growth.
Then, by using Huisken’s monotonicity formula, we compute the
entropy of the grim reaper and the bowl solitons. We also give a
curvature estimate for translators in R3 with small entropy. Fi-
nally, we estimate the spectrum of the stability operator L for
translators and give a rigidity result of L-stable translators.

1. Introduction

A smooth hypersurface Σn ⊂ Rn+1 is called a translating soliton (translator
for short) if it satisfies the equation

(1.1) H = −〈y,n〉,

where H is the mean curvature, n is the unit normal and y ∈ Rn+1 is a
constant vector.

Translators play an important role in the study of mean curvature flow
(“MCF”) defined as (∂tx)⊥ = −Hn, where x is the position vector. On
one hand, every translator Σ gives a special translating solution {Σt =
Σ + ty}t∈R to MCF. On the other hand, they arise as blow-up solutions
of MCF at type II singularities. For instance, Huisken and Sinestrari [15]
proved that at type II singularity of a mean convex flow (a MCF with mean
convex solution), there exists a blow-up solution which is a convex translat-
ing solution. Translators have been extensively studied in recent years; see,
e.g., [7], [13], [16], [18], [22], [24], and [26].
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For simplicity, we assume that the constant vector y = En+1, so trans-
lators satisfy the equation

(1.2) H = −〈En+1,n〉.

In Rn+1, there is a unique (up to rigid motion) rotationally symmetric,
strictly convex translator, denoted by Γn (see [3]). For n = 1, the translator
Γ1 is the grim reaper and given as the graph of the function

(1.3) u(x) = − log cosx, x ∈ (−π/2, π/2).

For n ≥ 2, the translator Γn is an entire graph and is usually called the bowl
soliton. We assume Γn = {(x, f(x)) ∈ Rn+1 : x ∈ Rn}, where f is a convex
function on Rn such that

(1.4) div

(
∇f√

1 + |∇f |2

)
=

1√
1 + |∇f |2

,

and f(0) = ∇f(0) = 0.
In [24], Wang proved that when n = 2, every entire convex translator

must be rotationally symmetric. However, in every dimension greater than
two, there exist non-rotationally symmetric, entire convex translators. Re-
cently, Haslhofer [13] obtained the uniqueness theorem of the bowl soliton
in all dimensions under the assumptions of uniformly 2-convexity and non-
collapsing condition.

In this paper, we study translators from three aspects: volume growth,
entropy and stability.

In the first part of the paper, we consider the volume growth of trans-
lators. Understanding the volume growth of certain geometric solitons is
always a fundamental and interesting topic in the study of geometric flows,
such as the volume growth of self-shrinkers for MCF and the volume growth
of gradient shrinking solitons for Ricci flow. For instance, Cao and Zhou [5]
proved that every complete noncompact gradient shrinking Ricci soliton has
at most Euclidean volume growth. In [10], Ding and Xin showed that this
is also true for complete properly immersed self-shrinkers (see also [6]).

Concerning the lower volume growth estimate, Munteanu and Wang [19]
proved that any complete noncompact gradient shrinking Ricci soliton has
at least linear volume growth. Li and Wei [17] proved that every complete
noncompact properly immersed self-shrinker also has at least linear volume
growth. For properly immersed translators, by an easy argument, an analog
of Li-Wei’s result can be obtained.
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Theorem 1.1. Let Σn ⊂ Rn+1 be a complete properly immersed translator.
Then for any x ∈ Σ, there exists a constant C > 0 such that

Vol(Σ ∩Br(x)) =

∫
Σ∩Br(x)

dµ ≥ Cr for all r ≥ 1.

Remark 1.2. Unlike self-shrinkers, translators do not necessarily have Eu-
clidean volume growth; see the example constructed in [20]. In a recent work
of Xin [26], the author considered the volume growth of translators in certain
conformal metric.

The second part of this paper is concerned with the entropy of trans-
lators. Recall that given t0 > 0 and z0 ∈ Rn+1, the F -functional Fz0,t0 of a
hypersurface Σ ⊂ Rn+1 is defined by

(1.5) Fz0,t0(Σ) = (4πt0)−
n

2

∫
Σ

e
− |x−z0|

2

4t0 dµ,

and the entropy of Σ is defined by

(1.6) λ(Σ) = sup
z0,t0

Fz0,t0(Σ),

where the supremum is taken over all t0 > 0 and z0 ∈ Rn+1. Moreover, it is
easy to see that λ(Σ×R) = λ(Σ).

Note that the entropy is invariant under dilations and rigid motions.
By Huisken’s monotonicity formula [14], the entropy is non-increasing un-
der MCF. Therefore, the entropy of the initial hypersurface gives a bound
for the entropy of all future singularities. It was proved in [8] that the en-
tropy of a self-shrinker is equal to the F -functional F0,1, so no supremum is
needed. Colding-Ilmanen-Minicozzi-White [9] showed that the round sphere
minimizes entropy among all closed self-shrinkers. Recently, Bernstein and
Wang [4] extended this result and proved that the round sphere minimizes
entropy among all closed hypersurfaces up to dimension six.

A natural question is what is the entropy of the grim reaper and the
bowl solitons. Using Huisken’s monotonicity formula and various estimates,
we obtain the following theorems.

Theorem 1.3. The entropy of the grim reaper Γ1 ⊂ R2 is 2.

Theorem 1.4. The entropy of the rotationally symmetric convex translat-
ing soliton Γn ⊂ Rn+1 (n ≥ 2) is equal to the entropy of the sphere Sn−1,
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i.e.,

λ(Γn) = λ(Sn−1) = nα(n)
(n− 1

2πe

)n−1

2

,

where α(n) is the volume of unit ball in Rn.

If we consider weak solutions of the translator equation, more precisely,
an integral rectifiable varifold, using the idea of “boundary-less” varifold
from [25] and standard geometric measure theory, then these “boundary-
less” weak solutions with small entropy are indeed smooth. Combining this
regularity result with Allard’s compactness theorem, we are able to prove a
curvature estimate for translators with small entropy in R3.

In the last part, we study translators from the point of view of minimal
hypersurfaces. Following the notation in [22], for any hypersurface Σn ⊂
Rn+1, we define the weighed functional F by

F(Σ) =

∫
Σ

exn+1 dµ,

where xn+1 is the (n+ 1)-th coordinate of the position vector of Σ.
The first variation of the functional F gives that the critical points are

translators. Therefore, translators can be viewed as minimal hypersurfaces
in a conformal metric. They can also be viewed as f -minimal hypersurfaces
with an appropriate function f ; see [16] where the authors study translators
by using the theory of f -minimal hypersurfaces. By computing the second
variation of the functional F , it is natural to define the corresponding sta-
bility operator L as

(1.7) L = ∆ + 〈En+1,∇·〉+ |A|2.

For translators, there may not be a lowest eigenvalue for the operator
L, but we can still define the bottom of the spectrum µ1. Using the fact
that LH = 0 for translators, we show that µ1 is nonpositive if the weighed
L2 norm of H satisfies certain growth. As a direct corollary, we obtain the
following theorem.

Theorem 1.5. For all grim reaper hyperplanes Γ×Rn−1, we have µ1(Γ×
Rn−1) = 0.

In [16], Impera and Rimoldi proved a rigidity theorem that if an L-stable
translator satisfies a weighted L2 condition on the norm of the second fun-
damental form |A|, then it must be a hyperplane. By relaxing the condition
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on the weighted L2 growth of |A|, we obtain the following rigidity result,
improving Theorem A in [16].

Theorem 1.6. Let Σn ⊂ Rn+1 be a complete L-stable translator satisfying
H = −〈En+1,n〉. If the norm of the second fundamental form satisfies the
following weighted L2 growth∫

Σ∩BR
|A|2exn+1 ≤ C0R

α, for any R > 1,

where C0 is a positive constant and 0 ≤ α < 2, then Σ is one of the following:

(1) a hyperplane;

(2) the grim reaper Γ, when n = 1;

(3) a grim reaper hyperplane, i.e., Γ×R, when n = 2 and 1 ≤ α < 2.

Acknowledgements. The author would like to thank Professor William
Minicozzi for his valuable and constant support.

2. Background and preliminaries

In this section, we recall some background and useful identities for transla-
tors.

2.1. Notion and conventions

Let Σn ⊂ Rn+1 be a smooth hypersurface, ∆ its Laplace operator, A its
second fundamental form, and H=divΣn its mean curvature. If ei is an
orthonormal frame for Σ, then the coefficients of the second fundamental
form are given by aij = 〈∇eiej ,n〉.

For any hypersurface Σn ⊂ Rn+1, the functional F is defined by

F(Σ) =

∫
Σ

exn+1 dµ,

where xn+1 is the (n+ 1)-th coordinate of the position vector of Σ.
From the first variation of the functional F , we know that the critical

points are translators. The second variation formula of the functional F is
the following.
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Lemma 2.1 ([22]). Suppose Σn ⊂ Rn+1 is a translator satisfying H =
−〈En+1,n〉. If Σs is a normal variation of Σ with variation vector filed
Σ
′

0 = fn, then

d2

ds2

∣∣∣
s=0
F(Σs) =

∫
Σ
−
(

∆f + |A|2f + 〈En+1,∇f〉
)
fexn+1 dµ.

From the second variation, the stability operator L is defined by

(2.1) L = ∆ + 〈En+1,∇·〉+ |A|2,

and the corresponding drifted operator L is defined by

(2.2) L = ∆ + 〈En+1,∇·〉 = e−xn+1div(exn+1∇·).

Example 2.2. We consider the stability operator L for the grim reaper.
The grim reaper Γ is given by Γ = (x,− log cosx), x ∈ (−π/2, π/2). For any
function f(x) on Γ, by a simple computation, we have

Lf = ∆f + 〈E2,∇f〉+ |A|2f = (fxx + f) cos2(x).

In particular, if f satisfies Lf = 0, then

f(x) = a cosx+ b sinx,

for some a, b ∈ R.

Definition 2.3. We say that a translator Σ is L-stable, if for any compactly
supported function f , we have∫

Σ
(−fLf) exn+1 dµ ≥ 0.

It was proved by Shahriyari [22] that all translating graphs are L-stable.
Therefore, the grim reaper, the bowl solitons and hyperplanes are all L-
stable translators.

In the next lemma, we recall some useful identities for translators.
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Lemma 2.4. If Σn ⊂ Rn+1 is a translator satisfying H = −〈En+1,n〉, then

LA = 0,

LH = 0,

L|A|2 = 2|∇A|2 − |A|4,

Lxn+1 = 1.

Proof. Recall that for a general hypersurface, the second fundamental form
A satisfies

(2.3) ∆A = −|A|2A−HA2 −HessH .

We fix a point p ∈ Σ, and choose a local orthonormal frame ei such that its
tangential covariant derivatives vanish. By the equation of translators, we
obtain that

(2.4) ∇ej∇eiH = aij,k〈En+1, ek〉 − aikajkH.

Note that 〈En+1,∇A〉ij = aij,k〈En+1, ek〉. Combining (2.3) and (2.4) gives

(LA)ij = (∆A)ij + |A|2aij + 〈En+1,∇A〉ij = 0.

This is the first identity. Taking the trace gives the second identity. For the
third identity, we have

L|A|2 = L|A|2 + |A|4 = 2〈A,LA〉+ 2|∇A|2 + |A|4 = 2|∇A|2 − |A|4.

For the last identity, recall that in general we have ∆x = −Hn. Hence,

Lxn+1 = ∆xn+1 + 〈En+1,∇xn+1〉 = 〈−Hn,En+1〉+ |ET
n+1|2 = 1.

�

We conclude this section with the following lemma which shows that the
operator L is self-adjoint in a weighted L2 space.

Lemma 2.5. If Σn ⊂ Rn+1 is a translator satisfying H = −〈En+1,n〉, u
is a C2 function with compact support, and v is a C2 function, then

−
∫

Σ
u(Lv)exn+1 =

∫
Σ
〈∇u,∇v〉exn+1 .

Proof. The lemma follows immediately from Stokes’ theorem and (2.2). �



i
i

“2-Guang” — 2019/4/30 — 11:38 — page 54 — #8 i
i

i
i

i
i

54 Qiang Guang

3. Volume growth

In this section, we consider the volume growth for translators and show that
every properly immersed translator has at least linear volume growth.

Suppose Σn ⊂ Rn+1 is a properly immersed translator. For any x0 ∈ Σ,
let Br(x0) be the extrinsic ball in Rn+1, and denote the volume and the
weighed volume of Σ ∩Br(x0) by

V (r) = Vol(Σ ∩Br(x0)) =

∫
Σ∩Br(x0)

dµ,

and

Ṽ (r) =

∫
Σ∩Br(x0)

exn+1dµ.

We will first show that the weighed volume has at least exponential
growth, and this relies on the following key ingredient.

Lemma 3.1. If Σn ⊂ Rn+1 is a translator satisfying H = −〈En+1,n〉, then

∆exn+1 = exn+1 .

Proof. First, we have

∆exn+1 = divΣ(exn+1∇Σxn+1) = exn+1 |ET
n+1|2 + exn+1∆xn+1.

Hence, the identity follows from Lemma 2.4 and the fact that |ET
n+1|2 =

1−H2. �

For simplicity, we may assume x0 = 0. By the co-area formula, we have

Ṽ (r) =

∫ r

0

∫
∂Bs∩Σ

exn+1
1

|∇Σ|x||
ds.

Note that ∇Σ|x|2 = 2xT = 2|x|∇Σ|x|, so we get

(3.1) Ṽ ′(r) =

∫
∂Br∩Σ

exn+1
|x|
|xT |

.

On the other hand, by Lemma 3.1, we obtain that

Ṽ (r) =

∫
Σ∩Br

∆exn+1dµ =

∫
∂Br∩Σ

〈
∇Σexn+1 ,

xT

|xT |

〉
(3.2)

=

∫
∂Br∩Σ

〈
∇Σxn+1,

xT

|xT |

〉
exn+1 .
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Combining (3.1) and (3.2), we conclude that for any r > 0,

(3.3) Ṽ (r) ≤ Ṽ ′(r).

This implies the quantity Ṽ (r)e−r is monotone non-decreasing. We summa-
rize this result in the following proposition.

Proposition 3.2. Let Σn ⊂ Rn+1 be a complete properly immersed trans-
lator. Then for any x ∈ Σ, there exists a constant C > 0 such that

Ṽ (r) =

∫
Σ∩Br(x)

exn+1dµ ≥ Cer, for all r ≥ 1.

With the help of Proposition 3.2, we can now estimate the volume
growth. For any R > 1, we have

Ṽ ′(R) ≤ eR
∫
∂BR∩Σ

|x|
|xT |

= eRV ′(R).

Combining this with Proposition 3.2 and (3.3) gives that V (R) has at least
linear growth.

Theorem 3.3. Let Σn ⊂ Rn+1 be a complete properly immersed translator.
Then for any x ∈ Σ, there exists a constant C > 0 such that

Vol(Σ ∩Br(x)) =

∫
Σ∩Br(x)

dµ ≥ Cr for all r ≥ 1.

4. Entropy of the grim reaper and the bowl solitions

The aim of this section is to estimate the entropy of the grim reaper and
the bowl solitions, i.e., proving Theorem 1.3 and Theorem 1.4. Moreover,
using a regularity result with Allard’s compactness theorem, we will give a
curvature estimate for translators with small entropy in R3.

4.1. Huisken’s monotonicity formula

We state the main ingredient Huisken’s monotonicity formula [14]. First we
define the function Φ on Rn+1 × (−∞, 0) by

Φ(x, t) = (−4πt)−
n

2 e
|x|2

4t
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and then set Φz0,τ (x, t) = Φ(x− z0, t− τ). Huisken proved the following
monotonicity formula for MCF:

Theorem 4.1 ([14]). If Mt is a solution to MCF and u is a C2 function,
then we have

d

dt

∫
Mt

uΦ(z0,τ) = −
∫
Mt

∣∣∣∣Hn− (x− z0)⊥

2(τ − t)

∣∣∣∣2 uΦ(z0,τ) +

∫
Mt

(ut −∆u)Φ(z0,τ).

When u is identically one, we get

(4.1)
d

dt

∫
Mt

Φ(z0,τ) = −
∫
Mt

∣∣∣∣Hn− (x− z0)⊥

2(τ − t)

∣∣∣∣2 Φ(z0,τ) .

The F -functional can be expressed as the following:

Fz0,t0(Σ) = (4πt0)−
n

2

∫
Σ

e
− |x−z0|

2

4t0 =

∫
Σ

Φz0,t0(x, 0).

Moreover, for any z0 in Rn+1 and t0 > 0, if Mt gives a MCF and suppose
t > s, then by Huisken’s monotonicity formula (4.1), we have

(4.2) Fz0,t0(Mt) ≤ Fz0,t0+(t−s)(Ms).

A direct consequence of (4.2) is that the entropy is non-increasing under
MCF.

Now we apply Huisken’s monotonicity formula to translating solitons.
The grim reaper or the bowl solition Γ gives a solution of MCF

Γt = {(x, t+ f(x)) ∈ Rn+1 : x ∈ Rn} (for n = 1, x ∈ (−π/2, π/2) ) for all
t ∈ R.

For any point (x0, y0) ∈ Rn+1 (x0 ∈ Rn, y0 ∈ R) and t0 > 0, we have the
following identity:

(4.3) F(x0,y0), t0(Γt) = F(x0,y0−t), t0(Γ).

By (4.2), for any t > s, we get

F(x0,y0), t0(Γt) ≤ F(x0,y0), t0+(t−s)(Γs).

Combining this with (4.3) gives

F(x0,y0−t), t0(Γ) ≤ F(x0,y0−s), t0+(t−s)(Γ).

Therefore, we obtain the following crucial lemma.
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Lemma 4.2. For any point
(
(x0, y0), t0

)
∈ Rn+1 × (0,∞) and arbitrary

N > 0, we have

F(x0,y0), t0(Γ) ≤ F(x0,y0+N), t0+N (Γ).

4.2. The entropy of the grim reaper

Recall that the entropy is taking the supremum of the F -functional, so we
will first consider the upper bound of the F -functional F(x0,y0+N), t0+N (Γ)
by taking N → +∞, and this will yield that the entropy of the grim reaper
is less than or equal to 2.

For any fixed point (x0, y0) ∈ R2 and t0 > 0, by Lemma 4.2, we may
choose N sufficiently large such that

F(x0,y0), t0(Γ) ≤ F(x0,N+δ), N (Γ),

where δ = y0 − t0.
By the equation of the grim reaper (1.3), we have

F(x0,N+δ), N (Γ) = (4πN)−
1

2

∫ π

2

−π
2

e−
(x−x0)2+(log cos x+N+δ)2

4N
1

cosx
dx.

Note that

F(x0,N+δ), N (Γ) ≤ (πN)−
1

2

∫ π

2

0
e−

(log cos x+N+δ)2

4N
1

cosx
dx.

Now we define a function g(N) by

g(N) = (πN)−
1

2

∫ π

2

0
e−

(log cos x+N+δ)2

4N
1

cosx
dx.

We make a change of variable and let u = − log cosx and t = u/N . This
gives

g(N2) =
1

N
√
π

∫ ∞
0

e−
(u−N2−δ)2

4N2
eu√

e2u − 1
du

=
1√
π

∫ ∞
0

e−
(N2+δ)2

4N2 e−
t2

4
+( 3N

2
+ δ

2N
)t 1√

e2Nt − 1
dt.

Next we estimate the value of g(N2) when N goes to infinity by splitting
it into two parts, A and B.
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For the first part,

A =
1√
π

∫ N

6

0
e−

(N2+δ)2

4N2 e−
t2

4
+( 3N

2
+ δ

2N
)t 1√

e2Nt − 1
dt(4.4)

≤ 1√
π

e−
(N2+δ)2

4N2 +N2

4
+ δ

12

∫ N

6

0

1√
e2Nt − 1

dt

≤ 1

2N
√
π

e−
δ2

4N2− 5

12
δ

∫ N2

3

0

1√
et − 1

dt ≤ π

2N
√
π

e−
δ2

4N2− 5

12
δ.

Here we use the fact that ∫ ∞
0

1√
et − 1

dt = π.

For the second part,

B =
1√
π

∫ ∞
N

6

e−
(N2+δ)2

4N2 e−
t2

4
+( 3N

2
+ δ

2N
)t 1√

e2Nt − 1
dt(4.5)

≤ 1√
π

(
1 + 2 e−

N2

6

) ∫ ∞
N

6

e−
1

4
(t−N− δ

N
)2 dt

≤ 1√
π

(
1 + 2 e−

N2

6

) ∫ ∞
− 5N

6
− δ

N

e−
t2

4 dt ≤ 2
(
1 + 2 e−

N2

6

)
.

The last inequality uses

1√
π

∫ ∞
−∞

e−
t2

4 dt = 2.

Taking N → +∞, by Lemma 4.2, (4.4) and (4.5), we obtain the following
result.

Lemma 4.3. For any point ((x0, y0), t0) ∈ R2 × (0,∞), we have

F(x0,y0), t0(Γ) ≤ 2, i.e., λ(Γ) ≤ 2.

Using the similar method as above, it is easy to prove that

(4.6) lim
N→∞

F(0,N), N (Γ) = 2.

Finally, combining Lemma 4.3 and (4.6), we conclude that λ(Γ) = 2,
which completes the proof of Theorem 1.3.
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4.3. The entropy of the bowl solitons

In this subsection, we deal with the case when n ≥ 2. The idea of the proof
of Theorem 1.4 is similar to the one dimensional case. The only difference is,
unlike the grim reaper, we do not have explicit expression for the function
f in (1.4). Therefore, we need to recall some important properties of the
function f (see also [7] and [24]).

By the property of rotationally symmetry, we have f(x) = f(r) with
r = |x|. The equation (1.4) gives the following ODE

(4.7) frr = (1 + f2
r )

(
1− (n− 1)fr

r

)
with f(0) = limr→0 f

′(r) = 0 for f : R+ → R.

Proposition 4.4. The function f in the ODE (4.7) satisfies the following
properties:

(1) f ′(r) < r
n−1 and f(r) ≤ r2

2(n−1) .

(2) For any ε > 0, f ′(r) > ( 1
n − ε)r, especially, f ′(r) > r

2n .

(3) For any ε > 0, there exists r0 = r0(ε) > 0 such that f ′(r) > (1− ε) r
n−1

for r ≥ r0.

(4) For any ε > 0, there exists a constant M = M(ε) > 0 such that f(r) >
1−ε

2(n−1)r
2 −M .

Proof. Set g(r) = f ′(r). For part (1), we prove by contradiction. Set h(r) =
g(r)− r

n−1 and observe that

lim
r→0+

h(r) = 0 and lim
r→0+

h′(r) =
1

n
− 1

n− 1
< 0.

Suppose that d is the positive infimum of r such that h(r) = 0; that is,
h(d) = 0 and h(r) < 0 for r ∈ (0, d). Hence, we have

h′(d) = g′(d)− 1

n− 1
≥ 0.

By the equation (4.7), we get g′(d) = 0 since h(d) = 0. This gives a contra-
diction and completes the proof of part (1). Similarly, we can prove part (2).
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For part (3), we first claim that for any R > 0, there exists r1 ≥ R such
that

g(r1) >
r1

n− 1
(1− ε).

If this is not true, then g′(r) ≥ (1 + (g(r))2)ε for r > R. However, this is a
contradiction, since our solution exists for all r > 0.

Set k(r) = g(r)− r
n−1(1− ε). Fix R0 > 0 to be chosen later, but de-

pending only on ε. The first claim implies that there exists r0 ≥ R0 such
that k(r0) > 0. We next claim that k(r) > 0 for all r ≥ r0. If this is not the
case, then there exists t > r0 such that

k(t) = 0, k(r) > 0 for r ∈ (r0, t), and k′(t) ≤ 0.

Hence, we get that

k′(t) = g′(t)− 1− ε
n− 1

= ε

(
1 +

(
1− ε
n− 1

)2

t2

)
− 1− ε
n− 1

,

which is a contradiction provided that R0 is chosen sufficiently large. This
gives the proof of part (3). The part (4) follows directly from part (3). �

Next we show that the entropy of Γ is less than or equal to the entropy
of the sphere Sn−1. Just as in the proof of Theorem 1.3, we consider the
upper bound of the F -functional F(x0,y0+N), t0+N (Γ) by taking N → +∞.

For any fixed point (x0, y0) ∈ Rn+1 (x0 ∈ Rn, y0 ∈ R) and t0 > 0, by
Lemma 4.2, we may choose N large enough so that

F(x0,y0), t0(Γ) ≤ F(x0,N+δ), N (Γ),

where δ = y0 − t0. Then we have

F(x0,N+δ), N (Γ) =
1

(4πN)
n

2

∫
Rn

e−
|x−x0|

2+(f(x)−N−δ)2

4N (1 + |∇f |2)
1

2 dx

=
1

(4πN)
n

2

∫ ∞
0

∫
∂Br

e−
|x−x0|

2+(f(x)−N−δ)2

4N (1 + |∇f |2)
1

2dSrdr.

Now we fix an arbitrarily small constant ε > 0. By Proposition 4.4, there
exists a constant M = M(ε) > 0 such that

f(r) >
1− ε

2(n− 1)
r2 −M.
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By the absorbing inequality, we have 2〈x, x0〉 ≤ ε|x|2 + ε−1|x0|2. There-
fore, we obtain that |x− x0|2 ≥ (1− ε)|x|2 + (1− ε−1)|x0|2. This gives

F(x0,N+δ), N (Γ) ≤ 1

(4πN)
n

2

∫ ∞
0

∫
∂Br

(1 + |∇f |2)
1

2 exp

{
−1

4N

(
(1− ε)|x|2

+ (1− ε−1)|x0|2 + (f(x)−N − δ)2
)}

dSr dr

=
nα(n)

(4πN)
n

2

e−
(1−ε−1)

4N
|x0|2

∫ ∞
0

rn−1 exp

{
− 1

4N

(
(1− ε)r2

+ (f(r)−N − δ)2
)}

(1 + (f ′(r))2)
1

2 dr.

Since e−
(1−ε−1)

4N
|x0|2 goes to 1 when N → +∞, we only need to consider the

integral:

g(N) =
nα(n)

(4πN)
n

2

∫ ∞
0

rn−1e−
(1−ε)r2+(f(r)−N−δ)2

4N

√
1 + (f ′(r))2 dr.

Note that f(r) is monotone and strictly increasing, we can make a change
of variable and set

u =
f(r)−N − δ√

N
.

Assume h is the inverse function of f(r), then we have h(
√
Nu+N + δ) = r.

By Proposition 4.4, we get that

r2 ≥ 2(n− 1)f(r) = 2(n− 1)(
√
Nu+N + δ),(4.8)

√
Nu+N + δ = f(r) >

1− ε
2(n− 1)

r2 −M.(4.9)

Combining this with f ′(r) > r
2n implies that

g(N) ≤ nα(n)

(4πN)
n

2

∫ ∞
0

e−
(1−ε)r2+(f(r)−N−δ)2

4N (rn−1 + rn−1f ′(r)) dr

=
nα(n)

(4πN)
n

2

∫ ∞
−N−δ√

N

e−
u2

4 e−
1−ε
4N

h2

(hn−1 + hn−1h′)
√
N du

≤ nα(n)

(4πN)
n

2

∫ ∞
−N−δ√

N

e−
u2

4
− (1−ε)(n−1)

2N
(
√
Nu+N+δ)

(
Q

n−1

2 + 2nQ
n−2

2

)
N

1

2du,
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where h = h(
√
Nu+N + δ) and

Q =
2(n− 1)(M +

√
Nu+N + δ)

1− ε
.

Next, we split the above integral into two parts, A and B.
For part A, we have

A =
nα(n)

(4πN)
n

2

∫ ∞
−N−δ√

N

e−
u2

4 e−
(1−ε)(n−1)

2N
(
√
Nu+N+δ)Q

n−1

2

√
N du.

It is easy to see that

lim
N→+∞

A = nα(n)

(
n− 1

2π(1− ε)e1−ε

)n−1

2

.

For part B, we get

B =
nα(n)

(4πN)
n

2

∫ ∞
−N−δ√

N

e−
u2

4 e−
(1−ε)(n−1)

2N
(
√
Nu+N+δ)2nQ

n−2

2

√
N du,

and when N → +∞, B converges to 0.
Combining all the results above, we obtain that for any ε > 0,

F(x0,y0), t0(Γ) ≤ nα(n)

(
n− 1

2π(1− ε)e1−ε

)n−1

2

.

Since ε is an arbitrarily small number, we get an upper bound of the
entropy.

Lemma 4.5. For any point (x0, y0) ∈ Rn+1 (x0 ∈ Rn, y0 ∈ R) and t0 > 0,
we have

F(x0,y0), t0(Γ) ≤ nα(n)

(
n− 1

2πe

)n−1

2

, i.e., λ(Γ) ≤ nα(n)

(
n− 1

2πe

)n−1

2

.

The next lemma shows that this upper bound can be achieved.

Lemma 4.6.

(4.10) lim
N→+∞

F(0,N), N (Γ) = nα(n)

(
n− 1

2πe

)n−1

2

.
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Proof. By definition, we get

F(0,N), N (Γ) = (4πN)−
n

2

∫
Rn

e−
|x|2+(f(x)−N)2

4N

√
1 + |∇f |2 dx(4.11)

=
nα(n)

(4πN)
n

2

∫ ∞
0

rn−1e−
r2+(f(r)−N)2

4N

√
1 + (f ′(r))2 dr.

Following the same method and using the same notations as in the proof of
Lemma 4.5, by (4.8) and (4.9), we have

F(0,N), N (Γ) =
nα(n)

(4πN)
n

2

∫ ∞
−
√
N

e−
u2

4 e−
h2

4N

(
hn−1 + hn−1h′

)√
N du

≥ nα(n)

(4πN)
n

2

∫ ∞
−
√
N

(
2(n− 1)(

√
Nu+N)

)n−1

2

√
N

× exp

{
− u2

4
− 2(n− 1)

4(1− ε)N
(√
Nu+N +M

)}
du.

Taking N → +∞ gives

lim
N→+∞

F(0,N), N (Γ) ≥ nα(n)
(n− 1

2π
e−

1

1−ε

)n−1

2

.

Since ε is arbitrary, by Lemma 4.5, the claim now easily follows. �

Finally, Lemma 4.6 and Lemma 4.5 complete the proof of Theorem 1.4.

4.4. A curvature estimate for translators in R3

with small entropy

In order to get a curvature estimate for translators in R3 with small entropy,
we will use Allard’s compactness theorem [1] for integral rectifiable varifolds
with locally bounded first variation. Moreover, we will restrict to “boundary-
less varifolds” [25] where the rectifiable varifold is mod two equivalent to an
integral current without boundary. Following the notation in [25, Definition
4.1], we say that an integral rectifiable varifold V is cyclic mod 2 (boundary-
less) provided ∂[V ] = 0, where [V ] is the rectifiable mod 2 flat chain associ-
ated to V . Note that a varifold which consists of unions of an odd number of
multiplicity-one half-planes meeting along a common line is not cyclic mod
2. Under the assumptions of small entropy and the “boundary-less” condi-
tion, the following regularity result holds which is implicit in Section 5 in [9]
(see also Section 4.1 in [4]). For convenience of the reader, we also include a
proof here.
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Lemma 4.7. Let Σ2 ⊂ R3 be a boundary-less (cyclic mod 2) integral rectifi-
able varifold with λ(Σ) < 2. If Σ is a weak solution of either the self-shrinker
equation or the translator equation, then Σ is smooth.

Proof. We will analyze tangent cones to prove this lemma. By a standard
result from [1] (see also Section 42 in [23]), any integral n-rectifiable varifold
has stationary integral rectifiable tangent cones as long as the generalized
mean curvature H is locally in Lp for some p > n. In our case, both equations
guarantee that H is locally bounded. This gives the existence of stationary
tangent cones at every point. Moreover, it follows from [25, Theorem 1.1]
that those tangent cones must also be boundary-less.

Next, we will show that any such tangent cone V is a multiplicity-one hy-
perplane. If y ∈ Sing(V ) \ {0} (Sing(V ) denotes the singular set of V ), then
a dimension reduction argument [9, Lemma 5.8] gives that every tangent
cone to V at y is of the form V ′ ×Ry. Here Ry is the line in the direc-
tion y and V ′ is a one-dimensional integral stationary cone in R2. By the
lower semi-continuity of entropy, we have λ(V ′) ≤ λ(V ) < 2. Since any one-
dimensional cone is the union of rays, the small entropy condition implies
that V ′ consists of at most three rays. Moreover, “boundary-less” property
rules out three rays. Therefore, the only such configuration that is stationary
is when there are two rays to form a multiplicity-one line and this implies
that Sing(V ) ⊂ {0}. By [2], we conclude that the intersection of V with unit
sphere S2 is a smooth closed geodesic, i.e., a great circle, and this gives that
V is a multiplicity-one hyperplane.

Now combining the fact that H is locally bounded, Allard’s regularity
theorem [1] (see also Theorem 24.2 in [23]) gives that Σ is a C1,β manifold for
some β > 0. Then elliptic theory for the self-shrinker or translator equation
gives estimates on higher derivatives, and this implies that Σ is smooth. �

Theorem 4.8. Let Σ2 ⊂ R3 be a smooth complete translator with λ(Σ) ≤
α < 2. Then there exists a constant C = C(α) > 0 such that |A|2 ≤ C.

Proof. We will argue by contradiction. Suppose therefore that there is a
sequence Σi ⊂ R3 of smooth translators with λ(Σi) ≤ α and points xi ∈ Σi

with

(4.12) |A|(xi) > i.

Then we translate Σi to Σ̃i such that xi is the origin. Note that at any
point, we have density bounds for Σ̃i coming from the entropy bound. Since
each Σ̃i has bounded mean curvature, Allard’s compactness theorem [1] gives
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a subsequence of the Σ̃i’s that converges to an integral rectifiable varifold Σ̃
which weakly satisfies the translator equation and has λ(Σ̃) ≤ α < 2. The
small entropy condition implies that the convergence is multiplicity one. As
Σ̃i is smooth complete embedded, the Brakke flow associated to Σ̃i is cyclic
mod 2, i.e., boundary-less, in the sense of [25, Definition 4.1]. Therefore, by
[25, Theorem 4.2], the limit Σ̃ is also boundary-less. Thus, Lemma 4.7 gives
that Σ̃ is smooth. Finally, Allard’s regularity theorem [1] implies that the
convergence is also smooth, which contradicts (4.12). �

Remark 4.9. A similar result holds for L-stable translators in R3. More
precisely, there exists a constant C > 0 such that the curvature of any L-
stable translator in R3 is bounded by C, i.e., |A| ≤ C (see [12]). The trans-
lating graph case of this result was proved by Shahriyari [22, Theorem 3.2].

5. L-stability and rigidity results

In this section, we first consider the spectrum of the operator L for transla-
tors and compute the bottom of the spectrum for grim reaper hyperplanes.
Then, by using a cut off argument and a uniqueness lemma, we give a rigid-
ity result for translators in terms of the weighed L2 norm of the second
fundamental form.

5.1. The spectrum of L for translators

Let Σn ⊂ Rn+1 be a translator. Note that all translators are noncompact,
so there may not be a lowest eigenvalue for the operator L. However, we can
still define the bottom of the spectrum µ1 by

µ1 = inf
f

∫
Σ

(
|∇f |2 − |A|2f2

)
exn+1∫

Σ f
2exn+1

= inf
f

−
∫

Σ f(Lf)exn+1∫
Σ f

2exn+1
,

where the infimum is taken over all smooth functions with compact support.
Note that standard density arguments imply that we get the same µ1 if
we take the infimum over Lipschitz functions with compact support. It is
possible that µ1 = −∞ since all translators are noncompact.

By the definition of µ1 and the minimal surface theory (see [11]; cf.[8,
Lemma 9.25]), we have the following characterization of L-stability for trans-
lators.

Lemma 5.1. If Σn ⊂ Rn+1 is a translator, then the following are equiva-
lent:
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(1) Σ is L-stable;

(2) µ1(Σ) ≥ 0;

(3) there exists a positive function u satisfying Lu = 0.

Next, we show that if the mean curvature H of a translator has at
most quadratic weighted L2 growth, then the bottom of the spectrum µ1 is
nonpostive.

Lemma 5.2. Let Σn ⊂ Rn+1 be a complete properly immersed translator.
If the mean curvature H satisfies the following weighted L2 growth

(5.1)

∫
Σ∩BR

H2exn+1 ≤ C0R
α, for any R > 1,

where C0 is a positive constant and 0 ≤ α < 2, then we have µ1(Σ) ≤ 0.

Proof. Given any fixed δ > 0, if we can construct a compactly supported
function u such that

(5.2) −
∫

Σ
u(Lu)exn+1 < δ

∫
Σ
u2exn+1 ,

then this implies µ1 ≤ 0.
We will use the mean curvature H and the fact that LH = 0 to construct

our test function. Suppose η is a function with compact support and let
u = ηH. Then

L(ηH) = ηLH +HLη + 2〈∇η,∇H〉 = HLη + 2〈∇η,∇H〉.

It follows that

(5.3) −
∫

Σ
ηHL(ηH)exn+1 = −

∫
Σ

[
ηH2Lη + 2ηH〈∇η,∇H〉

]
exn+1 .

Applying Lemma 2.5 gives

(5.4) −
∫

Σ
H2L(η2)exn+1 =

∫
Σ
〈∇H2,∇η2〉exn+1 .

Note that Lη2 = 2ηLη + 2|∇η|2. Combining this with (5.3) and (5.4) yields
that

(5.5) −
∫

Σ
ηHL(ηH)exn+1 =

∫
Σ
H2|∇η|2exn+1 .
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If we choose η to be one on BR and cut off linearly to zero on B2R\BR, then
(5.5) gives

−
∫

Σ

(
ηHL(ηH) + δη2H2

)
exn+1(5.6)

≤ 1

R2

∫
Σ∩B2R

H2exn+1 − δ
∫

Σ∩BR
H2exn+1 .

By the assumption (5.1), the right-hand side of (5.6) must be negative for
sufficiently large R. Therefore, when R is large, the function u = ηH satisfies
(5.2), and this completes the proof. �

Lemma 5.1 and Lemma 5.2 imply that any complete L-stable translator
satisfying (5.1) has µ1 = 0. In particular, the following result, i.e., Theo-
rem 1.5 holds.

Corollary 5.3. For all grim reaper hyperplanes Γ×Rn−1, we have µ1(Γ×
Rn−1) = 0.

Remark 5.4. If n ≥ 3, Corollary 5.3 does not follow directly from Lemma
5.2, but we can slightly modify the argument in the proof of Lemma 5.2 to
get the result.

Using a similar argument as in the proof of [8, Lemma 9.25], we have
the following characterization of µ1 for translators.

Lemma 5.5. If Σn ⊂ Rn+1 is a complete properly immersed translator and
µ1(Σ) 6= −∞, then there is a positive function u on Σ such that Lu = −µ1u.

5.2. Uniqueness lemma and rigidity results

The proof of Theorem 1.6 relies on the following standard uniqueness lemma
for general hypersurfaces.

Lemma 5.6. Let Σn ⊂ Rn+1 be a smooth complete hypersurface. If g > 0
and h are two functions on Σ which satisfy

(5.7) ∆g + 〈∇f,∇g〉+ V g = 0,

and

(5.8) ∆h+ 〈∇f,∇h〉+ V h = 0,
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where f and V are smooth functions on Σ. If Σ is closed or h satisfies the
weighted L2 growth

(5.9)

∫
Σ∩BR

h2ef ≤ C0R
α, for any R > 1,

where C0 is a positive constant and 0 ≤ α < 2, then h = Cg for some con-
stant C.

Proof. For convenience, we let L = ∆ + 〈∇f,∇·〉. Thus, Lg + V g = 0 and
Lh+ V h = 0.

Let w = h
g . Then by (5.7) and (5.8), we have

(5.10) Lw =
gLh− hLg

g2
− 2

〈
∇w, ∇g

g

〉
= −2

〈
∇w, ∇g

g

〉
.

We define a drifted operator Lg by

(5.11) Lg =
e−f

g2
div(g2ef ∇·) = L+ 2

〈
∇·, ∇g

g

〉
.

Then (5.10) gives

(5.12) Lgw2 = 2wLgw + 2|∇w|2 = 2|∇w|2 ≥ 0.

Now, if Σ is closed, then integrating (5.12) finishes the proof. If Σ is non-
compact, we choose a cut off function φ. By (5.11) and (5.12)

e−f

g2
div(φ2g2ef ∇w2) = 〈∇φ2,∇w2〉+ φ2Lgw2(5.13)

= 〈∇φ2,∇w2〉+ 2φ2|∇w|2.

Using the Stokes’ theorem, (5.13) gives

(5.14) 0 =

∫
Σ

[
〈∇φ2,∇w2〉+ φ2Lgw2

]
g2ef .

Applying the absorbing inequality, (5.14) gives

0 ≥
∫

Σ

[
− φ2|∇w|2 − 4w2|∇φ|2 + 2φ2|∇w|2

]
g2ef .
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This is equivalent to∫
Σ
φ2|∇w|2g2ef ≤ 4

∫
Σ
w2|∇φ|2g2ef .

If we choose φ to be identically one on BR and cuts off linearly to zero from
∂BR to ∂B2R, then |∇φ| ≤ 1/R. Combining the weighted growth of h, i.e.,
(5.9) and taking R→∞, we conclude that |∇w| = 0. This completes the
proof. �

Remark 5.7. We can slightly modify the proof of Lemma 5.6 to show that
it still holds if we assume ∆h+ 〈∇f,∇h〉+ V h ≥ 0 and h ≥ 0, which is a
special case of [21, Theorem 8].

As an application of Lemma 5.6 to L-stable translators, we have the
following lemma.

Lemma 5.8. Let Σn ⊂ Rn+1 be a complete L-stable translator. If the mean
curvature H satisfies the weighed L2 growth

(5.15)

∫
Σ∩BR

H2exn+1 ≤ C0R
α, for any R > 1,

where C0 is a positive constant and 0 ≤ α < 2, then H ≡ 0 or H does not
change sign.

Proof. This follows from Lemma 5.1, Lemma 5.6 and the fact that LH =
0. �

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. First by Lemma 5.8, we conclude that H ≡ 0 or H
does not change sign. If H ≡ 0, then Σ is just a hyperplane, which is the
first case. Next, we assume H does not change sign and H > 0. Then |A|
does not vanish.

By Lemma 2.4, we have

L|A| = |∇A|
2 − |∇|A||2

|A|
≥ 0.

Since LH = 0 and L|A| ≥ 0, applying Lemma 5.6 with g = H and h = |A|,
by Remark 5.7, we conclude that there exists a constant C such that

|A| = CH.
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It follows that Σ is the grim reaper or a grim reaper hyperplane Γ×Rn−1

(see Theorem B in [18] or [16]).
Note that if n ≥ 3, the norm of the second fundamental form |A| of a

grim reaper hyperplane Γ×Rn−1 has at least quadratic weighted L2 growth.
Therefore, by our assumption, we conclude that n ≤ 2. If n = 1, then Σ is
the grim reaper Γ, which is the second case. If n = 2, then Σ is a grim reaper
hyperplane Γ×R and 1 ≤ α < 2, which is the last case. �
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