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Invariants for Turaev genus one links

Oliver T. Dasbach and Adam M. Lowrance

The Turaev genus defines a natural filtration on knots where Tu-
raev genus zero knots are precisely the alternating knots. We show
that the signature of a Turaev genus one knot is determined by the
number of components in its all-A Kauffman state, the number of
positive crossings, and its determinant. We also show that either
the leading or trailing coefficient of the Jones polynomial of a Tu-
raev genus one link (or an almost alternating link) has absolute
value one.

1. Introduction

Tait’s flyping theorem, proven by Menasco and Thistlethwaite [MT93], gives
a classification of alternating links in terms of their alternating projections.
Alternating links have a natural generalization by allowing alternating pro-
jections on surfaces other than the sphere. For each link diagram, Turaev
[Tur87, DFK+08] constructed a closed, orientable surface on which the link
projects alternatingly. The smallest genus among all Turaev surfaces of a
given link is the Turaev genus, and links of Turaev genus zero are precisely
the alternating links. The aim of this paper is to study two invariants for
links of Turaev genus one: the signature and the Jones polynomial.

The signature σ(K) of a knotK was originally defined by Trotter [Tro62].
Milnor [Mil68] found an alternate definition of the signature of a knot using
the infinite cyclic cover of the knot complement, and Erle [Erl69] proved
that Trotter and Milnor’s constructions are equivalent. Murasugi [Mur65]
extended the definition of signature to links of more than one component
and showed that signature gives lower bounds on the slice genus and un-
knotting number of a knot. Kauffman and Taylor [KT76] showed that the
signature of a link is a concordance invariant.

The signature of a link L can be defined as the signature of a quadratic
form associated to a Seifert surface of L, i.e. an oriented surface whose
boundary is L. Gordon and Litherland [GL78] showed how to compute the
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signature of a knot from a quadratic form associated to the (possibly non-
orientable) checkerboard surfaces of a diagram of L. Traczyk [Tra04] used the
Gordon-Litherland formulation of the signature to compute the signature of
non-split alternating links. Suppose that L is a non-split alternating link
with alternating diagram D. Let sA(D) and sB(D) denote the number of
components in the all-A and all-B state of D, as in Figure 4. Also, let c+(D)
and c−(D) denote the number of positive and negative crossings in D, as in
Figure 1. Then

(1.1) σ(L) = sA(D)− c+(D)− 1 = −sB(D) + c−(D) + 1.

Lee [Lee05] used Equation 1.1 to prove that the reduced Khovanov ho-
mology of a non-split alternating link L is supported entirely in the δ-grading
of −σ(L)/2. Rasmussen [Ras10] defined a concordance invariant s from Kho-
vanov homology and used Lee’s result to show that if K is an alternating
knot, then s(K) = −σ(K). In a similar vein, Ozsváth and Szabó [OS03a]

showed that the knot Floer homology ĤFK(K) of an alternating knot K
is supported in the δ-grading of −σ(K)/2. The τ -invariant is a concordance
invariant arising from the Heegaard Floer package, and Ozsváth and Szabó
[OS03b] showed that if K is alternating, then τ(K) = −σ(K)/2.

In [DL11] the authors investigated the relationship between the signature
of a knot and the maximum and minimum δ-gradings in Khovanov and
knot Floer homology. We showed that for any diagram D of a knot K, the
following inequality holds:

(1.2) sA(D)− c+(D)− 1 ≤ σ(K) ≤ −sB(D) + c−(D) + 1.

+ −

Figure 1: Positive and negative crossings in a link diagram.

Define the determinant detL of the link L by detL = |∆L(−1)| where
∆L(t) is the Alexander polynomial of L. The Turaev surface F (D) of a
link diagram D is a closed, oriented surface whose construction is given in
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Section 2. The genus of the Turaev surface of D is zero if and only if D is the
connected sum of alternating diagrams (in which case the associated link is
alternating). The first main theorem of this article gives a formula for the
signature of a knot with a diagram whose Turaev surface has genus one.

Theorem 1.1. Let K be a knot with diagram D whose Turaev surface has
genus one. The signature of K is determined by

σ(K) = sA(D)− c+(D)± 1 and σ(K) ≡ det(K)− 1 mod 4.

The two conditions in Theorem 1.1 determine the signature of K because
the determinant of a knot is always odd and its signature is always even. In
Section 3, we give a formulation of Theorem 1.1 for links.

An n-tangle R is an embedding of n arcs and m circles into a 3-ball
for n > 0 and m ≥ 0. An n-tangle diagram is a regular projection of R
inside of a round circle with only transverse double points, and an n-tangle
is called alternating if it has an alternating diagram. The intersections of
the n-strands of R with the boundary circle are decorated with + and −
signs according to whether the first crossing in R involving that strand is an
over-crossing or an under-crossing. A face of a tangle diagram is a connected
component of the projection disk minus the boundary circle union the tangle
projection. A tangle diagram is called proper if no face is incident to two or
more different arcs in the boundary circle. If a tangle diagram is proper and
alternating, then the + and the − decorations must alternate around the
boundary circle.

Armond and Lowrance [AL15] and independently Kim [Kim15] classified
link diagrams whose Turaev surface is genus one. Every non-split link of
Turaev genus one has a diagram obtained by arranging an even number of
proper alternating 2-tangles into a circle as in Figure 2. Examples of Turaev
genus one links include pretzel links and Montesinos links. See Subsection 2.2
for a detailed treatment of this result.

The endpoints of a 2-tangle R can be connected in two different ways to
form a link. If the two northern endpoints are joined and the two southern
endpoints are joined, then the resulting link N(R) is called the numerator
of R. If the two eastern endpoints are joined and the two western endpoints
are joined, then the resulting link D(R) is called the denominator of R. See
Figure 3.

An orientation of a Turaev genus one link L yields a direction on each
of the edges in the diagram D of Figure 2. The orientation of the strands of
Ri inside D is the same as the orientation of the strands of Ri inside either
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Figure 2: Every non-split link of Turaev genus one has a diagram as above.
Each Ri is a proper alternating tangle.

R R

N(R)

R

D(R)

Figure 3: The tangle R, its numerator closure N(R), and its denominator
closure D(R).

N(Ri) or D(Ri) (or both). Since each 2-tangle Ri has two incoming edges
and two outgoing edges, it follows that the orientation of Ri agrees with the
orientation of N(Ri) for each i = 1, . . . , 2k, or the orientation of Ri agrees
with the orientation of D(Ri) for each i = 1, . . . , 2k. In the first case, we say
D has the numerator orientation, and in the second case, we say D has the
denominator orientation.

Theorem 1.2. Let L be a link with Turaev genus one diagram D as in
Figure 2. If D has the numerator orientation, then

σ(L) = ±1 +

2k∑
i=1

σ(N(Ri)).
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Invariants for Turaev genus one links 1107

If D has the denominator orientation, then

σ(L) = ±1 +

2k∑
i=1

σ(D(Ri)).

As in Theorem 1.1, if K is a knot, then its signature is determined by
Theorem 1.2 and the fact that σ(K) ≡ det(K)− 1 mod 4.

The Jones polynomial [Jon85] has been wildly successful at answering
difficult questions about diagrammatic properties of knots and links. The
first major success of this kind was the proof by Kauffman [Kau87], Mura-
sugi [Mur87], and Thistlethwaite [Thi88b] that an alternating diagram of a
link with no nugatory crossings has the fewest possible number of crossings.
Kauffman [Kau87] also proved that if a link is alternating, then the first and
last coefficients of the Jones polynomial have absolute value one. Lickorish
and Thistlethwaite [LT88] extended Kauffman’s result to the class of ade-
quate links. In our last main result of the paper, we prove a similar result
about the Jones polynomial of almost alternating links and links of Turaev
genus one. Adams et al. [ABB+92] define a link L to be almost alternating
if L is non-alternating, but has a diagram D such that one crossing change
transforms D into an alternating diagram. All almost alternating links are
Turaev genus one, but it remains an open question whether there exists a
Turaev genus one link that is not almost alternating.

Theorem 1.3. Let L be an almost alternating link or a link of Turaev
genus one with Jones polynomial

VL(t) = amt
m + am+1t

m+1 + · · · aM−1tM−1 + aM t
M ,

where am and aM are nonzero. Either |am| = 1 or |aM | = 1 (or both).

Theorem 1.3 provides a computable obstruction to a link being almost
alternating or having Turaev genus one. Among the knots with twelve or
fewer crossings listed in KnotInfo [CL16], there are 35 unknown values for
Turaev genus. This obstruction shows that 12 of these knots cannot be
almost alternating or Turaev genus one.

This paper is organized as follows. Section 2 contains the construction
of the Turaev surface. In Section 3, we prove Theorems 1.1 and 1.2. Finally
in Section 4, we prove Theorem 1.3 and use it to prove that a collection of
knots have Turaev genus at least two.
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2. The Turaev surface

In this section, we discuss the Turaev surface of a link diagram, the Turaev
genus of a link, and connections between the Turaev surface, Turaev genus,
and other knot and link invariants. Champanerkar and Kofman [CK14] pro-
vide an excellent recent survey article on this topic.

2.1. Construction of the Turaev surface

Each crossing of a link diagram D has an A-resolution and a B-resolution, as
depicted in Figure 4. A state of D is the set of curves obtained by performing
either an A-resolution or a B-resolution for each crossing. The all-A state
(or all-B state) is the state obtained by performing an A-resolution (or a
B-resolution) for every crossing in D. Let sA(D) and sB(D) denote the
number of components in the all-A and all-B states of D respectively. The
trace of each resolution is a small line segment connecting the two arcs of
the resolution.

A B

Figure 4: The resolutions of a crossing and their traces in a link diagram.

The Turaev surface F (D) of a link diagram D is constructed as follows.
The diagram D is embedded on the projection sphere S2. Embed the all-A
and all-B states of D in a neighborhood of the projection sphere, but on
opposite sides. To construct F (D) we first take a cobordism between the
all-A state and the all-B state such that the cobordism consists of bands
away from the crossings of D and saddles in neighborhoods of crossings (as
in Figure 5). We cap off all boundary components of the cobordism with
disks to complete the construction of F (D).

The genus of the Turaev surface F (D) of D is denoted by gT (D) and is
given by

(2.1) gT (D) =
1

2
(2 + c(D)− sA(D)− sB(D)) ,
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D

A A

B

B

Figure 5: In a neighborhood of each crossing ofD a saddle surface transitions
between the all-A and all-B states.

where c(D) is the number of crossings in D. The Turaev genus gT (L) of the
link L is given by

gT (L) = min{gT (D) | D is a diagram of L}.

Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus [DFK+10] showed how
to compute the determinant of a link using a certain graph embedded on
the Turaev surface, and they [DFK+08] also showed that the Jones polyno-
mial of the link is an evaluation of the Bollobás-Riordian-Tutte polynomial
of that embedded graph. Champanerkar, Kofman, and Stoltzfus [CKS07]
showed the support of Khovanov homology gives a lower bound on Turaev
genus. A link is adequate if it has a diagram such that every trace in both the
all-A and all-B states intersects two distinct components in the state. Abe
[Abe09b] showed that the Khovanov homology bound is exact whenever the
link is adequate. In [DL14] we gave a model of Khovanov homology based on
graphs embedded in the Turaev surface. Lowrance [Low08] showed that the
support of knot Floer homology gives a lower bound on Turaev genus and
discussed the relationship between Turaev genus and other link invariants
called alternating distances [Low15]. In [DL11] we constructed lower bounds
on Turaev genus from knot signature, the Ozsváth-Szabó τ -invariant, and
Rasmussen s-invariant. Kalfagianni [Kal16] gave a characterization of ade-
quate links in terms of their Turaev genus and colored Jones polynomials.

2.2. Alternating decompositions

Armond and Lowrance [AL15] and Kim [Kim15] studied the Turaev sur-
face via the alternating decompositions of link diagrams of Thistlethwaite
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[Thi88b]. We consider a link diagram D as a 4-regular graph whose ver-
tices correspond to crossings and where the edges meeting at a vertex are
decorated with over/under information. An edge is called non-alternating if
both of its endpoints are over-crossings or if both of its endpoints are under-
crossings. An alternating decomposition ofD is a pair (D, {γ1, . . . , γk}) where
γ1, . . . , γk are simple closed curves in the plane obtained as follows. Each
non-alternating edge of D is marked with distinct points. Inside of each face
of D, the marked points are connected by arcs as in Figure 6. The resulting
set of curves is {γ1, . . . , γk}.

Figure 6: Each non-alternating edge is marked with two points. Inside of
each face, draw arcs that connect marked points that are adjacent on the
boundary but do not lie on the same edge of D.

The collection of curves {γ1, . . . , γk} partition the diagram into maxi-
mally alternating regions, and these regions are often tangles. This approach
can be used to prove the following theorem.

Theorem 2.1 (Armond - Lowrance [AL15], Kim [Kim15]). If L is
a non-split link of Turaev genus one, then L has a diagram D obtained by
arranging 2k proper alternating two-tangles in a cycle, as in Figure 2.

One can also use a collection of previous results to show that all but four
prime Turaev genus one knots are hyperbolic. These four knots are the torus
knots T3,4, T3,5 and their mirrors, and also happen to be the non-alternating
torus pretzel knots.

Proposition 2.2. If K is a prime knot of Turaev genus one, then K is
either hyperbolic or a torus pretzel knot.



i
i

“4-Lowrance” — 2019/1/3 — 22:30 — page 1111 — #9 i
i

i
i

i
i

Invariants for Turaev genus one links 1111

Proof. Adams [Ada94] proved that every prime toroidally alternating knot is
either hyperbolic or a torus knot. Since Turaev genus one knots are toroidally
alternating, the same holds for them. Abe [Abe09a] proved that the only
torus knots for which |s(K) + σ(K)| ≤ 2 are T2,2n−1, T3,4, T3,5, and their
mirrors. We prove in [DL11] that |s(K) + σ(K)| ≤ 2gT (K). Since T2,2n−1 are
alternating, it follows that the only torus knots of Turaev genus one are T3,4,
T3,5, and their mirrors. These four knots are the only non-alternating knots
that are both torus and pretzel knots by Kawauchi [Kaw96, Theorem 2.3.2].

�

Non-alternating pretzel links and non-alternating Montesinos links are
all Turaev genus one. All non-alternating knots with ten or fewer crossings
are Turaev genus one, and most non-alternating knots with twelve or fewer
crossings are also Turaev genus one (see [Jab14] and Section 4). Figure 8
shows the mirror of the knot 12n888 and its alternating decomposition. Since
the knot is non-alternating and has an alternating decomposition in the form
of Figure 2, its Turaev genus is one.

Figure 7: The knot 12n888 and its alternating decomposition.

3. Signature

In this section, we prove Theorems 1.1 and 1.2. Using work of Gordon and
Litherland [GL78], Thistlethwaite [Thi88a], and Murasugi [Mur89], the au-
thors previously showed the following theorem. Recall that given a link dia-
gram D, the number of components in the all-A and all-B states are given by
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sA(D) and sB(D) respectively. Also, c+(D) and c−(D) denote the number
of positive and negative crossings in D, as in Figure 1.

Proposition 3.1 (Dasbach, Lowrance - Proposition 5.3 [DL11]). Let
L be a non-split link with diagram D. Then

(3.1) sA(D)− c+(D)− 1 ≤ σ(L) ≤ −sB(D) + c−(D) + 1.

We note that this proposition is stated only for knots in [DL11]. However,
the results that it is based on in [Thi88a] and [Mur89] are valid for links of an
arbitrary number of components. Moreover, the proof for a link of multiple
components is the same as the proof for knots.

The Alexander polynomial of a link is determined by the skein relation

∆L+
(t)−∆L−(t) = (t1/2 − t−1/2)∆L0

(t).

Evaluating the Alexander polynomial of a knot at t = 1 always yields 1, since
the skein relation becomes ∆K+

(1) = ∆K−(1) and the ∆U (t) = 1 where U
is the unknot. Also, the Alexander polynomial is symmetric, i.e.

∆L(t) = a0 +

n∑
i=1

ai(t
i + t−i),

for some non-negative integer n and some integer coefficients ai. For a knot
K, we have

∆K(−1) = a0 +

n∑
i=1

(−1)i2ai

≡ a0 +

n∑
i=1

2ai mod 4

≡ ∆K(1) mod 4.

Therefore, for any knot K, we have ∆K(−1) ≡ 1 mod 4. Giller [Gil82] used
this fact to prove the following theorem.

Theorem 3.2 (Giller [Gil82]). Suppose that K is a knot with diagram D.
Then the signature of K can be determined by the following three statements.

1) If K is the unknot, then σ(K) = 0.



i
i

“4-Lowrance” — 2019/1/3 — 22:30 — page 1113 — #11 i
i

i
i

i
i

Invariants for Turaev genus one links 1113

2) If K+ and K− have diagrams D+ and D− that differ by a single cross-
ing change where D+ has the positive crossing and D− has the negative
crossing, then

σ(K−)− 2 ≤ σ(K+) ≤ σ(K−).

3) The Alexander polynomial ∆K(t) and the signature σ(K) satisfy

sign ∆K(−1) = (−1)
σ(K)

2 .

Proposition 3.1 and Theorem 3.2 give us the tools necessary to prove
Theorem 1.1. Theorem 1.2 then follows from Theorem 1.1.

Proof of Theorem 1.1. Let D be a diagram with gT (D) = 1. Equation 2.1
implies that c(D)− sA(D)− sB(D) = 0. Since c(D) = c+(D) + c−(D), it
follows that sA(D)− c+(D) + 1 = −sB(D) + c−(D) + 1. Therefore, Inequal-
ity 3.1 implies that

sA(D)− c+(D)− 1 ≤ σ(K) ≤ sA(D)− c+(D) + 1.

Because the signature of a knot is always even, Traczyk’s formula (Equa-
tion 1.1) implies that for any alternating knot diagram Dalt, the quan-
tity sA(Dalt)− c+(Dalt)− 1 is even. Changing a crossing of a knot diagram
changes the number of components in the all-A state by one and changes
the number of positive crossings by one. Since D can be obtained from
Dalt via a sequence of crossing changes, it follows that sA(D)− c+(D)− 1
is even. Therefore σ(K) = sA(D)− c+(D)− 1 or sA(D)− c+(D) + 1. More-
over, since ∆K(−1) ≡ 1 mod 4, Condition (3) from Theorem 3.2 is equiva-
lent to σ(K) ≡ detK − 1 mod 4. Hence, if sA(D)− c+(D)− 1 ≡ det(K)−
1 mod 4, then σ(K) = sA(D)− c+(D)− 1. Also, if sA(D)− c+(D) + 1 ≡
det(K)− 1, then σ(K) = sA(D)− c+(D) + 1. �

Proof of Theorem 1.2. We prove the result in the case where D has the
numerator orientation. The proof when D has the denominator orientation
is similar. Let sintA (D) be the number of components of the all-A state of
D that are completely contained within one of the tangles Ri. Similarly,
let sintA (N(Ri)) be the number of components of the all-A state of N(Ri)
that are completely contained in the tangle Ri. The total number of interior
components of the all-A state of D is the same as the sum of the number of
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interior components of the all-A states of N(Ri), i.e.

sintA (D) =

2k∑
i=1

sintA (N(Ri)).

Also, if i is odd, then sA(N(Ri)) = sintA (N(Ri)) + 1, and if i is even, then
sA(N(Ri)) = sintA (N(Ri)) + 2. Furthermore, sA(D) = sintA (D) + k.

Since D has the numerator orientation, a crossing is positive in N(Ri)
if and only if it is also positive in D. Therefore c+(D) =

∑2k
i=1 c+(N(Ri)).

Since each N(Ri) is an alternating diagram, we can apply Traczyk’s formula
(Equation 1.1) to obtain

2k∑
i=1

σ(N(Ri)) =

2k∑
i=1

(sA(N(Ri))− c+(N(Ri))− 1)

= − c+(D)− 2k +

2k∑
i=1

sA(N(Ri))

= − c+(D)− 2k +

k∑
i=1

sA(N(R2i−1)) +

k∑
i=1

sA(N(R2i))

= − c+(D)− 2k +

k∑
i=1

(sintA (N(R2i−1)) + 1)

+

k∑
i=1

(sA(N(R2i)) + 2)

= − c+(D) + k +

2k∑
i=1

sintA (N(Ri))

= − c+(D) + sA(D).

Proposition 3.1 implies that

σ(L) = sA(D)− c+(D)± 1 =

2k∑
i=1

σ(N(Ri))± 1,

as desired. �

Let R be the tangle obtained by connecting the northeast and southeast
ends of Ri to the northwest and southwest ends of Ri+1 respectively for
i = 1, . . . , 2k − 1. The numerator closure of R is the diagram of the link L in
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Figure 2, and the denominator closure of R is D(R1)# · · ·#D(R2k). Conway
[Con70] proved that

detN(R)

detD(R)
=

∣∣∣∣∣
2k∑
i=1

(−1)i
detN(Ri)

detD(Ri)

∣∣∣∣∣ .
Consequently,

detL = detD(R)

∣∣∣∣∣
2k∑
i=1

(−1)i
detN(Ri)

detD(Ri)

∣∣∣∣∣
=

2k∏
i=1

detD(Ri)

∣∣∣∣∣
2k∑
i=1

(−1)i
detN(Ri)

detD(Ri)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2k∑
i=1

(−1)i detN(Ri)

2k∏
j=1
j 6=i

detD(Rj)

∣∣∣∣∣∣∣∣ .
(3.2)

Figure 8: The knot 12n888 with its alternating decomposition is on the left,
and its all-A state is on the right.

Example 3.3. Let K be the knot with diagram D as in Figure 8. Then
sA(D) = 9, and since every crossing in D is negative, we have c+(D) = 0.
Theorem 1.1 implies that σ(K) = 8 or 10. The numerator closure N(R1) and
the denominator closure D(R2) are (2, 6) torus links, while the denominator
closure D(R1) and the numerator closure N(R2) are the connected sum of
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two left handed trefoils. Thus

detN(R1) = detD(R2) = 6 and detD(R1) = detN(R2) = 9.

Equation 3.2 implies that

detK = | − 6 · 6 + 9 · 9| = 45.

Since 45− 1 ≡ 0 mod 4, it follows that σ(K) = 8.

4. Jones polynomial

In this section, we prove Theorem 1.3 and use it to compute the Turaev
genus and dealternating numbers of some knots with 12 or fewer crossings.

If s is a state ofD, then the state graph of s is the graph whose vertices are
in one-to-one correspondence with the components of s and whose edges are
in one-to-one correspondence with the traces of s (and hence the crossings of
D). The endpoints of each trace lie on either one or two components of the
state s, and the edge corresponding to that trace is incident to the vertex
or vertices corresponding to those components. If s is the all-A state, then
its state graph is called the all-A state graph of D, and is denoted by G.
Similarly, if s is the all-B state, then its state graph is called the all-B state
graph of D, and is denoted by G. If the diagram D is alternating, then G and
G are the checkerboard graphs of D. The all-A state graph of the diagram
in Figure 8 is four triangles glued along a common vertex.

Let Dalt be an alternating link diagram with c = c(Dalt) crossings. Let G

and G be the all-A and all-B state graphs. Let G′ and G
′

denote the graphs
G and G where multiple edges are replaced by a single edge. Let v be the
number of vertices in G′ (or equivalently in G), and let v be the number of

vertices in G
′

(or equivalently G). Also, let e denote the number of edges

of G′, and let e denote the number of edges of G
′
. Dasbach and Lin [DL06]

showed that the Kauffman bracket of Dalt can be expressed in the following
way.

Theorem 4.1 (Dasbach, Lin [DL06]). Suppose that Dalt is an alternat-
ing diagram. Then

〈Dalt〉 = (−1)v−1Ac+2v−2 + (−1)v−2(e− v + 1)Ac+2v−6

+ · · ·+ (−1)v+2(e− v + 1)A6−c−2v + (−1)v+1A2−c−2v.
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Recall that a link L is almost alternating if it is non-alternating and
has an almost alternating diagram D, that is a diagram where one crossing
change transforms D into an alternating diagram. Figure 9 shows a generic
almost alternating diagramD. Label the four faces of the diagramD incident
to the almost alternating crossing by u1, u2, v1, v2. If there is a crossing inside
of the alternating tangle R incident to both u1 and u2, then a flype may be
applied to the crossing to move it outside of R. Then the crossing can be
cancelled with the almost alternating crossing via a Reidemeister 2 move,
resulting in an alternating diagram. Similarly, if there is a crossing inside of
R incident to both v1 and v2, then the diagram can be transformed into an
alternating diagram (see the proof of Corollary 4.5 in [ABB+92]). Therefore,
if L is almost alternating, then it has a diagram D as in Figure 9 where both
N(R) and D(R) are reduced alternating diagrams.

R
+ −

+−

u1

u2

v1 v2

Figure 9: An almost alternating diagram. The two-tangle R is alternating.

Two faces f1 and f2 of a link diagram are adjacent if there exists a
crossing incident to f1 and f2. Let adj(u1, u2) be the number of faces of
D that are contained in R and are adjacent to both u1 and u2, and let
adj(v1, v2) be the number of faces of D that are contained in R and are
adjacent to both v1 and v2. See Figure 10.

The following lemma shows that the first and last coefficients of the
Kauffman bracket of an almost alternating diagram can be expressed in
terms of adj(u1, u2) and adj(v1, v2).

Lemma 4.2. Let D be an almost alternating diagram as in Figure 9, and
assume that both N(R) and D(R) are reduced alternating diagrams. Then
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u2

u1

v1 v2

Figure 10: The numerator and denominator closures of an alternating tan-
gle R. In this example, adj(u1, u2) = 3 while adj(v1, v2) = 0. Faces that are
adjacent to both u1 and u2 are shaded.

for some integers p and k,

〈D〉 =

k∑
i=0

αiA
p−4i,

where α0 = ±(1− adj(u1, u2)) and αk = ±(1− adj(v1, v2)).

Proof. Let GN , GD be the all-A state graphs of N(R) and D(R) respectively,
and let GN , and GD be the all-B state graphs of N(R) and D(R). Let G′N ,

G′D, G
′
N , and G

′
D be these graphs after all multiple edges are replaced by

a single edge. Let vN and vN be the number of vertices of GN and GN

respectively. Let eN and eN be the number of edges in G′N and G
′
N . Similarly

define vD, vD, eD and eD using D(R) in place of N(R).
Since the graph GD is obtained from the graph GN by identifying the

vertices corresponding to faces u1 and u2, we have vN = vD + 1. Similarly,
vD = vN + 1. The graphs GN , GN , GD, and GD all have the same number
of edges, the number of crossings in R. Suppose that u3 is a face adjacent to
u1 and u2. Let e1 and e2 be the corresponding edges in GN . The edges e1 and
e2 do not have the same endpoints in GN , but since u1 and u2 are identified
together to form GD, the corresponding edges have the same endpoints in
GD. Therefore eN = eD + adj(u1, u2). Similarly, eD = eN + adj(v1, v2).
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The Kauffman bracket of D is given by 〈D〉 = A〈D(R)〉+A−1〈N(R)〉.
Theorem 4.1 implies

A〈D(R)〉 = (−1)vD−1Ac+2vD−1 + (−1)vD−2(eD − vD + 1)Ac+2vD−5 + · · ·
+ (−1)vD+2(eD − vD + 1)A7−c−2vD + (−1)vD+1A3−c−2vD ,

A−1〈N(R)〉 = (−1)vN−1Ac+2vN−3 + (−1)vN−2(eN − vN + 1)Ac+2vN−7 + · · ·
+ (−1)vN+2(eN − vN + 1)A5−c−2vN + (−1)vN+1A1−c−2vN

= (−1)vDAc+2vD−1 + (−1)vD−1(eN − vD + 2)Ac+2vD−5 + · · ·
+ (−1)vD+1(eN − vD)A7−c−2vD + (−1)vDA3−c−2vD .

Therefore, both of the coefficients of Ac+2vD−1 and A3−c−vD in 〈D〉 are zero.
Hence the greatest power of A that potentially has nonzero coefficient is
Ac+2vD−5, and the least power of A that potentially has nonzero coefficient
is A7−c−2vD . The coefficient of Ac+2vD−5 is

(−1)vD(eD − eN + 1) = (−1)vD(1− adj(u1, u2)).

Similarly, the coefficient of A3−c−2vD is

(−1)vD−1(eN − eD + 1) = (−1)vD−1(1− adj(v1, v2)),

giving us the desired result. �

Proof of Theorem 1.3. Let D be an almost alternating diagram of L with
the fewest number of crossings among all almost alternating diagrams of L.
If either N(R) or D(R) is not reduced, then either there exists an almost
alternating diagram of L with fewer crossings or L is an alternating link.
If L is alternating, then both |am| and |aM | are 1 by a result of Kauffman
[Kau87].

Suppose that both N(R) and D(R) are reduced. It suffices to show that
the trailing or leading coefficient of 〈D〉 is ±1. By Lemma 4.2, if either
adj(u1, u2) or adj(v1, v2) is 0 or 2, then the result is shown. Let Γ and Γ∗ be
the checkerboard graphs of D such that u1 and u2 are vertices in Γ and v1
and v2 are vertices in Γ∗. Suppose that e1 and e2 are the only two edges in
a path between u1 and u2. Then any path between v1 and v2 must contain
either the edge dual to e1 or the edge dual to e2. Hence the number of disjoint
paths between u1 and u2 is a lower bound for the length of the shortest path
between v1 and v2. Therefore if adj(u1, u2) ≥ 3, then adj(v1, v2) = 0, and
similarly if adj(v1, v2) ≥ 3, then adj(u1, u2) = 0.
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Suppose adj(u1, u2) 6= 1. Either adj(u1, u2) = 0 or 2 and |1− adj(u1, u2)|
= 1, or adj(u1, u2) ≥ 3 and |1− adj(v1, v2)| = |1− 0| = 1. By a similar argu-
ment, if adj(v1, v2) 6=1, then at least one of |1−adj(u1, u2)| or |1−adj(v1, v2)|
is one. Thus the only case left to consider is adj(u1, u2) = adj(v1, v2) = 1. If
adj(u1, u2) = adj(v1, v2) = 1, then D has diagram as in Figure 11 where R1,
R2 and R3 are alternating tangles except R2 and R3 are allowed to have no
crossings. Furthermore, if adj(u1, u2) = adj(v1, v2) = 1, then L has an almost
alternating diagram with two fewer crossings than D (as depicted in Fig-
ure 12), contradicting the minimality of D. Therefore, either adj(u1, u2) 6= 1
or adj(v1, v2) 6= 1, and the result is proven for almost alternating links.

If L is a link with gT (L) = 1, then [AL15] implies that L is mutant to
an almost alternating link L′. Since mutation does not change the Jones
polynomial, it follows that VL(t) = VL′(t), and the result holds. �

u1

u2

v1 v2

R1+

- +
-
+

-

R2
-

+

+

-

R3

+ -

- +

Figure 11: If adj(u1, u2) = adj(v1, v2) = 1, then D has the above diagram.

Adams et. al. [ABB+92] extended the notion of almost alternating as
follows. The dealternating number dalt(D) of a link diagram D is the min-
imum number of crossing changes necessary to transform the diagram D
into an alternating diagram. The dealternating number dalt(L) of the link
L is the minimum of dalt(D) over all diagrams D of L. A link L is almost
alternating if and only if dalt(L) = 1. Theorem 1.3 implies that if the first
and last coefficients am and aM of the Jones polynomial of L are both two
or greater in absolute value, then gT (L) ≥ 2 and dalt(L) ≥ 2.
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R1 R2

R3

R1 R2

R3

R1
R2

R3

R1
R2

R3

Figure 12: If adj(u1, u2) = adj(v1, v2) = 1, then D is isotopic to another al-
most alternating D′ with two fewer crossings. The crossings contained in the
dashed red circles are the almost alternating crossings.

Example 4.3. The knot K = 11n95 in Figure 13 has Jones polynomial

VK(t) = 2t2 − 3t3 + 5t4 − 6t5 + 6t6 − 5t7 + 4t8 − 2t9.

Theorem 1.3 implies that gT (11n95) ≥ 2 and dalt(11n95) ≥ 2. Figure 13 gives
diagrams of 11n95 of Turaev genus and dealternating number two. Thus
gT (11n95) = dalt(11n95) = 2.

Kawauchi [Kaw10] defined the alternation number alt(L) of a link L to be
the Gordian distance from L to the set of alternating links. In other words,
for a link diagram D, define alt(D) to be the minimum number of crossings
changes necessary to transform D into a (possibly non-alternating) diagram
of an alternating link. Then define alt(L) to be the minimum alt(D) over
all diagrams D of L. Figure 13 shows that Theorem 1.3 does not extend
to alternation number one links. If the crossing marked in the upper left
diagram in Figure 13 is changed, then the resulting diagram is a trefoil.
Thus alt(11n95) = 1.



i
i

“4-Lowrance” — 2019/1/3 — 22:30 — page 1122 — #20 i
i

i
i

i
i

1122 O. T. Dasbach and A. M. Lowrance

Figure 13: On the upper left is the standard diagram of 11n95. The Turaev
surface of this diagram has genus three, and if the encircled crossing is
changed, then the resulting knot is a trefoil. Performing a Reidemeister 3
move yields the diagram on the upper right, whose Turaev surface has genus
two. If a strand of 11n95 is pulled beneath the encircled alternating tangle
in the upper right, then the resulting diagram is shown on the bottom. This
diagram has dealternating number two.

Jablan [Jab14] (together with unpublished work of Joshua Howie)
showed that all knots with twelve or fewer crossings have Turaev genus and
dealternating number at most two. For knots with eleven crossings, all but
11n95 and 11n118 are known to be Turaev genus one and almost alternating.
Example 4.3 shows that gT (11n95) = dalt(11n95) = 2. Among all knots with
12 crossings, there are 35 whose Turaev genus and dealternating number are
unknown. Theorem 1.3 implies that the eleven knots in Table 1 have Turaev
genus and dealternating number two.
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Name VK(t)

12n253 −2t−8 + 4t−7 − 7t−6 + 9t−5 − 9t−4 + 10t−3 − 7t−2 + 5t−1 − 2

12n254 3t2 − 5t3 + 9t4 − 11t5 + 11t6 − 11t7 + 8t8 − 5t9 + 2t10

12n280 2t−1 − 4 + 7t− 8t2 + 9t3 − 9t4 + 6t5 − 4t6 + 2t7

12n323 −2t−5 + 4t−4 − 6t−3 + 9t−2 − 9t−1 + 9− 7t+ 5t2 − 2t3

12n356 2t−4 − 5t−3 + 8t−2 − 10t−1 + 11− 10t+ 8t2 − 5t3 + 2t4

12n375 2t2 − 4t3 + 8t4 − 9t5 + 10t6 − 10t7 + 7t8 − 5t9 + 2t10

12n452 2t−1 − 4 + 7t− 9t2 + 10t3 − 9t4 + 7t5 − 5t6 + 2t7

12n706 2t−4 − 4t−3 + 6t−2 − 8t−1 + 9− 8t+ 6t2 − 4t3 + 2t4

12n729 3t2 − 6t3 + 10t4 − 12t5 + 13t6 − 12t7 + 9t8 − 6t9 + 2t10

12n811 −2 + 6t− 8t2 + 11t3 − 11t4 + 10t5 − 8t6 + 5t7 − 2t8

12n873 3t−4 − 7t−3 + 11t−2 − 14t−1 + 15− 14t+ 11t2 − 7t3 + 3t4

Table 1: Knots with twelve crossings appearing in the KnotInfo database
[CL16] that Theorem 1.3 implies have gT (K) > 1 and dalt(K) > 1. Work of
Jablan [Jab14] and Howie shows that for each of these knots K, we have
gT (K) = dalt(K) = 2.
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Basel, 1996, translated and revised from the 1990 Japanese orig-
inal by the author.

[Kaw10] Akio Kawauchi, On alternation numbers of links, Topology Appl.
157 (2010), no. 1, 274–279.

[Kim15] Seungwon Kim, Link diagrams with low Turaev genus, Proc.
Amer. Math. Soc. 146 (2018), no. 2, 875–890.

[KT76] Louis H. Kauffman and Laurence R. Taylor, Signature of links,
Trans. Amer. Math. Soc. 216 (1976), 351–365.

[Lee05] Eun Soo Lee, An endomorphism of the Khovanov invariant, Adv.
Math. 197 (2005), no. 2, 554–586.

[Low08] Adam M. Lowrance, On knot Floer width and Turaev genus, Al-
gebr. Geom. Topol. 8 (2008), no. 2, 1141–1162.

[Low15] Adam M. Lowrance, Alternating distances of knots and links,
Topology Appl. 182 (2015), 53–70.

[LT88] W. B. R. Lickorish and M. B. Thistlethwaite, Some links with
nontrivial polynomials and their crossing-numbers, Comment.
Math. Helv. 63 (1988), no. 4, 527–539.

[Mil68] John W. Milnor, Infinite cyclic coverings, Conference on the
Topology of Manifolds (Michigan State Univ., E. Lansing, Mich.,
1967), Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–
133.

[MT93] William Menasco and Morwen Thistlethwaite, The classification
of alternating links, Ann. of Math. (2) 138 (1993), no. 1, 113–171.

[Mur65] Kunio Murasugi, On a certain numerical invariant of link types,
Trans. Amer. Math. Soc. 117 (1965), 387–422.



i
i

“4-Lowrance” — 2019/1/3 — 22:30 — page 1126 — #24 i
i

i
i

i
i

1126 O. T. Dasbach and A. M. Lowrance

[Mur87] Kunio Murasugi, Jones polynomials and classical conjectures in
knot theory, Topology 26 (1987), no. 2, 187–194.

[Mur89] Kunio Murasugi, On invariants of graphs with applications to
knot theory, Trans. Amer. Math. Soc. 314 (1989), no. 1, 1–49.

[OS03a] Peter Ozsváth and Zoltán Szabó, Heegaard Floer homology and
alternating knots, Geom. Topol. 7 (2003), 225–254 (electronic).
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