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We prove a necessary and sufficient condition for an asymptotically
Euclidean manifold to be conformally related to one with specified
nonpositive scalar curvature: the zero set of the desired scalar cur-
vature must have a positive Yamabe invariant, as defined in the
article. We show additionally how the sign of the Yamabe invariant
of a measurable set can be computed from the sign of certain gen-
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1128 J. Dilts and D. Maxwell

1. Introduction

One formulation of the prescribed scalar curvature problem asks, for a given
Riemannian manifold (Mn, g) and some function R′, is there a conformally
related metric g′ with scalar curvature R′? If we define g′ = φN−2g for N :=
2n
n−2 , this is equivalent to finding a positive solution of

(1.1) − a∆φ+Rφ = R′φN−1,

where a := 4(n−1)
n−2 , R is the scalar curvature of g, and −a∆ +R is the con-

formal Laplacian.
On a compact manifold the Yamabe invariant of the conformal class of

g poses an obstacle to the solution of (1.1). For example, in the case where
M is connected and R′ is constant, problem (1.1) is known as the Yamabe
problem, and it admits a solution if and only if the sign of the Yamabe
invariant agrees with the sign of R′ [Yam60][Tru68][Aub76][Sch84]. More
generally, if R′ has constant sign, we can conformally transform to a metric
with scalar curvature R′ only if the sign of the Yamabe invariant agrees
with the sign of the scalar curvature. Hence it is natural to divide conformal
classes into three types, Yamabe positive, negative, and null, depending on
the sign of the Yamabe invariant.

We are interested in solving equation (1.1) on a class of complete Rie-
mannian manifolds that, morally, have a geometry approximating Euclidean
space at infinity. These asymptotically Euclidean (AE) manifolds also pos-
sess a Yamabe invariant, but the relationship between the Yamabe invariant
and problem (1.1) is not well understood in the AE setting, except for some
results concerning Yamabe positive metrics. We have the following conse-
quences of [Max05b] Proposition 3.

1) An AE metric can be conformally transformed to an AE metric with
zero scalar curvature if and only if it is Yamabe positive. As a conse-
quence, since the scalar curvature of an AE metric decays to zero at
infinity, only Yamabe positive AE metrics can be conformally trans-
formed to have constant scalar curvature.

2) Yamabe positive AE metrics have conformally related AE metrics with
everywhere positive scalar curvature, and conformally related AE met-
rics with everywhere negative scalar curvature.

3) If an AE metric admits a conformally related metric with non-negative
scalar curvature, then it is Yamabe positive.
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Yamabe classification and prescribed scalar curvature 1129

Note that it was originally believed that transformation to zero scalar cur-
vature is possible if and only if the manifold is Yamabe non-negative [CB81].
The proof in [CB81] contains an error, and the statement and proof were
corrected in [Max05b]. See also [Fri11], which shows that there exists a
Yamabe-null AE manifold and hence the hypotheses of [CB81] and [Max05b]
are genuinely different.

As a consequence of these three facts, the situation on an AE mani-
fold is somewhat different from the compact setting. In particular, although
positive scalar curvature is a hallmark of Yamabe positive metrics, negative
scalar curvature does not characterize Yamabe-negative metrics. Indeed, we
show in this article that given an AE metric g, and a strictly negative func-
tion R′ that decays to zero suitably at infinity, the conformal class of g
includes a metric with scalar curvature R′ regardless of the sign of the Yam-
abe invariant. So every strictly negative scalar curvature is attainable for
every conformal class, but zero scalar curvature is attainable only for Yam-
abe positive metrics. Thus we are lead to investigate the role of the Yamabe
class in the boundary case of prescribed non-positive scalar curvature.

Rauzy treated the analogous problem on smooth compact Riemannian
manifolds in [Rau95], which contains the following statement. Suppose R′ ≤
0 and R′ 6≡ 0. Observe that if R′ is the scalar curvature of a metric confor-
mally related to some g, then g must be Yamabe-negative, and without loss
of generality we assume that g has constant negative scalar curvature R.
Then there is a metric in the conformal class of g with scalar curvature R′

if and only if

(1.2) aλR′ > −R

where a is the constant from equation (1.1) and where

(1.3) λR′ = inf

{∫
|∇u|2∫
u2

: u ∈W 1,2, u ≥ 0, u 6≡ 0,

∫
R′u = 0

}
.

Rauzy’s condition (1.2) is not immediately applicable on asymptotically Eu-
clidean manifolds, in part because of the initial transformation to constant
negative scalar curvature. However, recalling that R is constant we can write
aλR′ +R as the infimum of

(1.4)

∫
a|∇u|2 +Ru2∫

u2

over functions u supported in the region where R′ = 0. So, loosely speak-
ing, inequality (1.2) expresses the positivity of the first eigenvalue of the
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1130 J. Dilts and D. Maxwell

conformal Laplacian of the constant scalar curvature metric g on the re-
gion {R′ = 0}. The connection between the first eigenvalue of the conformal
Laplacian and prescribed scalar curvature problems is well known, but its
use is more technical on non-compact manifolds where true eigenfunctions
need not exist. For example, [FCS80] shows that a metric on a noncompact
manifold can be conformally transformed to a scalar flat one if and only if
the first eigenvalue of the conformal Laplacian is positive on every bounded
domain.

In this article we extend these ideas in a number of ways to solve the pre-
scribed non-positive scalar curvature problem on asymptotically Euclidean
manifolds, and we obtain a related characterization of the Yamabe class of
an AE metric. In particular, we show the following.

• Every measurable subset V ⊆M can be assigned a number y(V ) that
generalizes the Yamabe invariant of a manifold. The invariant depends
on the conformal class of the AE metric, but is independent of the
conformal representative.

• We can assign every measurable subset V ⊆M a number λδ(V ) that
generalizes the first eigenvalue of the conformal Laplacian. These num-
bers are not conformal invariants, and are not even canonically defined
as they depend on a choice of parameters (a number δ and a choice
of weight function at infinity). Nevertheless the sign of λδ(V ) agrees
with the sign of y(V ), regardless of the choice of these parameters.

• Given a candidate scalar curvature R′ ≤ 0, there is a metric in the
conformal class of g with scalar curvature R′ if and only if {R′ = 0} is
Yamabe positive, i.e., y({R′ = 0}) > 0.

• A metric is Yamabe positive if and only if every scalar curvature R′ ≤ 0
is attained by a metric in its conformal class.

• A metric is Yamabe null if and only if every scalar curvature R′ ≤ 0,
except for R′ ≡ 0, is attained by a metric in its conformal class.

• A metric is Yamabe negative if and only if there is a scalar curvature
R′ ≤ 0, R′ 6≡ 0, that is unattainable within the conformal class. We also
present some results concerning which scalar curvatures have Yamabe
positive zero sets, and hence are attainable.

• Additionally, a metric is Yamabe positive/negative/null if and only
if it admits a conformal compactification to a metric with the same
Yamabe type.
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These results carry over to compact manifolds, where we obtain some
technical improvements. First, Rauzy’s condition (1.2) is equivalent to our
condition y({R′ = 0}) > 0 (or equivalently λδ({R′ = 0}) > 0). But the con-
dition y({R′ < 0}) > 0 can be measured without reference to a particular
background metric. Moreover, we work with fairly general metrics (W 2,p

loc
with p > n/2), and arbitrary scalar curvatures in Lp(M). Finally, there is
an error in Rauzy’s proof, closely related to the gap in Yamabe’s original
attempt at the Yamabe problem, that we correct in our presentation. 1

The prescribed scalar curvature problem on AE manifolds when R′ ≥ 0,
or when R′ changes sign, remains open. Of course if R′ ≥ 0 the problem
can only be solved if the manifold is Yamabe positive, but it is not known
the extent to which this is sufficient. For scalar curvatures that change sign,
little is known for any Yamabe class. Nevertheless, the case R′ ≤ 0 that
we treat here has an interesting application to general relativity; see be-
low. For comparison, we note that the prescribed scalar curvature problem
on a compact manifold is also not yet fully solved. On a Yamabe-positive
manifold it is necessary that R′ > 0 somewhere, and on a Yamabe-null man-
ifold it is necessary that either R′ ≡ 0, or R′ > 0 somewhere and

∫
R′ < 0

when computed with respect to the scalar flat conformal representative. See
[ES86] which shows that these conditions are sufficient in some cases. See
also [BE87] for obstructions posed by conformal Killing fields.

Our interest in this problem stems from its application to general rela-
tivity. Initial data for the Cauchy problem must satisfy certain compatibility
conditions known as the Einstein constraint equations. One approach to find-
ing solutions of the constraint equations, the so-called conformal method,
involves solving a coupled system of PDEs that includes the Lichnerowicz
equation, which in the vacuum case is

(1.5) − a∆φ+Rφ+
n− 1

n
τ2φN−1 − β2φ−N−1 = 0.

Here φ is an unknown conformal factor, τ is a prescribed function (a mean
curvature, in fact), and, for the discussion at hand, β can be thought of as
a prescribed function as well. On a compact Yamabe-negative manifold, the
Lichnerowicz equation (1.5) is solvable if and only if the prescribed scalar
curvature problem (1.1) is solvable for R′ = −τ2 [Max05a]. An analogous
condition holds on AE manifolds [DI16], and hence the prescribed non-
negative scalar curvature problem is intimately connected to the solvability

1We would like to thank Rafe Mazzeo for having spotted our own error in this
regard while this work was in preparation.
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1132 J. Dilts and D. Maxwell

of the Lichnerowicz equation. In particular, on an AE or Yamabe-negative
compact manifold, the Lichnerowicz equation can only be solved if the zero
set of the mean curvature τ is Yamabe positive.

2. Asymptotically Euclidean manifolds

Throughout this article we assume that (M, g) is a connected Riemannian
n-manifold. An asymptotically Euclidean (AE) manifold is a complete mani-
fold such that for some compact K ⊂M , the complement M \K has finitely
many components Ei, with each Ei admitting a distinguished diffeomor-
phism to the exterior of a ball in Rn. The Ei are called the ends of M , and
in end coordinates the metric g decays at infinity to the standard Euclidean
metric e.

In order to make this notion precise we use weighted Sobolev spaces.
Let ρ ≥ 1 be a smooth function on M that agrees with the Euclidean radial
coordinate function near infinity on each end, and let ĝ be a smooth metric
on M that equals the Euclidean metric in a neighborhood of each infinity.
We say that a L1

loc tensor T belongs to W k,p
δ (M) if

(2.1) ‖T‖W k,p
δ (M) :=

k∑
j=0

∥∥∥ρ−δ−np+j |∇jT |∥∥∥
Lp(M)

<∞

where all metric quantities in equation (2.1) use ĝ. When k = 0, we denote
the space by Lpδ(M) with norm ‖ · ‖p,δ. It is easy to see that the spaces W k,p

δ
are independent of the choice of background metric ĝ, and that the associated
norms are equivalent. There are varying conventions in the literature for the
weight parameter δ in equation (2.1), and we follow [Bar86]. Consequently,
functions in W k,p

δ have asymptotic growth O(rδ) on each end. Other prop-
erties of weighted spaces can be found in [Bar86], and they parallel those for
Sobolev spaces on compact manifolds. There are two key subtleties. First,
Lpδ embeds in Lp

′

δ′ if p > p′ and δ < δ′, but this is not true if δ = δ′. Second,
the embedding

(2.2) W k,p
δ ↪→W k−1,p′

δ′

is compact so long as both

(2.3)
1

p
− 1

n
<

1

p′
and δ < δ′.
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We also have Sobolev embedding into spaces of continuous functions. A
function u belongs to L∞δ (M) if

(2.4) ‖u‖L∞δ (M) := sup
M
|u|ρ−δ <∞

and we write C0
δ for the continuous elements of L∞δ . Then W k,p

δ ⊂ C0
δ for

p > n/k [Bar86].
We say that g is a W k,p

τ AE metric if τ < 0 and

(2.5) g − ĝ ∈W k,p
τ .

We will work exclusively with W 2,p
τ AE metrics with p > n/2, and we hence-

forth assume

(2.6) p > n/2 and τ < 0.

A W 2,p
τ metric is Hölder continuous and has curvatures in Lpτ−2. Using the

fact that W 2,p
loc is an algebra, a straightforward computation shows that we

can use a W 2,p
τ metric for the metric quantities in equation (2.1) to obtain

an equivalent norm, so long as 0 ≤ k ≤ 2. We will use this definition of the
norm whenever it is appropriate.

The Laplacian and conformal Laplacian of a W 2,p
τ metric are well-defined

as maps from W 2,q
δ to Lqδ−2 for q ∈ (1, p], they are Fredholm with index 0

if δ ∈ (2− n, 0), and indeed the Laplacian is an isomorphism in this range;
see, e.g., [Bar86] Proposition 2.2. Note that [Bar86] works on a manifold
diffeomorphic to Rn, but the results we cite from [Bar86] extend to manifolds
with general topology and any finite number of ends.

Many of the results in this article hold for both asymptotically Euclidean
and compact manifolds, and indeed we can often treat a W 2,p metric on a
compact manifold as a W 2,p

τ metric on an asymptotically Euclidean manifold
with zero ends, in which case the weight function ρ is irrelevant and could be
set to 1 if desired. For the sake of brevity, throughout Section 3 we interpret
a compact manifold as an AE manifold with zero ends. In the remaining
sections there are differences between the two cases and we assume that AE
manifolds have at least one end.

The weight parameter

(2.7) δ∗ =
2− n

2

plays a prominent role in this paper, and it reflects the minimum decay
needed to ensure

∫
|∇u|2 is finite. At this decay rate, LNδ∗ = LN and we
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1134 J. Dilts and D. Maxwell

have the following inequalities that generalize the Poincaré and Sobolev
inequalities on Rn.

Lemma 2.1. Let (M, g) be a non-compact W 2,p
τ AE manifold. There exists

constants c1, c2 such that

‖∇u‖2 ≥ c1‖u‖2,δ∗(2.8)

‖∇u‖2 ≥ c2‖u‖N(2.9)

for all u ∈W 1,2
δ∗ (M), where δ∗ is defined in equation (2.7) and where N is

the critical Sobolev exponent 2n/(n− 2).

Proof. Suppose to the contrary that we can find a sequence {uk} of smooth
functions with ‖uk‖2,δ∗ = 1 and ‖∇uk‖2 → 0. It then follows that {uk} is

bounded in W 1,2
δ∗ (M) and therefore a subsequence (which we reduce to)

converges to a weak limit u ∈W 1,2
δ∗ (M). Since ∇uk → 0 in L2 we conclude

that u is constant, and since δ∗ < 0 we conclude that u = 0. Moreover, uk →
0 strongly in L2 on compact sets.

Let η be a cutoff function that equals 1 outside of some large ball and
has support contained in the ends of M . Since ∇uk → 0 in L2(M) and since
uk → 0 in L2 on compact sets we see that ∇(ηuk)→ 0 in L2(M). Also, since
uk → 0 in L2 on compact sets it follows that (1− η)uk → 0 in L2

δ∗ . Since
‖uk‖2,δ∗ = 1 and since ‖(1− η)uk‖2,δ∗ → 0 it follows that ‖ηuk‖2,δ∗ → 1.

From the weighted Poincaré inequality [Bar86] Theorem 1.3(ii) we know
that there is a constant c such that for all k,

(2.10) ‖ηuk‖g,2,δ∗ ≤ c‖∇(ηuk)‖g,2

where g is the Euclidean metric on the end. But g is comparable to g on the
end, so this same inequality holds for g after suitably modifying c. This is a
contradiction.

The proof of inequality (2.9) is essentially the same as (2.8). �

Lemma 2.1 fails on compact manifolds due to the presence of the con-
stants. For our proofs that treat the compact and non-compact case simul-
taneously it will be helpful to have a suitable inequality that works in both
settings. Observe that for any δ > 0 there exists c2 such that

(2.11) ‖u‖2,δ + ‖∇u‖2 ≥ c2‖u‖N .

This follows from the standard Sobolev inequality on compact manifolds
and follows trivially from inequality (2.9) on non-compact manifolds.
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3. The Yamabe invariant of a measurable set

Throughout this section, let (M, g) be a W 2,p
τ AE manifold with p > n/2

and τ < 0, with the convention that a compact manifold is an AE manifold
with zero ends. For u ∈ C∞c (M), u 6≡ 0, the Yamabe quotient of u is

(3.1) Qyg(u) =

∫
a|∇u|2 +Ru2

‖u‖2N

and the Yamabe invariant of g is the infimum of Qyg taken over C∞c (M).
Here and in other notations we will drop the decoration g when the metric is
understood. Our principal goal in this section is to define a similar conformal
invariant for arbitrary measurable subsets ofM and to analyze its properties.

It will be convenient to work with a complete function space, and we
claim that the domain of Qy can be extended to W 1,2

δ∗ \ {0} where δ∗ is de-
fined in equation (2.7). To see this, first note from the embedding properties
of weighted Sobolev spaces that W 1,2

δ∗ embeds continuously in LN = LNδ∗ and

that u 7→ ∇u is continuous from W 1,2
δ∗ to L2; indeed δ∗ is the minimum decay

needed to ensure these conditions. To treat the scalar curvature term in Qy,
we have the following.

Lemma 3.1. The map

(3.2) u 7→
∫
Ru2

is weakly continuous on W 1,2
δ∗ . Moreover, for any δ > δ∗ and ε > 0, there is

constant C > 0 such that

(3.3)

∣∣∣∣∫ Ru2
∣∣∣∣ ≤ ε‖∇u‖22 + C‖u‖22,δ.

Proof. Recall that R ∈ Lpτ−2 where p > n/2 and τ < 0. So there is an s ∈
(0, 1) such that

(3.4)
1

p
= s

2

n
.
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Set σ = δ∗ − τ/2. Since s < 1 and σ > δ∗, W 1,2
δ∗ embeds compactly in W s,2

σ ,

where the interpolation space W s,2
σ is described in [Tri76a][Tri76b]. More-

over, W s,2
σ embeds continuously in Lqσ where

(3.5)
1

q
=

1

2
− s

n
=

1

2

(
1− 1

p

)
.

Since

(3.6)
1

p
+

2

q
= 1

and since

(3.7) τ − 2 + 2σ = 2δ∗ − 2 = −n,

Hölder’s inequality implies the map (3.2) is continuous on Lqσ, and from the
previously mentioned compact embedding the map (3.2) is therefore weakly
continuous on W 1,2

δ∗ . Moreover, Hölder’s inequality implies there is a constant
C such that

(3.8)

∣∣∣∣∫ Ru2
∣∣∣∣ ≤ C‖u‖2W s,2

σ
.

From interpolation [Tri76b] we have

(3.9) ‖u‖W s,2
σ
≤ C‖u‖s

W 1,2
δ∗
‖u‖1−s2,δ

where δ satisfies

(3.10) sδ∗ + (1− s)δ = σ.

Since σ = δ∗ − τ/2, we find

(3.11) δ = δ∗ − τ/2

1− s
,

and since τ < 0 and s ∈ (0, 1), δ > δ∗. Indeed, by raising τ close to zero, or
lowering p close to n/2 (which raises s up to 1), we can obtain any partic-
ular δ > δ∗. We conclude from inequalities (3.8), (3.9) and the arithmetic-
geometric mean inequality that

(3.12)

∣∣∣∣∫ Ru2
∣∣∣∣ ≤ ε‖∇u‖2W 1,2

δ∗
+ C‖u‖22,δ.
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This establishes inequality (3.3) on a compact manifold, and we obtain (3.3)
in the non-compact case by applying the Poincaré inequality (2.8). �

Corollary 3.2. The map

(3.13) u 7→
∫
a|∇u|2 +Ru2

is weakly upper semicontinuous on W 1,2
δ∗ .

Proof. This follows from the weak upper semicontinuity of u 7→
∫
|∇u|2

along with Lemma 3.1. �

Definition 3.3. Let V ⊆M be a measurable set. The test functions sup-
ported in V are

(3.14) A(V ) :=
{
u ∈W 1,2

δ∗ (M) : u 6≡ 0, u|V c = 0
}
.

Definition 3.4. Let V ⊆M be measurable. The Yamabe invariant of V is

(3.15) yg(V ) = inf
u∈A(V )

Qy(u).

If V has measure zero, and hence A(V ) is empty, we use the convention
yg(V ) =∞.

In principle, the infimum in the definition of the Yamabe invariant could
be −∞. The following estimate, which will be useful later in the paper as
well, shows that this is not possible.

Lemma 3.5. Let δ ∈ R. There exist positive constants C1 and C2 such that
for all u ∈W 1,2

δ∗ ,

(3.16) ‖u‖W 1,2
δ∗
≤ C1

[∫
a|∇u|2 +Ru2

]
+ C2‖u‖22,δ.

Proof. It is enough to establish inequality (3.16) assuming δ > δ∗. From
Lemma 3.1, there is a constant C such that

(3.17)

∣∣∣∣∫ Ru2
∣∣∣∣ ≤ a

2

∫
|∇u|2 + C‖u‖22,δ
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and hence

(3.18)

∫
a|∇u|2 +Ru2 ≥ a

2

∫
|∇u|2 − C‖u‖22,δ.

Consequently

(3.19)

∫
|∇u|2 ≤ 2

a

[∫
a|∇u|2 +Ru2

]
+

2C

a
‖u‖22,δ.

Inequality (3.16) now follows trivially in the compact case, and follows from
the Poincaré inequality (2.8) in the non-compact case. �

Lemma 3.6. For every measurable set V , y(V ) > −∞.

Proof. Let uk be some minimizing sequence for Qy normalized so that
‖uk‖N = 1. Lemma 3.5 and the continuous embedding LN ↪→ L2

δ implies

that uk is uniformly bounded in W 1,2
δ∗ . Estimate (3.3) then implies that

Q(uk) is uniformly bounded below. �

As one might expect, y(V ) is a conformal invariant.

Lemma 3.7. Suppose g′ = φN−2g is a conformally related metric with φ−
1 ∈W 2,p

τ . Then

(3.20) yg′(V ) = yg(V ).

Proof. The conformal transformation laws

(3.21)
dVg′ = φNdVg

Rg′ = φ1−N (−a∆gφ+Rgφ)

together with an integration by parts imply

(3.22)

∫
M
|∇u|2g′ +Rg′u

2 dVg′ =

∫
M
|∇(φu)|2g +Rg(φu)2 dVg

for all u ∈W 1,2
δ∗ (M). Since ‖ · ‖g′,N = ‖φ · ‖g,N , it follows that

(3.23) Qyg′(u) = Qyg(φu)

for all u ∈W 1,2
δ∗ (M) as well. Since A(V ) is invariant under multiplication by

φ, yg′(V ) = yg(V ). �
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We will primarily be interested in the sign of the Yamabe invariant.

Definition 3.8. A measurable set V ⊆M is called Yamabe positive, nega-
tive, or null depending on the sign of y(V ).

The Yamabe invariant involves the critical Sobolev exponent N and
hence can be technically difficult to work with. On a compact manifold,
however, the sign of the Yamabe invariant can be determined from the sign
of the first eigenvalue of the conformal Laplacian. These eigenvalues en-
joy superior analytical properties, and we now describe how to extend this
approach to measurable subsets of compact or asymptotically Euclidean
manifolds.

For δ > δ∗ we define the Rayleigh quotients

(3.24) Qg,δ(u) =

∫
a|∇u|2 +Ru2

‖u‖22,δ
.

Our previous arguments for the Yamabe quotient imply that Qg,δ is well-

defined for any u ∈W 1,2
δ∗ \ {0}, and indeed Qg,δ is continuous on this set.

Definition 3.9. The first δ-weighted eigenvalue of the conformal Laplacian
is

(3.25) λg,δ(V ) = inf
u∈A(V )

Qg,δ(u).

By convention, if V has measure zero then λg,δ(V ) =∞. We will write Qδ
and λδ when the metric is understood.

The value of λδ(V ) is not particularly meaningful; it depends on the
choice of weight function ρ and it is not a conformal invariant. Nevertheless,
its sign is a conformal invariant independent of the choice of ρ.

Proposition 3.10. For any measurable set V ⊆M , the following are equiv-
alent:

1) y(V ) > 0.

2) λδ(V ) > 0 for all δ > δ∗.

3) λδ(V ) > 0 for some δ > δ∗.

Proof. We assume that V has positive measure since the equivalence is triv-
ial otherwise. The implication 1⇒ 2 follows from the inequality ‖u‖2,δ ≤
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C‖u‖N applied to Qy. The implication 2⇒ 3 is trivial. So it remains to
show that 3⇒ 1.

Let V be a measurable set with λδ(V ) > 0 for some δ > δ∗. Suppose to
produce a contradiction that y(V ) ≤ 0. Then there is a sequence uk ∈ A(V ),
normalized so that

∫
a|∇uk|2 + ‖uk‖22,δ = 1, such that Qy(uk) ≤ 1/k. Then

λδ(V )‖uk‖22,δ ≤
∫
a|∇uk|2 +Ru2k ≤

1

k
‖uk‖2N(3.26)

≤ c

k

[∫
a|∇uk|2 + ‖uk‖22,δ

]
≤ c

k

by the Sobolev inequality (2.11). In particular, ‖uk‖22,δ → 0. Using inequality
(3.26), we also find that

(3.27)

∫
Ru2k ≤

c

k
−
∫
a|∇u|2 → −1.

However, by Lemma 3.1, there exists C > 0 such that

(3.28)

∣∣∣∣∫ Ru2k

∣∣∣∣ ≤ a

2
‖∇uk‖22 + C‖uk‖22,δ →

1

2
,

which is a contradiction. �

Corollary 3.11. For a measurable set V ⊆M , the signs of y(V ) and λδ(V )
are the same for any δ > δ∗.

Proof. Proposition 3.10 shows that y(V ) is positive if and only if λδ(V ) is
also. Choosing an appropriate test function shows that y(V ) is negative if
and only if λδ(V ) is also. Together, these imply that y(V ) is zero if and only
if λδ(V ) is. �

The decay rate δ∗ is critical for Corollary 3.11. For δ < δ∗, W 1,2
δ∗ is not

contained in L2
δ and hence our definition of λδ does not extend to this range.

One could minimize Qδ over smooth functions instead to define λδ, but using
rescaled bump functions on large balls as test functions it can be shown that
λδ(Rn) = 0 for δ < δ∗ despite the fact that Lemma 2.1 implies y(Rn) > 0.
Note that we have not addressed equality in the threshold case δ = δ∗.

We now turn to continuity properties of λδ. Monotonicity is obvious from
the definition.

Lemma 3.12. Let δ > δ∗. If V1 and V2 are measurable sets with V1 ⊆ V2,
then λδ(V1) ≥ λδ(V2).
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Note that Lemma 3.12 holds even for V1 = ∅, and that this relies on
our definition λδ(∅) = y(∅) =∞. To obtain more refined properties of λδ,
we start by showing that minimizers of the Rayleigh quotients exist and are
generalized eigenfunctions.

Proposition 3.13. Let V be a measurable set with positive measure and let
δ > δ∗. There exists a non-negative u ∈ A(V ) that minimizes Qδ over A(V ).
Moreover, on any open set contained in V ,

(3.29) − a∆u+Ru = λδ(V )ρ2(δ
∗−δ)u.

Proof. Let uk be a minimizing sequence in A(V ); this uses the hypothesis
that V has positive measure. Without loss of generality we may assume that
each ‖uk‖2,δ = 1. Since

(3.30) a

∫
M
|∇uk|2 +Ru2k = Qδ(uk),

and since uk is a minimizing sequence, Lemma 3.5 implies {uk} is bounded
in W 1,2

δ∗ (M) and hence converges weakly in W 1,2
δ∗ (M) and strongly in L2

δ(M)

to a limit u ∈W 1,2
δ∗ (M) with ‖u‖2,δ = 1. Since each uk = 0 on V c, from the

strong L2
δ convergence we see u = 0 on V c, and since u 6≡ 0 we conclude that

u ∈ A(V ). Weak upper semicontinuity (Corollary 3.2) implies u minimizes
Qδ over the test functions A(V ). Noting that |u| is also a minimizer, we may
assume u ≥ 0.

Suppose V contains an open set Ω. Then any φ ∈ C∞c (Ω) with φ 6≡ 0
belongs to A(V ), and we can differentiate Qδ(u+ tφ) at t = 0 to find u is a
weak solution in Ω of equation (3.29). �

Lemma 3.14 (Continuity from above). Let V ⊆M be a measurable
set. If {Vk} is a decreasing sequence of measurable sets with ∩Vk = V , then

(3.31) lim
k→∞

λδ(Vk) = λδ(V ).

Proof. From the elementary monotonicity of λδ, Λ = limk→∞ λδ(Vk) exists
and

(3.32) λδ(Vk) ≤ Λ ≤ λδ(V )

for each k. So it is enough to show that

(3.33) Λ ≥ λδ(V ).
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We may assume that Λ is finite, for inequality (3.33) is trivial otherwise. As a
consequence, each Vk is nonempty and Proposition 3.13 provides minimizers
uk of Qδ over A(Vk) satisfying ‖uk‖2,δ = 1. For each k, since ‖uk‖2,δ = 1,

(3.34)

∫
a|∇uk|2 +Ru2k ≤ Λ.

From inequality (3.34) and the boundedness of the sequence in L2
δ(M),

Lemma 3.5 implies the sequence is bounded in W 1,2
δ∗ (M). A subsequence con-

verges weakly inW 1,2
δ∗ (M) and strongly in L2

δ(M) to a limit v with ‖v‖2,δ = 1.
From weak upper semicontinuity (Corollary 3.2) we conclude Qδ(v) ≤ Λ as
well. Moreover, v ∈ A(V ) since v = 0 on V c

k . So λδ(v) ≤ Λ. �

Note that Lemma 3.14 is false for the Yamabe invariant. For example, one
can take a sequence of balls in Rn that shrink down to the empty set. It is
easy to see that the Yamabe invariant is scale invariant and hence is a finite
constant along the sequence. Yet the Yamabe invariant of the empty set
is infinite. In contrast, if Vn ↘ ∅, Lemma 3.14 implies λδ(Vn)→∞, and in
particular at some point along the sequence λδ(Vn) > 0. The following result,
which is an extension of [Rau95] Lemma 2 to the AE setting, shows that
in fact λδ(V ) is positive so long as a certain weighted volume is sufficiently
small.

Lemma 3.15 (Small sets are Yamabe positive). For any µ > n, there
exists C > 0 such that if Volµ(V ) :=

∫
V ρ
−µ < C, V is Yamabe positive.

Proof. Suppose that u ∈ A(V ). Define δ by (−2δ − n)n2 = −µ. Note that
µ > n implies that δ > δ∗. Then, by Hölder’s inequality,

‖u‖22,δ =

∫
u2ρ−2δ−n(3.35)

≤
(∫

uN
)2/N (∫

V
ρ(−2δ−n)

n

2

)2/n

= ‖u‖2NVolµ(V )2/n.

By the Sobolev inequality (2.11), there exists C1 such that

(3.36) ‖u‖2N ≤ C1

[∫
a|∇u|2 + ‖u‖22,δ

]
.

We also note that Lemma 3.1 implies there exists C2 such that

(3.37) − C2‖u‖22,δ ≤
1

2

∫
a|∇u|2 +

∫
Ru2.
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Let η be defined by ηVolµ(V )2/nC1 = 1
2 . Using inequalities (3.35)–(3.37),

we calculate

(η − C2)‖u‖22,δ ≤ η‖u‖2NVolµ(V )2/n +

∫
Ru2 +

1

2

∫
a|∇u|2(3.38)

≤ ηVolµ(V )2/nC1

[∫
a|∇u|2 + ‖u‖22,δ

]
+

∫
Ru2 +

1

2

∫
a|∇u|2

=

∫ (
a|∇u|2 +Ru2

)
+

1

2
‖u‖22,δ.

Dividing through by ‖u‖22,δ, inequality (3.38) reduces to

(3.39) η − C2 −
1

2
≤ Qδ(u).

As Volµ(V )→ 0, η →∞. Thus there is a C > 0 such that if Volµ(V ) <
C, then Qδ(u) has a uniform positive lower bound for all u ∈ A(V ). Thus
λδ(V ) > 0, and so V is Yamabe positive by Corollary 3.11. �

In Section 5 below we discuss the relationship between the Yamabe in-
variant of an AE manifold and its compactification. After compactification,
for µ = 2n, the condition Volµ(V ) < C corresponds to the condition that
the usual volume of the compactified set is sufficiently small. This is exactly
Rauzy’s condition, and the other choices of µ provide a mild generalization
of his result.

Lemma 3.16 (Strict monotonicity at connected, open sets). Let
δ > δ∗ and let Ω be a connected open set. For any measurable set E in Ω
with positive measure,

(3.40) λδ(Ω \ E) > λδ(Ω).

Proof. Let V = Ω \ E. We may assume V has positive measure, for inequal-
ity (3.40) is trivial otherwise.

Suppose to the contrary that λδ(V ) = λδ(Ω). Since V has positive mea-
sure, Proposition 3.13 provides a function u ∈ A(V ) with Qδ(u) = λδ(V ).
Hence u also is a minimizer of Qδ over A(Ω), and Proposition 3.13 implies



i
i

“5-Dilts” — 2019/1/3 — 22:31 — page 1144 — #18 i
i

i
i

i
i

1144 J. Dilts and D. Maxwell

that u weakly solves

(3.41) − a∆u+
[
R− λδρ2(δ

∗−δ)
]
u = 0

on Ω. Local regularity implies that u ∈W 2,p
loc (Ω), and we may assume after

adjusting u on a set of zero measure that u is continuous. Since E has
positive measure, we can still conclude that u vanishes at some point in
Ω. Following the argument of Lemma 4 from [Max05b], we may apply the
weak Harnack inequality of [Tru73] to conclude that u vanishes everywhere
on the connected set Ω, and hence on all of M . Since u ∈ A(Ω), this is a
contradiction. �

The connectivity hypothesis in Lemma 3.16 is necessary to obtain strict
monotonicity. For example, two disjoint unit balls in Rn have the same first
eigenvalue as a single unit ball. On the other hand, the assumption that Ω
is open is not optimal, and relaxing this condition would require a suitable
replacement for the weak Harnack inequality.

Although we have not established continuity from below for λδ, it holds
in certain cases. The following is a prototypical result that suffices for our
purposes.

Lemma 3.17 (Continuity from below; prototype). Suppose V is mea-
surable. Let x0 ∈M and let Br(x0) be the ball of radius r about x0. Then
for any δ > δ∗

(3.42) lim
r→0

λδ(V \Br) = λδ(V ).

Proof. Let u be a function in A(V ) that minimizes Qδ. Let χr be a ra-
dial bump function that equals 0 on Br(x0), equals 1 outside B2r(x0), and
has gradient bounded by 2/r. Defining ur = χru we claim that ur → u in
W 1,2
δ∗ (M). Assuming this for the moment, we conclude from the continuity

of Qδ that

(3.43) λδ(V ) ≤ λδ(V \Br) ≤ Qδ(ur)→ Qδ(u) = λδ(V )

and hence we obtain equality (3.42).
To show ur → u in W 1,2

δ∗ , since ur → u in L2
δ∗ , it is enough to show that∫

|∇(u− ur)|2 → 0. However,

(3.44)

∫
|∇(u− ur)|2 ≤ 2

∫
(1− χr)2|∇u|2 + u2|∇(1− χr)|2.
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The first term on the right-hand side of inequality (3.44) evidently converges
to zero. For the second, we note from Hölder’s inequality that

(3.45)

∫
B2r

u2 ≤
[∫

B2r

uN
] 2

N
[∫

B2r

1

] 2

n

≤ Cr2
[∫

B2r

uN
] 2

N

.

Since u ∈ LNloc,
∫
B2r

uN → 0 as r → 0. Since ∇(1− χr) is bounded by c/r,
we conclude that the second term of the right-hand side of inequality (3.44)
also converges to zero. �

4. Prescribed non-positive scalar curvature

In this section we prove the following necessary and sufficient condition for
being able to conformally transform to non-positive scalar curvature for AE
manifolds with at least one end.

Theorem 4.1. Let (Mn, g) be a W 2,p
τ AE manifold with p > n/2 and τ ∈

(2− n, 0). Suppose R′ ∈ Lpτ−2 is non-positive. Then the following are equiv-
alent:

1) There exists a positive function φ with φ− 1 ∈W 2,p
τ and such that the

scalar curvature of g′ = φN−2g is R′.

2) {R′ = 0} is Yamabe positive.

For compact Yamabe negative manifolds we have the following analogous
result. Since Rauzy’s condition (1.2) is equivalent to the set {R′ = 0} being
Yamabe positive, this is a generalization to lower regularity and a correction
of the proof of part of [Rau95] Theorem 1.

Theorem 4.2. Let (Mn, g) be a W 2,p compact Yamabe negative manifold
with p > n/2. Suppose R′ ∈ Lp is non-positive. Then the following are equiv-
alent:

1) There exists a positive function φ with φ ∈W 2,p and such that the
scalar curvature of g′ = φN−2g is R′.

2) {R′ = 0} is Yamabe positive.

For the most part, the proof of Theorem 4.2 can be obtained from the
proof of Theorem 4.1 by treating a compact manifold as an asymptotically
Euclidean manifold with zero ends. So we focus on Theorem 4.1 and then
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present the few additional arguments needed for Theorem 4.2 at the end of
the section.

Turning to Theorem 4.1, the proof that 1) implies 2) is short, so we delay
it and concentrate on the direction 2) implies 1). Suppose that {R′ = 0} is
Yamabe positive. We will show that we can make the desired conformal
change via a sequence of results proved over the remainder of this section.
It suffices to work under the following simplifying hypotheses.

1) We may assume that the prescribed scalar curvature R′ is bounded
since Lemma 4.3, which we prove next, shows that we can lower scalar
curvature after first solving the problem for a scalar curvature that is
truncated below.

2) We may assume {R′ = 0} contains a neighborhood of infinity, since
continuity from above (Lemma 3.14) shows we can truncate R′ in a
“small” neighborhood of infinity such that its zero set remains Yamabe
positive, and we can subsequently lower scalar curvature after solving
the modified problem.

3) We may assume that the initial scalar curvature satisfies R = 0 in
a neighborhood of infinity, since Lemma 4.4, which we prove below,
shows we can initially conformally transform to such a scalar curvature,
and since the hypotheses of Theorem 4.1 are conformally invariant.

Lemma 4.3. Suppose (M, g) is a W 2,p
τ AE manifold with p > n/2 and

τ ∈ (2− n, 0). Suppose R′ ∈ Lpτ−2. If Rg ≥ R′, then there exists a positive φ

with φ− 1 ∈W 2,p
τ such that g′ = φN−2g has scalar curvature R′.

Proof. We seek a solution to −a∆φ+Rφ = R′φq−1. Note that 0 is a subso-
lution and, since R ≥ R′, 1 is a supersolution. By [Max05b] Proposition 2,
there exists a solution φ with 0 ≤ φ ≤ 1 and φ− 1 ∈W 2,p

τ . Since φ ≥ 0 solves
−a∆φ+ (R−R′φq−2)φ = 0, and since φ→ 1 at infinity, the weak Harnack
inequality [Tru73] implies φ is positive. �

Lemma 4.4. Suppose (M, g) is a W 2,p
τ AE manifold with p > n/2 and

τ ∈ (2− n, 0). There exists φ > 0 with φ− 1 ∈W 2,p
τ such that the metric

g′ = φN−2g has zero scalar curvature on some neighborhood of infinity.

Proof. We prove the result for a manifold with one end; the extension to
several ends can be done by repeated application of our argument. Let Er
be the region outside the coordinate ball of radius r in end coordinates. By
Lemma 3.15, y(Er) > 0 for r large enough. Following [Max05b] Proposition
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3 we claim that

(4.1) − a∆ + ηR : {u ∈W 2,p
τ (ER) : u|∂Er = 0} → Lpτ−2(ER)

is an isomorphism for all η ∈ [0, 1]. Because we assume homogenous bound-
ary conditions, the argument in [Bar86] Propositions 1.6 through 1.14 show-
ing that −a∆ + ηR is Fredholm of index zero requires no changes except
imposing the boundary condition. Suppose, then, to produce a contradic-
tion, that there exists a nontrivial u in the kernel. An argument parallel to
[Max05b] Lemma 3 implies u ∈W 2,p

τ ′ for any τ ′ ∈ (2− n, 0). In particular,
the extension of u by zero to M belongs to W 1,2

δ∗ (M) and hence also to
A(Er). Integration by parts implies Qy(u) = 0, which contradicts the fact
that Er is Yamabe positive. Thus −a∆ + ηR is an isomorphism.

Let uη be the nontrivial solution in {u ∈W 2,p
τ (Er) : u|∂Er = 0} of

(4.2) − a∆uη + ηRuη = −ηR.

Then φη := uη + 1 solves

(4.3) − a∆φη + ηRφη = 0

on Er. Let I = {η ∈ [0, 1] : φη > 0}. Since φ0 ≡ 1, I is nonempty. The set
of uη such that uη > −1 is open in W 2,p

τ ⊂ C0
τ . Thus, by the continuity

of the map η 7→ uη, I is open. Suppose η0 ∈ I. If φη0 = 0 somewhere, the
weak Harnack inequality [Tru73] implies that φη0 ≡ 0, which contradicts
the fact that φη0 → 1 at infinity. Thus φη0 > 0 on Er, and so I is closed.
Thus I = [0, 1], and φ1 > 0. Let φ be an arbitrary positive W 2,p

τ extension
of φ1|Er . �

Consider the family of functionals

(4.4) Fq(u) =

∫
a|∇u|2 +

∫
R(u+ 1)2 − 2

q

∫
R′ |u+ 1|q

for q ∈ [2, N).
Broadly, the strategy of the proof is to construct minimizers uq of the

subcritical functionals, and then establish sufficient control to show that
(1 + uq) converges in the limit q → N to the desired conformal factor. The
following uniform coercivity estimate, which we prove following a variation
of techniques found in [Rau95], is the key step in showing the existence of
subcritical minimizers.
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Proposition 4.5 (Coercivity of Fq). Suppose {R′ = 0} is Yamabe pos-
itive, let δ > δ∗, and let q0 ∈ (2, N). For every B ∈ R there is a K > 0
such that for all q ∈ [q0, N) and u ∈W 1,2

δ∗ with u ≥ −1, if ‖u‖2,δ > K then
Fq(u) > B.

Proof. For η > 0 let

(4.5) Aη =

{
u ∈W 1,2

δ∗ , u ≥ −1 :

∫
|R′||u|2 ≤ η‖u‖22,δ

∫
|R′|
}
.

Loosely speaking, u ∈ Aη if it is concentrated on the zero set

(4.6) Z = {R′ = 0},

with greater concentration as η → 0.
Fix L ∈ (0, λδ(Z)). We first claim that there is an η0 < 1 such that if

u ∈ Aη0 , then

(4.7)

∫
a|∇u|2 +Ru2 ≥ L‖u‖22,δ.

Suppose to the contrary that this is false, and let ηk be a sequence converging
to 0. We can then construct a sequence vk with each vk ∈ Aηk such that
‖vk‖2,δ = 1 and

(4.8)

∫
a|∇vk|2 +Rv2k < L.

Note that L is finite even if λδ(Z) =∞. So from the boundedness of the
sequence vk in L2

δ and Lemma 3.5, the sequence is bounded in W 1,2
δ∗ , and a

subsequence (which we reduce to) converges weakly in W 1,2
δ∗ and strongly in

L2
δ to a limit v with ‖v‖2,δ = 1. Now

0 ≤
∫
|R′|v2k ≤ ηk

∫
|R′| → 0.(4.9)

Since |R′|v2k → |R′|v2 in L1 we conclude v = 0 outside of Z. From weak upper
semicontinuity (Corollary 3.2) we conclude

(4.10)

∫
a|∇v|2 +Rv2 ≤ L
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as well. However, since v is supported in Z

(4.11)

∫
a|∇v|2 +Rv2 ≥ λδ(Z)‖v‖22,δ = λδ(Z) > L,

which is a contradiction, and establishes inequality (4.7).
Let B ∈ R and suppose q ∈ (q0, N), u ∈W 1,2

δ∗ and u ≥ −1. We wish to
show that there is a K independent of q so that if ‖u‖2,δ > K then Fq(u) >
B. It is enough to find a choice of K under two cases depending on whether
u ∈ Aη0 or not. When u is concentrated on Z, the coercivity will follow from
the fact that Z is Yamabe positive (as used to obtain inequality (4.7)), and
when u is not concentrated on Z the coercivity will follow from the fact that
R′ < 0 away from Z.

Suppose that u 6∈ Aη0 , so

(4.12)

∫
|R′||u|2 > η0‖u‖22,δ

∫
|R′|.

We calculate

Fq(u) =

∫
a|∇u|2 +

∫
R(u+ 1)2 +

2

q

∫
|R′||u+ 1|q(4.13)

≥
∫
a|∇u|2 − 2

∫
|R|(u2 + 1) +

2

q

∫
|R′|(|u|q − 1)

≥
∫
a

2
|∇u|2 − C‖u‖22,δ − 2

∫
|R|+ 2

q

∫
|R′|(|u|q − 1)

≥
∫
a

2
|∇u|2 − C‖u‖22,δ − 2

∫ (
|R|+ 1

q
|R′|
)

+
2

q

∫
|R′||u|q.

Here we have applied Lemma 3.1 to determine the constant C > 0, and
have used the fact that (u+ 1)q ≥ |u|q − 1 for u ≥ −1. Inequality (4.12)
and Hölder’s inequality imply

(4.14) η0‖u‖22,δ
∫
|R′| <

∫
|R′||u|2 ≤

(∫
|R′||u|q

) 2

q
(∫
|R′|
)1− 2

q

and hence

(4.15) (η0)
q

2 ‖u‖q2,δ
∫
|R′| ≤

∫
|R′||u|q.
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Using the fact that η0 < 1 and q < N , inequalities (4.13) and (4.15) imply
at last that

Fq(u) ≥
∫
a

2
|∇u|2 − C‖u‖22,δ(4.16)

− 2

∫ (
|R|+ 1

q
|R′|
)

+
2

q
(η0)

N

2 ‖u‖q2,δ
∫
|R′|.

We note that
∫
|R′| > 0, for otherwise condition (4.12) is impossible, and

hence the coefficient on ‖u‖q2,δ is positive. Since q > 2, there is a K such
that if ‖u‖2,δ > K, Fq(u) ≥ B. Note that since C is independent of q ≥ q0,
so is the choice of K.

Now suppose u ∈ Aη0 , so inequality (4.7) holds. Then for any ε > 0,

Fq(u) ≥
∫
a|∇u|2 +

∫
R(u+ 1)2(4.17)

=

∫
a|∇u|2 +Ru2 +

∫
R
[
(u+ 1)2 − u2

]
≥
∫
a|∇u|2 +Ru2 −

∫
|R|
[
εu2 + 1 +

1

ε

]
≥ (1− ε)

[∫
a|∇u|2 +Ru2

]
+ ε

∫
(a|∇u|2 − 2|R|u2)

−
(

1 +
1

ε

)∫
|R|

≥ (1− ε)L‖u‖22,δ + ε

(∫
a

2
|∇u|2 − C‖u‖22,δ

)
−
(

1 +
1

ε

)∫
|R|

≥ [(1− ε)L − εC] ‖u‖22,δ + ε

∫
a

2
|∇u|2 −

(
1 +

1

ε

)∫
|R|.

Here we have applied Lemma 3.1 to determine the constant C, inequality
(4.7), and the fact that (u+ 1)2 − u2 ≤ εu2 + 1 + (1/ε) for all u ≥ −1 and
all ε > 0. We can pick ε sufficiently small such that the coefficient of ‖u‖2,δ
in the final expression of inequality (4.17) is at least L/2. Hence there is a
K such that if ‖u‖2,δ ≥ K, Fq(u) ≥ B. Since C is independent of q ≥ q0, so
is ε and the choice of K. �

Lemma 4.6. For q < N the operator Fq is weakly upper semicontinuous
on W 1,2

δ∗ .
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Proof. Lemma 3.1 together with the weak continuity of continuous linear
maps implies

(4.18) u 7→
∫
a|∇u|2 +R(u+ 1)2

is weakly upper semicontinuous on W 1,2
δ∗ . Hence it suffices to show that

(4.19) u 7→
∫
R′|u+ 1|q−1

is weakly continuous on W 1,2
δ∗ . But fixing δ > δ∗ we know that the embedding

W 1,2
δ∗ ↪→ Lqδ is compact and that the map (4.19) is continuous on Lqδ. �

We now obtain existence of subcritical minimizers from the coercivity of
Fq, along with uniform estimates in W 1,2

δ∗ for the minimizers.

Lemma 4.7. For any q0 ∈ (2, N), for each q ∈ [q0, N), there exists uq >
−1, bounded in W 1,2

δ∗ independent of q, which minimizes Fq and is a weak
solution of

(4.20) − a∆(uq + 1) +R(uq + 1) = R′(uq + 1)q−1.

Moreover, uq ∈W 2,p
σ for every σ ∈ (2− n, 0).

Proof. Let B =
∫
R+

∫
|R′|, let δ > δ∗, and let q0 ∈ (2, N). Observe that

(4.21) Fq(0) ≤ B

for all q ∈ (q0, N). Let K be the constant associated with B, δ and q0 ob-
tained from Proposition 4.5. Fix q ∈ (q0, N) and let uk be a minimizing
sequence in W 1,2

δ∗ for Fq. Without loss of generality, we can assume each
uk ≥ −1 since Fq(uk) = Fq(max(uk,−2− uk)). We can assume that each
Fq(uk) ≤ Fq(0) ≤ B and hence Proposition 4.5 implies each ‖uk‖2,δ ≤ K.
Since

(4.22)

∫
a|∇uk|2 +R(1 + uk)

2 ≤ Fq(uk) < B

as well, Lemma 3.5 implies that there is a C > 0 such that each ‖uk‖W 1,2
δ∗
≤

C. Note that C depends on K and B, which are independent of q ≥ q0. A
subsequence (which we reduce to) converges weakly in W 1,2

δ∗ and strongly in
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Lqδ to a limit uq ≥ −1. Lemma 4.6 shows Fq is weakly upper semicontinuous,
so uq is a minimizer. Moreover, ‖uq‖W 1,2

δ∗
≤ C as well.

Since uq is a minimizer, we find that (1 + uq) is a weak solution of

(4.23)
[
−a∆ +R−R′(1 + uq)

q−2] (1 + uq) = 0.

Since R′ ∈ L∞loc and since uq ∈ LNloc, an easy computation shows that R′(1 +

uq)
q−2 ∈ Lrloc for some r > n/2. Since R ∈ Lploc and g ∈W 2,p

loc with p > n/2,
we find that the coefficients of the differential operator in brackets in equa-
tion (4.23) satisfy the hypotheses of the weak Harnack inequality of [Tru73].
Hence, since 1 + uq ≥ 0 and since the manifold is connected, either 1 + uq >
0 everywhere or uq ≡ −1. But uq decays at infinity, and so we conclude that
1 + uq is everywhere positive.

We now bootstrap the regularity of uq, which we know initially belongs
to LNδ∗ . Fix σ ∈ (2− n, 0). Suppose it is known that for some r ≥ N that
uq ∈ Lrloc. From equation (4.23), uq solves

(4.24) − a∆uq = R′(1 + uq)
q−1 −R(1 + uq).

Recall that R′ ∈ L∞loc and R ∈ Lploc and both have compact support. Then
R′(1 + uq)

q−1 belongs to Lt1σ with

(4.25)
1

t1
=
q − 1

r
≤ 1

r
+
q − 2

N
<
N − 1

N

and R(1 + uq) belongs to Lt2σ with

(4.26)
1

t2
=

1

r
+

1

p
.

Let t = min(t1, t2) and note that t < p since t2 < p. From [Bar86] Proposi-
tion 1.6 we see that uq is a strong solution of (4.24) and from [Bar86] Propo-
sition 2.2, which implies ∆ : W 2,t

σ → Ltσ is an isomorphism for 1 < t ≤ p, we
conclude that uq ∈W 2,t

σ . From Sobolev embedding we obtain uq ∈ Lr
′

σ where

(4.27)
1

r′
=

1

t
− 2

n
,
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so long as 1/t > n/2, at which point the bootstrap changes as discussed
below. Now

1

t1
− 2

n
≤ 1

r
+
q − 2

N
− 2

n
(4.28)

=
1

r
+

q

N
−
[

2

N
+

2

n

]
=

1

r
+
[ q
N
− 1
]
.

Also,

(4.29)
1

t2
− 2

n
=

1

r
+

[
1

p
− 2

n

]
.

Let ε = min(1− q/N, 2/n− 1/p) and note that ε is positive and independent
of r. Inequalities (4.28) and (4.29) imply

(4.30)
1

r′
≤ 1

r
− ε

Hence, after a finite number of iterations (depending on the size of ε, and
hence on how close q is to N) we can reduce 1/r by multiples of ε until
1/r ≤ ε. At this point the bootstrap changes, and in at most two more
iterations we can conclude that uq ∈ L∞σ and also uq ∈W 2,p

σ . �

The uniform W 1,2
δ∗ bounds of Lemma 4.7 are enough to obtain the exis-

tence of a solution u in W
2,N/(N−1)
σ of equation (4.20) with q = N . At the

end of Section IV.6 of [Rau95] it is claimed that on a compact manifold
in the smooth setting that elliptic regularity now implies u is smooth. But

in fact this is not quite enough regularity to start a bootstrap: W
2,N/(N−1)
σ

embeds continuously in LNσ , which is no more regularity than was known
initially. To start a bootstrap and ensure the continuity of u we need the
following improved estimate, which follows a modification of the strategy of
[LP87] Proposition 4.4.

Lemma 4.8. For each compact set K, the minimizers uq are uniformly
bounded in LM (K) for some M > N .

Proof. Let χ be a smooth positive function with compact support that equals
1 in a neighborhood of K. Let v = χ2(1 + uq)

1+2σ where uq is a subcritical
minimizer and where σ is a small constant to be chosen later. Note that since
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uq ∈ L∞loc ∩W
1,2
loc , v ∈W 1,2

δ∗ . Setting w = (1 + uq)
1+σ, a short computation

shows that

(4.31)

∫
χ2|∇w|2 = −2

1 + σ

1 + 2σ

∫
〈χ∇w,w∇χ〉+

(1 + σ)2

1 + 2σ

∫
〈∇uq,∇v〉 .

Applying Young’s inequality to the first term on the right-hand side of equa-
tion (4.31) and merging a resulting piece into the left-hand side we conclude
there is a constant C1 such that

(4.32) ‖χ∇w‖22 ≤ C1‖w∇χ‖22 + 2
(1 + σ)2

1 + 2σ

∫
〈∇uq,∇v〉 .

Since uq is a subcritical minimizer,

a

∫
〈∇uq,∇v〉 =

∫
R′(1 + uq)

q−2χ2w2 −
∫
Rχ2w2(4.33)

≤
∣∣∣∣∫ Rχ2w2

∣∣∣∣
≤ ε‖∇(χw)‖22 + Cε‖χw‖22.

We applied Lemma 3.1 in the last line and used the fact that for functions
with support contained in a fixed compact set, weighted and unweighted
norms are equivalent. Note also that obtaining line 2 used the fact that
R′ ≤ 0 everywhere. Noting that there is a constant C2 such that

(4.34) ‖∇(χw)‖22 ≤ C2(‖χ∇w‖22 + ‖w∇χ‖22),

we can combine inequalities (4.32), (4.33), and (4.34) to conclude that, upon
taking ε sufficiently small to absorb the term from inequality (4.33) into the
left-hand side, there is a constant C3 such that

(4.35) ‖∇(χw)‖22 ≤ C3

[
‖w∇χ‖22 + ‖wχ‖22

]
.

Finally, from the Sobolev inequality (2.11), there is a constant C4 such that

(4.36) ‖χw‖2N ≤ C4

[
‖w∇χ‖22 + ‖wχ‖22

]
as well. Now uq is bounded uniformly in LN on the support K ′ of χ, and
hence we can take σ sufficiently small so that w is bounded independent
of q in L2(K ′) as well. Thus (1 + uq) is bounded uniformly in LM (K) for
M = N(1 + σ). �
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Corollary 4.9. Let p be the exponent such that g is a W 2,p
τ AE manifold

and let σ ∈ (2− n, 0). The subcritical minimizers uq are bounded in W 2,p
σ as

q → N .

Proof. Consider a subcritical minimizer uq, which is a weak solution of

(4.37) − a∆uq = −R(1 + uq) +R′(1 + uq)
q−1.

Let K be a compact set containing the support of R and R′, and let M > N
be an exponent such that we have uniform bounds on uq in LM (K). We
wish to bootstrap this to better regularity for uq.

Since the bootstrap for the two terms is different, we concentrate first
on the interesting term, R′(1 + uq)

q−1, and suppose for the moment that
the other term is absent. Let us write

(4.38)
1

M
=

1

N
− ε

for some ε > 0. Now

(4.39) |R′(1 + uq)
q−1| ≤ |R′|(1 + |1 + uq|N−1).

Since R′ is bounded, the term R′|1 + uq|N−1 belongs to Ls(K) with

1

s
=

1

M
(N − 1)(4.40)

=

(
1

N
− ε
)

(N − 1)

=
2

n
+

1

N
− ε(N − 1).

Since R′ is zero outside of K we conclude R′(1 + uq)
q−1 ∈ Lsσ. Note that the

norm of R′(1 + uq)
q−1 in Lsσ depends on the norm of uq in LM (K) but is

otherwise independent of q. Since the functions uq are uniformly bounded
in LM (K), we obtain control of R′(1 + uq)

q−1 in Lsσ independent of q.
If s ≤ p then s ∈ (1, p] and we cite [Bar86] Proposition 2.2 to conclude

uq ∈W 2,s
σ and therefore uq ∈ LM

′
(K) with

(4.41)
1

M ′
=

1

s
− 2

n
=

1

N
− ε(N − 1).
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Similarly, after k iterations of this process we would find uq belongs to to
W 2,s
σ with

(4.42)
1

s
=

2

n
+

1

N
− ε(N − 1)k

unless s > p, at which point the bootstrap terminates at uq ∈W 2,p
σ with

norm depending on ‖uq‖LM (K) (which is independent of q) and the number
of iterations needed to reach s ≤ p. Note that since N > 2, we will reach the
condition s ≥ p in a finite number of steps independent of q.

Now consider the bootstrap for the term −R(1 + uq) alone. Write

(4.43)
1

p
=

2

n
− ε′

for some ε′ > 0. The term −R(1 + uq) then belongs to Lt(K) with

(4.44)
1

t
=

1

p
+

1

M
=

2

n
− ε′ + 1

M
.

Note that 1 < t < p and hence [Bar86] Proposition 2.2 implies uq ∈W 2,t
σ .

Note that the norm of uq in W 2,t
σ depends on the norm of uq in LM (K)

but is otherwise independent of q. Consequently uq is controlled in LM
′
(K)

independent of q where

(4.45)
1

M ′
=

1

t
− 2

n
=

1

M
− ε′.

After k iterations we would find instead

(4.46)
1

M ′
=

1

M
− kε′

and the bootstrap stops in finitely many steps independent of q when kε′ >
1/M , at which point we find that uq ∈W 2,p

σ , with norm independent of q.
There is an exceptional case if kε′ = 1/M , but it can be avoided by an initial
perturbation of M .

The bootstrap in the full case follows from combining these arguments.
�

Proof of Theorem 4.1. (2. implies 1.) The uq are uniformly bounded in
W 2,p
σ by Corollary 4.9 for any σ ∈ (2− n, 0). Thus they converge to some u

strongly in W 1,2
δ∗ and uniformly on compact sets. In particular, since the uq
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weakly solve (4.20), φ := u+ 1 weakly solves

(4.47) − a∆φ+Rφ = R′φN−1.

Since each uq ≥ −1, φ ≥ 0, and since φ→ 1 at infinity, φ 6≡ 0. Hence the
weak Harnack inequality [Tru73] implies φ > 0.

Since σ ∈ (2− n, 0) is arbitrary, φ− 1 ∈W 2,p
τ in particular. Note that

the rapid decay σ ≈ 2− n uses the fact that R = 0 near infinity. The lesser
decay rate τ in the statement of the theorem stems from the fact that we
may have used a conformal factor in W 2,p

τ to initially set R = 0 near infinity
or to lower the scalar curvature after changing it to R′.

(1. implies 2.) Let Z = {R′ = 0}. The case where Z has zero measure
is trivial, for then y(Z) =∞ > 0. Hence we assume Z has positive measure
and suppose there exists a conformally related metric g′ with scalar curva-
ture R′. Let δ > δ∗ be fixed and let u be a minimizer of Qg′,δ over A(Z) as
provided by Proposition 3.13. Note that

(4.48)

∫
R′u2dVg′ = 0

since R′ = 0 on Z and u = 0 on Zc. Hence

(4.49) λg′,δ(Z) = Qg′,δ(u) = a

∫
|∇u|2g′dVg′
‖u‖g′,2,δ

.

In particular, λg′,δ(Z) ≥ 0, and λg′,δ(Z) = 0 only if u is constant. But Z has
positive measure, and therefore A(Z) does not contain any constants. Hence
λg′,δ(Z) > 0, and Proposition 3.10 implies Z is Yamabe positive. �

This completes the proof of Theorem 4.1. Turning to the compact case
(Theorem 4.2) recall that we started the AE argument with the following
inessential simplifying hypotheses:

1) The prescribed scalar curvature R′ is bounded.

2) The prescribed scalar curvature R′ has compact support.

3) The initial scalar curvature R has compact support.

The last two of these are trivial when M is compact, and the first is justified
by Lemma 4.10 below, which shows that we can lower scalar curvature after
first solving the problem for a scalar curvature that is truncated below. In
the compact case we require an additional inessential condition which will
be used in Lemma 4.11.



i
i

“5-Dilts” — 2019/1/3 — 22:31 — page 1158 — #32 i
i

i
i

i
i

1158 J. Dilts and D. Maxwell

4) We may assume that the initial scalar curvature R is continuous and
negative. Indeed, from Proposition 3.13 there is a positive function φ
solving −a∆φ+Rφ = λδ(M)φ on M . Note that λδ(M) < 0 since g is
Yamabe negative. Using φ as the conformal factor we obtain a scalar
curvature λδ(M)φ2−N . The hypotheses of Theorem 4.2 are conformally
invariant and hence unaffected by this change.

Lemma 4.10. Suppose (M, g) is a W 2,p compact Yamabe negative man-
ifold. Suppose R′ ∈ Lp. If 0 ≥ R ≥ R′, then there exists a positive φ with
φ ∈W 2,p such that g′ = φN−2g has scalar curvature R′.

Proof. We wish to solve

(4.50) − a∆φ+Rφ = R′φN−1.

Note that φ+ = 1 is a supersolution of equation (4.50). To find a subsolution
first observe that R 6≡ 0 since the manifold is Yamabe negative. So, since
−R ≥ 0 and −R 6≡ 0, for each ε > 0 there exists a unique φε ∈W 2,p solving

(4.51) − a∆φε −Rφε = −R+ εR′.

When ε = 0 the solution is 1, and since W 2,p embeds continuously in C0 we
can fix ε > 0 such that φε > 1/2 everywhere. We claim that φ− := ηφε is a
subsolution if η > 0 is sufficiently small. Indeed,

−a∆φ− +Rφ− = η [R(2φε − 1)] + ηεR′(4.52)

≤ ηεR′.

So φ− is a subsolution so long as

(4.53) ηεR′ ≤ R′φN−1−

A quick computation shows that inequality (4.53) holds if η is small enough
so that η2−N ≥ φN−1ε /ε everywhere. We can also take η small enough so that
φ− ≤ φ+ = 1, and hence there exists a solution φ ∈W 2,p with φ ≥ φ− > 0
of equation (4.50) ([Max05b] Proposition 2). �

The remainder of the proof of Theorem 4.2 nearly exactly follows the
proof of Theorem 4.1 by treating a compact manifold as an asymptotically
Euclidean manifold with zero ends. In particular, the cited results of Section
3 apply equally in both cases, and differences arise only when the following
facts are cited.
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• A constant function in W 1,2
δ∗ is identically zero.

• The Laplacian is an isomorphism from W 2,p
σ to Lpσ for σ ∈ (2− n, 0).

We use the property that constants in W 1,2
δ∗ vanish just twice: once in Lemma

4.7 in showing 1 + uq 6≡ 0, and once in the final proof of Theorem 4.1 showing
that in the limit 1 + u 6≡ 0 as well. The following lemma provides the alter-
native argument needed to ensures these functions do not vanish identically
in the compact case.

Lemma 4.11. Suppose (M, g) is compact and that Rg is continuous and
negative. Fix q0 ∈ (2, N). Then ‖1 + uq‖2 ≥ C for some C independent of
q ∈ (q0, N). Moreover, the limit 1 + u is not identically zero.

Proof. Note that for any constant k,

(4.54) Fq(k) = (1 + k)2
∫
R− 2

q
(1 + k)q

∫
R′.

Since
∫
R < 0, for any k 6= −1 close enough to −1, Fq(k) < 0. Indeed, there

are constants k0 > −1 and c > 0 such that Fq(k0) < −c for all q ∈ (q0, N).
But then

(4.55)

∫
R(1 + uq)

2 ≤ Fq(uq) ≤ Fq(k0) ≤ −c

since uq minimizes Fq. Since R is continuous, and thus bounded below,
‖1 + uq‖2 ≥ C for some C independent of q ∈ (q0, N). Since uq → u in L2,
we also have ‖1 + u‖2 ≥ C, and so 1 + u is not identically zero. �

We use the fact that ‖∆u‖p,σ controls ‖u‖W 2,p
σ

just twice as well, once in
the bootstrap of Lemma 4.7 and once in the bootstrap of Lemma 4.9. How-
ever, on a compact manifold, ‖u‖W 2,p is controlled by the sum of ‖∆u‖p and
‖u‖2, and the coercivity estimate from Proposition (4.5) ensures that ‖uq‖2
is uniformly bounded as q → N . This provides the needed extra control for
the bootstraps and completes the proof of Theorem 4.2.

5. Yamabe classification

In this section we provide two characterizations of the Yamabe class of an
asymptotically Euclidean manifold, one in terms of the prescribed scalar
curvature problem and one in terms of the Yamabe type of the manifold’s
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compactification. Note that throughout this section AE manifolds have at
least one end.

Theorem 5.1. Suppose (M, g) is a W 2,p
τ AE manifold with p > n/2 and

τ ∈ (2− n, 0). Let R≤0 be the set of non-positive elements of Lpτ−2.

1) M is Yamabe positive if and only if the set of non-positive scalar cur-
vatures of metrics conformally equivalent to g is R≤0.

2) M is Yamabe null if and only if the set of non-positive scalar curvatures
of metrics conformally equivalent to g is R≤0 \ {0}.

3) M is Yamabe negative if and only if the set of non-positive scalar
curvatures of metrics conformally equivalent to g is a strict subset of
R≤0 \ {0}.

Proof. It suffices to prove the forward implications.
1) Suppose M is Yamabe positive, and hence so is every subset. If

R′ ∈ R≤0, then {R′ = 0} is Yamabe positive and Theorem 4.1. implies [g]
includes a metric with scalar curvature R′.

2) Suppose M is Yamabe null. Since M is open and connected, Lemma
3.16 implies that if E ⊆M has positive measure, then M \ E is Yamabe
positive. Hence for any R′ ∈ R≤0 with R′ < 0 on a set of positive measure,
{R′ = 0} is Yamabe positive, and Theorem 4.1 implies we can conformally
transform to a metric with scalar curvature R′. But R′ ≡ 0 is impossible, for
otherwise Theorem 4.1 would imply M is Yamabe positive.

3) Suppose M is Yamabe negative. Since M is open, Lemma 3.17 shows
that there is a nonempty open set W ⊆M such that M \W is also Yam-
abe negative. Suppose R′ ∈ Lpτ−2 is non-positive and supported in W . Then
{R′ = 0} contains M \W and is hence Yamabe negative. But then Theo-
rem 4.1 shows that we cannot conformally transform to a metric with scalar
curvature R′. In particular, R′ ≡ 0 is one of the unattainable scalar curva-
tures. �

While Theorem 5.1 completely the describes the set of allowable scalar
curvatures in cases 1) and 2), it does not in case 3). Of course, we already
have demonstrated a necessary and sufficient criterion for being able to
make the conformal change: the zero set of R′ must be Yamabe positive.
Nevertheless, it would be desirable to describe this situation more concretely,
and there are a few things that can be said. First, by Lemma 3.15, if R′ ∈
R≤0 and the weighted volume of {R′ = 0} is sufficiently small, then {R′ = 0}
is Yamabe positive, and thus g is conformally equivalent to a metric with
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scalar curvature R′. In particular, if R′ < 0 everywhere, then it is attainable.
Conversely, by Lemma 3.17, for any sequence {R′k} ⊂ R≤0 such that {R′k <
0} ⊂ B1/k(x0) for some fixed x0 ∈M , then for k large enough, {R′k = 0}
is Yamabe negative, and thus g is not conformally equivalent to a metric
with scalar curvature R′k. That is, the strictly negative part of R′ cannot
be constrained to a small ball. Similarly, an argument analogous to the
proof of Lemma 3.17 shows that the complement of a sufficiently “small”
neighborhood of infinity is Yamabe negative, and hence the strictly negative
part of R′ cannot be constrained to a small neighborhood of infinity.

Our second characterization of the Yamabe class of an AE manifold
involves its compactification. An AE manifold can be compactified using a
conformal factor that decays suitably at infinity, and a compact manifold can
be transformed into an AE manifold using a conformal factor with a suitably
singularity. We would like to show that the sign of the Yamabe invariant is
preserved under these operations, and we begin by laying out the details
of the compactification/decompactification procedure. In particular, there
is a precise relationship between the decay of the metric at infinity and its
smoothness at the point of compactification.

Lemma 5.2. Let p > n/2 and let τ = n
p − 2, so −2 < τ < 0. Suppose (M, g)

is a W 2,p
τ AE manifold. There is a smooth conformal factor φ that decays to

infinity at the rate ρ2−n such that ḡ = φN−2g extends to a W 2,p metric on
the compactification M .

Conversely, suppose (M, g) is a compact W 2,p manifold, with p > n/2
and p 6= n. Given a finite set P of points in M there is conformal factor
φ that is smooth on M = M \ P, has a singularity of order |x|2−n at each

point of P, and such that g = φ
N−2

g is a W 2,p
τ AE manifold with τ = n

p − 2.

Proof. For simplicity we treat the case of only one end.
Let (M, g) be a W 2,p

τ AE manifold and let zi be the Euclidean end
coordinates on M , so

(5.1) gij = eij + kij ,

with k ∈W 2,p
τ . Let xi be coordinates given by the Kelvin transform xi =

zi/|z|2, so zi = xi/|x|2 as well.
We define a conformal factor φ = |z|2−n near infinity, and extend it to

be smooth on the rest of M . Let g = φN−2g and let M be the one-point
compactification of M , with P being the point at infinity. We wish to show
that g extends to a W 2,p(M) metric.
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Near P , φN−2 = |z|−4 and

gij = eij + kij(5.2)

where

(5.3) kij := kij −
4

|x|2
xaka(ixj) +

4

|x|4
xaxbkabxixj = O(k).

and xa = eabx
b. Since kij → 0 at P , we set gij(P ) = eij to obtain a contin-

uous metric, and we need to show that k ∈W 2,p(M). Since k ∈W 2,p
loc (M),

and since a point is a removable set, we need only show that the second
derivatives of k belong to Lp(B) for some coordinate ball B containing P .

Let ∂̄ represent the derivatives in xi coordinates. Since ∂z
∂x = O(|x|−2),

we calculate

(5.4)
∂̄k = O(∂k)O(|z|2) +O(k)O(|z|)
∂̄2k = O(∂2k)O(|z|4) +O(∂k)O(|z|3) +O(k)O(|z|2).

In order to show ∂̄2k ∈ Lp(B), it is sufficient to show that each of the three
terms in equation (5.4) is in Lp(B).

Note that near infinity

(5.5) dV = φNdV = |z|−2ndV.

Hence the Lp norm of the O(k)O(|z|2) term of equation (5.4) is controlled
by ∫ (

O(k)O(|z|2)
)p |z|−2ndV =

∫
O (|k|p)O

(
|z|2p−2n

)
dV(5.6)

≤ C‖k‖p
W 2,p
τ
,

where we have used the equality

(5.7) 2p− 2n = −n− τp

and equation (2.1) defining the weighted norm. Hence the O(k)O(|z|2) term
of equation (5.4) belongs to Lp(B). The two remaining terms have the same
asymptotics and similar calculations show that they belong to Lp(B) as well.

For the converse, consider a W 2,p compact manifold (M, g) with p > n/2
and p 6= n. Let P be a point to remove to obtain M = M \ {P}. Since g is
continuous we can find smooth coordinates xi near P such that g = e+
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k for some k ∈W 2,p which vanishes at P . Moreover, if p > n then g has
Hölder continuous derivatives and the proof of [Aub98] Proposition 1.25
shows we can additionally assume these are normal coordinates (i.e., the
first derivatives of k vanish at P ). Finally, since the result we seek only
involves properties of k local to P , we can assume that k = 0 except in a
small coordinate ball B near P .

We claim there is a constant C such that∫
B

|k|p

|x|2p
≤ C

∫
B
|∂̄2k|pdV and(5.8) ∫

B

|∂̄k|p

|x|p
dV ≤ C

∫
B
|∂̄2k|pdV .(5.9)

Assuming for the moment that this claim is true, let zi = xi/|x|2. Let φ =
|x|2−n near P and extend φ as a positive smooth function on the remainder

of M . Let g = φ
N−2

g. Near P , φ
N−2

= |x|−4 and so g = e+ k near infinity,
where

(5.10) kij := kij −
4

|z|2
zaka(izj) +

4

|z|4
zazbkabzizj = O(k).

Since k ∈W 2,p
loc , we need only establish the desired asymptotics at infinity.

A computation similar to the one leading to equation (5.4) shows

(5.11)
∂k = O(∂̄k)O(|x|2) +O(k)O(|x|)
∂2k = O(∂̄2k)O(|x|4) +O(∂̄k)O(|x|3) +O(k)O(|x|2).

Also, dV = |z|−2ndV near P . Hence∫
|∂2k|p|z|4p−2ndV =

∫
|∂2k|p|x|−4p|x|2ndV(5.12)

=

∫ (
O(∂̄2k)

)p
+
(
O(∂̄k)O(|x|−1)

)p
+
(
O(k)O(|x|−2)

)p
dV .(5.13)

From inequalities (5.8) and (5.9), quantity (5.13) is finite. Noting

(5.14) 4p− 2n = −n− τp+ 2p

we conclude |∂2k| ∈ Lpτ−2, as desired. A similar calculation shows that |∂k| ∈
Lpτ−1 and |k| ∈ Lpτ . This concludes the proof, up to establishing inequalities
(5.8) and (5.9).
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Theorem 1.3 of [Bar86] implies that∫
B

|f |p

|x|2p
dV ≤ c

∫
B

|∂̄f |p

|x|p
dV ≤ C

∫
B
|∂̄2f |pdV <∞(5.15)

for smooth functions f that are compactly supported in B and vanish in
a neighborhood of P . This inequality relies on the fact that p 6= n, which
corresponds to the condition δ = 0 in [Bar86] Theorem 1.3.

Let fn be a sequence of smooth functions vanishing near P that converges
to k in W 2,p; such a sequence exists since k = 0 at P , since ∂k = 0 at P if
p > n, and since we have assumed that k vanishes outside of B. By reduction
to a subsequence we may assume that the values and first derivatives of
sequence converge pointwise a.e., and using Fatou’s Lemma we find∫

B

|k|p

|x|2p
≤ lim inf

n→∞

∫
B

|fn|p

|x|2p
(5.16)

≤ C lim
n→∞

∫
B
|∂̄2fn|pdV

= C

∫
B
|∂̄2k|pdV <∞.

This is inequality (5.8), and a similar argument shows that inequality (5.9)
holds as well. �

The threshold τ = −2 in Lemma 5.2 arises because there is a connection
between the rate of decay of the AE metric and the rate of convergence of
the metric at the point of compactification in a chosen coordinate system:
roughly speaking, decay of order ρτ corresponds to convergence at a rate of
r−τ . For a generic smooth metric we can use normal coordinates to obtain
convergence at a rate of r2, but we cannot expect to do better generally.
Hence the decompactification of a smooth metric will typically not decay
faster than ρ−2. Looking at the proof of Lemma 5.2, we note that it can
be readily extended to k > 2 to show that a W k,p

τ AE metric with k ≥ 2,
p > n/k and τ = (n/p)− k can be compactified to a W k,p metric. But the
decay condition τ = (n/p)− k is quite restrictive for k > 2: smooth metrics
decompactify generally to metrics with decay O(ρ−2), but compactification
of a W k,p

−2 metric would not be known to be C3, regardless of how high k
and p are. A more refined analysis for k > 2 would need to take into account
asymptotics of the Weyl or Cotton-York tensor, and we point to Herzlich
[Her97] for related results in the Ck setting.
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Proposition 5.3. Let (M, g) and (M, g) be a pair of manifolds as in

Lemma 5.2, related by g = φ
N−2

g. Then yg(M) = yg(M).

Proof. For simplicity we assume that M has one end. Let P ∈M be the
singular point of φ. Note that W 1,2

c (M) is dense in W 1,2
δ∗ (M) and that

(5.17) SP := W 1,2(M) ∩ {u : u|Br(P ) = 0 for some r > 0}

is dense in W 1,2(M) since 2 < n. From upper semicontinuity of the Yamabe
quotient, the Yamabe invariants of g and g can be computed by minimizing
the Yamabe quotient over W 1,2

c and SP respectively. Note that u 7→ φu is a
bijection between W 1,2

c (M) and Sp. The proof of Lemma 3.7 shows that for
u ∈W 1,2

c ,

(5.18) Qyg(u) = Qyg(φu)

and hence yg(M) = yg(M). �

Combining Lemma 5.2 and Proposition 5.3 we obtain our second classi-
fication.

Proposition 5.4. Let (M, g) be a W 2,p
τ AE manifold with τ ≤ n

p − 2. Then
(M, g) is Yamabe positive/negative/null if and only if some conformal com-
pactification, as described in Lemma 5.2, has the same Yamabe type.

Consequently, Yamabe classification on AE manifolds has the same topo-
logical flavor as in the compact setting. For instance, since the torus does
not allow a Yamabe positive metric, the decompactified torus, which is dif-
feomorphic to Rn with a handle, does not allow a metric with nonnegative
scalar curvature.

We mention an application of Proposition 5.4 to general relativity. In
general relativity, spacetimes can be constructed by specifying initial data
in the form of a Riemannian manifold (M, g) and a symmetric (0,2)-tensor
K, and then solving a hyperbolic evolution problem to construct an ambient
Lorentzian spacetime such that g and K are the induced metric and second
fundamental form of the initial hypersurface. However, the initial data can-
not be freely specified; it must satisfy the Einstein constraint equations,

(5.19)
R− |K|2 + trK2 = r,

divK − d trK = j,
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where r is the energy density and j is the momentum density of matter.
It is natural to suppose that the energy density r is everywhere nonneg-
ative, which is known as the weak energy condition. If the initial data is
maximal, i.e., if the mean curvature trK is zero, then the weak energy con-
dition implies R ≥ 0. Thus, if the compactification of an AE manifold has
a topology that does not admit a Yamabe positive metric, then the original
AE manifold does not allow maximal initial data satisfying the weak energy
condition.
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