
i
i

“2-Ivaki” — 2018/12/20 — 23:35 — page 1047 — #1 i
i

i
i

i
i

Communications in
Analysis and Geometry
Volume 26, Number 5, 1047–1077, 2018

Harnack inequalities for evolving

hypersurfaces on the sphere

Paul Bryan, Mohammad N. Ivaki, and Julian Scheuer
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1. Introduction

We consider the evolution of a family of embeddings

x : Mn × [0, T )→Mc

of a smooth, closed manifold Mn by

(1.1) ∂tx = −Fν,

where Mc is the simply connected space form of constant sectional curva-
ture c ≥ 0 and F ∈ C∞(Γ+) is a strictly monotone, symmetric function of
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1048 P. Bryan, M. N. Ivaki, and J. Scheuer

the eigenvalues of the Weingarten map W (principal curvatures) κ1, . . . , κn.
Strict monotonicity ensures the flow is parabolic. We will need to make some
further assumptions on the speed to obtain Harnack inequalities, namely
that

F = fp, 0 < p ≤ 1,

where f is 1-homogeneous and convex.
Under these assumptions, our principal results are Harnack inequalities

for flows of strictly convex hypersurfaces on the sphere. These results extend
the Harnack inequalities obtained in [6, 7] on the sphere to a broader class of
flows, similar to, though more restrictive than the class of flows in Euclidean
space [2] for which Harnack inequalities are known. We obtain the following
theorem.

Theorem 1. Let f be a strictly monotone, 1-homogeneous and convex cur-
vature function, 0 < p ≤ 1, and let F = fp. Let x be a solution to (1.1) in a
simply connected space form of constant sectional curvature c ≥ 0, and such
that Mt = x(M, t) is strictly convex for all t. Then F satisfies

∂tF − bij∇iF∇jF +
pF

(p+ 1)t
> 0.

For f = H the following stronger estimates hold: If 1
2 + 1

2n < p < 1, then

∂tH
p − bij∇iHp∇jHp − cp

2p− 1
H2p−1 +

p

p+ 1

Hp

t
> 0

and if 0 < p ≤ 1
2 + 1

2n or p = 1, then

∂tH
p − bij∇iHp∇jHp − cnpH2p−1 +

p

p+ 1

Hp

t
> 0.

A number of authors have studied Harnack inequalities in Euclidean
space. The genesis of such study is [14] where Hamilton proves a Harnack
inequality for the mean curvature flow of convex hypersurfaces. Harnack
inequalities for other flows have been obtained in [8, 17, 18, 21, 26], including
flows by powers of Gauss curvature, centro-affine normal flows, and flows
by powers of inverse mean curvature. The most general results, subsuming
many other results, were obtained in [2] for so-called α-convex and α-concave
speeds. A survey of the use of Harnack inequalities for geometric flows can
be found in [23].
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Differential Harnack inequalities on the sphere 1049

The philosophy as espoused in [14] by Hamilton is that equality should
be attained by self-similar solutions, a.k.a. solitons, as originally motivated
by the fact that the equality case in the seminal work of Li-Yau [20] is
attained on the heat kernel, a self-similar solution of the heat equation.
Such self-similarity leads one to study the Harnack quantity,

(1.2) Q = ∂tF − bij∇iF∇jF,

where {bij} is the inverse of the second fundamental form of a strictly convex
hypersurface. This quantity also arises, seemingly magically when changing
parametrization from the “Gauss map parametrization” (where the calcu-
lations are almost trivial), to the “Standard parametrization” [2]. Several
authors, beginning with [9] have also investigated this quantity, relating it
to the second fundamental form of a degenerate metric on space-time [15, 19].

In the sphere, we do not have quite the same notion of self-similarity
and the Gauss map parametrization does not seem to have quite the same
“magical” properties as in Euclidean space. Using the “Euclidean” Harnack
quantity (1.2) on the sphere, we immediately encounter new difficulties aris-
ing from the background curvature introducing the “remainder term” R of
Proposition 9. In addition to the positivity required for Euclidean Harnack
inequalities, on the sphere we also require positivity of R; therefore, our
Harnack inequalities apply to a restricted class of flows as compared with
[2]. In the particular case when the speed is Hp, the computation becomes
tractable (Lemma 10, Lemma 11), and suitably modifying the Harnack quan-
tity, we can cancel some bad terms to obtain the second Harnack inequality
in Theorem 1.

Let us remark in passing that our computations recover most of the
Harnack inequalities in Euclidean space mentioned above. In the case of
space-forms of negative curvature, we find that essentially all the terms
have the wrong sign and no Harnack inequality seems possible.

This paper is laid out as follows: in Section 2 we define our notational
conventions and recall some standard definitions and identities. In Section 3
we give some standard evolution equations and commutators and carry out
the tedious task of computing the evolution of various quantities necessary
for the main argument. Section 4 combines these computations into evolu-
tion equations for the Harnack quantities we study. Then, applying these
calculations, we derive the Harnack inequalities in Section 5. In this section,
we present several variants depending on the strength of our assumptions.
To finish, we prove preservation of convexity in Section 6 for various flows
in order to show that the assumption of convexity is reasonable.



i
i

“2-Ivaki” — 2018/12/20 — 23:35 — page 1050 — #4 i
i

i
i

i
i

1050 P. Bryan, M. N. Ivaki, and J. Scheuer

Acknowledgment

The authors would like to thank Knut Smoczyk and the Institut für Differ-
entialgeometrie at Leibniz Universität for hosting a research visit where part
of this work took place. Bennet Chow was also very encouraging, suggesting
that Harnack inequalities appear to be quite robust and should hold for a
broad class of curvature flows, inspiring us to undertake the involved calcu-
lations required. The first author would also like to thank the third author
for the gift of a bottle of French wine, only to be opened upon completion
of this paper which served as strong motivation for completion. All the au-
thors wish to thank the referees who carefully checked the computations
and kept us honest in our conventions. Whilst this work was conducted,
the first author was a Riemann Fellow at the Riemann Center for Geome-
try and Physics, Leibniz Universität and then supported by the EPSRC on
a Programme Grant entitled “Singularities of Geometric Partial Differen-
tial Equations” reference number EP/K00865X/1. The work of the second
author was supported by Austrian Science Fund (FWF) Project M1716-
N25 and the European Research Council (ERC) Project 306445. The work
of the third author has been supported by the ”Deutsche Forschungsge-
meinschaft” (DFG, German research foundation) within the research grant
”Harnack inequalities for curvature flows and applications”, grant number
SCHE 1879/1-1.

2. Preliminaries

For a general Riemannian manifold (Mn, g) let ∇ be the Levi-Civita con-
nection for g. Let (∂i), 1 ≤ i ≤ n, be a coordinate frame. We shall write
∇i = ∇∂i for covariant derivatives in direction ∂i and also use the notation
∇i = gik∇k. The Christoffel symbols are defined by

∇∂i∂j = Γkij∂k.

For a (k, l) tensor, (∇iT )i1···ikj1···jl will be written ∇iT i1···ikj1···jl . Second covariant
derivatives will be written

∇2
ij = ∇∂i∇∂j −∇∇∂i

∂j

and (∇2)ij = gik∇2
kj .
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Differential Harnack inequalities on the sphere 1051

We use Hamilton’s convention [13, p. 258] for the Riemannian curvature
tensor, namely

Rij
l
k∂l =

(
∂

∂xi
Γljk −

∂

∂xj
Γlik + ΓlirΓ

r
jk − ΓljrΓ

r
ik

)
∂l(2.1)

= ∇i∇j∂k −∇j∇i∂k
= ∇2

ij∂k −∇2
ji∂k,

where the whole relation (2.1) is also known as the Ricci identity. It follows
that for a function f ∈ C1(M) we have

(2.2) ∇3
ijkf −∇3

jikf = Rijk
l∇lf,

where ∇f = df is the covariant derivative of f ; see [13, p. 258].
Let ḡ and R̄ denote, respectively, the metric and the curvature tensor

of Mc. In the situation where Mt := x(Mn, t), g = x∗t ḡ denote the time-
dependent induced metric on M with ∇ the corresponding time dependent
Levi-Civita connection. Write ν for the outer unit normal to Mt, which gives
rise to a frame {∂0 = ν, (xt)∗∂1, . . . , (xt)∗∂n} on Mc in a neighborhood of Mt.

Let Greek indices range from 0 to n and Latin indices range from 1 to n.
The Riemann curvature tensor of Mc satisfies R̄αβγδ = c(ḡαγ ḡβδ − ḡαδ ḡβγ).
We may write the metric g = {gij}, the second fundamental form A = {hij},
the Weingarten mapW = {hij} = {gmihjm} and the Riemann curvature ten-
sor {Rijkl} with respect to the given frame. The relations between A, R, and
R̄ are given by the Gauss and Codazzi equations:

Rijkl =
(
x∗R̄

)
ijkl

+ hikhjl − hilhjk
= c(gikgjl − gilgjk) + hikhjl − hilhjk,

∇ihjk = ∇khij ,

valid for space forms.
The mean curvature of Mn is the trace of the Weingarten map (equiv-

alently the trace of the second fundamental form with respect to g), H =
hii = gijhij . We also use the following standard notation

(h2)ji = gmjgrshirhsm,

(h2)ij = gkj(h
2)ki = hki hkj ,

|A|2 = gijgklhikhlj = hijh
ij .
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Here {gij} is the inverse matrix of {gij}. For a strictly convex hypersurface, A
is strictly positive-definite and hence has a strictly positive-definite inverse,
which we denote by

b = {bij}.

We will need some notation for derivatives of the speed F . Let us write

F ij =
∂F

∂hji

for the first partial derivatives of F . We may also think of F as a function
of the metric and second fundamental form

F (g, h) = F (gikhkj).

From this point of view, for the first and second partial derivatives, let us
write

F ij =
∂F

∂hij
, F ij,kl =

∂2F

∂hkl∂hij
.

The trace of {F ij} with respect to the metric will be written

tr(Ḟ ) = gijF
ij .

Let us define the operator � = F ij∇2
ij , i.e., for a (k, l)-tensor T , �T reads

in coordinates

(2.3) �T i1...ikj1...jl
= F rs(∇2

rsT )i1...ikj1...jl
.

The � operator satisfies a product rule: for smooth functions φ and ψ
we have

(2.4) �(φψ) = φ�ψ + ψ�φ+ 2F ij∇iφ∇jψ.

Throughout the paper, (Xij) and (Yij) are arbitrary symmetric matrices.
We frequently make use, without comment, of the formula for differentiating
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Differential Harnack inequalities on the sphere 1053

an inverse
∂gij

∂gkl
Xkl = −gkjgilXkl.

First derivatives of F from the two perspectives are related by

(2.5) F ij =
∂F

∂hkl

∂hkl
∂hij

= F lkg
ikδjl = gikF jk

and

(2.6)
∂F

∂gij
Xij = F lk

∂hkl
∂gij

Xij = −F lkgkigrjhrlXij = −F lihjlXij .

We will also need the mixed second derivatives,

∂F ij

∂gkl
XijYkl = −

(
gkjF il + F ij,mkhlm

)
XijYkl,(2.7)

where we used (2.6). See [24] for a detailed discussion.
Covariant derivatives of F satisfy

(2.8) ∇kF = F ij∇khij

and the covariant derivative of the trace satisfies

(2.9) ∇k tr(Ḟ ) = gijF
ij,rs∇khrs.

3. Basic evolution equations

The evolution equations derived in this section hold for a general curvature
function F . Throughout the paper we only consider flows of strictly convex
hypersurfaces.

Following [2, 8, 14, 26], in this section we collect basic evolution equations
that are needed to calculate the evolution of the quantities

χ1 = t(∂tF − bij∇iF∇jF ) + δF

and

χ2 = t(∂tF − bij∇iF∇jF − cF tr(Ḟ )) + δF,

where δ 6= 0 is an arbitrary, non-zero constant. The evolution equation for χ1

will be used to obtain Harnack estimates for powers of convex 1-homogeneous
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curvature speeds F while the evolution equation for χ2 will be employed to
obtain stronger Harnack estimates for flows by powers of the mean curvature
F (H) = Hp with p ∈ (0, 1]. Note that in Euclidean space χ1 = χ2.

Let us make a few definitions to keep the calculations more manageable.
Let

αij = ∇2
ijF + F (h2)ij , γij = bkl∇kF∇lhij , ηij = αij − γij

and define

β = F ijαij = �F + FF ij(h2)ij , θ = bij∇iF∇jF,

so that from the evolution of F below (Lemma 2, item 9) we may write our
main Harnack quantities as

χ1 = t(∂tF − θ) + δF and χ2 = t(β − θ) + δF.

We begin by recalling some standard evolution equations and commutators
and then break the calculation into several lemmas.

The evolution equations in the following lemma are standard and can be
found in many places [2, 8, 14, 16, 26]. The necessary tools are commuting
derivatives, using the definition of the curvature tensor for space forms,
the Gauss equation, and the Codazzi equation as described in the previous
section. Compare also [11, p. 94-95] and the formula [10, eq. (6.17)].

Lemma 2. The following evolution equations hold

1) ∂tgij = −2Fhij ,

2) ∂tg
ij = 2Fhij ,

3) ∂thij = ∇2
ijF − F (h2)ij + cFgij ,

4) ∂th
j
i = (∇2)jiF + F (h2)ji + cFδji = αji + cFδji ,

5)

∂thij = �hij + F kl(h2)klhij − (F klhkl + F )(h2)ij

+ F kl,rs∇ihkl∇jhrs
+ c{(F + F klhkl)gij − tr(Ḟ )hij},
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Differential Harnack inequalities on the sphere 1055

6)

∂th
j
i = �hji + F kl(h2)klh

j
i − (F klhkl − F )(h2)ji

+ F kl,rs∇ihkl∇jhrs
+ c{(F + F klhkl)δ

j
i − tr(Ḟ )hji},

7)

∂tb
ij = �bij − F rs(h2)rsbij + (F klhkl + F )gij

−
(

2blqF kp + F kl,pq
)
birbjs∇rhkl∇shpq

− c{(F + F klhkl)b
irbjr − tr(Ḟ )bij},

8) ∂t(h
2)ij = hkj∇2

ikF + hki∇2
jkF + 2cFhij ,

9) ∂tF = �F + FF ij(h2)ij + cFF ijgij = β + cF tr(Ḟ ).

Lemma 3. The Christoffel symbols evolve according to

(3.1) ∂tΓ
k
ij = −Fgkl∇lhij − gklhli∇jF − gklhlj∇iF + gklhij∇lF.

Proof. In local coordinates, we have

Γkij =
1

2
gkl (∂jgil + ∂igjl − ∂lgij) .

Since ∂tΓ
k
ij is a tensor, we may calculate using normal coordinates at any

given point, at which Γkij = 0. Then we have

1

2
∂tg

kl(∂jgil + ∂igjl − ∂lgij) = 2FgkrhrsΓ
s
ij = 0

from Lemma 2, item 2. Now commuting derivatives [∂t, ∂i] = 0, and using
the Codazzi equations we obtain

∂tΓ
k
ij =

1

2
gkl (∂j∂tgil + ∂i∂tgjl − ∂l∂tgij)

= −gkl (∂j(Fhil) + ∂i(Fhjl)− ∂l(Fhij))
= −Fgkl∂lhij − gklhil∂jF − gklhlj∂iF + gklhij∂lF.

The result follows since in normal coordinates, ∇i = ∂i at our given point.
�
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We require the commutators [∇,�] and [∂t,�]. Without further com-
ment we will also use the fact that [∂t,∇]f = 0 for any smooth function
f .

Lemma 4. For every smooth function f , the following commutation rela-
tion holds

([∇,�]f)i = ∇i�f − (�∇f)i

= F kl,rs∇ihrs∇2
klf + F kl (hmk hli − hklhmi )∇mf

+ cF klgli∇kf − c tr(Ḟ )∇if.

Proof. From the Ricci identity (2.2) we get

∇3
iklf −∇3

klif = Rikl
m∇mf

and thus we obtain

∇i(F kl∇2
klf)− (F kl(∇2

kl∇f))i = F kl,rs∇ihrs∇2
klf + F klRikl

m∇mf.

From the Gauss equation we obtain

Rikl
m∇mf = (c (gpmgilgkp − gpmgpigkl) + gpmhilhkp − gpmhklhpi)∇mf

= c (gli∇kf − gkl∇if) + (hmk hli − hklhmi )∇mf. �

Lemma 5. The following commutation relation holds

[∂t,�]F = (∂t�−�∂t)F = F ij,kl∇2
ijF (αkl + cFgkl)

+ 2F ijhki (F∇2
kjF +∇kF∇jF ) + (F − F ijhij)|∇F |2.

Proof. First, let us calculate the evolution of F ij , which will also prove
useful later. From the mixed derivative equation (2.7), the evolution of the
metric (Lemma 2, item 1), and the evolution of the second fundamental form
(Lemma 2, item 3) we compute

Xij∂tF
ij = XijF

ij,kl∂thkl +Xij
∂F ij

∂gkl
∂tgkl(3.2)

= XijF
ij,kl

(
∇2
klF − F (h2)kl + cFgkl

)
+ 2XijFF

ij,klhlmh
m
k

+ 2XijFF
jkglihkl

= XijF
ij,kl

(
∇2
klF + F (h2)kl + cFgkl

)
+ 2XijFF

jkhik

= XijF
ij,kl (αkl + cFgkl) + 2XijFF

jkhik.
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Next, the commutator of ∂t and ∇2
ij is given by,(

∂t∇2
ij −∇2

ij∂t
)
F = ∂t

(
∇i∇jF −∇∇i∂jF

)
−∇i∇j∂tF +∇∇i∂j∂tF(3.3)

= −∂t
(

Γkij∇∂kF
)

+ Γkij∇∂k∂tF

= −∇kF∂tΓkij .

We obtain from (3.2), (3.3), and the evolution of the Christoffel symbols
Lemma 3,

(∂t�−�∂t)F =
(
∂tF

ij
)
∇2
ijF − F ij∇kF∂tΓkij

=
(
F ij,kl (αkl + cFgkl) + 2FF jkhik

)
∇2
ijF

+ F ij∇kF
(
Fgkl∇lhij + hki∇jF + hkj∇iF − gklhij∇lF

)
= F ij,kl∇2

ijF (αkl + cFgkl)

+ 2F jkhikF∇2
ijF + hki F

ij∇kF∇jF + hkjF
ij∇kF∇iF

+ Fgkl∇kFF ij∇lhij − F ijhijgkl∇kF∇lF.

The result now follows from |∇F |2 = gkl∇kF∇lF and ∇lF = F ij∇lhij by
the chain rule. �

The next ingredient is the evolution of the covariant derivative, ∇F = dF .

Lemma 6. There holds

((∂t −�)∇F )i = F kl,rs∇ihrsαkl + 2F klbrsF (h2)rl∇ihks
+ F kl(h2)kl∇iF +

(
F klhml hki − F klhklhmi

)
∇mF

+ c
(
F klgki∇lF + F∇i tr(Ḟ )

)
.

Proof. Using the evolution of F (Lemma 2, item 9) and the commutator
[∇,�] from Lemma 4, we compute

∂t∇iF − (�∇F )i = ∇i∂tF −∇i�F + ([∇,�]F )i

= ∇i
(
�F + F kl(h2)klF + c tr(Ḟ )F

)
−∇i(�F )

+ F kl,rs∇ihrs∇2
klF + cF klgki∇lF − c tr(Ḟ )∇iF

+ (F klhml hki − F klhklhmi )∇mF
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= F kl(h2)kl∇iF + F kl,rs∇ihrs(h2)klF
+ FF kl(hsl∇ihks + hrk∇ihrl) + cF∇i tr(Ḟ )

+ F kl,rs∇ihrs∇2
klF + cF klgki∇lF

+ (F klhml hki − F klhklhmi )∇mF
= F kl,rs∇ihrs

(
(h2)klF +∇2

klF
)

+ 2FF klhsl∇ihks
+ F kl(h2)kl∇iF + (F klhml hki − F klhklhmi )∇mF

+ c
(
F∇i tr(Ḟ ) + F klgki∇lF

)
,

where in the third equality we used ∇i(h2)kl = ∇i(gsrhkshrl) = hsl∇ihks +
hrk∇ihrl. We obtain the result, since brs(h2)rl = brshrmh

m
l = δsmh

m
l = hsl . �

Now we may proceed to the calculations of ∂tβ and ∂tθ.

Lemma 7. The quantity β satisfies

(∂t −�)β =
(
F ij(h2)ij + c tr(Ḟ )

)
β + (F − F ijhij)|∇F |2 + F ij,klαijαkl

+ 2F ijhki∇kF∇jF + 2bilF jk(2∇2
ijFF (h2)kl + F (h2)ijF (h2)kl)

+ cRβ,

where Rβ = F� tr(Ḟ ) + 2F kl∇k tr(Ḟ )∇lF + FF ij,klgklαij + 2F 2F ijhij .

Proof. Let us break up the calculation of

(∂t −�)β = ∂t�F + ∂t(FF
ij(h2)ij)−��F −�(FF ij(h2)ij)

into smaller pieces. First, we have lots of nice cancellation. Using the evolu-
tion of F from Lemma 2, item 9 and the commutator relation from Lemma 5
we have,

∂t�F −��F −�(FF ij(h2)ij)(3.4)

= �∂tF −��F −�(FF ij(h2)ij) + [∂t,�]F

= �(�F + FF ij(h2)ij + cF tr(Ḟ ))−��F −�(FF ij(h2)ij)

+ F ij,kl∇2
ijF (αkl + cFgkl) + 2F ijhki (F∇2

kjF +∇kF∇jF )

+ (F − F ijhij)|∇F |2
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= c(tr(Ḟ )�F + F� tr(Ḟ ) + 2F kl∇k tr(Ḟ )∇lF )

+ F ij,kl∇2
ijF (αkl + cFgkl) + 2F ijbklF (h2)il∇2

kjF

+ 2F ijhki∇kF∇jF + (F − F ijhij)|∇F |2

= c tr(Ḟ )�F + (F − F ijhij)|∇F |2 + F ij,kl∇2
ijFαkl

+ 2F ijbklF (h2)il∇2
kjF + 2F ijhki∇kF∇jF

+ c(F� tr(Ḟ ) + 2F kl∇k tr(Ḟ )∇lF + FF ij,klgkl∇2
ijF )

using, in the third equality, the product rule (2.4) for � and hki = hmi b
klhml =

bkl(h2)il since b is the inverse of A.
Next from (3.2) and Lemma 2, item 8 we obtain

∂t(F
ij(h2)ij) = ∂t(F

ij)(h2)ij + F ij∂t(h
2)ij

=
(
F ij,kl (αkl + cFgkl) + 2FF jkhik

)
(h2)ij

+ F ij
(
hkj∇2

ikF + hki∇2
jkF + 2cFhij

)
= F ij,kl(h2)ij (αkl + cFgkl) + 2FF jkbil(h2)lk(h

2)ij

+ 2F ijbkl(h2)il∇2
jkF + 2cFF ijhij ,

again using hki = bkl(h2)il in the last equality.
The remaining term we need to compute is thus

∂t(FF
ij(h2)ij) = (∂tF )F ij(h2)ij + F∂t(F

ij(h2)ij)(3.5)

= (β + cF tr(Ḟ ))F ij(h2)ij

+F
(
F ij,kl(h2)ij (αkl + cFgkl) + 2FF jkbil(h2)lk(h

2)ij

+2F ijbkl(h2)il∇2
jkF + 2cFF ijhij

)
= (β + cF tr(Ḟ ))F ij(h2)ij + F ij,klF (h2)ijαkl

+ 2FF ijbkl(h2)il∇2
jkF + 2F jkbilF (h2)lkF (h2)ij

+ c
(
FF ij,klgklF (h2)ij + 2F 2F ijhij

)
.

Now we add (3.4) and (3.5) together line by line to complete the proof.
�
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Lemma 8. The quantity θ evolves according to

(∂t −�)θ = (F ij(h2)ij + c tr(Ḟ ))θ

+ (F − F ijhij)|∇F |2 + 2F ijhki∇kF∇jF
− F kl,ij(γijγkl
− 2αijγkl)− 2bilF jk

(
γijγkl − 2αijγkl +∇2

ijF∇2
klF
)

+ cRθ,

where Rθ = −(F klhkl + F )birbjr∇iF∇jF + 2bjkF
kl∇lF∇jF + 2FF ij,klgijγkl.

Proof. Again using the product rule for �, (2.4), we have

(∂t −�)θ = (∂tb
ij −�bij)∇iF∇jF + bij((∂t −�)(∇F ⊗∇F ))ij(3.6)

− 2F kl∇kbij(∇l(∇F ⊗∇F ))ij

= (∂tb
ij −�bij)∇iF∇jF + 2bij((∂t −�)(∇F ))i∇jF

− 2bijF kl∇2
ikF∇2

ljF − 4F kl∇kbij∇2
ilF∇jF

= (∂tb
ij −�bij)∇iF∇jF + 2bij((∂t −�)(∇F ))i∇jF

− 2bijF kl∇2
ikF∇2

ljF + 4F klbipbjq∇khpq∇2
ilF∇jF

= (∂tb
ij −�bij)∇iF∇jF + 2bij((∂t −�)(∇F ))i∇jF

− 2bijF kl∇2
ikF∇2

ljF + 4F klbipγpk∇2
ilF,

where in the second to last equality we used the formula for the derivative
of the inverse bij of hij and the Codazzi equation in the last line, producing
bjq∇khpq∇jF = bjq∇qhpk∇jF = γpk. The first term in the final line appears
on the last line of the statement of the lemma (with indices relabelled). The
second term is part of 4bilF jkαijγkl in the second to last line. So we must
deal with the first two terms and show they add to the remainder of the
statement. For the first term, we use the evolution of bij from Lemma 2,
item 7 to calculate

(∂tb
ij −�bij)∇iF∇jF(3.7)

= ∇iF∇jF
(
−F rs(h2)rsbij + (F klhkl + F )gij

−
(

2blqF kp + F kl,pq
)
birbjs∇rhkl∇shpq

− c{(F + F klhkl)b
irbjr − tr(Ḟ )bij}

)
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=
(
c tr(Ḟ )− F rs(h)2rs

)
θ + (F klhkl + F )|∇F |2

− (2blqF kp + F kl,pq)birbjs∇iF∇jF∇rhkl∇shpq
− c(F klhkl + F )birbjr∇iF∇jF

=
(
c tr(Ḟ )− F rs(h)2rs

)
θ + (F klhkl + F )|∇F |2

− F kl,pqγklγpq − 2blqF kpγklγpq

− c(F klhkl + F )birbjr∇iF∇jF.

For the second term, from the evolution of ∇F in Lemma 6, we have

2bij((∂t −�)∇F )i∇jF(3.8)

= 2bij∇jF
(
F kl,rs∇ihrsαkl + 2F klbrsF (h2)rl∇ihks

+ F kl(h2)kl∇iF +
(
F klhml hki − F klhklhmi

)
∇mF

+ c
(
F klgki∇lF + F∇i tr(Ḟ )

) )
= 2bij∇jFF kl(h2)kl∇iF
− 2bij∇jFF klhklhmi ∇mF + 2bij∇jFF klhml hki∇mF
+ 2bij∇jFF kl,rs∇ihrsαkl + 4bij∇jFF klbrsF (h2)rl∇ihks
+ c

(
2bij∇jFF klgki∇lF + 2bij∇jFFgklF kl,rs∇ihrs

)
= 2F kl(h2)klθ − 2F klhkl|∇F |2 + 2F klhml ∇kF∇mF

+ 2F kl,rsγrsαkl + 4brsF klγksF (h2)rl

+ c
(

2F klbjk∇jF∇lF + 2FF kl,rsgklγrs

)
,

using the definitions of θ, αij and γij as well as bijhki∇jF = δjk∇jF = ∇kF ,

and bijhmi = bijgmphpi = δjpgmp = gmj in the last equality.
The proof is now completed by adding (3.7) and (3.8) line by line and

adding also the final line from (3.6). �

4. Main evolution equations

We start this section by calculating the evolution equations of χ2 and a slight
modification χ3, which will be employed to obtain the stronger Harnack
estimates for flows by powers of the mean curvature. We will then focus
on the evolution equation of χ1 which will enable us to deduce Harnack
estimates for powers of 1-homogeneous convex speeds.
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Proposition 9. Let δ 6= 0. For a general curvature function F under flow
(1.1) the quantity χ2 = t(β − θ) + δF satisfies

∂tχ2 −�χ2 =

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
χ2(4.1)

+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl + tcR,

where

ηij = αij − γij = ∇2
ijF + (h2)ijF − brs∇rhij∇sF

and

R = Rβ −Rθ(4.2)

= F� tr(Ḟ ) + 2F kl∇k tr(Ḟ )∇lF + FF ij,klgkl(∇2
ijF + F (h2)ij)

− 2FF ij,klgklb
rs∇rhij∇sF + 2F 2F ijhij

+ (F klhkl + F )birbjr∇iF∇jF − 2bjkF
kl∇lF∇jF.

Proof. We have (∂t −�)χ2 = β − θ + t(∂t −�)(β − θ) + δ(∂tF −�F ). First
of all, the evolution equation for F , Lemma 2, item 9 gives us

δ(∂tF −�F ) =
(
F ij(h2)ij + c tr(Ḟ )

)
δF.

Next, we note that F ijηij = β − θ since ∇rF = F ij∇rhij . Putting the two
equations above together gives

β − θ + δ(∂tF −�F )(4.3)

=

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
δF + t

(β − θ)2

δF
− t(F

ijηij)
2

δF

=
β − θ
δF

χ2 +
(
F ij(h2)ij + c tr(Ḟ )

)
δF − tF

ijF kl

δF
ηijηkl.

The remaining term t(∂t −�)(β − θ) is now just bookkeeping. Recall,
Lemma 7 states that

(∂t −�)β =
(
F ij(h2)ij + c tr(Ḟ )

)
β (A)

+ (F − F ijhij)|∇F |2 + 2F ijhki∇kF∇jF (B)

+ F ij,klαijαkl (C)

+ 2bilF jk(2∇2
ijFF (h2)kl + F (h2)ijF (h2)kl) (D)

+ cRβ (E)



i
i

“2-Ivaki” — 2018/12/20 — 23:35 — page 1063 — #17 i
i

i
i

i
i

Differential Harnack inequalities on the sphere 1063

while Lemma 8 states that

(∂t −�)θ = (F ij(h2)ij + c tr(Ḟ ))θ (A′)

+ (F − F ijhij)|∇F |2 + 2F ijhki∇kF∇jF (B′)

− F kl,ij(γijγkl − 2αijγkl) (C ′)

− 2bilF jk
(
γijγkl − 2αijγkl +∇2

ijF∇2
klF
)

(D′)

+ cRθ. (E′)

Subtracting line by line, we have

(A)− (A′) =
(
F ij(h2)ij + c tr(Ḟ )

)
β −

(
F ij(h2)ij + c tr(Ḟ )

)
θ

=
(
F ij(h2)ij + c tr(Ḟ )

)
(β − θ),

(B)− (B′) = (F − F ijhij)|∇F |2 + 2F ijhki∇kF∇jF
− (F − F ijhij)|∇F |2 − 2F ijhki∇kF∇jF

= 0,

(C)− (C ′) = F ij,klαijαkl + F kl,ij(γijγkl − 2αijγkl)

= F ij,kl(αij − γij)(αkl − γkl)
= F ij,klηijηkl,

(D)− (D′) = 2bilF jk(2F (h2)kl∇2
ijF + F (h2)ijF (h2)kl)

+ 2bilF jk
(
γijγkl − 2αijγkl +∇2

ijF∇2
klF
)

= 2bilF jk
(
∇2
ijF∇2

klF + 2F (h2)kl∇2
ijF + F (h2)ijF (h2)kl

− 2αijγkl + γijγkl
)

= 2bilF jk (αijαkl − 2αijγkl + γijγkl)

= 2bilF jkηijηkl,

(E)− (E′) = c(Rβ −Rθ)
= cR.

Multiplying everything by t and adding the result to (4.3) yields the claim.
�

We need two more lemmas to obtain a Harnack inequality for Hp-flow with
0 < p ≤ 1. We start by rewriting the term R in the evolution of χ2 when the
speed is a function of the mean curvature.

In the sequel, we denote F ′ = dF
dH and similarly for higher derivatives.
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Lemma 10. Suppose that F = F (H). Then the term R in the evolution
equation of χ2 takes the form

R = 2n
F ′′F

F ′
(
�F + FF ij(h2)ij − bij∇iF∇jF

)
− nF

′′F 2

F ′
F ij(h2)ij(4.4)

+ 2F 2F ′H + n

(
2
F ′′

F ′
− F ′′2F

F ′3
+
F ′′′F

F ′2

)
F ij∇iF∇jF

+
(
F ′H + F

)
birbjr∇iF∇jF − 2F ′bij∇iF∇jF.

Proof. We calculate the crucial terms in (4.2):

� tr(Ḟ ) = F kl∇2
kl(F

ijgij) = nF kl∇2
klF
′(4.5)

= nF klF ′′′∇kH∇lH + nF klF ′′∇2
klH

= n
F ′′′

F ′2
F kl∇kF∇lF + n

F ′′

F ′
�F − nF

′′2

F ′3
F kl∇kF∇lF

= n
F ′′

F ′
�F + n

(
F ′′′

F ′2
− F ′′2

F ′3

)
F kl∇kF∇lF.

Furthermore

(4.6) F ij,klgkl∇2
ijF = nF ′′gij∇2

ijF = n
F ′′

F ′
�F

and

(4.7) 2F kl∇ktr(Ḟ )∇lF = 2F klgijF
ij,rs∇khrs∇lF = 2n

F ′′

F ′
F kl∇kF∇lF.

Thus

R = 2n
F ′′F

F ′
�F + n

(
F ′′′F

F ′2
− F ′′2F

F ′3
+ 2

F ′′

F ′

)
F kl∇kF∇lF(4.8)

+ n
F ′′F 2

F ′
F ij(h2)ij − 2n

F ′′F

F ′
bij∇iF∇jF + 2F 2F ′H

+ (F klhkl + F )birbjr∇iF∇jF − 2bjkF
kl∇lF∇jF

and a little rearrangement gives the result. �

To obtain a Harnack estimate for Hp-flow, we will have to handle the
middle term in (4.4); this term does not always have a favorable positive
sign. To this end, it is useful to add an auxiliary function of the speed. Using
Proposition 9 and Lemma 10 it is straightforward to obtain the following
evolution equation for χ3 = χ2 + ctζ, where ζ = ζ(F ) is a function of F.
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Lemma 11. Let F = F (H). Then under flow (1.1) the quantity χ3 = χ2 +
ctζ evolves according to

∂tχ3 −�χ3 =

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
χ2 + cζ(4.9)

+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl

+ ct

{
2n
F ′′F

F ′
(
�F + FF ij(h2)ij − bij∇iF∇jF

)
+

(
ζ ′ − nF

′′F

F ′

)
F ij(h2)ijF + cζ ′ tr(Ḟ )F + 2F 2F ′H

+

(
n

(
2
F ′′

F ′
− F ′′2F

F ′3
+
F ′′′F

F ′2

)
− ζ ′′

)
F ij∇iF∇jF

+
(
F ′H + F

)
birbjr∇iF∇jF − 2F ′bij∇iF∇jF

}
.

Proof.

∂tχ3 −�χ3 = (∂t −�)χ2 + cζ + ct(∂t −�)ζ.

Adding (4.1) to

cζ + ct(∂t −�)ζ(4.10)

= cζ + ct
(
ζ ′(∂t −�)F − ζ ′′F kl∇kF∇lF

)
= cζ + ct

(
ζ ′FF ij(h2)ij + cζ ′FF ijgij − ζ ′′F kl∇kF∇lF

)
gives the result. �

Proposition 9, and Lemmas 10, 11 enable us to get a strong Harnack
estimate for Hp-flows; see Section 5 and Theorem 16. Due to the presence of
� tr(Ḟ ) in R given in Proposition 9, it is not clear to us whether χ2 would
result in stronger Harnack estimates for curvature flows other than Hp-flows.
As it will be shown, by weakening χ2 to χ1 = χ2 + tcF tr(Ḟ ), we can obtain
Harnack estimates for p-powers of 1-homogeneous convex speeds, 0 < p ≤ 1.
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Proposition 12. For a general curvature function F under flow (1.1) the
quantity χ1 = t(∂tF − θ) + δF satisfies the evolution equation

∂tχ1 −�χ1(4.11)

=

(
β − θ
δF

+ F ij(h2)ij + c
δ − 1

δ
tr(Ḟ )

)
χ1

+
c tr(Ḟ )F

δ
(tc tr(Ḟ ) + 2δ)

+ tF ij,kl (ηij + cFgij) (ηkl + cFgkl)

+ t

(
2bilF jk − F ijF kl

δF

)
ηijηkl

+ tc
{

2F 2F ijhij +
((
F ijhij + F

)
bir − 2F ir

)
bjr∇iF∇jF

}
.

Proof. We simply use the evolution of χ2, cf. (4.1), and add to it the evolu-
tion of tc tr(Ḟ )F . We have

(∂t −�)
(
tc tr(Ḟ )F

)
(4.12)

= tc
(

tr(Ḟ )FF ij(h2)ij + c tr(Ḟ )2F + F∂t tr(Ḟ )

− F� tr(Ḟ )− 2F ij∇iF∇j tr(Ḟ )
)

+ c tr(Ḟ )F.

Note that by (3.2) there holds

∂t tr(Ḟ ) = ∂t
(
F ijgij

)
(4.13)

=
(
F ij,kl (αkl + cFgkl) + 2FF jkhik

)
gij − 2F ijFhij

= F ij,kl (αkl + cFgkl) gij .

Hence

∂tχ1 −�χ1 =

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
χ2(4.14)

+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl + tcR

+ tc
(

tr(Ḟ )FF ij(h2)ij + c tr(Ḟ )2F + FF ij,klαklgij

+ cF 2F ij,klgklgij − F� tr(Ḟ )− 2F ij∇iF∇j tr(Ḟ )
)

+ c tr(Ḟ )F
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=

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
χ2

+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl

+ tc
(

tr(Ḟ )FF ij(h2)ij + c tr(Ḟ )2F + 2FF ij,klηklgij

+ cF 2F ij,klgklgij + 2F 2F ijhij

+ (F klhkl + F )birbjr∇iF∇jF − 2bjkF
kl∇lF∇jF.

)
+ c tr(Ḟ )F,

where we have combined the terms attached to the factor tc and used
(4.2) and ηij = αij − γij . Thus, collecting all terms containing ηij and F ij,kl

in (4.14) we get, after some rearranging, that
(4.15)

∂tχ1−�χ1 =

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
(χ1 − tcF tr(Ḟ ))

+ tc tr(Ḟ )FF ij(h2)ij + tc2 tr(Ḟ )2F + ctr(Ḟ )F

+ tF ij,kl (ηij + cFgij) (ηkl + cFgkl) + t

(
2bilF jk − F ijF kl

δF

)
ηijηkl

+ tc
(
2F 2F ijhij +

((
F ijhij + F

)
bir − 2F ir

)
bjr∇iF∇jF

)
.

It remains to rearrange the first two lines of the previous equation. We
have

(4.16)(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
(χ1 − tcF tr(Ḟ ))

+ tc tr(Ḟ )FF ij(h2)ij + tc2 tr(Ḟ )2F + ctr(Ḟ )F

=

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
χ1 −

(
β − θ
δF

+ F ij(h2)ij

)
tcF tr(Ḟ )

+ tc tr(Ḟ )FF ij(h2)ij + ctr(Ḟ )F

=

(
β − θ
δF

+ F ij(h2)ij + c tr(Ḟ )

)
χ1 −

( χ2

δF
− 1 + tF ij(h2)ij

)
cF tr(Ḟ )

+ tc tr(Ḟ )FF ij(h2)ij + ctr(Ḟ )F

=

(
β − θ
δF

+ F ij(h2)ij + c
δ − 1

δ
tr(Ḟ )

)
χ1 +

tc2

δ
F tr(Ḟ )2 + 2cF tr(Ḟ ),

which are precisely the first two lines in (4.11). �
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5. Harnack inequalities

In Euclidean space we recover differential Harnack inequalities for various
speeds already discussed in [2, Corollary 5.11 (1)], as can be seen by evalu-
ating the evolution equation (4.1) with c = 0.

Remark 13. Let x be a strictly convex solution of (1.1) in Euclidean space,
i.e. c = 0. Note that the evolution of χ1 simplifies tremendously now:

∂tχ1 −�χ1 =

(
β − θ
δF

+ F ij(h2)ij

)
χ1(5.1)

+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl.

For curvature functions F and suitable δ so that the second term is
non-negative, we obtain a Harnack inequality. For example, let f be a 1-
homogeneous, inverse concave curvature function; that is, the curvature
function

(5.2) f̃(W) :=
1

f(W−1)

is concave. In [27, p. 112] it is shown that in this case f satisfies

(5.3) (f ij,kl + 2f ikbjl)ηijηkl ≥ 2f−1f ijfklηijηkl

for all symmetric matrices (ηij). For α 6= 0, setting

(5.4) F =
|α|
α
fα,

we obtain

(5.5) F ij = |α|fα−1f ij , F ij,kl = (α− 1)|α|fα−2f ijfkl + |α|fα−1f ij,kl

and hence, in the sense of bilinear forms,

F ij,kl + 2bilF jk − F ijF kl

δF
(5.6)

= |α|fα−1
(
f ij,kl +

α− 1

f
f ijfkl + 2bilf jk − α

δf
f ijfkl

)
≥ |α|fα−2

(
α+ 1− α

δ

)
f ijfkl

≥ 0,
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if we chose δ ≥ α
α+1 when α ≥ 0 and δ ≤ α

α+1 when α ≤ 0. However, in order
to apply this estimate in a maximum principle argument for χ1, we need χ1

to be positive initially and hence F and δ must have the same sign. Thus
the only allowed pairs (F, δ) are

F (f) = fα, 0 < α <∞, δ ≥ α

α+ 1
,

for contracting flows. For expanding flows we can allow the cases

F (f) = −f−β, 0 < β < 1, δ ≤ β

β − 1
.

In those situations we obtain

χ1

t
= ∂tF − bij∇iF∇jF +

δF

t
> 0.

Compare with [2, Theorem 5.6, Corollary 5.11]. To the best of our knowledge,
this is the first time these Harnack inequalities (even in Euclidean space)
have been proved in such generality in the parametric setting.

Now we move on to the spherical case. Before we can prove the main
theorem, for convenience we provide the proof of an inequality for curvature
functions, the idea of which can be found in [3, Theorem 2.3].

Lemma 14. Let f = f(hij , gij) be a monotone, 1-homogeneous curvature
function defined on Γ+. Then

(5.7)

(
f ikbjl − f ijfkl

f

)
ηijηkl ≥ 0

for all symmetric matrices ηij .

Proof. Take a coordinate system, such that

hij = κiδij .

Then we also have

f ij =
∂f

∂hij
=

∂f

∂κi
δij ≡ f iδij

Thus the left hand side of (5.7) becomes

f i

κj
η2ij −

f iηiif
jηjj

f
≥ f i

κi
η2ii −

f iηiif
jηjj

f
,
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where we have just thrown away all non-diagonal entries of ηij (Note that
this is not a waste, since we have to prove the inequality for all matrices
anyway). From now on we denote (ηii) simply by ηi. Thus we have to prove

∀η ∈ Rn :
f i

κi
η2i −

f iηif
jηj

f
≥ 0

Define the (n− 1) dimensional linear subspace

S = {(ξi) ∈ R : f iξi = 0}.

Since f iκi = f = f(κ) > 0, we have

Rn = S ⊕ 〈κ〉.

Thus

η = ξ + aκ, ξ ∈ S, a ∈ R,

and we may assume a = 1, for if a = 0 there is nothing to prove and if a 6= 0
take η̃ = η

a . The desired inequality becomes, due to the homogeneity,

f i

κi
(ξi + κi)

2 − f =
f i

κi
ξ2i + 2

f i

κi
ξiκi =

f i

κi
ξ2i ≥ 0.

�

Theorem 15. Let f be a strictly monotone, 1-homogeneous, convex curva-
ture function, 0 < p ≤ 1, and let F = fp. Then under flow (1.1) with c ≥ 0,
χ1 satisfies

χ1

t
= ∂tF − bij∇iF∇jF +

pF

(p+ 1)t
> 0 ∀t ∈ (0, T ).

Proof. In view of the maximum principle and that χ1 is manifestly positive
at t = 0, it suffices to show that the right-hand side of (4.11) is positive
whenever at some point in space-time χ1 = 0. Due to Lemma 14 there holds

(5.8) f ikbjlηijηkl ≥ f−1
(
f ijηij

)2
for all symmetric matrices η and hence

(5.9) F ikbjlηijηkl = pfp−1f ikbjlηijηkl ≥ pfp−2(f ijηij)2 ≥
1

p
F−1

(
F ijηij

)2
.
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Hence for δ = p
p+1 we have

(
2bilF jk − F ijF kl

δF

)
ηijηkl(5.10)

≥ 1− p
p

F−1F ijF klηijηkl

=
1− p
p

F−1F ijF kl(ηij + cFgij)(ηkl + cFgkl)

− 2c
1− p
p

F ijηijF
klgkl − c2

1− p
p

F
(
F ijgij

)2
=

1− p
p

F−1F ijF kl(ηij + cFgij)(ηkl + cFgkl)

− 2c

t

1− p
p

χ1F
klgkl +

2δc

t

1− p
p

FF klgkl + c2
1− p
p

F
(
F ijgij

)2
,

where in the last equality we have used

(5.11) F ijηij = β − θ =
χ1 − δF

t
− cFF ijgij .

The first term in the last equality of (5.10) when added to the term involving
F ij,kl in (4.11) produces a positive term:

(5.12) F ij,kl +
1− p
p

F−1F ijF kl = pfp−1f ij,kl ≥ 0

as bilinear forms due to the convexity of f . The other terms in (5.10) do no
harm in applying the maximum principle. On the other hand, note that any
strictly monotone, 1-homogeneous curvature function f satisfies fbij ≥ f ij .
Therefore ((

F ijhij + F
)
bir − 2F ir

)
bjr∇iF∇jF(5.13)

= fp−1 ((p+ 1)− 2p) f irbjr∇iF∇jF ≥ 0.

�

Employing the evolution equation (4.9), we can obtain a stronger Har-
nack inequality for the speed F = Hp with p ∈ (0, 1); case p = 1 was con-
sidered in [6].
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Theorem 16. Consider a solution of (1.1) with F = Hp and c ≥ 0. If
1
2 + 1

2n ≤ p < 1, then

∂tH
p − bij∇iHp∇jHp − cp

2p− 1
H2p−1 +

p

p+ 1

Hp

t
> 0.

If 0 < p ≤ 1
2 + 1

2n or p = 1, then

∂tH
p − bij∇iHp∇jHp − cnpH2p−1 +

p

p+ 1

Hp

t
> 0.

Proof. In order to prove Theorem 16, we need to show that for

F = Hp, δ =
p

p+ 1
,

the quantity χ3 preserves its positivity at all t > 0. Here ζ is chosen to be

ζ(F ) =

{
p
(
n− 1

2p−1

)
F 2− 1

p , 1
2 + 1

2n < p < 1

0, 0 < p ≤ 1
2 + 1

2n or p = 1.

However, to avoid confusion, we will keep the general form as long as pos-
sible. At time t = 0, χ3 is positive. Thus suppose there exists a first time t0
and a point x0 in Mt0 , such that χ3(t0, x0) = 0. Then we also obtain

χ2 = −ctζ ⇒ β − θ = −δF
t
− cζ.

Thus, using (4.9) and �F + FF ij(h2)ij − bij∇iF∇jF = β − θ, we obtain at
(t0, x0) :

0 ≥ ∂tχ3 −�χ3(5.14)

= 2cζ − 2cnδ
F ′′F 2

F ′
+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl

+ ct

{
cζ2

δF
− 2cn

F ′′F

F ′
ζ + 2F 2F ′H + c

(
ζ ′F − ζ

)
F ijgij

+

(
ζ ′F − nF

′′F 2

F ′
− ζ
)
F ij(h2)ij +

(
F ′H + F

)
birbjr∇iF∇jF

+

(
n

(
2
F ′′

F ′
− F ′′2F

F ′3
+
F ′′′F

F ′2

)
− ζ ′′

)
F ij∇iF∇jF

− 2F ′bij∇iF∇jF

}
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≥ 2cζ − 2cnδ
F ′′F 2

F ′
+ t

(
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl

+ ct

{
cζ2

δF
+ 2F 2F ′H − 2cn

F ′′F

F ′
ζ + cn

(
ζ ′F − ζ

)
F ′

+

(
ζ ′F − nF

′′F 2

F ′
− ζ
)
F ij(h2)ij

+

(
n

(
2
F ′′

F ′
− F ′′2F

F ′3
+
F ′′′F

F ′2

)
− ζ ′′ + F

F ′H2
− 1

H

)
F ij∇iF∇jF

}
,

where we used the estimate

(F ′H + F )birbjr∇iF∇jF − 2F ′bij∇iF∇jF(5.15)

≥ (p+ 1)
F

H
bij∇iF∇jF − 2p

F

H
bij∇iF∇jF

= (1− p)F
H
bij∇iF∇jF

≥ (1− p) F

F ′H2
F ij∇iF∇jF.

To finish the proof, we need to show that the right-hand side is positive.
If ζ = 0, this is straightforward:

F ′′ < 0, n

(
2
F ′′

F ′
− F ′′2F

F ′3
+
F ′′′F

F ′2

)
+

F

F ′H2
− 1

H
≥ 0

and (
F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl ≥ 0 for δ =

p

p+ 1
.

For the second case that ζ 6= 0, note that

2cζ − 2cnδ
F ′′F 2

F ′
≥ 0 for p ≥ n+ 1

2n
,(

F ij,kl + 2bilF jk − F ijF kl

δF

)
ηijηkl ≥ 0 for δ =

p

p+ 1
,

cζ2

δF
− 2cn

F ′′F

F ′
ζ + cn

(
ζ ′F − ζ

)
F ′ ≥ 0 for p ≥ n+ 1

2n
, δ =

p

p+ 1
,
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ζ ′F − nF
′′F 2

F ′
− ζ ≥ 0 for

n+ 1

2n
≤ p ≤ 1,

n

(
2
F ′′

F ′
− F ′′2F

F ′3
+
F ′′′F

F ′2

)
− ζ ′′ + F

F ′H2
− 1

H
= 0.

�

6. Preserving convexity

In the derivation of the Harnack inequalities we have assumed strict convex-
ity of the flow hypersurfaces. In this section, we show that this assumption
is justified by proving strict convexity is preserved for all flows in the sphere
for which we could prove the Harnack inequality. In Euclidean space, the
question of preserved convexity has been addressed more thoroughly. It is
also known that there is a variety of examples where convexity is lost for
contracting flows [5]; the authors also discuss necessary and sufficient condi-
tions for preserving convexity. In other special situations preserved convexity
was proved, e.g., see [1, 3, 4, 25].

Proposition 17. Let M0 ⊂ Sn+1 be a closed and strictly convex hypersur-
face. Suppose that f ∈ C∞(Γ+) ∩ C0(Γ̄+) is a strictly monotone, 1-homo-
geneous and convex curvature function and let 0 < p <∞. Let x be the so-
lution to (1.1) with F = fp and with initial hypersurface M0. Then all flow
hypersurfaces Mt = x(M, t) are strictly convex.

Proof. Let T be the first time, where the strict convexity is lost. Then on the
time interval [0, T ) the dual flow defined via the Gauss map is well defined
and reads

(6.1) ˙̃x =
1

f̃p
ν̃,

where f̃ is the inverse curvature function defined in (5.2) and f̃ is now
evaluated at κ̃i = κ−1i ; see [12] for the derivation of the dual flow. Due to
the properties of f , f̃ is 1-homogeneous, strictly monotone, concave and
vanishes on the boundary of Γ+; see [11, Lemma 2.2.12, Lemma 2.2.14]. For
flows of the kind (6.1) uniform curvature estimates were deduced in [22,
Lemma 4.7], implying that the κ̃i are bounded. This means that up to time
T uniform convexity is preserved for the original flow, which contradicts the
definition of T, if T is not the collapsing time. �
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