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In this paper, it is shown that every point in the hyperbolic 3-
space is moved at a distance at least %log (12 3kl 3) by one
of the isometries of length at most k£ > 2 in a 2-generator Kle-
nian group I' which is torsion-free, not co-compact and contains no
parabolic. Also some lower bounds for the maximum of hyperbolic
displacements given by symmetric subsets of isometries in purely
loxodromic finitely generated free Kleinian groups are conjectured.
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1. Introduction

This paper is a sequel to Yiice [23] in which the machinery developed by
Culler and Shalen [I0] that gives a lower bound for the maximum of the
displacements under the generators of I' is extended to calculate a lower
bound for the maximum of the displacements under any finite set of isome-
tries in I' in connection with the solutions of certain minimax problems with
a constraint. Here I' is a Kleinian group generated by two non-commuting
isometries ¢ and 7 of H? that satisfies the hypothesis of the log3 Theorem
which can be stated as follows:
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Log 3 Theorem. Suppose I' = (£,n) is torsion-free, not co-compact and
contains no parabolic. Let T'y be the set {&,n}. Then we have

dist : > 1]
3331({ ist(20,7 - 20)} > 510g9

for any zy € H3.

The use of this extension for the set of isometries I't = {¢,7,&n} C I im-
plies, for instance, the fact that max,cr, {dist(z0,v - 20)} > %log(5 +3v/2)
for any zy € H? [23, Theorem 5.1].

It is noteworthy to mention that the original statement of the log 3 Theo-
rem included one additional hypothesis; topological tameness. A torsion-free
Kleinian group I" is called topologically tame if the hyperbolic 3-manifold
M = H3/T is homeomorphic to the interior of a compact 3-manifold. Agol
[1] and Calegari-Gabai [7] independently proved that every finitely generated
Kleinian group is topologically tame. As a result this condition is satisfied
for the Kleinian groups under consideration here.

Since it has implications on Margulis numbers and volume estimates
for a large class of closed hyperbolic 3-manifolds, the log3 theorem is the
main tool or motivation behind many deep results that connect the topology
of hyperbolic 3-manifolds to their geometry (see Agol-Culler—Shalen [2],
Culler—Hersonsky—Shalen [9], Culler—Shalen [I0HI2]). For example, if M is
a closed hyperbolic 3-manifold whose first Betti number b1 (M) is at least 4
and the fundamental group 71 (M) of M has no subgroup isomorphic to the
fundamental group of a genus two surface, then a generalisation of the log 3
theorem due to Anderson—Canary—Culler—Shalen [3] implies that log5 is a
strong Margulis number for M and, 3.08 is a lower bound for the volume of
M [3, Corollary 9.2].

In [10], as well as proving the log 3 Theorem, Culler and Shalen showed
that log 3 is a Margulis number for M [10, Theorem 10.3] and, 0.92 is a lower
bound for the volume of M if by(M) > 3 and 71 (M) has no 2-generator sub-
group of finite index [10], Corollary 10.4]. Later Culler, Hersonsky and Shalen
[9] increased the previous lower bound for M to 0.94. As a consequence they
proved that the first Betti number of M is at most 2 if M = H?3 /T is a closed
orientable hyperbolic 3-manifold of minimal volume [, Theorem A] which
follows from the fact that either I' has a 2-generator subgroup of finite index
or there is a 2-generator subgroup of I' which is not topologically tame [9]
Theorem B]. It must be noted that the lower volume estimates computed in
[3] and [I0] are recently improved by the work of Gabai-Meyerhoff-Milley
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[13] and Milley [I7] in which a newer method called Mom technology was
introduced.

Aiming to set the ground work to investigate the further applications
of the methods developed in [2, B, [9HI2] to improve on the Margulis num-
bers and volume estimates for the classes of closed hyperbolic 3-manifolds
aforementioned, in this paper we shall prove the following:

Theorem If 'y, is the set of all isometries of length at most k > 2 in
I' = (¢&,n), then we have max,er, {dist(z0,7 - 20)} > % log(12-3*~1 —3) for
any zo € H3,

which is given as Theorem in Section [4] This theorem can be con-
sidered as a generalisation of the log3 theorem for symmetric subsets of
isometries, which will be made clear in Section |2} in I' = (£, 7).

In the rest of this manuscript, we shall assume, unless otherwise stated,
that the group I' = (£, n) has the properties given in the log 3 theorem. The
expression Sy, will denote the boundary of the canonical compactification "
of H3. Note that we have So, = S2. The notation Ar., will denote the limit
set of I'-orbit of z € H? on S,,. We will express the hyperbolic displacement
of z € H? under the action of the isometry v: H? — H? by dist(z, v - 2).

The proof of Theorem requires the use of the strategy carried out by
Culler and Shalen in the proof of the log 3 theorem together with the solu-
tion method explained in [23] to certain minimax problems which produce
the lower bounds given in the theorem. In particular, the proof entails the
examination of two cases:

i when I is geometrically infinite; that is, Ar., = Se for every z € H3,
ii when I' is geometrically finite.

Before we summarise the proof of Theorem [£.1]in each case, we introduce
some notation. Let zg be a given point in H3. By [10, Proposition 9.2],
the group I' = (£, n) is free on the generators { and 7. As a consequence,
I' = (¢,n) can be decomposed as

(1) {Buvku | Jy

e

for each k > 2. Let Z = {¢,n} and 27! = {¢71 71}, Every non-identity el-
ement v € I' = (£,n) can be written uniquely as a reduced word 912 - - - ¥,
for some m > 1 so that v; € ZUZE"! for every i = 1,...,m and Y # wj_fl
for j = 2,...,m. We shall use the metric length(7) to measure the length of
aword v = Y13 - - - Py, defined by length(y) = mif v # 1 and length(y) = 0
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ify=1.In Uk is the set of all words of length less than k and W is the
set of all words of length exactly k in I' = (£, 7). The expression Jy, is the
set of words in " which start with the word ¢ € ¥*.

The set \Ilk which can be considered as \Ilk U \I'k LU \lfk U \Ijé 1, will be
given an orderlng Above \If]’C denotes the set of Words in \Ifk starting with
v e{&n 1t n &Y. From left to right, elements of ¥* will be listed so that
reduced words starting with £ are in the first group, words starting with 7!
are in the second, words starting with 7 are in the next and finally words
starting with €~! are in the last group. In each group, from left to right,
each letter of each reduced word Will keep the same order, eg, we have U? =
(€ en~tenn e ™ P g ng € T €7, 72 for k= 2.

We enumerate the elements of U* as follows: Assign 1 to the first word
of U¥ which ends with &. Every other word which ends with & in UF will be
assigned positive integers which are equivalent to 1 in modulo 4 in increasing
order. Assign 2 to the second word of U¥ which ends with n~!. For the
other words which end with n~!, assign positive integers in increasing order
equivalent to 2 in modulo 4. Repeat this process with 3 and 4 for  and ¢!,
respectively. We shall abuse the notation and for each k£ > 2 we shall denote
these enumerations with the mapping

(2) pr U TP ={1,2,...,4-3"1}.

For W2, for instance we get p: 52 =1, Tt 2, En— 3, e 4,

15»—>5 26,7, 0 =8 né 9, £ I n~t =10, £ 11,
and €72+ 12. We shall also need the enumeration p: U3 — {1,2,...,36}
given below for k = 3:

1333 =1, p ettt =10, o =19, ¢lptiet - 28,
&nt =2, ity =11, et =20, e 29,
&n =3, pletlett =12, g =21, gttt =30,
S 3 =13, n&tptt =22, ¢l — 31,
&nle =5, g™t e 14, ety =23, gttt =32,
&t =6, iy 15, &ttt 24, ine — 33,
& =7, nTigTet =16, ngg — 25, et =34,
ngt =8, il w17, pént =26, ¢y 35,
&né =9, nln7inTt =18, nény 27, ¢TI 36

Fori=1,2,3,4 we have p(¥,,) = I; for v € {§,n,n_1,§_1}, where, by abus-
ing the notation, we let I; = {(i — 1) -3¥=1 4 1,... 431}

Let us say Jg(y) UUJES(W) Jy. Each decomposmon denoted by I'ps,
in has certain group -theoretical relations v.Jy(,) = ({ JuJ S(y ) for
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isometries v and s(7) in ¥¥ U Wy and Wy, respectively, and subsets {-} and
S(7) of isometries in W* and W*, respectively. For example, for I'pz, one of
the group-theoretical relations is

(3) §2J§‘2 =I- ({5} U J{§27§n7€n*1}) :

We shall use the notation (v, s(7y),S(7v)) to denote a group-theoretical re-
lations of I'pr for any k > 2. So the relation in will be also denoted by
(62,672 {€2,&n,&n~1Y). Another example for a group-theoretical relation for
FDQ is

2 _ 2
(4) EJe-1y =T — (V72U J(e2 1 memp me 1.6~ m& 2.6~ 16161 m~2}) -

All of the group-theoretical properties of the decompositions I'px for k > 2
are given in Lemmal[2.1in Section[2} Note that s(7) and S(7) denote different
isometries and sets of isometries in and for the same isometry . A
summary for the proof of Theorem goes as follows:

In the case (i) I' = (£, n) is geometrically infinite, we first prove the
statement below:

Theorem Let T'=(£,n) be a free, geometrically infinite Kleinian
group without parabolics and I'pr be the decomposition of T' in for
k > 2. If zy denotes a point in H?, then there is a family of Borel mea-
sures {vy }pcur defined on S, for every integer k > 2 such that (i) A, =

Zwe\yk vy; (1) A (Se) = 1; and

(iii) /S i Mo vy =1— Y / dvy

PpeS(y

for each group-theoretical relation (v, s(7y),S()) of I'pr, where A, is the
area measure based at z.

This theorem is given as Theorem in Section [2| In the theorem,
A,z 18 the conformal expansion factor of ¢, measured in the round metric
centered at zg.

Decompositions of I' = (£, 1) in (L)) will be used in part (i) of Theorem|[2.1]
to decompose the area measure A, as a sum of Borel measures vy, indexed
by 1) € U¥. Each group-theoretical relation of I'pr translates into a measure-
theoretical relation among the Borel measures {1y }ycy+ as described in part
(7it) of Theorem . In particular, each measure vy, is transformed to the
complement of certain measures in the set {v,: v € ¥* — {4} }.
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For instance, the theorem above implies that A, (So0) = > yey2 Yy (Se)
for I'p2 so that the Borel measure v¢-2 is transformed to the complement of
the sum of the measures vg,, v¢2 and vg,—1 by the group-theoretical property
in , which can also be expressed as

(5) /S )\gz’z() dve—2 =1 — vg2(So0) — Ven(Soo) — Ven—1(Soo).

Each displacement dist(zg, 7 - 29) for v € U* has a lower bound deter-
mined by a formula, proved originally in [I0] by Culler and Shalen and
improved slightly in [12], which involves the Borel measures in {vy}ycwr.
This formula is given as follows:

Lemma 1.1. ([10, Lemma 5.5]; [12, Lemma 2.1]) Let a and b be numbers
in [0, 1] which are not both equal to 0 and are not both equal to 1. Let ~y be a
lozodromic isometry of H? and let zy be a point in H3. Suppose that v is a
measure on So such that (i) v < A,,, (i1) v (Sx) < a, (i) fSoc()\%ZO)2dV >
b. Then we have a >0, b < 1, and

1 b(1 — 1
dist (2o, - 20) > 2log(a) =1 o(a)
a

1-0) 2 %0

where o(x) =1/x — 1 for x € (0,1).

For a given decomposition I'px, assuming 0 < v(,)(Sx) < 1 for every
group-theoretical relation (v, s(v), S(7v)), in Lemma if we let v = vy,
@ = Vy(1)(Sso) and b = [ (Ay2,)?dvs(,), we obtain the lower bounds

(6)  dist(z0,7 - 20) > %log o Z /S dvy | o (/S st(A/))
) oo [eS]

peS(y

by Theorem The constant values inside the logarithms on the righthand
side of the inequality in @ can be considered as the values of certain func-
tions, referred to as displacement functions for I'pr, defined on the set A9~1
of all points in R¢ whose entries add to 1. Here d = 4 - 3*71 is the cardinality
of Wk,

As an example, assuming 0 < v(Seo) < 1 for ¢ € {€2,&n,&n 1, 672}, by
Theorem for k = 2, Lemma and the definition of p for k = 2, we
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have the displacement function

1*551*.%2*333 1*%12

2
X)=o0l(x1 +x2+x3)0(T =
fi2(x) = o (21 + 22 + 23)0(212) PSP, o

for the decomposition I'p> such that dist(zg, £2-2) > 3 log f&(m) for the
point m = (Vp(w)(SOO))we\Iﬂ‘ € A'l. More generally, m will denote in the rest

of this paper the point in R% whose entries formed by the total masses of
the measures in {vy: ¢ € U*} keeping the same ordering of U*. Note that
for each decomposition I'pr, Theorem and Lemma [I.1| produce as many
displacement functions as the number of group-theoretical relations which
are counted in Lemma [2.1]in Section 2l

For k = 2, for instance, there are 48 group-theoretical relations, and
consequently, there is a set G2 of 48 displacement functions. One of which
is fZ, given above (see , and (|14)) for some others). These functions
provide a lower bound for the maximum of hyperbolic displacements by the
inequality

. 1 ) 1 . 2
. > — > —
2’%{%}; {dist(z0, v -20)} > 5 log G*(m) > 5 log <XénAf11 G (X))

for Do =W2U{&% &~ &, "¢ e, =2 P et m€, €1, €7, €72,
where G?(x) = maxyeau {f(x): f € G*}.

Let G* denote the set of all displacement functions for the decomposi-
tion I'pr of T' = (£,n). Explicit formulas of the functions in G¥ are given in
Proposition [2.1] in Section [2} In general we shall prove the following state-
ment.

Theorem IfGF: A1 — R is the function defined by x — max{f(z) :
f € GFY, then we have infgepar GF(x) = 12351 — 3 for k > 2,

which provides the lower bounds in Theorem This is Theorem in
Section Bl

To prove Theorem we first introduce a subset F* = {fF ..., f&}
of displacement functions in Gk. A list of explicit formulas of the functions
in FF = {f{“, ey fé“} are again given in Proposition in Section [2| For
x € A4 let us say

F*(x) = max (ff(x),..., f}(x)) and o, = infxeps FF(x).

We will prove in Section |3| that ., = infycaa-1 G¥(x). This is because by
the inclusion F* C G* we have a, < infyeae1 G¥(x). The reverse inequality
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follows from the fact that the functions in F* take bigger values at the points
in A%! that are significant to compute infyeas1 GF(x).
The computation of a, follows from the following two properties of the
function F*:
. k
(4) o= min F*(x),
(B) F*¥(x*) = a, for a unique point x* € AL,

The equality in (A) is proved in Lemma in Section (3| which uses the
observation that some of the displacement functions ff € F* approach to
infinity on any sequence {x,} C A%~! which limits on A4~

Proving Property (B) takes most of the technical work in this paper.
Using Lemmas [3.2] 3.3|and [3.4] we first show that each displacement function
fk is strictly convex on a strictly convex subset C, of A%"1. These subsets
are deﬁned in and (| . Next by Lemmas u . -, . -, .
T and [3.12| we estabhsh in Proposition [3.1] that x* is in the intersection C
of all of these sets C'y, which is itself strictly convex. Then using a number of
facts Theorems and Proposition [3.2] from convex analysis we deduce
that F¥ is a strictly convex function on C' which implies the uniqueness of
x*. This is given in Proposition

Since x* is unique, it is fixed by every bijection of A%~! preserving the
set F¥. This leads to the relations ;= x;‘ among the coordinates of x* for
every distinct i, j € {1,2,...,4-3""1}. A list of bijections and the details of
the computations of the coordinates of x* and «, are given in Theorem
This completes the proof of Theorem and consequently the proof of
Theorem in the case ().

Let X denote the character variety PSLo(C) x PSLs(C). In r=
(&,m) is geometrically finite, we define the function ffoz X >R for I'y =
VAJURVLAR I such that

fzo(ga )_ HéaX{ChSt(ZUa (O ZO)}

for a fixed zg € H®. This function is continuous and proper. We shall show
that ffo has no local minimum in &F the set of pairs of isometries (£,7) € X
such that (£, n) is free, geometrically finite and without any parabolic. Since
the set of (£,n) such that (£, n) is free, geometrically infinite and without any
parabolic is dense in 8F — BF and, every (£,7) € X with (£,n) is free and
without parabolic is in &F, geometrically finite case reduces to geometrically
infinite case completing the proof of Theorem [4.1] This crucial final step
which was also used in the proof of the log 3 Theorem [10, Propositions 9.3
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and 8.2] and is used here in the proof of Theorem was established by
Canary—Hersonsky [4, Main Theorem| improving on the results of [5] by
Canary—Culler—Hersonsky—Shalen.

Although it might get quite complicated to express computations nota-
tionally, all of the arguments summarised above to establish Theorem [4.1
can be carried out in a more general setting to prove a generalisation of
this result. Let I' = (&1, &2, ..., &) denote a purely loxodromic free Kleinian
group. Also let I',, , be the subset of all isometries of length less than or
equal to k in I'. It is possible to calculate a lower bound for the maximum of
the hyperbolic displacements given by the isometries in I',, ;.. The statement
of this generalisation is presented in Conjecture [£.1] We finish this paper by
providing a proof sketch of this conjecture.

2. Symmetric decompositions of free groups

Let I' be a group which is free on a finite generating set = = {1, &2,...,&n}-
Let Z=! = {y~!: v € Z}. Every element «y of I' can be written uniquely as a
reduced word 1)1 - - - 1, for m > 0, where each v; is an element of ZU Z~! for
i=1,...,m, and ¢; # 1/1]7_11 for 7 =2,...,m. If n <m is a positive integer
and 7 # 1, we shall call v ..., the initial word of length n of .

Let U* be a finite set of words in I'. For each word ¢ € ¥*, let .J, denote
the set of non-trivial elements of I' that have the initial word 1. Depending
on the number of elements in = and lengths of words in W* there may be
a set of words which are not contained in any of Jy,. This set will be called
the residue set of U* and denoted by W¥. For a given pair (U*, ¥¥) of finite
sets of words W™ and U} in T', if we have I' = {1} U U7 Uy cq- Jy, then
I'p« with D* = (¥*, ¥¥) is a decomposition of I'. In particular we shall be
interested in the following decompositions:

Definition 2.1. A decomposition I'p+ with D* = (¥*, ¥*) is symmetric if
——1

U* and U are preserved by every bijection of ZUZE"!Y, ie if p: EUE"! —
EUE"L is a bijection, then ¢(V*) = ¥* and ¢(¥}) = V.

Let I'y be the set of all isometries of length at most £>2 in I' =
(€1,...,&,). Let UF be the set of all isometries of length & and W! be the
set of all non-identity isometries of length less than k. It is straightforward
to see that
Jy

r = {1}uvru U%w
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for every k > 2. Therefore, I'pr.n is a decomposition of I' = ({1, ..., &,) with
Dk = (Uk Wk) where Ty, = U U WF. Note that I'pr. is symmetric for each
n,k > 2. In the case n = 2, we have the lemma below for the number of
group-theoretical relations:

Lemma 2.1. Let I' be a 2-generator free group and I'pr be a symmetric
decomposition of T for k > 2. Then there are Ry, = 4 -1, - 3*~1 many group-
theoretical relations, where

(7) T = 1+ Zf;ll (1 +2 Z;n:lri{l’kiz} 3j_1) or, T = Z?:O aj,

for aj=1if j=0,1, ;=142 /2 31 jfa<j<k -1, a;=23 /2 3i-1
if j = k. Above |-] denotes the floor function.

Proof. Let 1) = 114 .. .1y, be a reduced initial word in ¥, Since we know
that the isometries wl_l, (P1ho) o (h1aba . cabp—1) 7! are all in WL and
1! € U* we count the group-theoretical relations (v, s(v), S(7)) according
to the number ¢ of cancellations in the product ys(y) for i =1,2,...,k — 1,
where s(7) = ¢ for v € Uk U U*,

Note that the product v;” L. Py 11/){ Ly gives a group-theoretical rela-
tion with i-cancellation. Assume that the product v also gives a relation
with i-cancellation. Then we have v = wi);” Lo )y 1¢f ! for some w € wr.
Since we have to have 1 < length(wgbi*l . --1/15%&{%/)) < k, we derive that
1 <length(w) < min{i,k — i} where k > 2. We have 2 choices for the last
letter of w and 3 choices for the rest of the letters of w. Therefore, there
are 1 4 2 Z;n:lri{l’kﬂ} 3/~! group-theoretical relations with i-cancellation. Fi-
nally, the product (11 . . .9r_195) 19 provides the group-theoretical relation
with k-cancellation. There is only 1 such relation. There are 4 - 3*~1 many
choices for the isometry ¢ € W*. Thus, the first part of @ follows.

For the second part of , let 7 denote the length of the product vy,
for 0 < j < k.If j is 0 or 1, then we derive that v = (192 ---2y) * or v =
(Y11ha - - - Pp_1) ", respectively. There is only 1 group-theoretical relation
for each case. Let af =1 and a¥ = 1. Assume that j = k. Let i denote the
number of cancellations in the product 1. Since j = length(y) + k — 2i, we
get 0 < i < |k/2]. Then we have v = w(¢1¢s - - -1;)~! for some w € ¥¥ such
that length(w) = i. There are 2 choices for the first letter of w and 3 choices
for the rest. Consequently, there are 2 thi/fj 3~ many products y1) whose
length is k.

An argument analogous to the one above can be repeated for each j €
{2,...,k — 1} to count the number of products 1 so that length(yy) = j
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with the exception that w = 1. In those cases, we get 1 additional prod-
uct v, where v is (112 . .twk,jJrl)_l for each j € {2,...,k —1}. Hence,
we obtain the sum 1 + 2 Ziuz/fj 3"=1 for 2 < j < k — 1, which concludes the

proof. O

As an example, we will list all of the group-theoretical relations for the
symmetric decomposition I'p2. There are Ry = 48 relations by Lemma [2.1
First we list in Table (1| the ones (v, s(7), S(7)) so that vs(v) has length 0.
There are 12 such relations. Note that those are the relations with s(y) =

L.

¥ 5(v) S(7) ¥ s(v) S()

¢’ & {ehereny 7] n? [ n e

né | én ! {n.n* n& '} 8 &t | ne! {&,en,en 1}

n ' &y (e i B9 [ & g [ {E T
&n [ n7tet {&,&n,En 1} 0] n¢ &Mt {n&,n*,ng '}
&y | 7' ({1 e | ety [ {nTle e T
n? n> {n&,n* . n¢ "} 12] & & {&,en,en 1}

Table 1: Group-theoretical properties of I'p: with s(y)=7"1 or

length(ys(vy)) = 0.

DO | W N~

Next we give in Table [2| and Table [3] the group-theoretical relations
(v, s(7), S(7)) such that vs(y) has length 1 or 2. There are 12 and 24 such
relations, respectively.

v | sty S(v)

& e e it ne L, 0Tl
R {2, &n e ® ng tng &L, %
e e [{E oLty ign ety e, e
n [ ntet! {& L enn e e 2 0t ng ngd

n | ' T e 2 P g &L I, 7
n | n? {&, L enn® ng né e, %)

n (& Lénn Ty g2 ¢y L %)
n ] opg! {2, &n L enn e e 2 % gt ngd
n ] ong et i A g ng e, %)
£ & {&.&n e ® ng g & Ty, 7%

§ | & [{&€enn e e 2 ey g, 6%
12] ¢ - {&. & L enn I e 2 n? g ngd

Table 2: Group-theoretical properties of I'p2 with length(ys(y)) = 1.

D S| ol oo e w ol -
[
|
[
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y s5(v) S(v) ¥ s(v) S(v)

1] net & VP-{n¢} (B[t & v —{n7'¢g
2 p et et [P —{n? 14| ¢ L e
3] &2 &n [O2—{cIn}|15] net &n v — {n’}

4 n° n e | vP—{ng} [16] & n'¢ w2 — {7}

5] &y n? [ wr—{p 17| &ty | 7 [OE—{Int)
6 &nt n? U2—{&n} [ B[] 7P v — {1y}
Tty [ttt [P {19 2 ottt v -{neh}
8| n? né | WE—{n1&} 20| &t né v — {4}

9 [ &yt et [P { (21 n2 [ pet [¥P-—{n '}
0[] nle [yt [ v2-—{n?} [22] & [t ¥—{&»m'})
1] & &y | vP—{¢&ny [23] ¢ ) v — {n’}
12 n¢ &2 | -—{ne 24| nle | &2 [v-—{n'ch)

Table 3: Group-theoretical properties of I'p2 with length(ys(7)) = 2.

T 5(7) S(v) gl s(7) S(y)

- 63 \Pg—l 7773 7]3 an—l
né~? &yt v, &n? ¢! W

n e & Uy | P n*€ e

En Tt Ené! e | neip! nén~! v,
et &né Ve | tein! nén Wy

nén n g ], &né et o
n&n n ety (Y| g e [ U
&n nle? | v n*¢ &t |y,
&% n 1 | W n ¢ Sy U

né'n n gt | v, &n ¢ cipet | v,
n ey n e [, | &l Eng | Wen

&n? n 2! Ve ng&? &y,
&y? n%¢ Ve | e % | U,
773 7773 \Ilﬂ 53 —3 \ij

Table 4: Group-theoretical properties of TI'ps with s(y)=~"! or

length(vs(vy)) = 0.

In Table 4] above we list some of the group-theoretical relations for the
symmetric decomposition I'ps as we shall need them in this section. By
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Lemma there are in total 252 group-theoretical relations for this decom-
position.

Under the hypothesis of the log 3 theorem, we know that I' = (£, ) is a
free group on the generators ¢ and 7 [10, Proposition 9.2]. For the symmetric
decompositions of I' = (£, n) we have the following statement:

Theorem 2.1. LetT' = (£,n) be a free, geometrically infinite Kleinian group
without parabolics and I'pr be a symmetric decomposition of I for k > 2. If
2o denotes a point in H3, then there is a family of Borel measures {vy }pewr
defined on S such that (i) Az, =3 yepn Vps (i) Az (Se) =1; and for

v ey
(i) [ Ona)drg =1- 3 / vy
S weS(y

for each group-theoretical relation (v, s(y),S(7)) of Ipr, where A, is the
area measure based at zg.

Proof. As in the proof of [23, Lemma 3.3], we follow the same scheme given
in the proof of [10, Lemma 5.3]. Therefore we shall provide a proof sketch.
In particular this proof involves I'-invariant D-conformal densities, first con-
structed by Patterson [19] and extensively studied by Sullivan [20} 21]. Inter-
ested readers may refer to [10] [18-21] for details on I'-invariant D-conformal
densities and their use in the context of this paper.

The group I' acts freely on H?. The symmetric decomposition I'pr of I’
implies that the orbit W* =T - 2y, where

= {2} U{y 20:ve T} U U {72007 € Iy},
pewk

is an infinite disjoint union for k > 2. Let V¥ be the finite collection of
all sets of the form J,cy vk or VokUU¢e\If qu, or {20} UUyew Vj, or
{z}UVFU Uyew sz for U C Uk where VI = {7 2p: v € ¥} and qu =
{- z0: v € Jy}. The application of [I0, Proposition 4.2] to W* and V¥ im-
plies that there exists a number D € [0, 2], a I-invariant D-conformal density
M = (u,) for H® and a family of Borel measures {vy}y ey such that (a)

Hzy = Zwe\pk vy, (b) iz, (S) =1 and

© [ aang=1- 3 [ an,

$eS(y)

for every group-theoretical relation (v, s(7), S(7)) of the decomposition I'pr.
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Since T is finitely generated, it is tame [1} [7]. Then [10, Propositions 6.9]
and [I0, Proposition 3.9] imply that every I'-invariant D-conformal density
M is a constant multiple of the area density A or D = 2. From (b), we get
M = A. Finally (i) follows from (c). O

The number of displacement functions for the decomposition I'px is de-
termined by the number of group-theoretical relations counted in Lemma 2.1
We aim to apply Theorem[2.T]and Lemma [I.1]to each group-theoretical rela-
tion (v, s(7y), S(v)) for the symmetric decomposition I'px to determine these
displacement functions for each k > 2.

Let I; = {1,2,...,3* 1}, L={3*1+1,...,2-3"1}, I3 ={2-3F1 &
1,...,3-3* and Iy = {3-3F141,...,4-3*1}. For d =4-3""1 let us
define the set

d
AL = {(azl,xg,...,ard) E]Ri : sz = 1}.
i=1

Points of A?~! will be written in bold fonts, eg x = (1, 2, ..., x4). We shall
use the functions o: (0,1) — (0,00) and ¥;: A4~! — (0,1) with formulas
1—2

(8) o(z) = . and Y;(x) = le

iel;

for j =1,2,3,4, respectively, to express the displacement functions com-
pactly. In particular we prove the following:

Proposition 2.1. Let I' = ({,n) be a free, geometrically infinite Kleinian
group without parabolics and I'pr be a symmetric decomposition of I' for
k> 2. Let ai,aq,...,a; be the integers given by Lemma |2.1. Then there
exists a set of functions

k E k1 k2 k2 k3 k3 kk kk
(9) g = U{fzvgz )gi717"'791‘@2591"17"'791‘7@37"'791'717"‘7gz‘7ak}
ielk

such that for any zo € H® and for each v € T'y, the expression e2distzo, 720)
is bounded below by f(x) for & € A% for at least one of f € GF, where

o(31(x)o(x;) if i mod 4 =0,

k() — o(34(x))o(x;) if i mod 4 =1,

(10 fi(@) o(3s(x))o(x;) if i mod 4 = 2,
o(Xa(x))o(x;) if i mod 4 = 3.



Symmetric decompositions of free Kleinian groups 1389

Proof. Let {vy}yecur be the family of Borel measures on Sy given by Theo-
remfor [ = (¢,7). Then we claim that 0 < v(Se) < 1 for every ¢ € Uk
for every k > 2. To prove the claim it is enough to show that vy (Sx) # 0
for all ¥g € Uk,

Assume that vy, (Sx) = 0 for a given 49 € U*. Note that (10,1 ", S(1ho))
is a group-theoretical property for I'pr when S()g) is the set of words in W¥
which doesn’t start with the first letter of 1y. Since we have v, L= s(4y), we
get > pes(pe) Y = 1 by Theorem (¢44). Then we see that vy, (S« ) # 0 for
some 17 € S(1g). Let 19 € UF — S(4)g). If S(¢2) denotes the set of all words
in W) which doesn’t start with the first letter of 19, then (19, w;l, S (1))
is a group-theoretical relation for I'ps. By the equalities Zwellﬂc vy =1
and 3~ e g, Ve =1 we derive that vy, (Se) = 0. By Theorem (#i7),
we obtain that 3 g, vy = 1. Using the facts that 3> gi vy =1 and
S(vo) NS(1p2) = 0, we find that vy, (Seo) = 0, a contradiction.

Theorem (4ii) and (i) show that v,)(Sx) and fsw A2 dpv,,
satisfy the hypothesis of Lemma for each group-theoretical relation
(7,5(7),8(7)) of T'pr. Hence by letting v = v(,), a = vy()(Sx) and b =
me /\3720dws(7) in Lemma we obtain the lower bounds

d ( / d’/sm))
o2dist(20, 7 20) > Soo

N 2
g </Soc )\'Y»Zod'U’Vs{’Y)>

= | D myw | o (musiry)
PeS(7)

(11)

for each relation (v, s(7),S(v)) of I'pr, where my, ) = fSw dvy, for the bi-
jection p: Uk - IF ={i € Z:1<i<4-3*1}in (2). We replace each con-
stant m,,(,) appearing in with the variable z . Let my, = (my,ma,...,
md) e A1,

The constants obtained on the right hand-side of the inequalities in
the expression can be considered as the values of the functions in G*
at the point my. The first group of functions {f¥};cr+ are determined by
the relations (v, s(7),S(7)) so that length(ys(y)) = 0. The second group
{gf’l}ielk is determined by the relations with length(ys(y)) = 1. Finally,
the third group of functions

k2 k2 k3 k3 ko k K,k
{gm yee agi,ag} U {9@1 oo 797;@3} u...uU {97;71 yee agi@k}
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are determined by the relations with the condition 2 < length(ys(vy)) < k.
Hence we obtain Rj, many displacement functions so that e2dist(zo, v20) ig
bounded below by f(my) for at least one of f € G¥. The formulas of the
functions { fik }iere are derived from the fact that they are obtained by the
group-theoretical relations (v, s(v), S(7)) for s(y) =y~ 1. O

As an illustration, we list some of the displacement functions for the sym-
metric decomposition I'p2. These displacement functions are produced by
using Theorem for k = 2, Lemma [I.T] and the group-theoretical relations
listed in Table [1] given above:

1—210—211 —212 1—11
f%(X): : )
T10 + 211 + 212 T1
l—x4y—x5—2¢ 1—=x
2 4 5 6 7
X) = . ,
f7(x) T4+ x5 + T Ty
1—x7—m8—x9 1—%‘2
f22(X): : )
X7+ x8 + X9 x9
l—x1—29—23 1—2x
2 1 2 3 8
X) = . ,
fg() Tl + T2 + 23 s
1—.7}4—1‘5—.%6 1—1‘3
fSQ(X): ' )
T4+ x5 + X6 T3
l—mzo—211 —212 1—29
fg(X): : 9
(12) T10 + 211 + Z12 Z9
fQ(X):l—ml—xg—xg'l—m
4 1+ x2 + 23 T4
l—x7—xg—2x29 1—2x
2 7 8 9 10
X) = . ,
fm() x7 + x8 + T9 T10
1—210—211 —212 1—25
f52(X): : )
10 + 11 + T12 T5
l—x4—a25—2¢ 1—2x
2 4 5 6 11
X) = . ,
fll() x4 + x5 + T T
1—$7—1‘8—$9 1—1‘6
fGQ(X): : ’
T7 + x8 + X9 Tg
l—z1—290—23 1—=x
2 1 2 3 12
fia(x) = : .

1+ x2 + X3 T12

Let m = (vg2(Seo), Ven-1(Soo), - - -, Ve-2(Sx)) € AL, For instance, by Lemma
we have the inequalities

dist(z0, £ - z0) > %110g fi(m), dist(z0, &n~' - 20) > 3 log f3(m),
dist(z0, &n - 20) > 51og fg(m), dist(zg, 711 2z) > %log ff(m)
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obtained by the group-theoretical relations (1), (2), (3) and (4) in Table
Some other displacement functions for the symmetric decomposition I'p:
have the formulas

13
( ;%,1()():1—964—305—966—1?7—5U8—$9—3310—9611—$12.1—331’
T4+ x5+ 26 +T7 + 28 + X9+ T10 + T11 + T12 T
g%,l(x):1_«T1_«TQ_$3_$7_«T8_«T9_$10_$11_$12.1_‘732’
1+ a2 +2x3+ 27+ 28 + 29 + T10 + T11 + 12 9
gg,l(x):1—$1—$2—x3—1‘4—$5—$6—x10—9611—LU12.1—$3’
1+ 2o+ 23+ Tg+ x5 + T+ T10 + T11 + T12 T3
2.1 l—x1 —x9—X3—x4 —T5 —Tg—T7 —Tg—Tg 1— T4
94" (x) = r1+x2+ a3+ 24+ 25+ 26+ 27+ T8+ X9 . ry
gg,l(x):1_$4_$5_l‘6_1’7_$8_$9_1‘10_$11_$12‘1—335’
T4+ x5+ 26 +T7 + 28 + X9+ T10 + T11 + T12 T5
gg,1<x):1—331—332—963—$7—338—339—$10—CE11—5612_1—376’
1+ a2 +2x3+ 27+ 28 + X9 + T10 + T11 + X192 Tg

obtained by the group-theoretical relations (1), (2), (3), (4), (5) and (6) in
Table 2], respectively. Then these functions imply the inequalities

dist(z0, €71 20)
diSt(Zo, f_l . Zo)
dist(zo, £ - 20)

Lloggpt(m), dist(zo, n-20) > $loggy (m),
%10gg§’1(m), dist(zo, 7+ 20) > %loggg’i(m),
1log gy (m), dist(z0, - 20) > Lloggy " (m).

AVARAVARAY]

By the group-theoretical relations (2), (5), (13) and (16) in Table |3 we also
obtain the following displacement functions for the symmetric decomposition

Ip2 of I' = (&, n):

12
1—=2x
2,2 1
gin(x) = 1/ > w1 )

i=1,i#5

12
1—2
2,2 5
=1/ 3 mo) 2

(14)

12
1—=z
2,2 2
’ pu— 1 s — 1 .
91,2(X) / E Ty 2y

12
1—=z
2,2 6
’ =11 E i — 1] - .
91,6 (x) / ' T 7
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The listed functions in provide the lower bounds for the hyperbolic
displacements

dist(zg, n~tet-
dist(zg, n~tet-

2.2
5 log g77s (m),

Tloggis(m), dist(zo, &n - 20)
1 2,2
7log g1’ (m).

Tloggis(m), dist(zo, &n - 20)

)
)

There are in total 48 such inequalities for the displacements under the
isometries v € U2 U ¥? determined by the symmetric decomposition I'pz
(see Lemma . Notice that the displacement functions f7, f3, g%l, gg’l,
21 21 2T —21 22 22 272 2,2 . Lo

95591+ 955 96 5 911> 912> 91’5 and g1’g, which were studied in [23], also
give lower bounds for the hyperbolic displacements under the set of isome-
tries I'y = {&,n,én} C U2 U ¥? in the symmetric decomposition I'pe.

As another example, by the group-theoretical relations in Table [, The-
orem [2.1] for k = 3 and Lemma [[.1] we obtain the formulas of some of the

displacement functions in { ff}z-e 73 for the symmetric decomposition I'ps as

36 1— o
ff’(x)z(l/Zml—l), CU'L’
1=28 i
27 1— o
f(x): (1/2@—1) -fj,
=19 i

18 1— 2
3 (x) = (1/le_1>. “n,
=10 m

zp) 2 >
Z()Z >

fori € {1,5,9,...,33}, j € {2,6,10,...,34}, m € {3,7,11,...,35} and n €
{4,8,12,...,36} so that dist(zo, 7-z0) > 3log f?(m) for some i € I® for
every v € U3, where m = (vgs(Soo), Vezy-1(So0)s - - - s Ve-3(Seo)) € A%, There
are 252 such displacement functions for the displacements under the isome-
tries v € U3 U U3 determined by the symmetric decomposition I'ps (see
Lemma .

To calculate a lower bound for the maximum of the hyperbolic displace-
ments under the isometries in W* U ¥* we shall compute the greatest lower
bound for the maximum of all of the functions in G¥ over the simplex A4
In particular, if G¥ is the continuous function defined as

Gk . Al 5 R

(16) < —  max{f(x): f € Gk},
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we aim to calculate infycpa—1 G¥(x). The details of this computation are
given in Section

3. Infima of the maximum of the functions in G¥ on A%-1

Calculations given in this section are for a fixed integer k > 2. Therefore,
we shall drop the superscript k, the marker of the symmetric decomposition
Ipr of T'= (£, m), from the displacement functions { fik }iers whose formulas
are listed in Proposition [2.1

If F* = {fi}icr+, we will show that infycpa1 GF(x) = infycpa1 F¥(x)
for every k > 2 (see Theorem and [3.5)), where F* is the continuous func-
tion defined as

Ft oo AT R

(17) < = max (f1(x), fa(x), ..., fa(x)) .

Therefore, it is enough to find infycpa—1 F¥(x). We first prove the following
lemma:

Lemma 3.1. If F* is the function defined in , then a, =inf e pa1 FF(x)
is attained in AT and contained in the interval [1,12 - 3F=1 — 3] for k > 2.

Proof. This proof uses analogous arguments given in [23, Lemma 4.2]. To
save space we provide a proof sketch. By the formulas of f; in Proposi-
tion given any sequence {x,} C A% which limits on OAY~! we see
that f;(x,) approaches to infinity for some f; € F*. This observation im-
plies that infxEAd—1 Fk (X) = minxeAd—l Fk (X)

For some i € I* we have f;(x) > 1 for every x € A~! which shows that
a, > 1. Consider the point y* = (1/d,1/d,...,1/d) € A%!, where d =4 -
3F=1. Then for every k > 2 we get ¥1(y) = Sa(y) = U3(y) = Zu(y) = 1/4.
Again by the formulas of f; given in Proposition we have f;(y*) =3-(4-
3k=1 — 1) for every i € I*. As a result we obtain o, € [1,12-3*1 —3]. O

We shall use the notation x* to denote a point at which the infimum of
F* is attained on A9~!. To calculate a, = minygeae1 F¥(x), we exploit the
convexity properties of the displacement functions in F*.
For j € {1,2,3,4} and i € I*, introduce the functions f: A — (0,1),
g: A — (0,1) and Z;-: A%1 — R defined by
l—z 1—y

l—z—y 1—y ;
].8 P} = t Ty 9 - T El’ =
(18) f(x,y) T Y g(x,y) Tty y ](X) le],zl#ml
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where A = {(x,y) € R% 2 +y <1, 0 < 2,0 < y}. Remember that we have
the sets

nL={1,....3"1, L={3141,.. . 231
L={2-3"141,...,3.3"Y}, ,={3-3"1+1,...,4.-3+1}

Given a displacement function f;(x) = o(3;(x))o(z;) in F* for j € {1,2,3,4}
and i € I* in Proposition it can be expressed as

i f(E(x),x;) ifi¢ I,
(19) fi(x) {g(zg‘.(x),xi) ifiel;.

So the convexity of f; € F* follows from the convexities of f and g. We
shall use the statement below which gives a sufficient condition to check the
convexities of f and g¢:

Theorem 3.1. Let f be a twice continuously differentiable real-valued func-
tion on an open convex set C' in R™. Then f is a strictly convezr function
if its Hessian matriz H¢(z) = (02 f/0x;0x;(®)) fori,j =1,...,n is positive
definite for every x € C.

As this theorem is one of the standard facts from convex analysis, var-
ious proofs are readily available in the literature. Therefore no proof will
be included here. Interested readers may refer to [22, Theorem 4.5] for an
analogous statement and its proof.

In particular Theorem [3.1]implies that a twice continuously differentiable
real-valued function f(x,y) is strictly convex on an open convex set C' if
frz(x) >0, fyy(x) >0 and det Hy(x) > 0 for every x € C. Then we have
the following lemmas:

Lemma 3.2. Let C, = {(z,y) € At . + 2y — 2y — y* < 3/4}. Then Cy is
an open convex set and, g(x,y) is a strictly convex function on Cj.

Proof. Consider the equality = + 2y — xy — y*> = 3/4. For z = w we
have 2" = m < 0 for every y € (0,3/4), which implies the first asser-

tion of the lemma. Note that g is twice continuously differentiable on Cy.
Consider the Hessian matrix Hy(x) of ¢:

2(1 —y) T+ 3y — 2y°
Joz(X)  Guy(x) | _ | (z+y)3y (z +v)3y2
Gye (%) gyy(%) x+3y —2y°  22%(a® + 3ay + 3y — ¢

(z+y)3y? z2y3(z 4 y)3
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for x = (x,y) € A. It is clear that g,,(x) > 0 for every x € C;. We also have
Gyy(x) > 0 for every x € Cy because

m2y3(33 + y)3gyy(x) = 2x2(m2 + 3zy + y2(3 —1y)) > 0.

The determinant (3 + 4z(—1 +y) — 8y + 4vy*) /(y*(z + y)*) of Hy(x) is pos-
itive for every (z,y) € Cy. Hence, g(x,y) is strictly convex on Cy by Theo-
rem [3.11 O

Lemma 3.3. Let Cy = {(z,y) € A: Tz + (18 — 8v2)y < 3+ v/2}. Then Cy
is an open convex set and f(x,y) is a strictly convez function on Cy.

Proof. It is clear to see that Cy is an open convex set and f is twice contin-
uously differentiable on Cy. Now consider the Hessian matrix H¢(x) of f:

2(1 —y) 1
Jaa (%) fay(x) — 3y z2y?
fyw(x) fyy(x) L M
22y? e

at x = (z,y) € A. Note that fz;(x) >0 and fy,(x) > 0 for every x € Cy.
The determinant (3 +4z(—1+y) — 4y)/(x'y*) of Hs(x) is positive for ev-
ery (z,y) € Aif x +xy +y < 3/4 . The line 7z + (18 — 8V2)y =3 + V2 is
tangent to the curve x + xy +y = 3/4 at the point P((2 —v/2)/2,v/2/4).

Since for y = 3{::17 we have y” = % > 0 for every x € (0,3/4), the func-
tion f(z,y) is strictly convex on Cy by Theorem O

Lemma 3.4. The functions f(x,y) and g(x,y) are strictly convex functions
on the open convex set Cy N Cy.

Proof. By the proof of Lemma [3.3] we know that f has a positive definite
Hessian matrix over the set C = {(z,y) € A: x + zy +y < 3/4}. Note that
Cy C C. The curves 7z + (18 = 8v2)y =3+ V2, 2+ 2y + y = 3/4 and = +
2y — xy — y? = 3/4 intersect in A only at the point P defined in the lemma
above. Since we have

3+vV2-(18—8V2)y 3/4—y 3/4+y*—2y
< <
7 1+y 1—y

for y € (v/2/4,3/4) and

3/4+y2—2y< 3+f—(18—8ﬂ)y<3/4—y
1—y 7 1+y
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for y € (0,v/2/4), the conclusion of the lemma follows. O

Let fi(x) = o(3;(x))o(z;) be a displacement function in F* described
in Proposition If i € I;, then define the set

(20) Oy, = {x=(z1,...,2q) € A" Bh(x)+22; — T (x)m; — (2;)* <3/4}.
If i ¢ I;, by abusing the notation, define the set
(21) Cf = {x = (x1,...,24) € AT 78;(x) + (18 — 8V2)z; < 3+ V2}.

IfCy foriel k¥ are described as above, then N&_;C t, is nonempty, where d =
4 - 3F=1, Because, if we consider the point y* = (1/d,1/d,...,1/d) € A%,
then ¥;(y*) = 1/4 and ¥ (y*) = 1/4 —1/(4-3571). For k = 2 and k > 3, we
clearly have

7 18-—8 7
5 () + (18— 8va)y - - SR T

18 — 8v/2
s = Y7 23+V2.

12

Thus y* is in Cy, for every f;(x) = o(Z;(x))o(z;) € F* such that i € I;.
Similarly for £k = 2 and k£ > 3 we have the inequalities

; ; 1 3 5 3
* * 2 _
SEY") + 2y — Xy )i — (vi) —Z‘FW < 6 < e
which shows that y* is in C}, for every fi(x) = o(Z;(x))o(x;) € F* such
that i ¢ I e
We shall prove further statements about the elements of the sets C'y,. In
each statement we consider the following cases:

(1) k=2, (2) k>2andkiseven, (3)k>2andkisodd.

We will carry out the calculations for k = 2, if necessary for k = 3 or 4, and
indicate how to generalise these calculations for the cases in (2) and (3) for
easy reading. For k > 2 let us define the functions

(22) m(k) = [3"71/4], n(k)=[3""1/4], and a(k)=12-3""1-3.

Assume that k is even and k& > 2. We note that there are m = m(k) many
elements in I; which are equivalent to 1 in modulo 4. The same is true
for the number of elements equivalent to 2 or 3. But there are n = n(k)
many elements in I; which are equivalent to 0 in modulo 4. In other words
we obtain the list (m, m,m,n) for the number of elements in I; which are
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equivalent to 1, 2, 3 or 0, respectively. Together with I, Is and I, we have
the lists

1 2 3 0

[ilm m m n

(23) I m m n m
Is'm n m m

In | n m m m

Note that the lists for k=2 are (1,1,1,0), (1,1,0,1), (1,0,1,1) and (0,1, 1, 1).
This table will be used in Lemmas and Theorem

Assume that k& > 2 is odd. In this case there are m many elements in I;
which are equivalent to 1 in modulo 4. There are n many elements each in
I which are equivalent to 2, 3 or 0 in modulo 4. In other words we obtain
the list (m,n,n,n) for the number of elements in I; which are equivalent to
1, 2, 3 or 0, respectively. Together with I, I3 and I we have the lists

1 2 3 0

I[ilm n n n

(24) Ib]n m n n
Is|n n m n

Is|]n n n m

This table will be used in Lemmas and Theorem
In particular we shall deploy the tables in and to add the terms
in the summations indexed over some or all of the elements of Iy, Iy, I3
and I in the lemmas below. Since we only use modulo 4, we shall indicate
a mod 4 = b with a = b in the rest of this text. Then we have the followings:

Lemma 3.5. Let F* = {f;} fori € I* be the set of displacement functions
listed in Proposition and F* be as in . Let x* be a point in A% so
that a, = F*(x*) for d =431, Let f; € F* be of the form f; = f(3), ;)
for j€{1,2,3,4} and i € I* = [ U I, U I3 U Iy where ¥j(x) and f are de-
fined in (@ and (@, respectively. If k> 2 is even, j =1 and i € Iy such
that i = 0, then x* € Cy,, defined in .

Proof. Assume on the contrary that x* ¢ C,. By the definition of Cy, we
obtain that

(25) 78(x") + (18 — 8v2)xk > 34+ V2.
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Let ¥f = ¥ (x*), 3 = 3a(x*), 8% = U3(x*) and X} = 34 (x*) defined in (§),
where X7 + 35 4+ X3 + 3} = 1 since x* € AL Also let N = 7—11 (13 + 7\/5)
~ 0.3225. We consider the cases below:

(26) (A) X1 >N and z; >N, (B) ¥]>N>z;, (C)a;>N>3].

We shall assume without the loss of generality that k£ = 2. Assume that (A)
holds. Then since 335 > x}, we have X7 + X5 > 2N. This gives the inequality

1

(27) DT <M=1-2N=

(45 - 14\/5) ~ 0.3549,

which implies the following cases:

(i) X3 < M/2, ¥} < M/2,
(28) (i1) X5 < M/2 < %},
(1i1) ) < M /2 < ¥3.

Assume that (i) holds. Since % < M /2 and ¥4 < M/2, by the inequalities
o(M/2)o(zf) < o(E5)o(z}) < a(k)],_y = 33 for r = 3,4 given in Lemma/3.]]
we find that

(29)

2—M
x> X (k)

ey 2+ (a(k)—1)M

o(M/2)

_ ~ 0.1231
o (k) +o(M/2)

k=2

for every I € I* so that [ = 1, 2. Using the table in for I ¢ I; we calculate
that

(30) Sidal+ > m>2N+ > X(k)
=12 =12

k=2

= 2N + (dm(k) + 2n(k)) X (k)

k=2
= 2N +4X(2) ~ 1.1376 > 1,

a contradiction. The inequalities in hold for every even k > 2. Hence
case (i) doesn’t hold.

Assume that (ii) holds in (28). By we already know that z; >
X (k)|j,—s for every I € I* such that [ = 2. For [ € I5 by the table in we
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derive that

(31) SP D3> Lk)| =2N+ Y XK +
k=2 =2 k=2
M
= 2N +m(k)X(k)| +—
k=2 2

M
= 2N + X(2) + 5 ~ 0.9457,

which shows that X35 < R(k)|,_o =1 — L(k)|,_, ~ 0.0543. This implies that
2t < Q(K)|p—y = (R(K)/3" 1) |,_y < X(K)|,_, for some r € I3 such that r #
2. We shall examine the cases r € I3 so that » = 1, or 3, or 0 in this order.

Assume that r = 1. Using 0(3})0(Q(k)) |,y < 0(E1)0(z)) < ak)|p_y =
33 we calculate that

¥y > S(k) . = al8) + o Q) | s ~ 0.6217,

which leads to the contradiction

(32) 1+E55+3X >N+ N+S(k)|,_o =2N+5(2) = 1.2667 > 1.

So we conclude that z} > Q(k)|x=2 for every r € I3 = {7,8,9} such that
=1
Assume that r = 3. Since 0 (23)0(Q(k))|_y < 0(35)0(x}) < a(k)|;_y =
33 we obtain that X3 > S(k )\k g = S( ). Then for [ € I3 using the table in
we see that

(33) +E2+sz+2$z+24
=2
>N+SE)|  +) Qk)| +> Xk +%
k=2 = k=2 =2
=N+Sk)| +mEQMK)| +nk)X(k)| + %
k=2 k=2 h=2

M
=N +5(2)+Q(2) + 5 ~ 11398 > 1,

a contradiction. So we must have x} > Q(k)|,_, for every r € I3 such that
r=3.

Assume that r = 0. Using o(X7)0(Q(k)) |,y < 0(E7)0(2)) < ak)|py =
33 we get X7 > S(k)|,_y = S(2). From the table in for le I,UI3 =



1400 Ilker S. Yiice

{4,5,6,7,8,9} and t € I3 we calculate

(34) R S A A v
=2 t=1,3
SS))  ANEY XM+ Y Qm)| +
k=2 =2 k=2 4=13 k=2
=Sk)|  +N+mk) +nk)XE)| +2mE)QKk) + %
k=2 k=2 k=2

— S(2)+ N+ X(2) +20(2) + % ~ 12810 > 1,

a contradiction. The inequalities in , and hold for every even
k > 2. Therefore case (ii) doesn’t hold.

In case (7i7) in we see that the inequalities for X3 and X} are
switched. So the discussion that shows that case (ii) doesn’t hold works
for case (iii) as well by switching the roles of ¥3 and I3 with ¥} and Iy,
respectively. We obtain the same expressions on the right-hand side of the
inequalities in , , and . In particular we repeat the compu-
tations given in the order [ =1, 3,0 for [ € I3 above in the order | =2, 3,0
for I € I4. So case (i7i) doesn’t hold. As a result we conclude that (A) in
is not the case.

We consider the next case £f > N > 27 (B) in (26). Then we derive the
inequality

(35) Sy siasi<M=1-N=2""Y2 106774,

58 — 7v/2
71

which implies the following cases:

()  T5<M/3, $5<M/3, T < M/3,

i) S5 < M/3, $E<M/3, %> M/3,
2 3 4

iil) S5 < M/3, $F>M/3, i< M/3,
2 3 4

36 w) S5 < M/3, $F>M/3, %> M/3,
2 3 4

(v) T5>M/3, $5<M/3, T < M/3,

(vi) 5> M/3, B5<M/3, > M/3,

(vi)) T3 >M/3, $3>M/3, Tj<M/3.

We examine the cases (7)—(vii). Assume that (i) holds. Since we have X7 <
M/3 for r = 2,3, 4, using the inequality

o(M/3)o(z;) < o(¥7)o(x7) < a(k)p—y = 33
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given by Lemma [3.1] we find that

_ o(M3)
weo 0(k)+o(M/3)

_ 3—M
peo 3+ (a(k) —1)M

(37) x; > X (k) ~ 0.0941

k=2

for every | € I*¥ so that [ = 3,2, 1. Since Y45 < M/3 in this case, for [ € Iy =
{4,5,6} by the table in we obtain that

M xw

k=2 1=1,2,3

(38)  af <) aj <Y(k)
=0 k=2

- % — (2m(k) +n(k))X (k)

M
= 5 —2X(2) ~ 0.0376.

k=2

By the inequality in we derive that

V2+3

(39) %> L(k) + ~ 0.5587.

k=2

k=2 - (8\/57_18) Y(k)

Then using the table in forle LUulsUly={4,56,7,8,9,10,11,12}
we obtain a contradiction which is

(40) T+ D af = Lk)

=1,2,3

+ (6m(k) + 3n(k)) X (k)
k=2

= L(2) + 6X(2) ~ 1.1593 > 1.

k=2

The inequalities in hold for every even k > 2. Hence we conclude that
case (i) doesn’t hold.

Assume that (i7) in holds. Since we have ¥5 < M/3 and 33 < M/3,
we find 7 > X(k)|,_, for every [ € I* such that | = 2,3 by . By the
inequality X5 < M/3, for | € Iy = {4,5,6} we obtain from the table in
that

(41) 27 < Y a7 <Y(k)
1=0,1
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By using the inequality in we obtain

V243

(42) > L(k) + ~ 0.5048.

k=2

We claim that X} < 4/13. Because otherwise for [ € I, U I3 = {4,5,6,7,8,9}
using the table in we derive that

(43) i+ Y @+ T L)+ Y X(R)| + %
=2,3 k=2 =23 k=2
= L)+ 20m(k) + ()X ()
k=2 k=2

4
=L(2)+2X(2)+ 13 ~ 1.0007 > 1,
a contradiction. Using the inequalities
o(a7)o(4/13) < o(xy)o(X)) < a(k)|p—y = 33,

we find that 27 > (9/(9 + 4a(k)))|,_, for I € I* such that [ = 1. Then using
the table in for [ € I, U I3 we get

(44) B+ D ai+¥
=1,2,3
; M
LR+ s aam | T2 KR
f=2 ; 9+ 4a(k) |,—o 1522;3 S
9(2m(k)) 3
= LK)+ o R 2(m(k) k)X (R)|
v 9+ 4a(k) [y =
18 M
_1o e 8 ioxoy e M i 1
TR e

a contradiction. The inequalities in and hold for every even k > 2.
Therefore, case (ii) doesn’t hold.

We can repeat the argument given above for case (i) for case (iii) in
as well by switching the roles of ¥3 and ¥j. Note that the number of
elements in I U I3 which are equivalent to 2 or 3 modulo 4 is the same as
the number of elements in Iy U I4 which are equivalent to 1 or 3 modulo 4

by table in . We get the same inequalities in , and . Hence

case (iii) doesn’t hold.
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Assume that case (iv) holds in (36). Since X5 < M/3, we have z} >
X (k)|j_y for every | = 3 by . We shall examine the following cases:

(45) (@) @} < (M/35)]jmy, (0)  (M/3F)],y <@} < M3,

Assume that (a) holds. Then by the inequality in we derive the expres-
sion below

(46) s > L(k) ~ 0.5587.

k=2

C(3+V2  24V2-9)M
- )

By the table in , for I € Iy = {4,5,6} we obtain a contradiction which

is given as

2M
(47) PSS AT > Lk)| 4> X(R)| + -
k=2 =3 k=2 3
2M
=Lk)| +nk)XEk)| +Z—
k=2 k=2 3
2M

The inequalities in holds for every even k > 2. So (a) is not the case.
Assume that (b) holds. Since we have z} < M/3, by the inequality in

we obtain

11

4 YESL = —
(48) 1= 1491

(73\f - 47) ~ 0.4149

We claim that X% < 10/33. Because otherwise we calculate for [ € I, =
{4,5,6} that

(49) 21+xi+Zazl+Z3+Z4>L+3—kkz2+ZX(k)k 2+£+?
=3 1=3

M 10 M

=L+ — KX (k — 4
Hog WX )| gt
4M 10

=L+ —+—~1.0190 > 1
+ 9 +33 ’

a contradiction. A similar contradiction arises if we assume ¥} < 10/33
in the inequality above instead of ¥j. By o(z})o(10/33) < o(z})o (X)) <
a(k)|,_y = 33 for r = 3,4 we find that ] > (23/(23 + 10a(k)))|,_, for I =
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1,2. Then we compute by the table in for 1 € Iy = {4,5,6} that

(50) Sttai 4 Y o+ 5+
1=1,2,3
M 23 oM
>L+ — + X(k) + R — 4+ ==
35|, _, ; s z;,:z 23+ 10a(k) |,y = 3
M 23(2m(k)) oM
—L+ | +nk)X(k) =slemif)) 2
35|, ey 23+ 100(k)|_y 3
46 TM
— L+ — 4+ 107211
tast g > b

a contradiction. The inequalities in and hold for every even k > 2.
Hence (b) is not the case either. Hence case (iv) doesn’t hold.

Assume that case (v) holds in ([36). Since ¥% < M/3 and X} < M/3, by
using above we obtain z; > X (k)|,_, for { = 1,2. We shall examine the
cases (a) and (b) in and, additionally in (¢), where

(51) () M/3<az<N.

If ¥ < (M/3%)|,_, (a), by we obtain X% > L(k)|,_,, where L(k)
is defined in (46)). We claim that X% < 13/50. Because otherwise using the
table in forl € I5U I, ={7,8,9,10,11,12} we get

13
52 T2+ ¥ > Lk + —+ X(k
(52) T+ 121:2%1_ ()k:2 0 121:2 ()k:2
13
= L(k) + — +2(m(k) +n(k)) X (k)
k=2 50 k=2
1
— L2 + % }2X(2) ~ 1.0069 > 1,

a contradiction. By the inequalities
o(x})o(13/50) < o(55)a(z;) < a(k)|—y =33

for I =3, we find z7 > (37/(37 + 13c(k)))|,,_y- For 1 € I3 U I this gives a
contradiction that is
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(53) DL N
1=1,2,3
M 37
>LE)| +5 4y | Y X(k)
h—y 3 ; 37 + 13a(k) |,y 1521,:2 fo
M 37(2(m(k)))
= L(k) T ST L o(mi(k) 4 n(k) X (k)
2 3 37 + 13a(k) =2 2
M 37
= L(2 — 4+ — +2X ~ 1.131 1.
()+3+233+ (2) ~ 1.1315 >

This rules out the assumption 2} < (M/3%)|,_, in (a). The inequalities in
and hold for every even k > 2.

Assume that (M/3%)],_, < x; < M/3 in (b). Since z} < M/3, again by
we calculate that Y7 > 1491 (73\f 47) = L. We claim that ¥} < 2/5.
Otherwise by the table in (23)) for I € I3 U Iy = {7,8,9,10, 11, 12} we would
obtain a contradiction

2
54 YT+ X+ xf >L+ -+ X (k
(54) 1+ % ZEZLQZ z ZEZLZ (k)

k=2

— L+ % + 2(m(k) + (k)X (k)

k=2
2
= L+ +2X(2) ~ 1.0031 > 1.

Then the inequalities o(x})o(2/5) < o(33)o(x]) < a(k)|,_, =33 for [ =3
imply that 2] > (3/(3 4+ 2a(k)))|;_, for I = 3. We repeat the argument above
to improve on these lower bounds as follows: We claim that X% < 16/51.
Otherwise from the table in , for [ € I3 U I we see that

(55) +22+le+z$l

1=1,2
>L+—+ZX +
1=1,2 k=2 133+2a k=2
16 3(2m(k:))
=L+ —+2(m(k ENX(k e N
16 2

=L+ —+— +2X(2) ~ L. 1
5y g T2X(2) 2 10038 > 1,



1406 Ilker S. Yiice

a contradiction. By o(z})0(16/51) < 0(23)0(x]) < a(k)|,_y = 33, we find
that 7 > (35/(35 + 16a(k)))|;,_o for I = 3. We claim that ¥} < 15/32. Be-
cause otherwise by the table in for [ € I3 U Iy we would obtain

(56) TS Y
1=1,2,3
15 M 35
> -+ + X (k) +) —
32 3 Z;:Q - Z; 35 + 16a(k) |,
15 35(2m(k)

- % +2(m(k) + n(k)) X (k)

o 35+ 16a(k) |,y

15 M 70
=+ +2X(2)+ —- ~ 1.0071 > 1
35 T3 T2X(2) + g5 & 10071 > 1,

a contradiction. By the inequalities
o(a7)o(15/32) < o(E)o(a]) < a(k)],—p = 33

for | = 0 we find that xf > (17/17 + 15a(k)))|,_o- As a result for [ € I3U Iy
we obtain

* * * M
(57) LT +S5+ Y @ > L+ + > X(k)
1=1,2,3,0 1=1,2

35
* ZE; 35 + 16a (k)

k=2

17
+ ZE% 17 + 15a(k)

k=2 k=2

=L+ % + 2(m(k) + n(k)X (k)
35(2m(k))
35+ 16a(k)

k=2

17(2m(k))

ey 17+ 15a(k)
0 17

M
=L+ —+4+2X(2)+ —+ —+~1.01 1
+3+ ()+563+256+ 0197 > 1,

k=2

a contradiction, which rules out the assumption (M/3%)|, _, < zf < M/3.
Again all of the inequalities in , , and hold for every even
k> 2.

Assume that M/3 < 2 < N (c). Using the table in (23)), for [ € I =
{4,5,6} we derive that

M
= +om(k)X(k)| =~ 0.4140.

(58)  Tr>af+ Y af > S(k) =3 -

1=1,2
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Since x* € Al and 3% > N by (B), we have

~ 0.2634.
k=2

—1-N— S(k)
k=2

Let Q(k)|,—o = (L(k)/2)|;,_o. We shall examine the cases below:

S 4+ %% < L(k)

<%,
k=2

, (e) 33 <Q(k)
k=2

(59) (d) 2% and 3% < Q(k)

*
< X5,
k=2

(f) X3 < Q(k)

Assume that (d) holds. Using o(x})o(Q(k))|jeq < o(X5)o(x)) <
a(k)|,_y =33 for r = 3,4, for l € [3U Iy = {7,8,9,10,11,12} such that | =
1,2, we obtain

_ o@Q)
e 0(k) + o(Q(R))

As an implication of the inequality above by the table in forl € I3 U Iy,
we get

~ 0.1665.
k=2

ap > T(k)

+ > T(k)

(60) TP+ S5+ > af > N+ S(k)
k=2 =12

1=1,2 k=2
=N+S(k)|  +2(m(k)+n(k)T(k)
k=2

= N+ S(2) + 2T(2) ~ 1.0696 > 1,

k=2

a contradiction. The inequalities in hold for every even k > 2. This rules
out the assumption in (d).

Assume that (e) holds in . Since 335 < Q(k)|,_y, we obtain z} >
T(k)|},—y for I = 2. We claim that ¥} < 12/33. Otherwise by the table in (23),
for [ € I3, we find

(61) R
1=1,2
>Zism| X xm)| TR +ew)
33 [ — k=2 =y k=2 k=2
= S| HmBX(E)| A nWTHR)]  + QM)
19 k=2 k=2 k=2 k=2

=3 +5(2) + X(2) + Q(2) =~ 1.0035 > 1,
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a contradiction. Using o (x})o(12/33) < o(X7)o(z)) < a(k)|,_y = 33 for [ =
0, we calculate that x > (7/(7 4+ 4a(k)))|;,—o- Then for [ € I3 we obtain a
contradiction

(62) TS D a3
1=1,2,0
>N+SE)|  +> X(kK)|  +> T(k)
k=2 =1 k=2 =2 k=2
7
k
" ; 7+ 4da(k) g teE) k=2
=N+8K)| +mE)XE)|  +nk)T(E)
k=2 k=2 k=2
mm(k)
T k
7+ do(k) |}y + Q6 k=2

= N+502)+ X(2)+ Q(2) ~ 1.0127 > 1.

The inequalities in and hold for every even k > 2. This shows that
(e) doesn’t hold.

Assume that (f) holds in . In this case we can use the argument
above that proves that (e) doesn’t hold. By interchanging the roles of 33
and I3 with X} and Iy, respectively, we repeat the computations. We obtain
the same inequalities in and which imply that (f) doesn’t hold. As
a result we rule out the case (c¢). In particular we conclude that case (v) in
does not hold.

Assume that case (vi) holds in (36). Since ¥3 < M/3 in this case, we

know by (37) that 7 > X (k)|,_, for [ = 2. We examine the cases (a), (b),
and (c) in (45) and . If 27 < (M/3%)|,_, (a), we obtain by that

1

¥ > LK)y = VR

(761 n 1229[2) ~ 0.5587,

where L(k) is explicitly given in . Then we derive the following contra-
diction

oM
(63) T4 XL+ > LK) + o 10103 > 1.

k=2

So (a) is not the case. The inequalities in holds for every even k > 2.
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If (M/3%)|,_y <2} < M/3 (b), we get ¥} > 5= (732 —47) = L by

i

([25). We claim that X5 < 9/25. Because otherwise we find

9 M
(64) Ii 554 55> Lt oo+ o~ 10007 > 1,
a contradiction. By the inequality o(x})o(9/25) < o(35)o(x}) < a(k)|;_q =
33 for [ =3, we find that zf > (16/(16 + 9(k)))|,_o- Next we claim that
¥} < 31/100. Otherwise for [ € I3 = {7, 8,9} we would obtain using the table

in that

(65) R
1=2,3
M 16 31
>L+—+ X(k) + - - 4+
3 ; P Z; 16+ 9a(k)|,_, 100
M 16m(k) 31
=L+ — k)X (k _omiE) sl
+ 5 k) X( )k:2 16 + 9a(k) |,_, 100
M 16 31
=L+ —+—+4+—~1.0018>1
t 3 313 100 > 5

a contradiction. By the inequality
o(2})o(31/100) < o(S3)o(a}) < (k)]s = 33

for [ = 1, we see that ;' > (69/(69 + 31a(k)))|;_y- Also we claim that X7 <
11/25. Otherwise by the table in , for [ € I3 we compute that

(66) T+ Y i+ 3
1=1,2,3
11 69
>—4+y
25 ; 69 + 31a(k) |,
16 2M
+ Y X(k) +y — =
; b ; 16+9a(k)|,_, 3
1 69m(k) 16m/(k) oM
= et o k)X (k
25 69+ 3la(k) |,y (B)X( )H 16+ 9a(k)|,_, 3

—11+ 69 +16+2M~10059>1
T 25 11092 313 0 3 T ’

a contradiction. By the inequality

o(51)0(11/25) < o(S)o(af) < alk)|,_y = 33
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this implies that x; > (14/(14 + 11a(k)))|;—y for I = 0. Finally using the
table in for l € Is = {7,8,9} we obtain a contradiction because

(67) YT+HE+ X542

69
> L SR
S ; 69 + 31a(k)

+ )X (k)
k=2 =2

k=2

16 14 2M
* ; 161 9a(k) |,_, ; 14+ 11a(k) |, = 3
69m(k)

—h 69 + 31a(k) |;_o Ttk X () k=2
16m(k) 14m(k) 2M
16 +9a(k) |y 14+ 11la(k) |y 3

69 16 14 2M

= 2 ~1.0180 > 1.

T 1002 T33 T3 3

This shows that (b) doesn’t hold. The inequalities in (64), (65), and
hold for every even k > 2.

Assume that 7 > M /3 (c). Then by the table in forl € I = {4,5,6}
we calculate that

M
= — +m(k)X (k) ~ 0.3199.
k=2 3 k=2

(68) T3> % +Y X(k)
=2

We claim that ¥} < 23/50. Because otherwise for | € I3 we would compute
that

(69) ST+ E+E3+Y)
23 M M
> —+ — +m(k)X (k) +§ X (k) + —
50 3 k=2 = k=2 3
23 M M
= 4+ = k ENX (k —
50T 5 T ) Fn)X®E) 4
23 oM
== 42X(2)+ = ~ 1. 1
50+ (2) 3 0058 > 1,

a contradiction. Then we find that z; > (27/(27 4 23a(k)))|,_, by the in-
equality o(x})0(23/50) < o(X7)o(x]) < 33 for [ = 0. Similarly we claim that
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Y5 < 21/50. Otherwise by the table for 1 € Is = {7,8,9} we obtain
(70) T+HE+ 2+ %)

M
>N+—+ZX 5

27
+ ; 27+ 23a(k)

27m(k)
27 + 23a(k)

k=2 k=2

21
=N+ — k)X (k
+ 2 (k)X (8
21 27 M
=N+ —+—+—~1.0027 > 1,
50 786 3 g
another contradiction. By the inequality o(z})o(21/50) < o(¥3)o(x}) < 33
we derive that = > (29/(29 4 21«(k)))|;—y for I = 3. Then we claim that
¥} < 14/49. Otherwise for [ € Iy U I3 = {4,5,6,7,8,9} so that | # i by the
table in we would find a contradiction

+
LM
k=2 3

+
k=2

(71) Sitar 4 Y ap+
1=2,3,0

>N+%+ZX(I<:)

27
+ 12% 27+ 23a(k) |,_, | 49

20(m(k) + n(k))

N+ M nk) £ (k)X (R)

3 204 20a(k) |y
27(2m(k) —1) 14
27+ 23a(k) |,_, 19
M 50 27 14
SN+ xey e 22 A M 0027 > 1.
t XAt oot t o -

Now using the inequalities o(x})o(14/49) < o(3})o(z}) < a(k)|,_y = 33
for I =1 we see that z7 > (5/(5 + 2c(k)))|;,—o- As a result using the table
in for I € Is U I3 so that | # ¢ we obtain a contradiction

(72) STl + Y a4+ %
1=1,2,3,0
M
>N+ +> X(k)|  +
37 f2 l329+21a 29 + 21a(k) |4y
5 27 M
+ - =+ e — 4+ —
;5+2a(k¢) b2 ; 274+ 23a(k) [,y 3
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M 29(m(k) 4+ n(k))
=N+ = + (m(k) +n(k)) X (k) k:g 20+ 21a(h) .
5(2m(k)) 27(2m(k) — 1) M
542a(k) |y 27+ 23a(k) 3

20 10 o1

M Y,
N M ey 202 M k36> 1.
P Xt Rt 3 >

This eliminates the case x} > M/3 (c). The inequalities in (69)), (70)), (71)
and hold for every even k > 2. Hence we conclude that case (vi) doesn’t
hold.

Assume that case (vii) holds in (36). Note that the inequalities for 333
and X} are switched in this case. Therefore the argument given above which
shows that case (vi) doesn’t hold can be repeated by replacing the roles of
Y3 and I3 with ¥} and I;. We obtain the same inequalities in , ,
, , , , and which imply that case (vii) does’t hold.
As a result we derive that 7 > N > 27 (B) in is not the case either.

Assume that 27 > N > ¥} (C) in (26). Note that ¥ > a2f > N > M/3.
We need to consider the following cases

(i)  Sr<M/3, B5<M/3, X< M/3,
(i) D} <M/3, B5<M/3, 5> M/3,
(19i) X7 < M/3, ¥5>M/3, X;<M/3,
(73) (iv) P < M/3, ©F>M/3, ¥5>M/3,
(v)  DP>M/3, Bi<M/3, X< M/3,
(vi) X7 >M/3, X5<M/3, X;>M/3,
(vii) X7 >M/3, ¥5>M/3, X;<M/3.

If (i) holds, we see that =} > 2982 (599 + 470\[) L by . Since ¥] <
M/3,35 < M/3 and24 < M/3,weget xj > X( ) p—s for 1 =1,2,0 by (37).
Then by the table in (23) for [ € I? = {1,...,12} we find a contradiction
which is

(74) xi+ Y af > L+ (9m(k) + 3n(k) — 1)X (k)
1=1,2,0

k=2
= L +8X(2) ~ 1.1766 > 1.

The inequality in holds for every even k > 2. Therefore case (i) doesn’t
hold.

If (it) holds, we again have z7 > L. We also have z; > X (k)|,_, for
[ =2,0 by (37). Then by the table in forle LU, UI3={1,2,3,4,5,



Symmetric decompositions of free Kleinian groups 1413

6,7,8,9} so that I = 2,0 and | # ¢ we find that

(75) zi+ ) xf + 35> S(k)
1=2,0

k=2

= L+ (4m(k) + 2n(k) — 1) X (k) + % ~ 0.9319.

k=2

For [ € 1 Ul U3 this implies that ) ,_; 3a] <1— S(k)[;_y ~ 0.0681.
Then for some r € I1 U I U I3 so that r = 1,3 we get

1- S(k)

B 1-5(2)
k2 om(k) +n(k) B

(76)  x < R(k) = R(2)

k=2

~ 0.0136.

Ifr=1in , by the inequality
o (1) (R(F))lk=p < o(3)o(27) < a(k)lj—y = 33

we derive

s> T(k) ~ 0.6870.

ko (k) +o(R(K))

Then by the table in for | € I U Iy U I3 such that [ # i we obtain a

contradiction

(77) @i+ > af+Si> L+ ) X(k)| 4+ T(k)
1=2,0 1=2,0 k=2 k=2
=L+ (4m(k) +2n(k) — VX (k)|  +T(k)
k=2 k=2

=L +3X(2)+T(2) ~1.3931 > 1.

So x} > R(k)|,_, for r = 1.
Ifr=3in , then by using

o(55)0 (R()) ey < 0(23)0(x3) < alk) |y = 33
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we calculate that 335 > T'(k)|,_,. As a result using the table in for
sehUlgandl e ; Ul3={1,2,3,7,8,9} we find a contradiction that is

(78) i 4+Si+ ) ai + 3
s=1 1=2,0
>SORM| TR+ S XK+ %
s=1 k=2 k=2 =20 k=2
=2m(k)R(K)| +T((k)| +@2mk)+2n(k)X (k)| + %
k=2 k=2 k=2
2(1-5(2))

= f+T(2)+2X(2)+% ~ 1.1283 > 1.
The inequalities in and hold for every k > 2. Hence we conclude
that (i7) doesn’t hold.

Assume that case (i7i) holds in . We use the same argument given
above that shows that case (i) doesn’t hold by switching the roles of ¥}
and ¥3. We get the same inequalities in , , and, . Hence

case (iii) also doesn’t hold for every even k > 2.
Assume that case (iv) holds in . Since z] > L = W182 (599 + 470v/2)
by (25), £5 > M/3 and X} > M/3, we obtain

2M
xj+2§+2}‘;2L+7:Kz0.8754.

Then we find that ¥ 4+ Y5 (x*) < 1 — K, where X is defined in . For
some r € I; U I — {i} we must have z} < R(k)|,_, = (1 - K)/(2- 31 —
1)|jeq- If r =1, we see that

_ o(R(k)
v (k) + o(R(R))

~ 0.5425
k=2

by the inequality o(X})o(R(k))|,_y < o(X])o(z)) < a(k)],_y = 33. So we
obtain a contradiction because,

M M
(79) x;‘+2§+ijL+?+T(k) :L+?+T(2)z1.1921>1.

k=2

If r =2, we get X3 > T'(k)|,,_, by

o(55)0 (R(D) ey < 0(Z5)0 (@) < alk)|ey = 33.
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This gives the inequality in again, a contradiction. Thus we have z >
R(k)|,_y for r=1,2.
If » = 3, then by the inequality

o(55)0(R(K) s < 0(S3)o(z]) < a(k)|_, = 33

we derive that X3 > T'(k)|,_y. So by the table in forre I ={1,2,3}
we find

2M

* * * * > -

80) > i+ S5+ 35+35> > R(k) - + T(k) - +3
r=1,2 r=1,2 = =

2M
=2m(k)R(k)| +T(k)| + =

k=2 k=2 3

2(1 - K)

=———+T(2) M ~ 1.0440 > 1,
5 3
a contradiction. The inequalities in and hold for every even k > 2.
Hence case (iv) doesn’t hold.
Assume that case (v) holds in (73). Since ¥j < M/3 and X} < M/3,
by we have xf > X (k)|,_, for | =1,2. Using the table in , for
l €I, ={4,56} we derive from (C) that

(81) S5 >+ ap > S(k)
1=1,2 k=2
=N+2m(k)X (k)| =N +2X(2)=~0.5107.
k=2

Since x* € Al and 3% > M/3 | we have

M

T4 Si< LK) =1- 5 - S(h)
k=2 k=2
4
— L(2) = = (58 - 7\@) ~ 0.2634.

Let Q(k)|j_y = L(k)|,_y- We shall examine the cases below in the rest of
the argument:

(d) X3 and X} < Q(k)

)

k=2

<33 () X1 < Q)
k=2

(82)
(e) 33 < Q(k) <33
k=2
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Assume that (d) holds. Using o(z})o(Q(k))|,—y < 0(E3)0(x]) < a(k)|_y =
33 for [ =2 and o(x})o(Q(k))|j—qg < 0(X})o(x]) < ak)|eg =33 for [ =1,

we obtain

Q)
v ok) + o(Q(R)

~ 0.1665
k=2

xj > T(k)

forl e I3U Iy ={7,8,9,10,11,12}. We claim that ¥} < 4/25. Because oth-
erwise, by the table in for [ € I3 U I4, we get a contradiction

(83) DHEE
1=1,2

4

4

= oz + ()
4

= 55 +5(2) +27(2) = 1.0037 > 1.

+ > T(k)
k=2 =12

. +2(m(k) + n(k))T'(k)

k=2

By the inequalities o(z})o(4/25) < o(X}
we calculate that z; > (21/(21 4 4a(k)))
11,12} this implies

Jo(x}) < a(k)|,_y =33 for [ =0,
oy For 1 € IsU I = {7,8,9, 10,

(84) SISy Y a
1=0,1,2
21
_|_ -
2 12(; 21 +4a(k)

21(2m(k))
peo 21 +4a(k)
42

S(2) + — +27(2) ~ 1.3441 > 1
+()+153+ (2) 3441 > 1,

> M + S(k)

k=2 =12

+ S(k) +2(m(k) + n(k))T'(k)

k=2

3
M

3 k=2
M

-3

a contradiction. The inequalities in and hold for every even k > 2.
This rules out the assumption in (d).

Assume that (e) holds in (82). Since X3 < Q(k)|,_,, we obtain 2} >
T(k)|p—y for I =2. We claim that ¥} < 3/11. Otherwise by the table in
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, for [ € I3, we find

(85) R
1=1,2
>3 hsm| +xm) +TW] +Qk)
11 k=2 = k=2 — k=2 k=2
=2 LS| +mmXE)] +n0TE|  + Q)
11 k=2 k=2 k=2 k=2
_ 131 +S(2) + X(2) + Q(2) ~ 1.0093 > 1,

a contradiction. Using
o(a7)o(3/11) < o(E1)o(z;) < a(k)[_y =33

for I =0, we calculate that 7 > (8/(8 4+ 3(k)))|;—y- Then by the table in
for [ € I3 we obtain

(86) T D 2+
1=1,2,0
M
>+ Sk 4 XMk +D> T(k)
3 k=2 =1 k=2 1=2 k=2
8
- k
* ; 8+ 3a(k) o teE) k=2
M s smmx®)| 4 nE)TR)
3 k=2 k=2 k=2
8m(k)
8 + 3a(k) |p—o QW) k=2
M 8
=5+ S(2)+ X(2) + ot Q(2) =~ 1.0372 > 1,

a contradiction. The inequalities in and hold for every even k > 2.
This shows that (e) doesn’t hold.

Assume that (f) holds in (82). We can use the argument above that
proves that (e) doesn’t hold to show that (f) also doesn’t hold by inter-
changing the roles of X3 and I3 with X} and Iy, respectively. We get the
same inequalities in and (86]). As a result we conclude that case (v) in
does not hold.

Assume that case (vi) holds in (73). Since ¥ < M/3, we have z} >

X (k)|j—y for every [ = 2 by . Using the inequalities in and for
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[ € I and the assumption of (C) we find that

(87) S5 >+ Y af > S(k)
=2

= N + m(k)X (k)
k=2 k=2

= N + X(2) ~ 0.4166.

Since ¥ > M/3 and ¥} > M/3 we see that

<) =1-2M g

k=2 3

2M
—1- 22— 5(2) ~0.1317.

k=2 3

We must have z < R(k)|,_, = (L(k)/3*1)|,_, for some r € I3. Since we
have R(k)|;_o < X(k)|;_, for every even k > 2, we deduce that r # 2.

Assume that » =0. By o(X})o(R(k))|j_y < o(E7)0(x)) < a(k)|j_y =
33, we obtain

(88) St > T(k) ~ 0.3975.

We claim that X7 < 9/25. Otherwise by the table in forl € Is = {7,8,9}
we would find a contradiction which is

(89) SIS 4> 2+ 3
=2

9
> %—FSU{Z)

9

~ 95
9

~ 95

+) X(k)
k=2 =2

+
k=2

+S(k)| 4 n(k)X (k)

k=2
M
+5(2) + %~ 1.0025 > 1.

_l’_

M
3
M

= 3

Then we find that = > (16/(16 + 9a(k)))|,,_, for all I =0 by using the
inequality 0(9/25)o(x}) < o(27)o(x]) < a(k)|,_y = 33. Then for [ € I3 we
obtain
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(90) SIS+ Y 2+ 3
1=0,2

+ S(k)
k=2

_|_

k=2
LM
k=2 3

> T(k)

M
3

+) X (k)

k=2 =2

16

+ J—
k2 ; 16 + 9a(k)

n 16m(k)
peo 16+ 9a(k)

16 M

=T(2 2)+ —+ — ~1.0911 > 1
()+S()+313+3 0911 > 1,

= T(k)| +S(k)

k=2

+ (k)X (k)
k=2

a contradiction, which shows that x} > R(k)|,_, for all » = 0.

Assume that r =1. By o(X})o(R(k))|j_y < o(3})0(xf) < a(k)|j_y =
33 we get X > T'(k)|,_,, defined in (88). Then we derive the same inequal-
ities in since ¥ > M/3 and £} > T'(k)|,_, switched roles. So we must
have ¥ > R(k)|,_, for all r = 1.

Assume that r =3. By o(X3)0(R(k))|j_y < 0(35)0(xf) < a(k)|j_y =
33 we get X3 > T'(k)|_y, defined in (88). But S(k) > T'(k) for every even
k > 2. So we shall use S(k) for the calculations. We claim that ¥3 < 23/50.
Otherwise using the table in for | € I3 we derive a contradiction that is

(91)  TI+T5+ > 2+

1=1.2,0
> A§+§g+§R(k:) -
16 M
+§X(k) HJFZ% 16+ 9a(k)|,_, 3
=B Rk x| m 4 ¥
:%+%+R(2)+%+¥%1.0067>1.

Then we compute that z7 > (27/(27 + 23a(k)))|,_, for all I =3 by using
the inequality 0(23/50)0(z}) < o(X7)o(z]) < a(k)|,_y = 33. We claim that
¥} < 11/48. Otherwise by the table in for [ € I3 we obtain
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(92) D ) N o
1=0,1,2,3
16
+

M
> — + S(k) S
P ; 16 + 9a(k)

3

k=2

+)  R(k)
k=2 =1

16m (k)
peo 16+ 9a(k)

11
_‘_7

+) X (k) T

k=2 =2

27m(k)
p—o 27+ 23a(k)
11

+ _
o 48

27
* lz:; 27 + 23a(k)

M

k=2

+ m(k)R(k) +n(k)X (k)

k=2

M 16 27 11

= 2+ — + — 2) + — ~ 1.001 1
3+S()+313+786+R()+48 0010 > 1,

a contradiction. So we find that x; > (37/(37 4 11a(k)))|,_, for all [l = 1 by
the inequality o(1/4)o(x}) < o(35)o(x]) < a(k)|;,_o = 33. Then using the
table in for [ € Is we compute that

(93) T D) a4
1=0,1,2,3
> %nLS(k) k2+l§16+196a(k) 2+;27+22;1(@ -
37 M
* ; 37 + 11a(k) |,y * ;X(k) e T3
B % +S(k) ey 161%(5()@ - 272+77;3§Z)(k) s
m Lt n(k) X (k) T %

M 16 27 371 M
=5 TS@) g +oge +qop g & 10486 > 1,

a contradiction. The inequalities in , , , and hold for

every even k > 2. Hence case (vi) doesn’t hold.

Assume that case (vii) in holds. We use the argument given above
to prove that case (vi) doesn’t hold to show that case (vii) also doesn’t hold
by switching the roles of 35 and I3 with ¥} and 14, respectively. We find

the inequalities in , , , , and . As a result we find
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that 27 > N > %7 (C) in is not the case. Finally the conclusion of the
lemma follows. U

The proof of Lemma|3.5|is symmetric in the sense that it can be repeated
for any other displacement function f; in F* for the choices of indices j €
{1,2,3,4} and i € I* = {1,2,...,4 - 3k"1} satisfying the hypothesis of the
lemma for any k£ > 2. Rearrangement of the relevant index sets is required.
In fact we have the following statements:

Lemma 3.6. Under the hypothesis of Lemma if k> 2 is even, then
we have =* € Cy,, defined in , for each of the following cases:

1=1, =0, 1€ly, i€l3 1€l
1=2, 1=3, 1€, i€l3, 1€l
1=3, 1=2, 1€, i€l 1€l
1=4, =1, 1€, i€l 1€ls.

(94)

Proof. We reorganise the inequalities in , , , , and
according to each j and ¢ listed in the lemma. Then we follow the com-
putations carried out in the proof of Lemma for the chosen j and 1.
By using the table in we perform analogous computations given in the
proof of Lemma [3.5] and get the same inequalities in the proof. This implies
the conclusion of the lemma. O

Lemma 3.7. Under the hypothesis of Lemma if k>21is odd, j =1
and i € Iz so that i = 0, then x* € Cy,, defined in .

Proof. Since j = 1,7 = 0and ¢ € I, we use the same steps given in the proof

of Lemma with the same organisations listed in , , , ,
and .

Because k > 2 is odd, there are changes to be made in the counts of
certain summations. These changes are listed in detail in Table |5| below.
Without changing the orders of the sums appearing in each of the inequalities
and computations, from left to right we replace the terms given under the
column 'k > 2, even’ with the terms given under the column 'k > 2, odd’
for the indicated equations in the proof of Lemma Let m = m(k) and

n = n(k) defined in (22).
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k > 2, even k> 2, odd k > 2, even k> 2, odd
Al (30 4m + 2n 5n+m c 069’ m+n m+n
i | (31 m m vii m+n m+n
iii m n c @’ n, m n, n
ii 433} m, n n,n vii n, m n, m
iii m, n n, n c l m+mn, m+mn, 2m—1 m+mn, m+mn, 2n—1
i 434} m+mn, 2m m+n, m+n vii m+n, m+n, 2m—1 2n, 2n, n+m—1
iii m+n, 2m 2n, 2n c 47—2' m+n, m+mn, 2m, 2m—1|m+n, m+n, 2n, 2n—1
B.i | (38 2m+n m+ 2n vii m+n, m+mn, 2m, 2m—1|2n, 2n, m+n, n+m—1
i (40 6m + 3n 2m+n Ci| (74 Im+3n—1 In+3m—1
i | (41 m+n m+n i | (75 dm+2n—1 Sn+m—1
ii m+n 2n iii dm+2n—1 4n+2m —1
i | {43) 2m + 2n 2m + 2n i | (76) 5m+n 4n +2m
iii 2m + 2n 4n iii 5m+n 5n+m
i | (44) 2m, 2m + 2n 2n, 2m + 2n, i | (77) dm+2n —1 5n+m—1
iii 2m, 2m + 2n m+mn, 4n iii dm+2n—1 dn+2m —1
iv.a | (47 n n ii l 2m, 2m + 2n m+n, 4n
iv.b | (49 n n iii 2m, 2m +2n 2n, 2m + 2n
b | (50 n, 2m n, m+n iv | (80, 2m m+n
v.a | (52 2m +2n 4n v | (81 2m n+m
a | (63! 2m, 2m +2n m+n, 4n v.d | (83 2m + 2n 4an
v.b | (b4 2m + 2n 4n d | (84 2m, 2m +2n m+n, 4n
b | 55 2m + 2n, 2m dn, m+n e | (85 m, n n, n
b | (56 2m + 2n, 2m dn, m+n f m, n n, n
b | (57) | 2m + 2n, 2m, 2m | 4n, m+n, m+n e @’ m, n, m n, n, n
v.c | (58 2m m+n f m, n, m n, n, m
c.d | (60 2m + 2n 4n vi l m m
e | (61 m, n n, n vii m n
f m, n n, n vi 489' n n
e 1 m, n, m n, n, n vii n n
f m, n, m n, n, m vi 090’ m, n n, n
vi.b | (65 n, m n, m vii m, n m, n
vii n, m n, n vi 49_1’ m, n, m n, n, n
b 466} m, n, m n, n, m vii m, n, m n, n, m
vii m, n, m n, n, n vi l m, m, m, n n, m, n, n
b 467} m, n, m, m n, n, m, n vii m, m, m, n m, m, n, n
vii m, n, m, m n, n, n, m vi m m, m, m, n n, m, n, n
vi.c m m vii m, m, m, n m, n, n, n
vii m m

Table 5: List of changes for odd k’s in the proof of Lemma

After the changes are made, all of the inequalities listed in the table
are still satisfied giving the necessary lower bounds for contradictions. The
entries in the table without hyperlinks are for the equations in the line one
above with a hyperlink for which the computations are not explicitly carried
out in the proof of Lemma [3.5] eg case (i) in (28). Hence the conclusion of
the lemma holds. g

Lemma 3.8. Under the hypothesis of Lemma[3.53, if k > 2 is odd, then we
have =* € Cy,, defined in , for each of the cases in .

Proof. Given a pair of j and ¢ listed in the lemma, we reorganise the inequal-

ities in , , , , and accordingly. By using the terms
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listed under the columns ’k > 2, odd’ in Table [5|for the indicated equations,
we repeat the arguments presented in the proof of Lemma [3.5] for the chosen
7 and 1. O

We shall continue proving statements about the elements of the sets C',
for f; € F*. Note that there is no displacement function f; € F? in the form
fi= g(Eé,mi) if k = 2. Therefore in the following statements we shall give
the explicit computations for £k = 3. We have the lemmas below:

Lemma 3.9. Let F* = {f;} fori € I* be the set of displacement functions
listed in Pmposition and F* be as in . Let & be a point in A% so
that a, = F*(x*) for d = 4-3*1. Let f; € F* be of the form f; = g(Eé,xi)
for j €{1,2,3,4} and i € I* = I, UL, U I3 U Iy, where Z‘;(m) and g are de-
fined in (@, respectively. If k > 2 is odd, j =1 and i € I; such that i =0,
then =* € Cy,, defined in @

Proof. Assume on the contrary that x* ¢ C,. Then by the definition of C,
we have

(95) ST + (2 - D (x7))a; — (27)* > 3/4.

Let 37 = X1(x*), X5 = Xa(x*), X5 = X3(x*) and X} = X4(x*) defined in
(8), where % + %35 + 2% + ¥} = 1 since x* € A9~L. We have ¥ (x*) + 2} =
33, Also let N = 1 (3 —/3) ~ 0.3170. Remember that o(z) = 1/z — 1. We
consider the cases:
(96)

(A) Zi(x*) > N, af > N, (B) S{(x*) > N > i, (C) zf > N > Xi(x%).

Assume without loss of generality that k& = 3. Assume that (A) holds. We
derive that ¥7 > 2N. Then we have the inequality

1
(97) §+Z§+EZSM:1—2N:§(\/§—1)z0.3660,

which implies the following cases:

(i)  T5<M/3, T5<M/3, X< M/3,
(i) 5<M/3, T5<M/3, > M/3,
(i) X3 <M/3, ¥i>M/3, ¥i<M/3,
(98) (iv) X5>M/3, T5<M/3, X< M/3,
(v) T3<M/3, ¥5>M/3, Sj>M/3,
(vi) T3> M/3, T5<M/3, Tj>M/3,
(vii) 5> M/3, $j>M/3, < M/3.
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Assume that (i) holds. By using o(M/3)o(x}) < o(E})o(x]) < a(k)|,_g =
105 for r = 2,3,4 given in Lemma [3.1] we find that

. B o(M/3)
(99) i > X(k) s a(k)+o(M/3)

3—M
(a(k) — )M +3

k=3

~ 0.0641
k=3

foreveryl € Iy U I3 U Iy = {10,11,...,36} so that [ = 1,2, 3. Then using the
table in for | € I U I3 U I, we see that

(100) x> ) X(k)

1=1,2,3 1=1,2,3

= (2m(k) + Tn(k)) X (k)
k=3

k=3
=20X(3) ~ 1.2828 > 1,

a contradiction. The inequality in (100]) holds for every odd k > 3. Therefore
case (i) doesn’t hold.
Assume that (ii) holds in (98). By

o(M/3)o(c}) < o(S7)o(2]) < alk)],_; = 105

for » = 2,3 we obtain x} > X (k)|,_4 for every I € Iy U I3 = {10,11,...,27}
so that [ = 2,3 by . Then using the table in for [ € 1o U I3 we see
that

(101) P4 Y af+ N =2eN+ > X(k)
1=2,3 1=2,3

k=3

M
k=3 3

M
= 2N +10X(3) + 5 ~ 13974 > 1,

= N + 2(m(k) + n(k)) X (k)

a contradiction. The inequality in holds for every odd k& > 3. Therefore
case (i1) doesn’t hold.

Assume that (i7i) holds in . We can repeat the argument given
above for this case as well. We need to switch the role of Is U3 with
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I,U Iy ={10,...,18,28,...,36} because, X3 < M/3 and ¥} < M/3. By us-
ing the table in for [ € I, U I, we get

M

102 1+ o+ XX >2N + X(k + —
1o : 1523:1l o 1523:1 ()k=3 3

M

=2N +4n(k)X (k) + —

k=3 9

M
= 2N +8X(3) + 5 ~ 12601 > 1,

a contradiction. The inequality above holds for every odd k > 3. So case
(7i1) doesn’t hold.

Assume that (iv) holds in . We use the same argument used in case
(7i7) by switching the role of Iy U Iy with I3 U Iy. Then we get the same
inequality in which hold for every odd k > 3. This is because by the
table in the number 4n(k) of elements in Iy U I4 equivalent to 1 or 3 is
the same as the number of elements in I3 U I equivalent to 2 or 1. So case
(iv) doesn’t hold.

Assume that (v) holds in (98)). Since ¥ < M/3 in this case, we calculate
that o7 > X (k)|,_3 for every | € I = {10,11,...,18} so that [ = 3 by .
Then for [ € Is we find a contradiction which is

oM

103 1+ zF YR+ > 2N + X(k —
008) =i+ 3 el + T+ x|+
oM

= 2N +n(k)X (k) + —

k=2 3

2M
= 2N +2X(3) + 5 ~ 1.0063 > 1.

Since the inequality in holds for every odd k > 3, case (v) doesn’t hold.

The argument given above for case (v) also shows that cases (vi) and
(vit) don’t hold. Because we can repeat the computations for case (iv) by
switching the role of Iy with I3 for case (vi). For case (vii), we switch the
role of Iy with I4. By the table in we obtain the same inequalities in
. As a result we conclude that ¥¢(x*) > N and 27 > N (A) in is
not the case.

Assume that (B) holds in . We know that X¢(x*) > N. Then we
have the inequality

(104) &'+ S+ Si<M=1-N= (1+\/§)z0.6830.

PN,
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Note that if two of the terms X%, ¥% or ¥} are less than or equal to M /4
simultaneously, then the third one cannot be less than or equal to M /4.
Because by using the inequality o(M/4)o(z)) < o(37)o(z)) < a(k)|j_s =
105 for » = 2, 3,4 we find that

. _ o(M/4)
(105) x> X (k) by alk)+o(M/4)|,_;

4-M
(a(k) —1)M + 4

~ 0.0442
k=3

foreveryl € Iy U I3 U Iy ={10,11,...,36} so that [ = 1,2, 3. Then using the
table in forl € Iy, 1 € Is and [ € I, respectively, in the each of following
inequalities we see that

M
(106) > af > 2m(k)X (k)| A~ 01768 > —,
e 4
1=2,3 k=3
M
(107) E xf > ) +m(k))X (k) ~ 0.2210 > —,
e 4
1=1,3 =3
M
(108) E x> ) +m(k))X (k) ~ 0.2210 > —.
1=1,2 k=3 4

The inequalities in (106)), (107) and (108) hold for every odd k > 3. This
implies the following first 6 of 13 cases:

(i) ay>M/A4 S5<M/4, $5<M/4, S5 > M/4,
(1) xf>M/4 B5< M/4, S5>M/4, X< M/4,
(109) (i6i) af > M/4 ¥5>M/4, $5< M/4, S5 < M/4,
(iv)
(v £>M/4 X5 > M/4, X5< M/4, X5> M/4,
(vi) x; > M/4 ¥3>M/4, X35> M/4, ¥j< M/
Assume that (¢) holds in (109). Since ¥j < M/4 and j < M/4 we

obtain that 7 > X (k)|,_; for all I € I* such that | = 3,2 by (105). Then
we compute for | € Iy U I3 = {10,11,...,27} that

> M/4 Sy < M/4, SE>M/A, Si> M/,

7

=3
8 8 8 8 8 8

(SR

(110)  i(x*) + ] +l§3xl +3j >N+ +l:z2:3X(k)

=N+ % +2(m(k) + n(k)) X (k)

k=3

k=3
M
= N+ 5 +10X(3) ~ 11006 > 1,
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a contradiction. The inequality in holds for every odd k& > 3. So case
(7) doesn’t hold.

Assume that (ii) holds in (L09). Since ¥5 < M/4 and ¥} < M/4, we
know that z} > X (k)|,_5 for all [ € I* such that [ = 3,1 by . Then
using the table in forl e U I, ={10,...,18,28,...,36} we calculate
that

(111)  i(x )+xi+lzgla:l +E32N+2+l§3:1X(k)

k=3

=N+ % + An(k) X (k)

k=3

M
=N+ +8X(3) ~ 1.0121 > 1,

a contradiction. The inequality in holds for every odd k > 3. Therefore,
case (1) doesn’t hold.

For case (iii) in (109)) we get the same inequality in by replacing
the index set Io U Iy with the index set I3U Iy = {19,...,36}. Since the
inequalities in hold for every odd k > 3, case (iii) doesn’t hold.

Assume that case (iv) holds. By the inequality 3 < M /4 in this case, we
obtain zj > X (k)l,_g for every I = 3 by (105). We claim that X% < 13/50.
Because otherwise by the table in for | € I we would get

(112) Sx") +af+ ) af + 55455
=3

M
2N+4+§X(k)

M 13
= N+ 5 +2X(3) + 5~ 1.0069 > 1,

a contradiction. A similar contradiction arises if we assume that ¥} > 13/50
by the same inequality in (112). Then by o(13/50)0(x}) < o(X5)o(x]) <
a(k)|,_s = 105 for r = 3,4 we obtain a7 > (37/(37 + 13c(k)))|,,_5 for every
l €I, =1{10,11,...,18} so that [ = 2,1. By the table in for | € I we
calculate that
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(113) RSN R o
1=3,2,1
3M 37
>SN+ 4+ x| +Y ———
4 ; s S5 3T+ 1Ba(k) |
3M 37(n(k) + m(k))
=N+ — +n(k)X(k)
4 s 3T+ 13a(k) |,y
3M 185
=N+ 22 4o2x 2 ~1.0496 > 1
+ o T 2X(3) + 10496 > 1,

a contradiction, where ¢ (x*) + zF = X}. The inequality in (113)) holds for
every odd k > 3. Hence case (iv) doesn’t hold.

For the case (v) we can use the argument given above for case (iv) by
switching the role of Iy with I5. We obtain the same inequalities in
and (113). Therefore case (v) also doesn’t hold.

For case (vi) we again follow the same computations given above for
case (iv) by switching the role of Iy with Iy = {28,...,36}. By using the
table in we find the same inequality in . But we need to change n
and n +m in with n and 2n, respectively. Resulting sum will still be
greater than 1 for every odd k£ > 3. As a result case (vi) doesn’t hold either.
So we ruled out the first 6 cases in out of 13 possible cases.

Under the assumption of (B) in we have the following 7 additional
cases:

vii) < MJ/A S5< M/4, T3 < M/4, SF > M/A,

7
viid) @< M/4 X5 < M/4, ¥E>M/4, B < M/4,

(3
< M/4 D3> M4, T < M/4, i< M/4,
)
i)

“< MJ4 S5 < M/4, B> M/4, N> M/4,
xi)

(]
i)

8 8

C<M/4 X3 > M4, SE< M/A, Si> M/,

)

C< M4 X3 > M4, BE>M/A, i< M/,

)

*< M4 X3 > M4, SE>M/4, I > M/A

)

888 88 8 8

(
(
(
(114) (
(
(
(

Before we proceed to examine the cases in this group, we derive the follow-
ing inequality from . Since z} < M/4 and i (x*) — (z7)? < X (x*), we
obtain
3—2M
4—-M

Assume that case (vii) holds. Since 335 < M /4 and ¥4 < M /4, we know
that z; > X(k)|,_; for every I =2,3 by (105)). We claim that ¥} < 4/25.

~ 0.4926.

(115) Y(x*)>L =
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Assume otherwise. Then by the table in forl € IU I3 ={10,11,...,27}
we see that

4
11 > —
(116) + > A+ L+ Y X(k +25
1=3,2 1=3,2
4
=L + 2(n(k‘) + m(k))X(k:) + 275
k=

4
= L+10X(3) + 5 ~ 1.0947 > 1,

a contradiction. By 0(4/25)0(z)) < 0(X})o(z]) < a(k)|,_3 = 105 we obtain
that 7 > (21/(21 + 4(k)))|,—s for every l € I, U I3 U Iy = {10,11,...,36}
so that [ = 1. Then for [ € I, U I3 U I4 we calculate that

(117) Six)+ Y. i =L+ > X(k)

1=3,2,1 1=3,2

21
+ - @@
_ EZI 21 + da(k) |,_s

21(3n(k))
pes 21+ 4da(k)
:L+14X(3)+% ~1.3972 > 1
4417 ’
a contradiction. The inequalities in and hold for every odd k > 3.
Hence case (vii) doesn’t hold.

For cases (viii) and (iz) we can repeat the computations given above
for case (vii) by switching the roles of Iy and I3 with I and I4 respectively
for case (viii) and, with I3 and Iy = {28,...,36} respectively for case (iz).
For both of the cases we obtain the same inequality in showing that
Y% <4/25 and ¥} < 4/25. In the inequality in we need to replace
2m + 4n and 3n with m + 5n and m + 2n respectively using the table in
. Resulting inequalities hold for every odd k > 3. So both of these cases
also don’t hold.

Assume that case () holds in (114)). Since X3 < M/4, we get z} >
X (K)|y—g for all I =3 by (105). We claim that ¥3 < 1/4. Assume the con-
trary. Then for [ € I by the table in we compute that

= L+ (2m(k) + 4n(k)) X (k)

k=3

+
k=3

+

>~ =

(118) Si(x")+> af +E3+E4>L+2X
=3

=L+n(k)X(k) + %
k=3

M
1
M

4

1 M
= L+2X(3) + 7 + - ~ L0018 > 1,
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a contradiction. Using a similar argument above we can also show that
¥; <1/4. So by o(1/4)o(xf) < o(E¥)o(xf) < alk)|,_s3 = 105 for r = 3,4,
we derive that z; > (3/(3 + a(k)))|,_3 for every [ = 2,1. Then for | € I, =
{10,...,18} by the table in we calculate that

(119) DI+ ) o+ N5+ 8
1=1,2,3
oM
> L [
> L+ X(k)| )+
1=3 k=3 =12
2M
— Labx(r)| o 2mEEn®)) o 2M
k=3 3+ ak) k=3 4
15 M
= L+2X(3) + {5 + 5 < 10614 > 1,

a contradiction. The inequalities and hold for every odd k > 3.
Hence case (z) doesn’t hold.

Assume that case (zi) holds in (I14). By switching the role of I in
case (x) with I3 = {19,...,27} we repeat the same argument given for case
() to show that case (zi) doesn’t hold as well. Using the table in we
obtain the same inequalities in and which show that this case
also doesn’t hold.

For case (xii) in we again repeat an analog of the argument given
above for case (z). We need to replace n and n + m in with n and 2n,
respectively. Then the resulting inequality holds for every odd k& > 3. Hence
case (wii) doesn’t hold.

It is clear that case (ziii) in doesn’t hold. Because we derive the
following inequality otherwise

. 3M
SI(xF)+E5+355+38 > L+ -~ 1.0049 > 1,

a contradiction. As a conclusion ¥{(x*) > N >z} (B) in is not the
case.

Assume that (C) holds in . Since we have z} > N > ¥i(x*), we
derive that

; 1

(120)  Bix)+ D3+ T5+TiSM=1-N=7] <1+\/§> ~ 0.6830.
Assume that 3¢ (x*) > M/4. The arguments we presented above to show
that cases (i)—(vi) in (109) don’t hold can be repeated by switching the
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roles of x} and X} (x*). Therefore cases with the assumptions listed in (i)—
(vi) for X3, ¥ and X} don’t hold.

If ¢ (x*) < M/4, then any two of the terms 3, X% and ¥} cannot be
less than or equal to M /4 simultaneously by the inequalities in ,
and . Therefore it is enough to consider the following cases:

(1)  Bi(x*)<M/4 ¥5<M/4, 5> M/, Xp> M/,
(121) (i) Zi(x*) < M/4 ¥5>M/4, ¥5< M/4, Tj> M/4,
(i) Yi(x*) < M/4 X5>M/4, X5>M/4, S5 < M/4,
(iv) Yi(x*)<M/4 ¥5>M/4, X5>M/4, 5> M/4

Before we proceed to studying these cases, we derive the following lower bond
using the inequality in . Since ¥i (x*) < M/4 and (2 — X4 (x*))z} < 227,
we find that

1
(122) 7> L= (4 —\/5+ \/§> ~ 0.3513.

Assume that case (i) holds. We already know by (105) that z; > X (k)|,_5
for every [ =3 because X5 < M /4. We claim that 3% < 31/100. Because
otherwise using the table in for [ € I U Iy we would have

31 M

+— 4+
s 100 4

n 31 n M
s 100 4
31 M
=L+4X —+ — = 1. 1
+AX(3) + 1gg T 5 ~ 10089 > 1,

a contradiction. By replacing the roles of ¥3 and ¥} in the inequality
above we also see that ¥} < 31/100. By o(31/100)0(x}) < o(3;)o(x]) <
a(k)|,_s = 105 for r = 3,4, we get z; > (69/(69 + a(k)))|,_g for every | =
1,2. For | € I{ U I this implies that

(123) @i+ > aj+ S5+ 51> L+ > X(k)
=3 =3

= L+ 2n(k) X (k)

(124) Y ) o
1=1,2,3
LM
k=3 4

69
>L+ — + X(k
ZEZLQ 69 + 31a(k) |,_5 ZZE; (k)
69(2m(k) + 2n(k))
69 + 31a(k)
115

M
= Lt gy +4X@) + 5 ~ L0773 > 1,

M
k=3 2

+ 2n(k) X (k)
k=3
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a contradiction. The inequalities in and hold for every odd k& > 3.
Hence case (i) doesn’t hold.

The argument above used to show that case (i) doesn’t hold can be
repeated to examine cases (ii) and (7i7) also. We need to replace the index
set Iy U Iy with I; U I3 for case (ii) and replace it with I1 U I for case (iii).
For case (i7) the inequalities in and stay the same. For case
(7i7) we need to interchange 2n with m + n in and, 2m + 2n and 2n
with 4n and m + n, respectively, in . After these changes the resulting
inequalities still hold for every odd k > 3. Therefore, these cases don’t hold.

Assume that (iv) holds in (12I). We claim that ¥3 < 31/100. Assume
otherwise. Then we compute that

31 2M
(125) o]+ S5+ T+ B > Lt 1o+ T < 10028 > 1,

a contradiction. By replacing the role of ¥3 with ¥3 and then with ¥} in
the inequality above we also see that 33 < 31/100 and X} < 31/100. By
using the inequalities ¢(31/100)0(z}) < o(X5)o(x]) < a(k)|_5 = 105 for
r =2,3,4, we calculate that z; > (69/(69 4+ a(k)))|;_5 for every [ =1,2,3.
By the table in for [ € I we find

(126) vi+ Y af+ S5+ 5+ 5
1=1,2,3
69 3M
>L4+ Y |+
2,69+ 3la(k) |y 4
69(m(k) + 2n(k)) 3M
B 69+ 3la(k) |3 4
161 3M
=L+—+ "1 1
+ 1103 + 1 0089 > 1,

a contradiction. The inequalities in (125]) and (126]) hold for every odd k > 3.
Hence case (iv) doesn’t hold. This shows that 7 > N > X (x*) (C) in
is not the case either. Finally the conclusion of the lemma follows. O

Similar to Lemma [3.5] the proof of Lemma [3.9]is symmetric in the sense
that it can be reiterated to prove analogous results for the displacement func-
tions f; in F* for the choices of i € I¥ = {1,...,4-3*"1} and j € {1,2,3,4}
satisfying the hypothesis of Lemma[3.9] In particular we prove the following:
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Lemma 3.10. Under the hypothesis of Lemma if k> 3 is odd, then
we have = € Cy,, defined in @), for each of the cases

i1=1, i€, i=1, i=2, =3, 1=0,
1=2, i€ly, 1=1, i=2, =3, 1=0,
(127) 13=3, 1€l3, 1=1, 1=2, =3, 1=0,
j=4, i€ly, i1=1, i=2, =3, 1=0.

Proof. We reorganise the inequalities in (96), (97), (98), (104)), (109), (120)
and ([121)) according to each j and i listed in the lemma. Then we follow the

computations carried out in the proof of Lemma for the chosen j and i.
Using the table in we carry out the analogs of the computations given

in the proof of Lemma [3.9 which implies the conclusion.

O

Lemma 3.11. Under the hypothesis of Lemma[3.9, if k > 2 is even, j =1
and i € Iy so that i = 0, then we have * € Cy, defined in @)

Proof. Because we have j = 1,7 =0 and i € I;, we give the same arguments

given in the proof of Lemma

©7). ©3), (104, (109), (120

E with the same organisations listed in ,
and ((121). Because k > 2 is even, there are

changes to be made in the terms of some of the summations. These changes
are listed in the table below:

k> 2,0dd | k> 2, even k> 2, odd k > 2, even
A.i| (100 2m + Tn 6m + 3n vii | (116 2m + 2n 2m + 2n
ii | (101 2m + 2n 2m +2n | viil 4an 2m +2n
iii | (102 in 2m +2n ix 4dn 2n+2m
iv 4dn 2m + 2n vii | (117) 2m +4n, 3n dm +2n, 2m +n
v (]103} n n viii Sn4+m, m+2n | dm+2n, 2m+n
vi n n ix Sn+m, m-+2n | 4dm+2n, 2m+n
vii n n X n n
106 2n 2m xi n n
107 m+n 2m xii n n
108 m-+n 2m X n, m+n n, 2m
B.i | (110 2m + 2n 2m + 2n xi n, m+n n, 2m
i | (111 an 2m + 2n xii n, 2n n, 2m
iii 4n 2m+2n | Ci 2n m+n
iv | (112 n n ii 2n m+n
v n n iii m-+n m+n
vi n n il (124) 2m + 2n, 2n 4m, n+m
iv | (113 n, n+m n, 2m ii 2m + 2n, 2n dm, n+m
v n, n+m n, 2m iii in, m+n dm, m+n
vi n, 2n n, 2m iv | (126) m 4+ 2n 3m

Table 6: List of changes for even k’s in the proof of Lemma [3.9
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In each of the inequalities and computations, from left to right, we re-
place the terms given under the column 'k > 2, odd’ with the terms given
under the column ’k > 2, even’ for indicated equations, where m = m(k)
and n = n(k) are defined in (22)). All of the resulting inequalities are still
satisfied proving the lemma. O

Lemma 3.12. Under the hypothesis of Lemma if k > 2 is even, then
we have x* € Cy,, defined in , for each of the cases in .

Proof. Given a pair of j and i listed in the lemma, we reorganise the inequal-
ities in , , , , , and accordingly. By using
the terms listed under the columns 'k > 2, even’ in Table [6] for the indicated
equations, we repeat the arguments presented in the proof of Lemma for
the chosen j and 7. We get the conclusion of the lemma. O

Proposition 3.1. Let F* = {f;} foric I¥ ={1,...,4-3%"1} be the set
of displacement functions listed in Proposition and F* be as in for
k>2andd=4-3""1 Let x* be a point in A1 so that a, = F¥(x*). Then
Tt e ﬁlec’fi.

Proof. The proof follows from Lemmas and
O

At this point we review three more facts from convex analysis that we
shall need. Proofs of these statements are relatively elementary. Therefore
they are omitted. Interested readers may again refer to [22, Theorem 2.1,
Theorem 5.5] and [15, Proposition 5.4.1]:

Theorem 3.2. If {C;} fori €I is a collection of finitely many nonempty
convez sets in R® with C = Nie1Cj # (), then C is also convezx set.

Theorem 3.3. If {f;} fori €1 is a finite set of strictly convex functions
defined on a conver set C C RY, then maxgec{fi(x): i € I} is also a strictly
convex function on C.

Proposition 3.2. Let ' be a convex function on an open convex set C C
Re. If & is a local minimum of F, then it is a global minimum of F, and the
set {y* € C: F(y*) = F(x")} is convex. If F is strictly convex and x* is a
global minimum then the set {y* € C: F(y*) = F(x")} consists of ©* alone.

An implication of the statements above for the set of displacement func-
tions F* is the uniqueness of the point, whose existence is guaranteed by



Symmetric decompositions of free Kleinian groups 1435

Lemma at which F* takes its minimum value. In other words we prove
the following statement:

Proposition 3.3. Let F* = {f;} fori € I* be the set of displacement func-
tions listed in Proposition and F* be as in . If ** and y* are two
points in AT so that o, = FF(x*) = FF(y*), then * = y*.

Proof. Let Cy, for i € I* be the subsets of A1 as described in and
. By Lemmas and they are open convex subsets of A?~!. Then
Nier=CYy, is also open and convex by Theorem Since the displacement
functions in F* = {f;} for i € I* are either of the form f(X;(x), z;) or of the
form g(E;- (x),x;), each f; is a strictly convex function on the open convex
set Cy, by Lemmas and Then Lemma [3.4] implies that every f; for
i € I* is convex on Nicr+Cy,.

Let F = FFand C = N C t.- The conclusion of the lemma follows from
Theorem [3.3] Proposition [3.2] and Proposition [3.1 [l

The uniqueness of x* given by Proposition [3.3] reduces the amount of
computations necessary to calculate the infimum of the maximum of the
functions in G¥ for the decomposition I'pr considerably when compared to
the number computations given in [23] to calculate the infimum of the maxi-
mum of the functions in G for the decomposition I'pr (see [23, Section 4.3]).
We prove the statements below:

Theorem 3.4. Let FF: A1 - R be defined by x+— max{f;(x): i € I*},
where {f;} for i € I¥ is the set of functions listed in Proposition and
d=14-3"1. Then we have infgepa1 F¥(x) =12- 351 — 3 for k > 2.

Proof. Let x* = (a7, 5,...,2}) € A%l be a point at which F* takes its
minimum value a,. Assume that k = 2. Consider the cycles

7 = (112)(2 10)(3 11)(4 5)(8 9),
72 = (1 9)(2 8)(3 7)(4 6)(10 12),
3= (1 5)(2 6)(3 4)(7 8)(11 12)

in the symmetric group Si2. Note that 7 ([1) = Iy, 71(I;) = I; for | = 2,3,
To(I1) = I3, 72(I;) = I; for | = 2,4 and, 13(11) = Iz, 3(1;) = I; for [ = 3,4.
Let 7;: AM — A be the transformation with the formula z; — z, ()
for | =1,2,3. Clearly we have Tj(A'') = A!! for any [. Let H;: A - R
be the function so that H;(x) = max{(f;oT;)(x): i =1,2,...,12}. Since
JilTi(x)) = fr,(i)(x) for every i =1,2,...12 for every x € A'! for every I
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(see the formulas in (12))), we derive that F?(x) = H(x) for every x € Al
for every I. We know by Proposition that x* is unique, ie Tl_l(x*) =x*
forl=1,2,3.

For | =1, we find that =] = z7,, 25 = x],, x5 = 2], 2} = 2%, ©§ = 5.
Forl =2,3wehave 2] = 2} = x§, 25 = 23 = ) = x5 = 27 = 2§, T]y = ]| =
z7, which implies that z} =27 = 1/12 for every i,j € I? = {1,2,...,12}.
Then we compute that F?(x*) = . = 33. This proves the conclusion of the
theorem for k = 2.

In the rest of the proof two cases will be considered: k > 2 is even or k is
odd. In each case maps analogous to 7; and H; used above are required. Since
their definitions will be similar to 7; and H; with appropriate dimension
changes, we shall not state their formulas explicitly to save space. By abusing
the notation for both 7; and T, for a fixed index 7; will be used to denote
all transformations defined by 7;. Since we use the equivalence in modulo 4
only, we shall express a mod 4 = b with a = b.

Assume that k is even and k > 2. Remember that there are m = [3¥~1 /4]
many elements in I; which are equivalent to 1 in modulo 4. The same is true
for the number of elements equivalent to 2 or 3. But there are n = |3¥~1/4]
many elements in [; which are equivalent to 0 in modulo 4. For I, I3 and
I, we have the table in ([23)).

Let S; denote the symmetric group. For the group of first four sets we
assume that i € 1 and j € I4. For As we assume that 4,5 € I and, for Ag
we assume i, j € I3. Define the following sets of transpositions in Sy:

Ay = (Zaj) 251’]—0} AQ_{( ])1—27]—2}
Ay = {(j) i =3, j=3% Ay={(ij):i=0, j=1}
A5_{(i>]:i507j5171#]} Aﬁ_{( )’L—Ov]—l 7‘7&]}

Let A; be the set of cycles so that each cycle is formed by the multiplications
of m transpositions in A; whose first entries are in increasing order. Define
As, A3z, As and Ag in the same way. Similarly, let A4 be the set of cycles
formed by the multiplication of n transpositions in A4 whose first entries
are in increasing order. Also let

A7 ={(i1ig i) 11,102, ..y im = 2, 1,02, ...,0m € I},
Ag = {(i1da -+ in): i1,192, ..« in =2, 11,12,...,10n € I3},
Ag = {(i1ig -+ in): 11,192, ...,0n = 3, i1,12,...,0n € I2},
Ao = {(i1d2 - im): 11,102,y b = 3, 11,12, ..,0m € I3}
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Choose one cycle from each set Aj, As,..., Ajg. Consider the multiplication
of all of these 10 disjoint cycles. Let ©1 be the set of all cycles obtained this
way. For any element of ©1, denote it by 71, we have 7 (1) = Iy, 11(I2) = I
and Tl(Ig) = Ig.

Let © be the set of cycles formed by the same process given above using
the following sets of transpositions and cycles (i1, 2, ...,%y) and (i1, 2, ...,
in) in Sg. Assume for the first four sets that ¢ € I; and j € I3. The entries
for the cycles (i1,142,...,4mn) and (i1, 42, ..., i,) are given by the group of last
four sets:

{(i,5):i=1, j=1}, {(i,5):i=2, 7=0,}, {(4,5): i =3, j =3},
{(i,7):1=0, 5=2}, {(4,7):i=0, j=2, 4, j € ls, i #j},
{(i,§):1=0, =2, 1, j €Iy, i #j},

{ilEl, 11 € Io, l:l,...,m}, {ilEl, 1 € Iy, lzl,...,n},
{ilE3, 1y € Io, l:1,...,n}, {ilEg, i € Iy, lzl,...,m}.

For any element of O9, denote it by 7o, we see that 7 (1) = I3, 72(l2) = I2
and TQ(I4) = I4.

Finally let ©3 be the set of cycles obtained by the same method used
above for ©; and ©,. This time we use the transpositions and cycles (i1, i,
.o yim) and (i1, 49, . . .,i,) below. Assume for the group of first four sets that
i € I and j € I5. For the cycles (i1, 42, ... ,4y) and (i1, 42, . .., i,) entries are
given by the group of last four sets below:

{(6,5):1=0, j=3}, {(i,4): i =0, j=3, i, j € I3, i # j},
{(i,§):i=0, j=3,4, j€ I, i # j},

,...,m}, {’ilEl, 1 € Iy, lzl,...,n},
,...,n}, {ilEQ, i € Iy, lzl,...,m}.

For any element of ©3, denote it by 73, we observe that 73(11) = I, 73(I3) =
Ig and 7'3([4) = I4.

By Proposition we have Tfl(x*) = x* for every 71 € ©1, T € O9
and 73 € ©3. Therefore for ¢ € I; for the first four sets, we conclude that
x; = x for each of the following cases separately

(128)
1=0
i=1 =2 ’
. ? . . ’ . El eI’
jEO(]€I4)7 , jEO(]€I3)7 ) :;:22;6.[;1; ’
j=1(jeLUl) J=2(jelhUly) 7
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i =3, i=0,j=1lor2(i, j€ly i#}j),
(129) ¢ 7=0( € b), ,y 1=0, j=1or3 (i, jels, i#j),
j=3(elzuly) i=0,j=2o0r3 (i, j€ly, i#3j)

Similarly we have the equalities of entries z7 = x for each of the cases listed
below:

i=0,j=1or2(i, j€ Il i+#j),
(130) i=0,j=1or3 (i, jel3 i#j), p,
i=0,j=2o0r3 (i, j€ I, i #j)

i, j=1,4, j=2, i, j=3 (i, j € la, i #J),
(131) i, j=1,14, j=2, i, j=3 (i, j € I3, i #J),
i7j517 '7jE27 17353(27‘76-[47275j)

SR

We combine the equalities ;7 = z} for the indices given in (128)—(131). We
find that

ri=z; j=0(€hLUL3UL), xj=x; j=0(j€h),
zi=2; j=1(ehUlUl), zj=2; j=1(j€l),
xf—xj j=2{ehUlhuly), .CEZ_JJ; j=2(jely),
ri=a; j=3(€ehUl3UL), zi=1; j=3(j€LL).

As a result there are two possible values oy and ay for a, = infycpa1 F¥(x),
where

* * *
_ 1 —najy —3ma] 1-—27

* * *
1—nxy —3mxy 1—x}
a1 = . .

and a4 =
* * * * * *
nxy + 3mrj x] nxy + 3mrj xy

If a1 = ay > ay, we get z} < . Since x* € A% we have na} + 3mazt =
1/4, which implies that 1/z} — 1 > 4(n 4+ 3m) — 1. Then we see that

ap > 12(n+3m) —3>12-381 3,

where n=|3%"1/4| and m=[3*~1/4]. This is a contradiction by Lemma
By symmetry the inequality a1 < a4 also gives a contradiction. So we derive
that a1 = ay or 2} = 2} which shows that x; = x; = 1/d for every i,j € I*
and d = 4 - 3*~1. Hence the conclusion of the theorem follows in this case.
Assume that k > 2 is odd. In this case there are m = [3*~1/4] many
elements in I; which are equivalent to 1 in modulo 4. There are n = | 3%~ /4]
many elements each in I; which are equivalent to 2, 3 or 0 in modulo 4. In
other words we obtain the list (m,n,n,n) for the number of elements which
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are equivalent to 1, 2, 3 or 0, respectively. In Iy, Is and I; we have the lists
in the table (24)).

We shall use the same sets Aj, As, ..., Ajg of cycles defined above for
the even k case, by switching the roles of m and n if necessary, to construct
©1 the set of cycles formed by the multiplication of cycles chosen one from
each set Aj, Ag, ..., Ajg. So for any 71 € ©1 we have 7 ([1) = 14, 11 (I2) = I2
and Tl(Ig) = Ig.

Define ©9 by using the transpositions and cycles (i1,42,...,4,) and
(i1,12,...,1p) listed below. Assume for the group of first four sets that i € I,
and j € I3. For the cycles (i1, 12, ...,%y,) and (i1,42,...,4,) entries are given
by the group of second four sets:

{(i,j):’LEl, .751}7 {(7‘7]) 1527 353}7 {(Zaj) Z:3a 352}7
{(Zaj ZEO?]EO} {(Z]) ZE2)JESa ZaJEIIaZ#j}a
{(1,j):i=2, j=3, 4, j€ Iy, i #j},

{’Ll_l, iZEIl,ZZI,...,m}, {Zl_l, 11614,1—1,...,77,},
{zl_O uelh,l=1 .,n}, {ilEO, il€I4,l=1,...,m}.

Then for any element of 7 € ©2 we see that ™ (ly) = I3, 7o(l1) = [; and
T 2([4) = 14.

For ©3 we shall use the sets of transpositions described below. For the
group of first four sets we assume that ¢ € Iy and j € I3. For the group of
second four sets we assume that ¢ € Iy and j € 1. Let

By ={(i,5):i=1, j=3},Ba={(i,5): i =2, j =0},
BgZ{(i,j):iE3, jEl},B4:{(i,]):iE ,jE?},
Bs ={(i,5):i=1, j=3},Bs ={(i,5): i =2, j =0},
B7:{(i,j):iz3, jEl},Bgz{(i,j):iEO, j_2}

Let By and Bg be the sets of cycles so that each cycle in each set is formed
by the multiplications of m transpositions in By and Bg, respectively, whose
first entries are in increasing order. Similarly, let By, Bs, B4, Bs, B7 and,
Bg be the set of cycles formed by the multiplication of n transpositions in
B, Bs, By, Bs, By and Bg, respectively, whose first entries are in increasing
order. Choose one cycle from each set By,. .., Bg. Consider the multiplication
of all of these 8 cycles. Let O3 be the set of all these disjoint cycles. Then
for any element of 73 € ©3 we have 73([1) = I3 and 73([2) = I4.

By analogous definitions for 7; and H; with appropriate dimensions,
we derive by Proposition that Tl_l(x*) = x* for every 7 € O1, 75 € O9
and 73 € ©3. For ¢ € I; this implies the equalities =] = x;* for the following
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indices:

(132)
1 =1, 1= 2,3, 1 =0,
‘752(]6[2)7 J=0,1, (]EIQ) J=3, (JEIQ)
jE3(j€Ig), ’ 7=0,1, (]613) ’ j =2, (]EIg)
jEO(]€I4) 71 =23, (]614) j=1, (]€I4)

If we combine all of the equalities 7 = z7 in 132)), we find that

si=a; j=1(jeh), asj=12] j=1(jely), v3=2] j=1(je€Uly),
zi=x; j=2(€h), =] j=2(€l), a3=a; j=2(j€nhUlL),
T} =z} jz3(j613), T} = T} jES(jEIQ), ry=w; j=3(j€nhUl),
zi=a; j=0({e€l), zj=2; j=0(Geh), z5=a] j=0(€LUI).

This means that there are three possible values a7, as and a4 for a, at x*
such that
1 —ma] —2nal —nay 1 —af

o] =
: mxy + 2nxy + nxy xf

for | = 1,2 and 4. Assume that oy = ax > a9 > ay. Then we conclude that
rt < ab <} Since x* € A% we have the equality ma? + 2nal + nxj =
1/4, which implies that 1/27 —1 > 4(m + 3n) — 1. Then we find that

a1 >12(m+3n) —3>12.381 3,

This is a contradiction by Lemma Because of symmetry we obtain a
contradiction in any case unless o; = g = a4, which implies that z] = 25 =
x3. In other words, we get =} = ch =1/d foreveryi,j € I* and d = 4 - 3k=1.
An elementary computation verifies the conclusion of the theorem in this
case as well. O

Theorem 3.5. Let GF: A1 = R be defined by '+ max{f(x): f € G~},
where G¥ is the set of functions in Proposition . Then inf zepar GF () =
123k —3.

Proof. The displacement functions gf ’1(X) for i € I* are produced by the
group-theoretical relations (v, s(7), S(7)) of I' = (&, n) with length(ys(7)) =
1 (see Proposition and Lemma [2.1)). Therefore S(v) contains 3 - 3%}

many isometries. Since gf’l(x) =0 (X yes(y) Tow) ) o(@i), where p is the

mapping defined in , we calculate that gf’l(x*) =(4-31-1)/3 <
for every i € I*.
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The functions in the union

k.k
{gzl7“"gza2}u{gzl7"‘7gza3}u U{gzl ""7gzak}

are produced by the relations (v, s(v),S(v)) so that 2 <length(ys(y)) =
m < k. For each group of functions in the union above S(7) contains 4 -
3k=1 — 35~ many isometries, respectively. This implies that the sums in
the formulas of these functions contain 4 -3*~1 — 3*~™ many summands.

Then we see that G¥(x*) = F¥(x*) because, by direct calculations we have

gf”lm(x*) == gfﬁn(x*) < ay for every m =2,... k. Since F¥ C G¥, we
have G*(x) > F*(x) for every x € A%, Hence, the conclusion of the theo-
rem follows. U

4. Proof of the main theorem

Finally we present a proof of the main result of this paper. Although the
proof goes along the same lines as the proof of [23, Theorem 5.1], we include
the details for the sake of completeness.

Theorem 4.1. Let & and n be two non-commuting isometries of H3. Sup-
pose that & and n generate a torsion-free discrete group I' which is not co-
compact and contains no parabolic. Let I'y, and oy denote the set of isome-
tries of length at most k > 2 in T = (£,1) and the real number 12 - 3F=1 — 3,
respectively. Then for any zy € H> we have

o2 MaXyer, {dist(z0, v-20)} > .

Proof. We consider the following two cases: (i) I' = (£,n) is geometrically
infinite, or I' = (¢, n) is geometrically finite. Assume that the prior is the
case.

We know by [10, Proposition 9.2] that I' = (¢,n) is a free group on
the generators ¢ and 7. Then it can be decomposed as in . Let I'px
be the symmetric decomposition of I' = (£,7) so that D* = (U* TF) where
[, = UF U Uk Since T = (£,7n) is geometrically infinite, Proposition and
Theorem imply the conclusion of the theorem in this case:

1 1
max{dlst(zo, v 20)} > flogGk( )>-log | inf GF(x))==logay.
vyel'y 2 xeAd—1 2

Above m = (ml’(w))we\lﬂv € A1 where p and Mmy(y) are the bijection and
the total measures defined in and Proposition respectively. The
function G* is defined in .
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Assume that I' = (£, n) is geometrically finite. Let X denote the charac-
ter variety PSLy(C) x PSLs(C) ~ Isom™ (H?) x Isom™ (H?). Let &F be the
open subset of X, consisting of (£,n) such that (£, n) is free, geometrically fi-
nite and without any parabolic. Then (&, 7) is in &§F. We define the function

foz X — R such that

i n) = max{dist(z0, ¥ - 20)}

for a fixed zy € H?. The function ffo is continuous and proper. Therefore, it
takes a minimum value at some point (£g,79) € &F. We claim that (&, 70)
is in BF — &F.

Assume on the contrary that (£y,79) € &F. Since I' = (£, n) is torsion-
free, each isometry v € I'y has infinite order. This implies that v - z # z for
every z € H3. In particular, we get 7 - 29 # 2z for any ~ € I'y,. Therefore,
there exists hyperbolic geodesic segments joining zg to 7y - zg for every v €
Tk, Note that, since we have dist(zg, 7172 - 20) = dist(y; " - 20,72 - 20) and
dist(z0, v - 20) = dist(z0, 7! - 20), all of the hyperbolic displacements under
the isometries in I'y, are realised by the geodesic line segments joining the
points {z0} U {7y 20: v € Uk},

Let us enumerate the elements of ¥ for some index set I in N. Let Py =
2o and P; = y; - zg for every i € I. Let A;; = AP;PyP; denote the geodesic
triangle with vertices P;, Py and P;. The value k > (§0,m0) is the unique
longest side length of A;; for some i,j € I. We shall denote these geodesic
triangles with Azj and their vertices by Pz, Py and P There are two cases
to consider: (1) all of A” are acute or (2) there exists at least one A” which
is not acute.

Assume that the latter (2) is the case (In the rest of the argument we
shall use figures from k£ = 2 case for illustrations). Choose one of the non-
acute geodesic triangles A;; and denote it by A. Let v denote the longest
edge of A By the hyperbolic law of sines, v is opposite to the non-acute
angle. If P lies in v, we let P( ) be a sequence of points in the interior of ~y
so that Pi(l) — P,. Let Pj() = PJ and Po() = Py for every [ € N. Otherwise,
U]

we let Pj(l) be a sequence of points in the interior of v so that Pj
define Pi(l) = P, and Po(l) = P, for every | € N.
Let A; be the geodesic triangle contained in A with vertices Pél), pY

7

—>]3jand

and Pj(l). By the construction, the unique longest side 7; of A; is contained in
~ for all but finitely many [. Let {£;} be a sequence of isometries such that
& — & and & Loz = Pil . Similarly, let {m;} be a sequence of isometries
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such that n; — ng and ;- 29 = P() Then we have (§,n;) € &F for all but
finitely many [ and ffo (&,m) = length(m) < fZO (&0,m0), a contradiction.

Figure 1: Moving along 7 in the case (2).

Assume that all of ﬁlj are acute (1). Choose one of ﬁzj and call it A.
Then the perpendicular arc ; from P; to the geodesic containing I and

P meets it in the interior of the edge of A opposite to P Let P() be a
)

sequence of points in the interior of «; so that Pi( — R. For each [, we see

that

Figure 2: Moving along ; in the case (1).

d(Pi(l), Py) < d(lgi, Py) by applying the hyperbolic law of cosines to the
right triangle containing Pi(l), Py and a sub-arc of ~;. Similarly, we have
AP, Py) < d(P;, ;).

The geodesic triangle Agl) with vertices P, Pi(l) and 13]- is itself acute.
This is because its angles at I and P; are less than those of A. Also the angle
of A at ﬁ is the limit of the angles at P(l) This implies that the perpendicu-
lar arc %( ) from P to the geodesic containing Py and P( ) meets this geodesic

inside of A(l) Let P(l) be the point on ’y( ) at distance 1/l from P We find
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A B
i
Figure 3: Moving along 7; in the case (1).

that d(P", Ry) < d(P;, Py) and d(P\", P") < d(P;, P") < d(P;, ;) by the
hyperbolic law of cosines. As a result we obtain a triangle with vertices at
Po, Pi(l) and Pj(l) so that all edge lengths are less than those of A. Let {&}

and {n;} be the sequences such that fl_l c20 = Pi(l) and 7, - zg = Pj(l). Then
we have fzko (&,m) < ffo (&0,m0) for all but finitely many [, a contradiction.
So the claim is proved.

By [4, Main Theorem]| and [5] we know that the set of (£,7) such
that (£, n) is free, geometrically infinite and without parabolics is dense in
BF — BF. We also know that every (&,7) € X with (£, 7) is free and without
parabolic is in &F. This reduces geometrically finite case to geometrically
infinite case. Finally, the conclusion of the theorem follows from the fact

that (507"70) € 67%_ &F. O

All of the arguments used in this paper to prove Theorem can be
carried out in a more general setting; in particular in the case I' = (£1,...,&,)
is a purely loxodromic, finitely generated free Kleinian group for n > 2. In
fact we can propose the statement

Conjecture 4.1. If T, is the set of all isometries of length at most k >
2 in T, then maxyer, {dist(z0,7 - 20)} > 3log((2n — 1)(2n(2n — 1)k~ — 1))
for any zy € H3.

We conclude this paper with a proof sketch of this conjecture. Details of
the arguments outlined below will be left to future studies.

We consider the cases in and (). In the case I'=(¢,...,&,) is
geometrically infinite, we use symmetric decomposition I'pr,» of I', where
Dk = (Tkn UF™) is described in Definition Above UF" is the set of
words of length k and U™ is the set of words of length less than k.
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Letd=2n-(2n—1)*tand Ry, = k + (2n — 2) 5@:—11 Z?:i%{l’k_l}@n -

1)*~1. It is possible to prove an analog of Lemma stating that there are
d - Ry, , many group-theoretical relations for the decomposition I'pr.». Using
these group-theoretical relations an analog of Theorem can be stated.
This gives the decomposition of the area measure A, corresponding to the
symmetric decomposition I'pk,» of I'. Then using Lemma [1.1| we prove an
analog of Propositionwhich provides a set GF"™ of d - Ry, ,, many displace-
ment functions so that only a set F*™" of d many of which are significant
to compute the infimum of the maximum of the functions in G¥™ on the
simplex A1,

As in Theorem [3.4] and the lower bounds proposed in the conjecture
are a consequence of the uniqueness of the point x* € A%l at which the
infimum of the maximum of the displacement functions in F*™ is attained.
The uniqueness of x* is implied by a statement similar to Proposition |3.1
stating that there exists a strictly convex set C' in A?"! containing x* such
that each displacement function in F*™ is strictly convex on C. Since the
infimum of the maximum of the functions in F*" is itself convex on C,
the uniqueness of x* follows from some standard facts in convex analysis.
Using all of the bijections of A1 fixing the set F*" we derive that all of
the coordinates of x* are equal. Then a simple computation gives the lower
bounds in the conjecture completing the proof in the case ().

In the case (ii) I' = (&1, .. ., &,) is geometrically finite, the assertion of the
conjecture can be proved along the same lines as in the proof of Theorem
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