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The Anomaly flow is a flow which implements the Green-Schwarz
anomaly cancellation mechanism originating from superstring the-
ory, while preserving the conformally balanced condition of Her-
mitian metrics. There are several versions of the flow, depending
on whether the gauge field also varies, or is assumed known. A
distinctive feature of Anomaly flows is that, in m dimensions, the
flow of the Hermitian metric has to be inferred from the flow of its
(m− 1)-th power ωm−1. We show how this can be done explicitly,
and we work out the corresponding flows for the torsion and the
curvature tensors. The results are applied to produce criteria for
the long-time existence of the flow, in the simplest case of zero
slope parameter.
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1. Introduction

Starting with the uniformization theorem, canonical metrics such as
Hermitian-Yang-Mills and Kähler-Einstein metrics have played a major role
in complex geometry. However, theoretical physics suggests more notions of
metrics which should qualify in some sense as canonical. Indeed, the clas-
sical canonical metrics are typically defined by a linear constraint in the
curvature tensor. But in string theory, the key Green-Schwarz anomaly can-
cellation mechanism [15] for the consistency of superstring theory is an equa-
tion which involves the square of the curvature tensor. Furthermore, while
the supersymmetry of the heterotic string compactified to 4-dimensional
Minkowski space-time required that the intermediate space carry a complex
structure [2], it allowed the corresponding Chern unitary connection to have
non-vanishing torsion [30]. The resulting condition is known as a Strominger
system, and Calabi-Yau manifolds with their Kähler Ricci-flat metrics are
only a special solution. What seems to emerge then is an as-yet unexplored
area of non-Kähler geometry, where the Kähler condition is replaced by
some specific constraint on the torsion, and the canonical metric condition
is replaced by an equation on the torsion and possibly higher powers of
the curvature. These equations are also novel from the point of view of the
theory of partial differential equations, and it is an important problem to
develop methods for their solutions.

The goal of the present paper is to develop methods for the study of the
following flow of Hermitian metrics on a 3-dimensional complex manifold X,

∂t(‖Ω‖ωω2) = i∂∂̄ω − α′(TrRm ∧Rm− Φ(t))

ω(0) = ω0.(1.1)

Here X is equipped with a nowhere vanishing (3, 0) holomorphic form Ω,
‖Ω‖ω is the norm of Ω with respect to the Hermitian metric ω, defined by

‖Ω‖2ω = iΩ ∧ Ω̄ω−3,(1.2)

and the expression Φ(t) is a given closed (2, 2)-form in the characteristic
class c2(X), evolving with time. The expression Rm is the curvature of the
Chern unitary connection of ω, viewed as a (1, 1)-form valued in the bundle
of endomorphisms End(T 1,0(X)) of T 1,0(X). The initial Hermitian form ω0

is required to satisfy the following conformally balanced condition

d(‖Ω‖ω0
ω2

0) = 0.(1.3)
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The motivation for the flow (1.1) is as follows. In [30], building on the
earlier work of Candelas, Horowitz, Strominger, and Witten [2], Strominger
identified the following system of equations for a Hermitian metric ω on X
and a Hermitian metric Hᾱβ on a holomorphic vector bundle E → X,

F 2,0 = F 0,2 = 0, F ∧ ω2 = 0(1.4)

i∂∂̄ω − α′Tr(Rm ∧Rm− F ∧ F ) = 0(1.5)

d†ω = i(∂̄ − ∂) log ‖Ω‖ω,(1.6)

as conditions for the product of X with 4-dimensional space-time to be a su-
persymmetric vacuum configuration for the heterotic string. The conditions
on F in the first equation above just mean that F is the curvature of the
Chern unitary connection of Hᾱβ, and that Hᾱβ is Hermitian-Yang-Mills
with respect to any metric conformal to ω. It is a subsequent, but basic
observation of Li and Yau [18] that the third condition on ω above, which is
at first sight a torsion constraints condition, is equivalent to the condition
that ω be conformally balanced

d(‖Ω‖ωω2) = 0.(1.7)

In the special case where (X,ω) is a compact Kähler 3-fold with c1(X) = 0,
if we take E = T 1,0(X), H = ω, then the anomaly condition is automatically
satisfied. The Hermitian-Yang-Mills condition reduces to the condition that
ω be Ricci-flat, which can be implemented by Yau’s theorem [35]. The norm
‖Ω‖ω is then constant, and the torsion constraints follow from the Kähler
property of ω. Thus Calabi-Yau 3-folds with their Ricci-flat metrics can be
viewed as special solutions of the Strominger system, and they have played
a major role ever since in both superstring theory and algebraic geometry
[2]. From this point of view, it is natural to think of the pair (ω,H) as a
canonical metric for (X,E), and if H happens to be fixed for some reason,
of the metric ω itself as a canonical metric in non-Kähler geometry.

Strominger systems are difficult to solve, and the first non-perturbative,
non-Kähler solutions to the systems were obtained by Fu-Yau [10, 11],
some twenty years after Strominger’s original proposal. These solutions
were on toric fibrations over K3 surfaces constructed earlier by Goldstein
and Prokushkin [14]. On such manifolds, Fu-Yau succeeded in reducing the
Strominger system to a new complex Monge-Ampère equation on the two-
dimensional Kähler base, which they succeeded in solving. Higher dimen-
sional analogues of the Fu-Yau solution were considered by the authors in
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[23–25]. Geometric constructions of some special solutions of Strominger
systems have been given in e.g. [1, 4–9, 21].

A major problem at the present time is to develop analytical methods
for solving the general Strominger system. Even if the curvature F of the
bundle metric H were known and we concentrate only on the equations for
ω, an immediate difficulty typical of non-Kähler geometry, is that there is
no general or convenient way of parametrizing conformally balanced met-
rics, comparable to the parametrization of Kähler metrics by their potentials
which was instrumental in Yau’s solution of the Ricci-flat equation. It ap-
pears to be a daunting problem to have to deal with the anomaly equation
and the conformally balanced equation as a system of equations. A way of
bypassing this difficulty was suggested by the authors in [22], which is to
introduce the coupled geometric flow

H−1 ∂tH = −ΛF

∂t(‖Ω‖ωω2) = i∂∂̄ω − α′Tr(Rm ∧Rm− F ∧ F )(1.8)

with initial conditions ω(0) = ω0, H(0) = H0, where H0 is a given metric
on E, and ω0 is a Hermitian metric on X which satisfies the conformally
balanced condition (1.3)1.

The point of the flow is that, by Chern-Weil theory, the right hand side in
the second line above is always closed, and hence the condition d(‖Ω‖ωω2) =
0 is preserved by the flow. Thus there is no need to treat the conformally
balanced condition as a separate equation, and the stationary points of the
flow will automatically satisfy all the equations in the Strominger system.
For fixed ω, the flow of the metric Hᾱβ is just the Donaldson heat flow [3].
If the flow for Hᾱβ(t) is known, and if we set Φ(t) = Tr(F ∧ F ), then the
flow for ω reduces to the flow (1.1). An understanding of (1.1) appears a
necessary preliminary step in an understanding of (1.8). The flow (1.8) was
called the Anomaly flow in [22], in reference to the key role played by the
right hand side in the Green-Schwarz anomaly cancellation mechanism. We
shall use the same generic name for all closely related flows such as (1.1).

Anomaly flows appear to be considerably more complicated than clas-
sical flows in geometry of which the Yang-Mills flow and the Ricci flow are
well-known examples. A first hurdle is that the flow of metrics ω(t) has to
be deduced from the flow of (2, 2)-forms ‖Ω‖ω ω2. Now the existence in di-
mension m of an (m− 1)-th root of a positive (m− 1,m− 1)-form has been

1Note that there are ways for constructing individual conformally balanced met-
rics ω0 (see e.g. [33]).
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shown by Michelsohn [20], and this passage back and forth between posi-
tive (1, 1)-forms and (m− 1,m− 1)-forms has played a major role e.g. in
works of Popovici [27] and in the recent proof by Szekelyhidi, Tosatti, and
Weinkove [31, 33] of the existence of Gauduchon metrics with prescribed
volume form. However, it does not appear possible to use the formalism in
these works to deduce the flow of the curvature tensor of ω from the flow
of ωm−1. This is one of the main goals of the present paper. What we do
is to produce a seemingly new formula for the square root of a (2, 2)-form,
or equivalently, for the Hodge ? operator, without using the antisymmetric
symbol ε. With such a formula, and using the very specific torsion con-
straints resulting from the conformally balanced condition, we obtain the
following completely explicit expression for the Anomaly flow:

Theorem 1. If the initial metric ω0 is conformally balanced, then the
Anomaly flow (1.1) can also be expressed as
(1.9)

∂tgp̄q =
1

2‖Ω‖ω

[
−R̃p̄q + gαβ̄gsr̄Tβ̄sqT̄αr̄p̄ − α′gsr̄(R[p̄s

α
βRr̄q]

β
α − Φp̄sr̄q)

]
.

where R̃k̄j is the Ricci tensor and Tk̄ij is the torsion tensor, as defined in
(2.36) and (2.28) below. The brackets [ , ] denote anti-symmetrization sepa-
rately in each of the two sets of barred and unbarred indices.

The above theorem shows that the Anomaly flow can be viewed as gen-
eralization of the Ricci flow, with higher order corrections in the curvature
tensor proportional to α′. Indeed, the terms R̃p̄q − gαβ̄gsr̄Tβ̄sqT̄αr̄p̄ reduce to
the Ricci curvature Rp̄q (see the definition in (2.36)) if the torsion vanishes,
and the terms with coefficient α′ are the higher order corrections. It is re-
markable that this analogy with the Ricci flow is due not to an attempt to
generalize the Ricci flow, but rather to the combination of the Green-Schwarz
cancellation mechanism, more specifically the de Kalb-Ramond field i∂∂̄ω,
with the torsion constraints equivalent to the conformally balanced condi-
tion. Once the formulation of the flow provided by Theorem 1 is available,
it is straightforward to derive the flows of the torsion and curvature tensors.
The full results are given in Theorems 4 and 5 below. Here, we note only
that they reinforce the same analogy with the Ricci flow. For example, the
diffusion operator in the flow for the Ricci curvature is given by

(1.10) ∂tRk̄j =
1

2‖Ω‖ω
(
∆Rk̄j + 2α′gλµ̄gsr̄R[r̄λ

β
α∇s∇µ̄]Rk̄j

α
β) + · · ·
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Up to the factor (2‖Ω‖ω)−1, it coincides with the diffusion operator ∆ for
the Ricci curvature in the Ricci flow, up to a higher order correction in the
curvature which is proportional to α′.

The formulation of the Anomaly flow provided by Theorem 1 makes it
more amenable to existing techniques for flows, and indeed many flows of
metrics with torsion have been studied in the literature (e.g. [13, 19, 28,
29, 32] and others). However, the Anomaly flow still involves a combination
of novel features such as the particular torsion constraints, the presence of
the factor ‖Ω‖ω (which is quite important in string theory as it originates
from the dilaton field), and especially the presence of the quadratic terms
in the curvature tensor. All this makes a general solution only a remote
possibility at this time. Thus we focus on two important special cases. The
first case is the Anomaly flow restricted to the Fu-Yau ansatz for solutions
of the Strominger system on toric fibrations over Ricci-flat Kähler surfaces.
We can show that the Anomaly flow converges in this case, and thus gives
another proof of the existence theorem of Fu-Yau. But because of its length
and complexity, the full argument will be presented in a companion paper
[26] to the present one. The second case is when α′ = 0. In this case, our
main results are as follows.

Theorem 2. Assume that α′ = 0. Suppose that A > 0 and ω(t) is a solution
to the Anomaly flow (3.1) below, with t ∈ [0, 1

A ]. Then, for all k ∈ N, there
exists a constant Ck depending on a uniform lower bound of ‖Ω‖ω such that,
if

(1.11) |Rm|ω + |DT |ω + |T |2ω ≤ A, for all z ∈M and t ∈
[
0,

1

A

]
,

then,

(1.12) |DkRm(z, t)|ω ≤
CkA

tk/2
, |Dk+1T (z, t)|ω ≤

CkA

tk/2

for all z ∈M and t ∈ (0, 1
A ].

The estimates given in the above theorem can be viewed as Shi-type
derivative estimates for the curvature tensor and torsion tensor along the
Anomaly flow (3.1). With this theorem, we can provide a criterion for the
long-time existence of the Anomaly flow:
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Theorem 3. Assume that α′ = 0, and that the Anomaly flow (3.1) exists
on an interval [0, T ) for some T > 0. If inft∈[0,T )‖Ω‖ω > 0 (or equivalently
ω3(t) ≤ C ω3(0)), and if

(1.13) supX×[0,T )(|Rm|2ω + |DT |2ω + |T |4ω) <∞

then the flow can be continued to an interval [0, T + ε) for some ε > 0. In
particular, the flow exists for all time, unless there is a time T > 0 and a
sequence (zj , tj), with tj → T , with either ‖Ω(zj , tj)‖ω → 0, or

(1.14) (|Rm|2ω + |DT |2ω + |T |4ω)(zj , tj)→∞.

The paper is organized as follows. In §2, we begin by providing an ef-
fective way for recapturing the form ∂tω from the form ∂t(‖Ω‖ωω2). We
then discuss the torsion constraints in the Strominger system, and in par-
ticular, how they result in two different notions of Ricci curvature, but a
single notion of scalar curvature. We can then prove Theorem 1. With The-
orem 1, it is straightforward to derive the flows of the curvature and of the
torsion. In §3, we give the proof of Theorem 2. This proof is analogous to
the proof for the classical flows, but it is more complicated here due to the
non-vanishing torsion and the expression ‖Ω‖ω. Once we have Theorem 2,
it is easy to prove Theorem 3. Finally, we provide a list of conventions in
the appendices, together with some basic identities of Hermitian geometry.

2. The flows of the metric, torsion and curvature

The first task in the study of a geometric flow is to derive the flows of
the curvature tensor, and in the case of non Levi-Civita connections, of the
torsion tensor. In the case of Anomaly flows, this task is complicated by the
fact that the flow is defined as a flow of the (2, 2)-form ‖Ω‖ω ω2, and that
the flow of ω itself has to be recaptured from there.

2.1. The equation ϕ ∧ ωm−2 = Φ and the Hodge ? operator

Since ∂tω
2 = 2∂tω ∧ ω, the flow of ω can be recovered from the flow of ω2 if

we can solve explicitly equations of the form ϕ ∧ ω = Φ for a given Φ. We
begin by doing this, in general dimension m instead of just m = 3, as the
resulting formulas for the solution as well as the Hodge ? operator may be
of independent interest.
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Let ω = igk̄jdz
j ∧ dz̄k and η be a (p, q)-form. We define its components

ηk̄1···k̄qj1···jp by

(2.1) η =
1

p!q!

∑
ηk̄1···k̄qj1···jp dz

jp ∧ · · · ∧ dzj1 ∧ dz̄kq ∧ · · · ∧ dz̄k1 .

Lemma 1. Let Φ be a (m− 1,m− 1) form on a Hermitian manifold (X,ω)
of dimension m. Then the equation

(2.2) ϕ ∧ ωm−2 = Φ

admits a unique solution, given by
(2.3)

ϕj̄k =
1

αm

{
i−(m−2)

m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2
− βm

(m− 1)!2
(Tr Φ) i gj̄k

}
where αm and βm are universal constants, depending only on the dimension
m, given by

(2.4) αm = (m− 1)!(m− 2)!

(
m− 1− m2

6

)
, βm =

m!(m− 2)!

6
.

and Tr Θ for a (p, p)-form Θ is defined by

(2.5) Tr Θ = 〈Θ, ωp〉 = i−p
p∏
`=1

gk`j̄` Θj̄1k1···j̄pkp .

The traces of ϕ and Φ are related by

(2.6) Trϕ =
1

(m− 1)!2
Tr Φ.

Proof. In components, the equation ϕ ∧ ωm−2 = Φ can be expressed as

(2.7) im−2 ϕ{j̄kgj̄1k1
· · · gj̄m−2km−2} = Φj̄kj̄1k1···j̄m−2km−2

where the bracket {, } denote antisymmetrization of all the barred indices
as well as of all the unbarred indices. We contract both sides, getting

(2.8) im−2
m−2∏
p=1

gkpj̄pϕ{j̄kgj̄1k1
· · · gj̄m−2km−2} =

m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2
.
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We expand the left-hand side by writing down all the terms arising from
antisymmetrization of the sub-indices. Carrying out the contractions with∏m−2
p=1 gkpj̄p , it is easy to verify that each term is a constant multiple of ϕj̄k

or of (Trϕ) gk̄j . This shows that we have a relation of the form

(2.9) im−2 αmϕk̄j + im−1 βm(Trϕ) gk̄j =

m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2
.

Next, we have ϕ ∧ ωm−1 = Φ ∧ ω, which implies

(2.10) 〈ϕ, ?ωm−1〉 = 〈Φ, ?ω〉.

Recalling that ?ωm−1 = (m− 1)!ω and ?ω = 1
(m−1)! ω

m−1, we obtain

(2.11) Trϕ = 〈ϕ, ω〉 =
1

(m− 1)!2
Tr Φ.

This establishes the form (2.3).

It is easy to see that αm 6= 0, otherwise we obtain a relation between
gk̄j and Φ that cannot hold for an arbitrary (m− 1,m− 1)-form Φ. To
determine the precise values of αm and βm, we proceed as follows.

First, contracting (2.9) with respect to gkj̄ and using the definition of
TrΘ in (2.5), we have the following relation between αm and βm,

(2.12) im−1 αm Trϕ+ im−1 βmmTrϕ = im−1 Tr Φ = im−1 (m− 1)!2 Trϕ,

and hence

(2.13) αm + βmm = (m− 1)!2.

Thus it remains only to determine βm. We note that the only permutation
of indices which can produce a multiple of (Trϕ) gk̄j is of the form, e.g.,

(2.14) ϕj̄1k1
gj̄k gj̄2k2

· · · gj̄m−2km−2

which produces, upon contraction with
∏m−2
p=1 gkpj̄p and antisymmetrization

in j2, · · · , jn−2 and k2, · · · , kn−2,

(2.15) (Trϕ)gk̄j 〈ωm−3, ωm−3〉 = (Trϕ)gk̄j‖ωm−3‖2.
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We can compute ‖ωm−3‖2 as follows

(2.16) ωm−3 = (m− 3)!
∑
j<k<`

(iej ∧ ej)v · · · (iek ∧ ek)v ∧ (ie` ∧ e`)v.

Since the sum in the right hand side consists of exactly 1
3!m(m− 1)(m− 2)

terms, we find

(2.17) ‖ωm−3‖2 = (m− 3)!2
m(m− 1)(m− 2)

6
=
m!(m− 3)!

6
.

But there are m− 2 terms of the form (2.14), corresponding to the indices
j̄1k1 taking successively all values to j̄m−2km−2. Thus we obtain

(2.18) βm =
m!(m− 3)!

6
(m− 2) =

m!(m− 2)!

6

establishing our claim for βm. The claim for αm then follows from the relation
(2.13). �

Although the previous lemma suffices for our purpose, it is useful for fu-
ture considerations to point out that it gives in effect an explicit expression
for the Hodge ? operator without the ε symbol. This can be seen by compar-
ing it with the following lemma which solves the same equation, but using
the Hodge ? operator (and which can also be derived from Proposition 1.2.31
in [16]):

Lemma 2. Let (X,ω) be a Hermitian manifold of complex dimension m ≥
2. Consider the following equation, for a given (m− 1,m− 1)-form Φ,

(2.19) ψ ∧ ωm−2 = Φ.

Then the equation admits a unique solution, given by

(2.20) ψ = − 1

(m− 2)!
? Φ +

〈Φ, ωm−1〉
(m− 1)!2

ω.

Proof. First observe that if ψ0 is a (1, 1)-form with 〈ψ0, ω〉 = 0, then

(2.21) ? (ψ0 ∧ ωm−2) = −(m− 2)!ψ0

as can be verified by working out ψ0 ∧ ωm−2. This is equivalent to say-
ing that, if Φ0 is a (m− 1,m− 1) form with 〈Φ0, ω

m−1〉 = 0, then ψ0 =



i
i

“9-Phong” — 2018/8/28 — 22:54 — page 965 — #11 i
i

i
i

i
i

Anomaly flows 965

− 1
(m−1)! ? Φ0 is the unique solution of the equation ψ0 ∧ ωm−2 = Φ0. Next,

for general Φ, we write

(2.22) Φ =
〈Φ, ωm−1〉
‖ωm−1‖2

ωm−1 + Φ0

so that 〈Φ0, ω
m−1〉 = 0. In view of the previous observation, the (1, 1)-form

ψ = − 1

(m− 2)!
? Φ0 +

〈Φ, ωm−1〉
‖ωm−1‖2

ω(2.23)

= − 1

(m− 2)!
? (Φ− 〈Φ, ω

m−1〉
‖ωm−1‖2

ωm−1) +
〈Φ, ωm−1〉
‖ωm−1‖2

ω

= − 1

(m− 2)!
? Φ +m

〈Φ, ωm−1〉
‖ωm−1‖2

ω

is a solution of the equation (2.19). Here we used the fact that ?ωm−1 =
(m− 1)!ω. Since ‖ωm−1‖2 = m!(m− 1)!, we obtain the desired formula. �

Comparing the previous two lemmas gives the following formula for the
Hodge ? operator on (m− 1,m− 1) forms, on an arbitrary Hermitian m-fold
(X,ω),

Lemma 3. Let (X,ω) be a Hermitian manifold of complex dimension m ≥
2. Then for any (m− 1,m− 1)-form Φ, we have

(?Φ)j̄k =
1

(m− 1)!(m2 − 6m+ 6)

×
{

6 i−(m−2)
m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2
+ (m− 6)(TrΦ) i gj̄k

}
.

Proof. We equate ψ = ϕ, in the notation of the previous two lemmas. Thus

− 1

(m− 2)!
(?Φ)j̄k +

〈Φ, ωm−1〉
(m− 1)!2

igj̄k(2.24)

=

{
i−m+2

αm

m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2
− βm
αm

i

(m− 1)!2
(Tr Φ)gj̄k

}
.
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Since Tr Φ = 〈Φ, ωm−1〉, we obtain

− 1

(m− 2)!
? Φ =

i−m+2

αm

m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2
(2.25)

− (1 +
βm
αm

)
TrΦ

(m− 1)!2
i gj̄k.

Working out the coefficient 1 + βm/αm, we obtain the formula

1

(m− 2)!
? Φ = − i

−m+2

αm

m−2∏
p=1

gkpj̄pΦj̄kj̄1k1···j̄m−2km−2

+
(m− 1)(m− 6)

m2 − 6m+ 6

TrΦ

(m− 1)!2
i gj̄k.

This can be rewritten in turn in the form given in the lemma. �

2.2. Torsion and curvature for conformally balanced metrics

Next, we examine more carefully the implications for the torsion and cur-
vature condition of conformally balanced metrics. Let ω = igk̄jdz

j ∧ dz̄k be
a Hermitian metric, viewed as a positive (1, 1)-form. We define its torsion
tensor T and T̄ by

(2.26) T = i∂ω, T̄ = −i∂̄ω

which are respectively (2, 1) and (1, 2) forms. Following the conventions for
(p, q)-forms given in the appendix, we define the coefficients Tk̄jm and T̄jp̄q̄
by

(2.27) T =
1

2
Tk̄jmdz

m ∧ dzj ∧ dz̄k, T̄ =
1

2
T̄kj̄m̄dz̄

m ∧ dz̄j ∧ dzk,

and thus

(2.28) Tk̄jm = ∂jgk̄m − ∂mgk̄j , T̄kj̄m̄ = ∂j̄gm̄k − ∂m̄gj̄k.

For our later use, it is convenient to introduce

(2.29) Tm = gjk̄Tk̄jm, T̄m̄ = gj̄kT̄kj̄m̄.
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As noted earlier, the equivalence between (1.6) and (1.7) had been
pointed out by Li and Yau [18]. For the convenience of the reader, we provide
here the proof, stated in a somewhat more general form.

Lemma 4. Let (X,ω) be a m dimensional Hermitian manifold equipped
with a nowhere vanishing holomorphic (m, 0)-form Ω. Then the following
conditions are equivalent:

(i) The metric ω satisfies the conformally balanced condition d(‖Ω‖aωωm−1)
= 0 for some constant a;

(ii) d†ω = i(∂̄ − ∂) log ‖Ω‖a;

(iii) Tq = ∂q log ‖Ω‖aω, T̄q̄ = ∂q̄ log ‖Ω‖aω.

Proof. The conformally balanced condition can be written as

(2.30) ∂ log ‖Ω‖aω ∧ ωm−1 + (m− 1)∂ω ∧ ωm−2 = 0.

Now just as iθ ∧ ωm−1 = −i(gjk̄θk̄j)ω
m

m for any (1, 1)-form θ, it is easy to
verify that

(2.31) T ∧ ωm−2 = −i(gjk̄Tk̄jmdzm) ∧ ωm−1

(m− 1)

for any (2, 1)-form T . Substituting T = i∂ω, and using the previous equation
gives

(2.32) (∂ log ‖Ω‖aω − Tpdzp) ∧ ωm−1 = 0,

which implies ∂ log ‖Ω‖aω − Tpdzp = 0 and proves the equivalence between (i)
and (iii). Finally, the equivalence between (ii) and (iii) follows at once from
the expressions of the adjoints of ∂ and ∂̄ on (1, 1)-forms for a Hermitian
metric

(2.33) (∂̄†Φ)q = gkp̄(∇kΦp̄q − Tk Φp̄q), (∂†Φ)q̄ = −gpj̄(∇j̄Φq̄p − T̄j̄Φq̄p).

In particular, when Φ = ω, Φp̄q = igp̄q, we obtain

(2.34) (∂̄†ω)q = −iTq, (∂†ω)q̄ = iT̄q̄.

This implies the equivalence between (ii) and (iii). �
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We turn to the notion of Ricci curvature for conformally balanced met-
rics. Although we have a single notion of Riemann curvature tensor,

(2.35)
Rk̄j

p
q = −∂k̄(gp

¯̀
∂jg¯̀q),

Rm = Rk̄j
p
qdz

j d̄zk ∈ Λ1,1 ⊗ End(T 1,0(X)),

the lack of the standard symmetries for Levi-Civita connections leads to 4
different notions of Ricci curvature, defined as follows

(2.36) Rk̄j = Rk̄j
p
p, R̃k̄j = Rppk̄j , R′k̄j = Rk̄

p
pj , R′′k̄j = Rpjk̄p.

Corresponding to these 4 notions of Ricci curvature are 4 notions of scalar
curvature

(2.37) R = gjk̄Rk̄j , R̃ = gjk̄R̃k̄j , R′ = gjk̄R′k̄j , R′′ = gjk̄R′′k̄j .

With the help from the torsion constraints, we have some nice relation
between these different notions of Ricci curvature and scalar curvature. The
following lemma is essential for our subsequent calculations:

Lemma 5. Assume that ω is a conformally balanced metric on an m-fold
X, in the sense that the equivalent conditions in Lemma 4 are satisfied. Then

(i) ∇k̄Tj = ∇j T̄k̄ = a
2Rk̄j.

(ii) R′
k̄j

= R′′
k̄j

= (1− a
2 )Rk̄j.

(iii) R̃k̄j = (1− a
2 )Rk̄j +∇mTk̄jm.

(iv) R = R̃ and R′ = R′′ = (1− a
2 )R.

Proof. By definition,Rk̄j = −∂j∂k̄ logωm = ∂j∂k̄ log ‖Ω‖2ω, so (i) follows from
(iii) in Lemma 4. Next,

(2.38) R′k̄j = Rk̄p
p
j = Rk̄j +∇k̄Tmjm = Rk̄j −∇k̄Tj =

(
1− a

2

)
Rk̄j ,

which proves a first part of (ii). Similarly,

(2.39) R′′k̄j = Rk̄j
p
p +∇j T̄ q̄ k̄q̄ =

(
1− a

2

)
Rk̄j

which completes the proof of (ii). Next,

(2.40) R̃k̄j = Rk̄j +∇j T̄ p̄k̄p̄ +∇p̄Tk̄jmgmp̄ =
(

1− a

2

)
Rk̄j +∇mTk̄jm
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which proves (iii). Contracting with gk̄j , we obtain (iv). �

Note that the identities R = R̃ and R′ = R′′ actually hold for any Her-
mitian metric.

2.3. Flow of the metric ω and proof of Theorem 1

We can now come back to the derivation of the flow for the metric ω in the
Anomaly flow and prove Theorem 1. In the following, we let the dimension
m of the manifold X be then 3, and take a = 1 in Lemma 4.

It is convenient to denote the right hand side of the Anomaly flow by Ψ,

(2.41) Ψ = i∂∂̄ω − α′Tr(Rm ∧Rm− Φ(t))

which is then a (2, 2)-form. As usual, we denote its coefficients by Ψp̄sr̄q, and
also introduce the notation Ψp̄q, which can be viewed as the coefficients of
a (1, 1)-form,

(2.42) Ψ =
1

(2!)2

∑
Ψp̄sr̄qdz

q ∧ dz̄r ∧ dzs ∧ dz̄p, Ψp̄q = gsr̄Ψp̄sr̄q.

We rewrite the Anomaly flow (1.1) as

(2.43) (∂t log ‖Ω‖ωω + 2∂tω) ∧ ω =
1

‖Ω‖ω
Ψ.

We apply the second statement in Lemma 1. Since

(2.44) ∂t log ‖Ω‖ω = −1

2
∂t log (detω) = −1

2
Tr(∂tω)

we find, in dimension m = 3,

(2.45) Tr(∂tω) =
1

2‖Ω‖ω
TrΨ.

This gives us the flow of the volume form ω3. Returning once again to the
flow (2.43) and applying the first statement in Lemma 1, we find

(2.46) ∂tgp̄q =
1

2‖Ω‖ω
gsr̄Ψp̄sr̄q =

1

2‖Ω‖ω
Ψp̄q.



i
i

“9-Phong” — 2018/8/28 — 22:54 — page 970 — #16 i
i

i
i

i
i

970 D. H. Phong, S. Picard, and X. Zhang

It remains to work out the components Ψp̄sr̄q more explicitly. The first
term is
(2.47)

i∂∂̄ω =
1

22

{
∂k̄(∂jg¯̀m − ∂mg¯̀j)− ∂¯̀(∂jgk̄m − ∂mg¯̀j)

}
dz̄` ∧ dzj ∧ dzm ∧ dz̄k

and hence

(2.48) (i∂∂̄ω)k̄j ¯̀m = ∂¯̀(∂jgk̄m − ∂mgk̄j)− ∂k̄(∂jg¯̀m − ∂mg¯̀j).

On the other hand, the Riemann curvature tensor is given by

(2.49) Rk̄j
`
m = −∂k̄(g`p̄∂jgp̄m) = −g`p̄∂k̄∂jgp̄m + g`r̄∂k̄gr̄sg

sq̄∂jgq̄m,

or, equivalently,

(2.50) Rk̄j ¯̀m = −∂k̄∂jg¯̀m + ∂k̄g¯̀sg
sr̄∂jgr̄m.

Thus we obtain

(2.51) (i∂∂̄ω)k̄j ¯̀m = Rk̄j ¯̀m −Rk̄m¯̀j +R¯̀mk̄j −R¯̀jk̄m + gsr̄ Tr̄mj T̄sk̄ ¯̀.

Applying Lemma 5 on the torsion and Ricci curvatures of conformally bal-
anced metrics gives

(2.52) gm
¯̀
(i∂∂̄ω)k̄j ¯̀m = R̃k̄j − gsr̄gm

¯̀
Tr̄mjT̄s ¯̀̄k.

We collect the resulting formulas in a lemma:

Lemma 6. Let the (2, 2)-form Ψ be defined by (2.41) and its components
Ψp̄sr̄q, Ψp̄q by (2.42). Then

(2.53)

Ψk̄m¯̀j = Rk̄m¯̀j −Rk̄j ¯̀m +R¯̀jk̄m −R¯̀mk̄j + gsr̄ Tr̄jmT̄sk̄ ¯̀

− α′(R[k̄m
α
βR¯̀j]

β
α − Φk̄m¯̀j)

Ψk̄j = −R̃k̄j + (T T̄ )k̄j − α′gm
¯̀
(R[k̄m

α
βR¯̀j]

β
α − Φk̄m¯̀j)

where the brackets [ , ] denote anti-symmetrization separately in each of the
two sets of barred and unbarred indices and (T T̄ )k̄j := gsr̄gm

¯̀
Tr̄mj T̄s ¯̀̄k.

Combining the formula (2.46) for the Anomaly flow, and using the fact
that the flow preserves the conformally balanced condition, we obtain The-
orem 1.
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2.4. Flow of the curvature tensor

The general formula for the flow of the curvature tensor of Chern unitary
connections under a flow of metrics is the following

(2.54) ∂tRk̄j
µ
ν = −∇k̄∇j(gµγ̄ ġγ̄ν) = −gµγ̄∇k̄∇j ġγ̄ν .

To apply this formula to the case of the Anomaly flow, where ∂tgγ̄ν is given
by Theorem 1, we need to work out the covariant derivatives of the curvature
tensor for Hermitian metrics. This is done in the following lemma:

Lemma 7. Let ω be any Hermitian metric (not necessarily conformally
balanced). Then we have the following identities

(2.55)

∇k̄∇jRγ̄sµ̄λ = ∇s∇γ̄Rk̄jµ̄λ +∇k̄(T rsjRγ̄rµ̄λ) +∇s(T̄ r̄ γ̄k̄Rr̄jµ̄λ)

−Rk̄sγ̄ κ̄Rκ̄jµ̄λ +Rk̄s
κ
jRγ̄κµ̄λ −Rk̄sµ̄κ̄Rγ̄jκ̄λ

+Rk̄s
κ
λRγ̄jµ̄κ,

∇k̄∇jR̃µ̄λ = ∆Rk̄jµ̄λ +∇k̄(T rsjRsrµ̄λ) +∇γ̄(T̄ r̄ γ̄k̄Rr̄jµ̄λ)

−R′k̄
κ̄Rκ̄jµ̄λ +Rk̄s

κ
jR

s
κµ̄λ −Rk̄sµ̄κ̄Rsjκ̄λ

+Rk̄s
κ
λR

s
jµ̄κ,

∇k̄∇jR̃ = ∆Rk̄j +∇k̄(T rsjRsr) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j)

−R′k̄
κ̄Rκ̄j +Rk̄s

κ
jR

s
κ.

To clarify the notation: we are writing ∆ = gjk̄∇j∇k̄ for the ‘rough’

Laplacian and ∆̄ = gjk̄∇k̄∇j for its conjugate. While ∆ and ∆̄ agree when
acting on functions, they differ by curvature terms when acting on tensors.

Proof. The proof is a straightforward application of the Bianchi identity,
beginning with

(2.56) ∇k̄∇jRγ̄sµ̄λ = ∇k̄(∇sRγ̄jµ̄λ + T rsjRγ̄rµ̄λ)

and applying it again, after commuting the covariant derivatives ∇k̄ and
∇s. �

We return now to the Anomaly flow of conformally balanced metrics.
First, we write
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∂tRk̄j
ρ
λ = −∇k̄∇j

(
1

2‖Ω‖ω
gρµ̄Ψµ̄λ

)
(2.57)

= − 1

2‖Ω‖ω
gρµ̄∇k̄∇jΨµ̄λ −∇k̄

(
1

2‖Ω‖ω

)
∇j(gρµ̄Ψµ̄λ)

−∇j
(

1

2‖Ω‖ω

)
∇k̄(gρµ̄Ψµ̄λ)−∇k̄∇j

(
1

2‖Ω‖ω

)
gρµ̄Ψµ̄λ

= − 1

2‖Ω‖ω
gρµ̄∇k̄∇jΨµ̄λ +

1

2‖Ω‖ω
T̄k̄∇jΨρ

λ

+
1

2‖Ω‖ω
Tj∇k̄Ψρ

λ +
1

2‖Ω‖ω

(
1

2
Rk̄j − Tj T̄k̄

)
Ψρ

λ

where we used (iii) in Lemma 4 to get the last equality.
We concentrate on the first term, which can be written in the following

way, using Lemma 6,

− 1

2‖Ω‖ω
gρµ̄∇k̄∇jΨµ̄λ(2.58)

=
1

2‖Ω‖ω
gρµ̄∇k̄∇jR̃µ̄λ +

1

2‖Ω‖ω
gρµ̄gsr̄α′∇k̄∇j(R[µ̄s

α
βRr̄λ]

β
α)

− 1

2‖Ω‖ω
gρµ̄∇k̄∇j((T T̄ )µ̄λ + α′Φµ̄λ).

The terms in the second line are lower order terms that we shall leave as
they are for the moment, and just collect them at the end. The first term
on the right hand side can be rewritten as follows, using Lemma 7,

1

2‖Ω‖ω
gρµ̄∇k̄∇jR̃µ̄λ(2.59)

=
1

2‖Ω‖ω
∆Rk̄j

ρ
λ +

1

2‖Ω‖ω

[
∇k̄(T rsjRsrρλ) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j

ρ
λ)

−R′k̄
κ̄Rκ̄j

ρ
λ +Rk̄s

κ
jR

s
κ
ρ
λ −Rk̄sρκ̄Rsjκ̄λ +Rk̄s

κ
λR

s
j
ρ
κ

]
.

It remains only to work out the contribution of the second term on the right
hand side,
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1

2‖Ω‖ω
α′gρµ̄gsr̄∇k̄∇j(R[µ̄s

α
βRr̄λ]

β
α)(2.60)

=
α′gρµ̄gsr̄

2‖Ω‖ω
2(∇k̄∇jR[µ̄s

α
β)Rr̄λ]

β
α

+
α′gρµ̄gsr̄

2‖Ω‖ω
(∇jR[µ̄s

α
β∇k̄Rr̄λ]

β
α +∇k̄R[µ̄s

α
β∇jRr̄λ]

β
α).

Again the second term on the right hand side contains only lower order
terms, which we leave as they are and collect only at the end. Using Lemma 7,
the first term can be rewritten as,

α′gρµ̄gsr̄

2‖Ω‖ω
2(∇k̄∇jR[µ̄s

α
β)Rr̄λ]

β
α(2.61)

=
α′gρµ̄gsr̄

2‖Ω‖ω
2R[r̄λ

βδ̄∇s∇µ̄]Rk̄jδ̄β

+
α′gρµ̄gsr̄

2‖Ω‖ω
2R[r̄[λ

βδ̄

[
∇k̄(T rs]jRµ̄]rδ̄β) +∇s](T̄ r̄ µ̄]k̄Rr̄jδ̄β)

−Rk̄s]µ̄]
κ̄Rκ̄jδ̄β +Rk̄s]

κ
jRµ̄]κδ̄β

−Rk̄s]δ̄ κ̄Rµ̄]jκ̄β +Rk̄s]
κ
βRµ̄]jδ̄κ

]
where we have again anti-symmetrized in the unbarred indices s and λ, and
separately in the barred indices µ̄ and r̄. Whenever there are many indices
in the same row and whenever a more explicit designation may be helpful,
we have indicated the indices to be anti-symmetrized, either by a symbol [
on the left or a symbol ] on the right of the relevant index.

We obtain in this way the following theorem:

Theorem 4. Consider the Anomaly flow (1.1) with an initial metric ω0

which is conformally balanced. Then the curvature of the metric flows ac-
cording to the following equation

∂tRk̄j
ρ
λ =

1

2‖Ω‖ω
(
∆Rk̄j

ρ
λ + 2α′gρµ̄gsr̄R[r̄λ

β
α∇s∇µ̄]Rk̄j

α
β

)
(2.62)

+
1

2‖Ω‖ω
T̄k̄∇jΨρ

λ +
1

2‖Ω‖ω
Tj∇k̄Ψρ

λ
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+
1

2‖Ω‖ω

(
1

2
Rk̄j − Tj T̄k̄

)
Ψρ

λ −
1

2‖Ω‖ω
gρµ̄∇k̄∇j((T T̄ )µ̄λ + α′Φµ̄λ)

+
1

2‖Ω‖ω

[
∇k̄(T rsjRsrρλ) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j

ρ
λ)

−R′k̄
κ̄Rκ̄j

ρ
λ +Rk̄s

κ
jR

s
κ
ρ
λ −Rk̄sρκ̄Rsjκ̄λ +Rk̄s

κ
λR

s
j
ρ
κ

]
+
α′gρµ̄gsr̄

2‖Ω‖ω
(∇jR[µ̄s

α
β∇k̄Rr̄λ]

β
α +∇k̄R[µ̄s

α
β∇jRr̄λ]

β
α)

+
α′gρµ̄gsr̄

2‖Ω‖ω
2R[r̄[λ

βδ̄

[
∇k̄(T rs]jRµ̄]rδ̄β) +∇s](T̄ r̄ µ̄]k̄Rr̄jδ̄β)

−Rk̄s]µ̄]
κ̄Rκ̄jδ̄β +Rk̄s]

κ
jRµ̄]κδ̄β −Rk̄s]δ̄ κ̄Rµ̄]jκ̄β +Rk̄s]

κ
βRµ̄]jδ̄κ

]
.

2.5. Flow of the Ricci curvature

The flow of the Riemann curvature tensor implies immediately that of the
Ricci curvature,

∂tRk̄j =
1

2‖Ω‖ω
(
∆Rk̄j + 2α′gλµ̄gsr̄R[r̄λ

β
α∇s∇µ̄]Rk̄j

α
β

)
+

1

2‖Ω‖ω
T̄k̄∇jΨλ

λ +
1

2‖Ω‖ω
Tj∇k̄Ψλ

λ +
1

2‖Ω‖ω

(
1

2
Rk̄j − Tj T̄k̄

)
Ψλ

λ

− 1

2‖Ω‖ω
∇k̄∇j(|T |2 + α′Φλ

λ)

+
1

2‖Ω‖ω

[
∇k̄(T rsjRsr) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j)−R′k̄

κ̄Rκ̄j +Rk̄s
κ
jR

s
κ

]
+
α′gλµ̄gsr̄

2‖Ω‖ω
(
∇jR[µ̄s

α
β∇k̄Rr̄λ]

β
α +∇k̄R[µ̄s

α
β∇jRr̄λ]

β
α

)
+
α′gλµ̄gsr̄

2‖Ω‖ω
2R[r̄[λ

βδ̄

[
∇k̄(T rs]jRµ̄]rδ̄β) +∇s](T̄ r̄ µ̄]k̄Rr̄jδ̄β)

−Rk̄s]µ̄]
κ̄Rκ̄jδ̄β +Rk̄s]

κ
jRµ̄]κδ̄β −Rk̄s]δ̄ κ̄Rµ̄]jκ̄β +Rk̄s]

κ
βRµ̄]jδ̄κ

]
(2.63)

with |T |2 = gjk̄gsr̄gm
¯̀
Tr̄mjT̄s ¯̀̄k.
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2.6. Flow of the scalar curvature

If we write R = gjk̄Rk̄j , we obtain

(2.64) ∂tR = gjk̄∂tRk̄j − gjm̄∂tgm̄qgqk̄Rk̄j .

Applying the preceding formula for the flow ∂tRk̄j of the Ricci curvature,
we find

∂tR =
1

2‖Ω‖ω
(
∆R+ 2α′gλµ̄gsr̄R[r̄λ

β
α∇s∇µ̄]R̃

α
β

)
+

1

2‖Ω‖ω

(
T̄ j∇jΨλ

λ +
1

2‖Ω‖ω
T k̄∇k̄Ψλ

λ +

(
1

2
R− Tj T̄ j

)
Ψλ

λ

)
− 1

2‖Ω‖ω
∆(|T |2 + α′Φλ

λ)− 1

2‖Ω‖ω
Rqm̄Ψm̄q

+
1

2‖Ω‖ω

(
∇k̄(T rsjRsr) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j)

)
+
α′gλµ̄gsr̄

2‖Ω‖ω
(∇jR[µ̄s

α
β∇jRr̄λ]

β
α +∇k̄R[µ̄s

α
β∇k̄Rr̄λ]

β
α)

+
α′gλµ̄gsr̄

2‖Ω‖ω
2R[r̄[λ

βδ̄

[
∇j(T γs]jRµ̄]γδ̄β) +∇s](T̄ γ̄ µ̄]

jRγ̄jδ̄β)

−Rjs]µ̄]
κ̄Rκ̄jδ̄β + R̃s]

κRµ̄]κδ̄β −Rjs]δ̄ κ̄Rµ̄]jκ̄β +Rjs]
κ
βRµ̄]jδ̄κ

]
.(2.65)

2.7. Flow of the torsion tensor

We differentiate the coefficients Tp̄jq of the torsion tensor,

∂tTp̄jq = ∂j ġp̄q − ∂q ġp̄j(2.66)

= ∂j

(
1

2‖Ω‖ω
Ψp̄q

)
− ∂q

(
1

2‖Ω‖ω
Ψp̄j

)
=

1

2‖Ω‖ω
(∇jΨp̄q −∇qΨp̄j + TmjqΨp̄m)

− 1

2‖Ω‖ω
(TjΨp̄q − TqΨp̄j).



i
i

“9-Phong” — 2018/8/28 — 22:54 — page 976 — #22 i
i

i
i

i
i

976 D. H. Phong, S. Picard, and X. Zhang

Once again, we concentrate on the leading term, which is

1

2‖Ω‖ω
(∇jΨp̄q −∇qΨp̄j)(2.67)

=
1

2‖Ω‖ω
(∇j(−R̃p̄q + (T T̄ )p̄q)−∇q(−R̃p̄j + (T T̄ )p̄j)

− 1

2‖Ω‖ω
α′gsr̄∇j(R[p̄s

α
βRr̄q]

β
α − Φp̄sr̄q)

+
1

2‖Ω‖ω
α′gsr̄∇q(R[p̄s

α
βRr̄j]

β
α)− Φp̄sr̄j).

Although this is not apparent at first sight, the key diffusion term ∆Tp̄jq
can be extracted from the right hand side. The basic identity in this case is
the following:

Lemma 8. Let ω be any Hermitian metric (not necessarily conformally
balanced). Then

(2.68) (∆T )p̄jq = ∇qR̃p̄j −∇jR̃p̄q + T rqλR
λ
rp̄j − T rjλRλrp̄q.

Proof. We compute the components of the left hand side, using the Bianchi
identities,

(∆T )p̄jq = gλµ̄∇λ∇µ̄Tp̄jq(2.69)

= gλµ̄∇λ(Rµ̄qp̄j −Rµ̄jp̄q)
= gλµ̄(∇qRµ̄λp̄j −∇jRµ̄λp̄q + T rqλRµ̄rp̄j − T rjλRµ̄rp̄q).
= ∇qR̃p̄j −∇jR̃p̄q + T rqλR

λ
rp̄j − T rjλRλrp̄q.

This proves the lemma. �

Comparing this identity with the previous expression that we derived
for ∂tTp̄jq, we obtain the following theorem:

Theorem 5. Consider the Anomaly flow (1.1) with an initial metric ω0

which is conformally balanced. Then the flow of the torsion T = i∂ω is given
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by

∂tTp̄jq =
1

2‖Ω‖ω

[
∆Tp̄jq − α′gsr̄(∇j(R[p̄s

α
βRr̄q]

β
α − Φp̄sr̄q)

+ α′gsr̄∇q(R[p̄s
α
βRr̄j]

β
α − Φp̄sr̄j))

]
+

1

2‖Ω‖ω
(TmjqΨp̄m − TjΨp̄q + TqΨp̄j +∇j(T T̄ )p̄q −∇q(T T̄ )p̄j)

− 1

2‖Ω‖ω
(T rqλR

λ
rp̄j − T rjλRλrp̄q).(2.70)

3. A model problem: α′ = 0

A first model which is simpler than the full Anomaly flow and whose study
could be instructive, is obtained by setting α′ = 0. While this special case
eliminates the quadratic terms in the curvature tensor in (1.1), it still presents
some new difficulties relative to the well-known Ricci flow and Donaldson
heat flow because of the evolving torsion. More precisely, we shall consider
the flow

(3.1) ∂t(‖Ω‖ωω2) = i∂∂̄ω.

The stationary points of the flow are then given by the equivalent equations

(3.2) i∂∂̄ω = 0

for a Hermitian metric satisfying the conformally balanced condition
d(‖Ω‖ωω2) = 0. Such a Hermitian metric must be Kähler and Ricci-flat [17],
since contracting (2.52) and applying Lemma 5 shows that such a metric
must satisfy

(3.3) gjk̄∂j∂k̄ log ‖Ω‖2 = R̃ = |T |2.

By the maximum principle, |T |2 = 0 and log ‖Ω‖2 is constant. Thus the
Anomaly flow with α′ = 0 can be used to determine whether a conformally
balanced manifold is actually Kähler.

We note that the flow (3.1) is also related to the problem of prescribing
metrics in a balanced class raised in the recent survey of Garcia-Fernandez
[12], so our results in this section can be viewed as a first step towards an
eventual solution.
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3.1. Flow of the curvature and the torsion

For convenience, we summarize here the main formulas for the Anomaly flow
(3.1). They can be obtained from the general formulas obtained earlier by
setting α′ = 0. Let us still use Ψ to denote the right hand side of the flow,
that is Ψp̄q = −R̃p̄q + (T T̄ )p̄q. Then the flow of the metric is given by

(3.4) ∂tgp̄q =
1

2‖Ω‖ω
Ψp̄q =

1

2‖Ω‖ω

[
− R̃p̄q + (T T̄ )p̄q

]
while the flows of the curvature tensors are given by

∂tRk̄j
ρ
λ =

1

2‖Ω‖ω
∆Rk̄j

ρ
λ −

1

2‖Ω‖ω
gρµ̄∇k̄∇j(T T̄ )µ̄λ

+
1

2‖Ω‖ω

(
T̄k̄∇j + Tj∇k̄ + (

1

2
Rk̄j − Tj T̄k̄)

)
Ψρ

λ

+
1

2‖Ω‖ω

[
∇k̄(T rsjRsrρλ) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j

ρ
λ)

−R′k̄
κ̄Rκ̄j

ρ
λ +Rk̄s

κ
jR

s
κ
ρ
λ −Rk̄sρκ̄Rsjκ̄λ +Rk̄s

κ
λR

s
j
ρ
κ

]

∂tRk̄j =
1

2‖Ω‖ω
∆Rk̄j −

1

2‖Ω‖ω
∇k̄∇j |T |2

+
1

2‖Ω‖ω

(
T̄k̄∇j + Tj∇k̄ + (

1

2
Rk̄j − Tj T̄k̄)

)
(−R+ |T |2)

+
1

2‖Ω‖ω

[
∇k̄(T rsjRsr) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j)−R′k̄

κ̄Rκ̄j +Rk̄s
κ
jR

s
κ

]

∂tR =
1

2‖Ω‖ω
∆R− 1

2‖Ω‖ω
∆|T |2 − 1

2‖Ω‖ω
Rjk̄Ψk̄j

+
1

2‖Ω‖ω

(
T̄k̄∇k̄ + Tj∇j + (

1

2
R− Tj T̄ j)

)
(−R+ |T |2)

+
1

2‖Ω‖ω

(
∇k̄(T rsjRsr) +∇γ̄(T̄ r̄ γ̄k̄Rr̄j)

)
(3.5)

and the flow of the torsion is given by

∂tTp̄jq =
1

2‖Ω‖ω
∆Tp̄jq −

1

2‖Ω‖ω
(T rqλR

λ
rp̄j − T rjλRλrp̄q)

+
1

2‖Ω‖ω
(TmjqΨp̄m − TjΨp̄q + TqΨp̄j +∇j(T T̄ )p̄q −∇q(T T̄ )p̄j).(3.6)
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For later use, we also record here the flow of the norm ‖Ω‖ω,

(3.7) ∂t‖Ω‖ω =
1

4
(R− |T |2).

3.2. Estimates for derivatives of curvature and torsion

The goal in this section is to prove Theorem 2. We shall use D to denote
the derivative when we do not distinguish between ∇ and ∇̄. For example,
|DT | would include both |∇T | and |∇̄T |, and

|DkT |2 =
∑
i+j=k

|∇i∇̄jT |2.(3.8)

The proof of Theorem 2 is by induction on k. The idea is find a suitable
test function Gk(z, t) for each k, similar to the Ricci flow, and apply the
maximum principle.

We will first prove the estimate (1.12) for k = 1 case. Then, we assume
that, for any 0 ≤ j ≤ k − 1,

(3.9) |DjRm(z, t)|ω ≤
CjA

tj/2
, |Dj+1T (z, t)|ω ≤

CjA

tj/2

for all z ∈M and t ∈ (0, 1
A ] and show the estimate also holds for j = k.

We already have the flows of the curvature and of the torsion, as given
above. To prove the theorem, we shall also need the flows of their covariant
derivatives. They are given in the following lemmas.

Lemma 9. Under the induction assumption (3.9) and |T |2 ≤ A, we have

∂t|DkRm|2 ≤ 1

2‖Ω‖ω

{
1

2
∆R|DkRm|2 − 3

4
|Dk+1Rm|2(3.10)

+ CA
1

2

(
|Dk+1Rm|+ |Dk+2T |

)
· |DkRm|

+ CA
(
|DkRm|+ |Dk+1T |

)
· |DkRm|

+ C A2 t−
k

2 · |DkRm|+ CA3t−k
}

where we write ∆R = ∆ + ∆̄ and ∆ = gq̄p∇p∇q̄.
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Proof. First, we observe that the flow of the curvature tensor can be ex-
pressed as

∂tRm =
1

2‖Ω‖ω

{
1

2
∆RRm+∇∇̄(T ∗ T̄ ) + ∇̄(T ∗Rm) +∇(T̄ ∗Rm)(3.11)

+Rm ∗Rm+ (∇̄T − T̄ ∗ T ) ∗Ψ + T̄ ∗ ∇Ψ + T ∗ ∇̄Ψ

}
.

To clarify notation: if E and F are tensors, we write E ∗ F for any linear
combination of products of the tensors E and F formed by contractions on
Ei1···ik and Fj1···jl using the metric g.

Let the terms in the large bracket be denoted by H, that is

(3.12) ∂tRm =
1

2‖Ω‖ω
H.

In general, the Chern unitary connection of a Hermitian metric gk̄j
evolves by

(3.13) ∂tA
j

k̄m
= 0, ∂tA

j
km = gjp̄∇k(∂tgp̄m).

This implies

∂t(∇m∇̄`Rm) = ∇m∇̄`(∂tRm)(3.14)

+
∑
i+j>0

m∑
i=0

∑̀
j=0

∇m−i∇̄`−jRm ∗ ∇i∇̄j(∂tg).

Using the evolution equation of Rm, we get

∂t(∇m∇̄`Rm) =

m∑
i=1

∑̀
j=1

∇m−i∇̄`−jRm ∗ ∇i∇̄j(∂tg) +
1

2‖Ω‖ω
∇m∇̄`H

+
∑
i+j>0

m∑
i=0

∑̀
j=0

∇m−i∇̄`−jH ∗ ∇i∇̄j
(

1

2‖Ω‖ω

)
.(3.15)

We compute the second term,

∇m∇̄`H =
1

2
∇m∇̄`∆RRm+∇m∇̄`∇∇̄(T ∗ T ) +∇m∇̄`+1(T ∗Rm)

+∇m∇̄`∇(T̄ ∗Rm) +∇m∇̄`(Rm ∗Rm) +∇m∇̄`+1(T ∗Ψ)

+∇m∇̄`(Ψ ∗ T̄ ∗ T ) +∇m∇̄`(∇Ψ ∗ T̄ ) +∇m∇̄`(T ∗ ∇̄Ψ).(3.16)
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In view of the commutation identity given in the appendix,

∇m∇̄`∆RRm = ∆R(∇m∇̄`Rm) +

m∑
i=0

∑̀
j=0

∇i∇̄jRm ∗ ∇m−i∇̄`−jRm

+

m∑
i=0

∑̀
j=0

∇i∇̄jT ∗ ∇m−i∇̄`+1−iRm

+

m∑
i=0

∑̀
j=0

∇i∇̄jT ∗ ∇m+1−i∇̄`−jRm.(3.17)

We obtain

∂t(∇m∇̄`Rm)(3.18)

=
1

2‖Ω‖ω

{
1

2
∆R(∇m∇̄`Rm) +

m∑
i=0

∑̀
j=0

∇i∇̄jRm ∗ ∇m−i∇̄`−jRm

+

m∑
i=0

∑̀
j=0

∇i∇̄jT ∗
(
∇m−i∇̄`+1−iRm+∇m+1−i∇̄`−jRm

)
+∇m∇̄`∇∇̄(T ∗ T ) +∇m∇̄`+1(T ∗Rm)

+∇m∇̄`∇(T̄ ∗Rm) +∇m∇̄`(Rm ∗Rm)

+∇m∇̄`+1(T ∗Ψ) +∇m∇̄`(Ψ ∗ T̄ ∗ T ) +∇m∇̄`(∇Ψ ∗ T̄ )

}

+
∑
i+j>0

m∑
i=0

∑̀
j=0

∇m−i∇̄`−jRm ∗ ∇i∇̄j(∂tg)

+
∑
i+j>0

m∑
i=0

∑̀
j=0

∇m−i∇̄`−jH ∗ ∇i∇̄j
(

1

2‖Ω‖ω

)
.

Next we compute

∂t|∇m∇̄`Rm|2(3.19)

≤ 〈∂t∇m∇̄`Rm, ∇m∇̄`Rm〉+ 〈∇m∇̄`Rm, ∂t∇m∇̄`Rm〉

+
C

2‖Ω‖ω
|∇m∇̄`Rm|2 · |Ψ|.
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We also compute

∆R|∇m∇̄`Rm|2(3.20)

= 〈∆R∇m∇̄`Rm, ∇m∇̄`Rm〉+ 〈∇m∇̄`Rm, ∆R∇m∇̄`Rm〉
+ 2|∇m+1∇̄`Rm|2 + 2|∇̄∇m∇̄`Rm|2

= 〈∆R∇m∇̄`Rm, ∇m∇̄`Rm〉+ 〈∇m∇̄`Rm, ∆R∇m∇̄`Rm〉
+ 2|∇m+1∇̄`Rm|2 + 2|∇m∇̄`+1Rm|2

+ 2
(
|∇̄∇m∇̄`Rm|2 − |∇m∇̄`+1Rm|2

)
.

We can estimate the last term by a commutation identity.

(3.21) ∇̄∇m∇̄`Rm−∇m∇̄∇̄`Rm =

m−1∑
i=0

∇iRm ∗ ∇m−1−i∇̄`Rm.

It follows that

|∇̄∇m∇̄`Rm|2 − |∇m∇̄`+1Rm|2(3.22)

≥ −C|∇m∇̄`+1Rm| ·
m−1∑
i=0

|∇iRm ∗ ∇m−1−i∇̄`Rm|

− C
m−1∑
i=0

|∇iRm ∗ ∇m−1−i∇̄`Rm|2

≥ −C1|∇m∇̄`+1Rm| ·
m−1∑
i=0

|DiRm| · |Dm+`−1−iRm|

− C
m−1∑
i=0

|DiRm|2 · |Dm+`−1−iRm|2.

Putting all the computation together, we arrive at

∂t|∇m∇̄`Rm|2(3.23)

≤ 1

2‖Ω‖ω

{
1

2
∆R|∇m∇̄`Rm|2 − |∇m+1∇̄`Rm|2 − |∇m∇̄`+1Rm|2
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+ C1|∇m∇̄`+1Rm| ·
m−1∑
i=0

|DiRm| · |Dm+`−1−iRm|

+ C

m−1∑
i=0

|DiRm|2 · |Dm+`−1−iRm|2

+ C|∇m∇̄`Rm| ·

[
m∑
i=0

∑̀
j=0

|∇i∇̄jRm| · |∇m−i∇̄`−jRm|

+ |∇m+1∇̄`+1(T ∗ T )|

+

m∑
i=0

`−1∑
j=0

|∇i∇̄jRm| · |∇m−i∇̄`−j(T ∗ T )|+ |∇m∇̄`+1(T ∗Rm)|

+

m∑
i=0

∑̀
j=0

|∇i∇̄jT | ·
(
∇m−i∇̄`+1−jRm|+ |∇m+1−i∇̄`−jRm|

)

+ |∇m+1∇̄`(T̄ ∗Rm)|+
m∑
i=0

`−1∑
j=0

|∇i∇̄jRm| · |∇m−i∇̄`−1−j(T̄ ∗Rm)|

+ |∇m∇̄`(Rm ∗Rm)|+ |∇m∇̄`+1(T ∗Ψ)|
+ |∇m∇̄`(Ψ ∗ T̄ ∗ T )|+ |∇m∇̄`(∇Ψ ∗ T̄ )|

+
∑
i+j>0

m∑
i=0

∑̀
j=0

|∇m−i∇̄`−jH| ·
∣∣∣∣∇i∇̄j ( 1

2‖Ω‖ω

)∣∣∣∣
+
∑
i+j>0

m∑
i=0

∑̀
j=0

|∇m−i∇̄`−jRm| · |∇i∇̄j(∂tg)|

]}

+
C

2‖Ω‖ω
|∇m∇̄`Rm|2 · |Ψ|

where we used commutating identities for terms ∇m∇̄`∇∇̄(T ∗ T ) and
∇m∇̄`∇(T̄ ∗Rm) in the evolution equation ∂t∇k∇̄`Rm. Next, we use the
non-standard notation D introduced at the beginning of this section. Note
that, for a tensor E,

(3.24) |∇i∇̄jE| ≤ |Di+jE|.

Let k = m+ `. We have

∂t|∇m∇̄`Rm|2(3.25)

≤ 1

2‖Ω‖ω

{
1

2
∆R|∇m∇̄`Rm|2 − |∇m+1∇̄`Rm|2 − |∇m∇̄`+1Rm|2
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+ C1|∇m∇̄`+1Rm| ·
k−1∑
i=0

|DiRm| · |Dk−1−iRm|

+ C

k−1∑
i=0

|DiRm|2 · |Dk−1−iRm|2

+ C|∇m∇̄`Rm| ·

[
k∑
i=0

|DiRm| · |Dk−iRm|+
k∑
i=0

|DiT | · |Dk+1−iRm|

+ |Dk+2(T ∗ T )|+
k−1∑
i=0

|DiRm| · |Dk−i(T ∗ T )|

+ |Dk+1(T ∗Rm)|+ |Dk+1(T̄ ∗Rm)|+
k−1∑
i=0

|DiRm| · |Dk−1−i(T̄ ∗Rm)|

+ |Dk(Rm ∗Rm)|+ |Dk+1(T ∗Ψ)|+ |Dk(Ψ ∗ T ∗ T )|+ |Dk(∇Ψ ∗ T )|

+

k∑
i=1

|Dk−iH| · |Di

(
1

2‖Ω‖ω

)
|+

k∑
i=1

|Dk−iRm| · |Di(∂tg)|

]}
+

C

2‖Ω‖ω
|∇m∇̄`Rm|2 · |Ψ|.

Recall that

|DkRm|2 =
∑

m+`=k

|∇m∇̄`Rm|2(3.26)

|∇m∇̄`+1Rm| ≤ |Dk+1Rm|, |∇m∇̄`Rm| ≤ |DkRm|(3.27)

and we also have

|Dk+1Rm|2 =
∑

m+q=k+1

|∇m∇̄qRm|2(3.28)

=
∑

m+q−1=k, q≥1

|∇m∇̄qRm|2 + |∇k+1Rm|2

=
∑

m+`=k,m≥0, `≥0

|∇m∇̄`+1Rm|2 + |∇k+1Rm|2

≤
∑

m+`=k

|∇m∇̄`+1Rm|2 +
∑

m+`=k

|∇m+1∇̄`Rm|2.
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Using these inequalities, we get

∂t|DkRm|2(3.29)

≤ 1

2‖Ω‖ω

{
1

2
∆R|DkRm|2 − |Dk+1Rm|2

+ C1|Dk+1Rm| ·
k−1∑
i=0

|DiRm| · |Dk−1−iRm|

+ C

k−1∑
i=0

|DiRm|2 · |Dk−1−iRm|2

+ C|DkRm| ·

[
k∑
i=0

|DiRm| · |Dk−iRm|+
k∑
i=0

|DiT | · |Dk+1−iRm|

+ |Dk+2(T ∗ T )|+
k−1∑
i=0

|DiRm| · |Dk−i(T ∗ T )|

+ |Dk+1(T ∗Rm)|+ |Dk+1(T̄ ∗Rm)|

+

k−1∑
i=0

|DiRm| · |Dk−1−i(T̄ ∗Rm)|

+ |Dk(Rm ∗Rm)|+ |Dk+1(T ∗Ψ)|+ |Dk(Ψ ∗ T ∗ T )|
+ |Dk(∇Ψ ∗ T )|

+

k∑
i=1

|Dk−iH| ·
∣∣∣∣Di

(
1

2‖Ω‖ω

)∣∣∣∣+

k∑
i=1

|Dk−iRm| · |Di(∂tg)|

]}
+

C

2‖Ω‖ω
|DkRm|2 · |Ψ|.

We estimate the terms on right hand side one by one. Recall that we
have

|DjRm| ≤ C A

tj/2
, 0 ≤ j ≤ k − 1(3.30)

|Dj+1T | ≤ C A

tj/2
, 0 ≤ j ≤ k − 1(3.31)

|T |2 ≤ C A;(3.32)

and the unknown terms are |Dk+1Rm|, |DkRm|, |Dk+2T | and |Dk+1T |.
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• Estimate for |Dk+1Rm| ·
∑k−1

i=0 |DiRm| · |Dk−1−iRm| :

|Dk+1Rm| ·
k−1∑
i=0

|DiRm| · |Dk−1−iRm|(3.33)

≤ |Dk+1Rm| ·
k−1∑
i=0

CA

ti/2
· CA

t(k−1−i)/2

≤ |Dk+1Rm| · CA2 t−
k−1

2

≤ θ|Dk+1Rm|2 + C(θ)A3 t−k.

where θ is a small positive number such that C1θ <
1
4 . To obtain the last

inequality, we used Cauchy-Schwarz inequality and the fact that A t < 1.

• Estimate for
∑k−1

i=0 |DiRm|2 · |Dk−1−iRm|2 :

k−1∑
i=0

|DiRm|2 · |Dk−1−iRm|2 ≤
k−1∑
i=0

(
CA

ti/2

)2

·
(

CA

t(k−1−i)/2

)2

(3.34)

≤ CA4 t−(k−1)

≤ CA3 t−k.

• Estimate for
∑k

i=0 |DiRm| · |Dk−iRm| :

k∑
i=0

|DiRm| · |Dk−iRm| = 2|DkRm| · |Rm|(3.35)

+

k−1∑
i=1

|DiRm| · |Dk−iRm|

≤ CA |DkRm|+ CA2 t−
k

2 .

• Estimate for
∑k

i=0 |DiT | · |Dk+1−iRm| :

k∑
i=0

|DiT | · |Dk+1−iRm| = |T | · |Dk+1Rm|+ |DT | · |DkRm|(3.36)

+

k∑
i=2

|DiT | · |Dk+1−iRm|

≤ CA
1

2 |Dk+1Rm|+ CA |DkRm|+ CA2 t−
k

2 .
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• Estimate for |Dk+2(T ∗ T )| :

|Dk+2(T ∗ T )| ≤
k+2∑
i=0

|DiT | · |Dk+2−iT |(3.37)

= 2|T | · |Dk+2T |+ 2|DT | · |Dk+1T |

+

k∑
i=2

|DiT | · |Dk+2−iT |

≤ CA
1

2 |Dk+2T |+ CA |Dk+1T |+ CA2 t−
k

2 .

• Estimate for
∑k−1

i=0 |DiRm| · |Dk−i(T ∗ T )| :

k−1∑
i=0

|DiRm| · |Dk−i(T ∗ T )|(3.38)

≤ 2

k−1∑
i=0

|DiRm| · |T | · |Dk−iT |

+

k−1∑
i=0

k−i∑
j=1

|DiRm| · |DjT | · |Dk−i−jT |

≤ CA2 t−
k

2 .

• Estimate for |Dk+1(T ∗Rm)| :

|Dk+1(T ∗Rm)|(3.39)

≤ |T | · |Dk+1Rm|+ |DT | · |DkRm|+ |Dk+1T | · |Rm|

+

k∑
i=2

|DiT | · |Dk+1−iRm|

≤ CA
1

2 |Dk+1Rm|+ CA |DkRm|+ CA |Dk+1T |+ CA2 t−
k

2 .

• Estimate |Dk+1(T̄ ∗Rm)| :

|Dk+1(T̄ ∗Rm)|(3.40)

≤ CA
1

2 |Dk+1Rm|+ CA |DkRm|+ CA |Dk+1T |+ CA2 t−
k

2 .
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• Estimate for
∑k−1

i=0 |DiRm| · |Dk−1−i(T̄ ∗Rm)| :

k−1∑
i=0

|DiRm| · |Dk−1−i(T̄ ∗Rm)|(3.41)

≤
k−1∑
i=0

|DiRm| · |T | · |Dk−1−iRm|

+

k−1∑
i=0

k−1−i∑
j=1

|DiRm| · |DjT | · |Dk−1−i−jRm|

≤ CA2 t−
k

2 .

• Estimate for |Dk(Rm ∗Rm)| :

|Dk(Rm ∗Rm)| ≤ 2|Rm| · |DkRm|+
k−1∑
i=1

|DiRm| · |Dk−iRm|(3.42)

≤ CA |DkRm|+ CA2 t−
k

2 .

• Estimate for |Dk+1(T ∗Ψ)| :
Recall that Ψp̄q = −R̃p̄q + gsr̄ gmn̄ Tn̄sq T̄mr̄p̄, we have

(3.43) |Dk+1(Ψ ∗ T )| ≤ |Dk+1(Rm ∗ T )|+ |Dk+1(T ∗ T ∗ T )|.

The first term is the same as (3.39). We only need to estimate the second
term.

|Dk+1(T ∗ T ∗ T )| ≤ |Dk+1T | · |T |2ω +
∑

p+q=k+1;p,q>0

|DpT | · |DqT | · |T |(3.44)

+
∑

p+q+r=k+1;p,q,r>0

|DpT | · |DqT | · |DrT |

≤ CA |Dk+1T |+ CA
5

2 t−
(k−1)

2 + CA3 t−
(k−2)

2

≤ CA |Dk+1T |+ CA2 t−
k

2 .

It follows that

|Dk+1(Ψ ∗ T )| ≤ CA
1

2 |Dk+1Rm|(3.45)

+ CA (|DkRm|+ |Dk+1T |) + CA2 t−
k

2 .
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• Estimate for |Dk(Ψ ∗ T ∗ T )| :

(3.46) |Dk(Ψ ∗ T ∗ T )| ≤ |Dk(Rm ∗ T ∗ T )|+ |Dk(T ∗ T ∗ T ∗ T )|.

We use the same trick as above to estimate these two terms. For the first
term, we have

|Dk(Rm ∗ T ∗ T )|(3.47)

≤ |DkRm| · |T |2ω +
∑

p+q=k;q>0

|DpRm| · |DqT | · |T |

+
∑

p+q+r=k;q,r>0

|DpRm| · |DqT | · |DrT |

≤ CA |DkRm|+ CA
5

2 t−
k−1

2 + CA3 t−
k−2

2

≤ CA |DkRm|+ CA2 t−
k

2 .

For the second term, we have

|Dk(T ∗ T ∗ T ∗ T )|(3.48)

≤ 4|DkT | · |T |3 +
∑

p+q=k; p,q>0

|DpT | · |DqT | · |T |2ω

+
∑

p+q+r=k; p,q,r>0

|DpT | · |DqT | · |DrT | · |T |ω

+
∑

p+q+r+s=k; p,q,r,s>0

|DpT | · |DqT | · |DrT | · |DsT |

≤ CA
5

2 t−
k−1

2 + CA3 t−
k−2

2 + CA
7

2 t−
k−3

2 + CA4 t−
k−4

2

≤ CA2 t−
k

2 .

Thus, we have

(3.49) |Dk(Ψ ∗ T ∗ T )| ≤ CA |DkRm|+ CA2 t−
k

2 .

• Estimate for |Dk(∇Ψ ∗ T )| :

|Dk(∇Ψ ∗ T )| ≤ |Dk(∇Rm ∗ T )|+ |Dk(∇(T ∗ T ) ∗ T )|(3.50)
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≤ |Dk+1Rm| · |T |+ |DkRm| · |DT |+
k∑
i=2

|Dk+1−iRm| · |DiT |

+ |Dk+1(T ∗ T )| · |T |+
k∑
i=1

|Dk+1−i(T ∗ T )| · |DiT |

≤ CA
1

2 |Dk+1Rm|+ CA |DkRm|+ CA |Dk+1T |+ CA2 t−
k

2 .

• Estimate for
∑k

i=1 |Dk−iH| ·
∣∣∣Di

(
1

2‖Ω‖ω

)∣∣∣ :

Recall that

H =
1

2
∆RRm+∇∇̄(T ∗ T̄ ) + ∇̄(T ∗Rm) +∇(T̄ ∗Rm)(3.51)

+Rm ∗Rm+ (∇̄T − T̄ ∗ T ) ∗Ψ + T̄ ∗ ∇Ψ + T ∗ ∇̄Ψ.

and we also compute, for any m,

∇m
(

1

2‖Ω‖ω

)
= ∇m−1∇

(
1

2‖Ω‖ω

)
= −∇m−1

(
1

2‖Ω‖ω
T

)
(3.52)

= −∇m−1

(
1

2‖Ω‖ω

)
∗ T − 1

2‖Ω‖ω
∇m−1T

=
1

2‖Ω‖ω

m∑
j=1

∇m−jT ∗ T j−1.

where T j−1 = T ∗ T ∗ · · · ∗ T with (j − 1) factors. Again keep in mind that
the unknown terms are |Dk+1Rm|, |DkRm|,|Dk+2T | and |Dk+1T |. Notice
that these terms only appear for i = 1, 2 in the summation.

k∑
i=1

|Dk−iH| ·
∣∣∣∣Di

(
1

2‖Ω‖ω

)∣∣∣∣(3.53)

= |Dk−1H| ·
∣∣∣∣D( 1

2‖Ω‖ω

)∣∣∣∣+ |Dk−2H| ·
∣∣∣∣D2

(
1

2‖Ω‖ω

)∣∣∣∣
+

k∑
i=3

|Dk−iH| ·
∣∣∣∣Di

(
1

2‖Ω‖ω

)∣∣∣∣ .
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Using (3.51) and (3.52), we can estimate the terms on the right hand side
one by one and obtain

k∑
i=1

|Dk−iH| ·
∣∣∣∣Di

(
1

2‖Ω‖ω

)∣∣∣∣(3.54)

≤ CA
1

2 |Dk+1Rm|+ CA (|DkRm|+ |Dk+1T |) + CA2 t−
k

2 .

• Estimate for
∑k

i=1 |Dk−iRm| · |Di(∂tg)| :

(3.55) |Di(∂tg)| =
∣∣∣∣Di

(
1

2‖Ω‖ω
Ψ

)∣∣∣∣ =

i∑
j=0

∣∣∣∣Dj

(
1

2‖Ω‖ω

)∣∣∣∣ · |Di−jΨ|.

By the definition of Ψ and the computation (3.52), we know that the only
unknown term appeared in the summation is when j = i = k. Thus, we
arrive the following estimate

(3.56)

k∑
i=1

|Dk−iRm| · |Di(∂tg)| ≤ CA |DkRm|+ CA2 t−
k

2 .

• Estimate for the last term |DkRm|2 · |Ψ| :

(3.57) |DkRm|2 · |Ψ| ≤ CA |DkRm|2.

Finally, putting all the above estimates together, we obtain the lemma.
�

Following the same strategy, we can also prove the following lemma on
estimates for the derivatives of the torsion.

Lemma 10. Under the same assumption as in Lemma 9, we have

∂t|Dk+1T |2 ≤ 1

2‖Ω‖ω

{
1

2
∆R|Dk+1T |2 − 3

4
|Dk+2T |2(3.58)

+ CA
1

2

(
|Dk+2T |+ |Dk+1Rm|

)
· |Dk+1T |

+ CA
(
|Dk+1T |+ |DkRm|

)
· |Dk+1T |

+ CA2 t−
k

2 |∇k+1T |+ CA3t−k
}
.

Now we return to the proof of Theorem 2:
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We first prove the estimate (1.12) for the case k = 1. To obtain the
desired estimate, we apply the maximum principle to the function

(3.59) G1(z, t) = t
(
|DRm|2 + |D2T |2

)
+ Λ

(
|Rm|2 + |DT |2

)
.

Using Lemma 9 and Lemma 10 with k = 1, we have

∂t
(
|DRm|2 + |D2T |2

)
(3.60)

≤ 1

2‖Ω‖ω

{
1

2
∆R

(
|DRm|2 + |D2T |2

)
− 3

4

(
|D2Rm|2 + |D3T |2

)
+ CA

1

2

(
|D2Rm|+ |D3T |

)
·
(
|DRm|+ |D2T |

)
+ CA

(
|DRm|+ |D2T |

)2
+ CA2 t−

1

2

(
|DRm|+ |D2T |

)
+ CA3 t−1

}
≤ 1

2‖Ω‖ω

{
1

2
∆R

(
|DRm|2 + |D2T |2

)
− 1

2

(
|D2Rm|2 + |D3T |2

)
+ CA

(
|DRm|2 + |D2T |2

)
+ CA3 t−1

}
.

where we used the Cauchy-Schwarz inequality in the last inequality.
Recall the evolution equation

∂t(|DT |2 + |Rm|2)(3.61)

≤ 1

2‖Ω‖ω

{
1

2
∆R(|DT |2 + |Rm|2)− 1

2
(|D2T |2 + |DRm|2)

+ CA
3

2 (|DRm|+ |D2T |) + CA3

}
.

It follows that

∂tG1 ≤
1

4‖Ω‖ω

{
∆RG1 − t

(
|D2Rm|2 + |D3T |2

)
− Λ

(
|D2T |2 + |DRm|2

)
+ CA t (|DRm|2 + |D2T |2) + CA3

+ CA
3

2 Λ(|DRm|+ |D2T |) + CA3 Λ
}

+ (|DRm|2 + |D2T |2).(3.62)

Again, using Cauchy-Schwarz inequality,

(3.63) C A
3

2 Λ(|DRm|+ |D2T |) ≤ CA3 Λ + Λ(|DRm|2 + |D2T |2).
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Putting these estimates together, we have

∂tG ≤
1

4‖Ω‖ω

{
∆RG− t

(
|D2Rm|2 + |D3T |2

)
(3.64)

+ (‖Ω‖ω − Λ + CAt)
(
|D2T |2 + |DRm|2

)
+ CA3

}
.

By At ≤ 1 and choosing Λ large enough,

(3.65) ∂tG ≤
1

4‖Ω‖ω

{
2∆RG+ CA3Λ

}
.

We note that the choice of constant Λ depends on the upper bound of ‖Ω‖ω.
However, with the assumption (1.11), we can get the uniform C0 bound of
the metric depending on the uniform lower bound of ‖Ω‖ω. Consequently,
we obtain the upper bound of ‖Ω‖ω, which also depends on the uniform
lower bound of ‖Ω‖ω.

To finish the proof for k = 1, observing that when t = 0,

(3.66) G(0) =
Λ

2
(|DT |2 + |Rm|2) ≤ CΛA2.

Thus, applying the maximum principle to the above inequality implies that

(3.67) G(t) ≤ CΛA2 + CA3Λ t ≤ CA2.

It follows

(3.68) |DRm|+ |D2T | ≤ CA

t1/2
.

This establishes the estimate (1.12) when k = 1. Next, we use induction on
k to prove the higher order estimates.

Using Lemma 9 and Lemma 10 again, we have
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∂t

(
|DkRm|2 + |Dk+1T |2

)
(3.69)

≤ 1

2‖Ω‖ω

{
1

2
∆R

(
|DkRm|2 + |Dk+1T |2

)
− 3

4

(
|Dk+1Rm|2 + |Dk+2T |2

)
+ CA

1

2

(
|Dk+1Rm|+ |Dk+2T |

)
·
(
|DkRm|+ |Dk+1T |

)
+ CA

(
|DkRm|+ |Dk+1T |

)2

+ CA2 t−
k

2

(
|DkRm|+ |Dk+1T |

)
+ CA3 t−k

}
≤ 1

2‖Ω‖ω

{
1

2
∆R

(
|DkRm|2 + |Dk+1T |2

)
− 1

2

(
|Dk+1Rm|2 + |Dk+2T |2

)
+ CA

(
|DkRm|2 + |Dk+1T |2

)
+ CA3 t−k

}
.

Denote

(3.70) fj(z, t) = |DjRm|2 + |Dj+1T |2.

Then,

(3.71) ∂tfk ≤
1

4‖Ω‖ω

(
∆Rfk − fk+1 + CAfk + CA3 t−k

)
.

Next, we apply the maximum principle to the test function

(3.72) Gk(z, t) = tkfk +

k∑
i=1

ΛiB
k
i t

k−i fk−i

where Λi (1 ≤ i ≤ k) are large numbers to be determined and Bk
i = (k−1)!

(k−i)! .

We note that, for 1 ≤ i < k, we still have an inequality similar to (3.70) for
fk−i.

∂tfk−i ≤
1

4‖Ω‖ω

(
2∆Rfk−i − fk−i+1 + CAfk−i + CA3 t−(k−i)

)
(3.73)

≤ 1

4‖Ω‖ω

(
2∆Rfk−i − fk−i+1 + CA3 t−(k−i)

)
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where we used the induction condition (3.9) for the term fk−i when 1 ≤ i <
k. From (3.70) and (3.73), we deduce

∂tGk = ktk−1 fk + tk∂tfk +

k−1∑
i=1

ΛiB
k
i (k − i) tk−i−1 fk−i(3.74)

+

k∑
i=1

ΛiB
k
i t

k−i ∂tfk−i

= ktk−1 fk +
1

4‖Ω‖ω
tk
(

2∆Rfk − fk+1 + CAfk + CA3 t−k
)

+

k−1∑
i=1

ΛiB
k
i (k − i) tk−i−1 fk−i

+
1

4‖Ω‖ω

k∑
i=1

ΛiB
k
i t

k−i
(

2∆Rfk−i − fk−i+1 + CA3 t−(k−i)
)

=
1

4‖Ω‖ω
2∆RGk −

1

4‖Ω‖ω
tk fk+1 + tk−1fk

(
k +

CA t

4|Ω|ω

)
+

1

4‖Ω‖ω
CA3

(
1 +

k∑
i=1

ΛiB
k
i

)
+

k−1∑
i=1

ΛiB
k
i (k − i) tk−i−1 fk−i

− 1

4‖Ω‖ω

k∑
i=1

ΛiB
k
i t

k−i fk−i+1

≤ 1

4‖Ω‖ω
2∆RGk + tk−1fk

(
k +

CA t

4‖Ω‖ω
− Λ1B

k
1

4‖Ω‖ω

)
+

1

4‖Ω‖ω
CA3 +

k−1∑
i=1

ΛiB
k
i (k − i) tk−i−1 fk−i

− 1

4‖Ω‖ω

k∑
i=2

ΛiB
k
i t

k−i fk−i+1.

We note that the last two terms can be re-written as

k−1∑
i=1

ΛiB
k
i (k − i) tk−i−1 fk−i −

1

4‖Ω‖ω

k∑
i=2

ΛiB
k
i t

k−i fk−i+1(3.75)

=

k−1∑
i=1

(
ΛiB

k
i (k − i)− 1

4‖Ω‖ω
Λi+1B

k
i+1

)
tk−i−1 fk−i

=

k−1∑
i=1

(
Λi −

1

4‖Ω‖ω
Λi+1

)
Bk
i+1 t

k−i−1 fk−i.
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Thus, we obtain

∂tGk ≤
1

4‖Ω‖ω
2∆RGk + tk−1fk

(
k +

CA t

4‖Ω‖ω
− Λ1B

k
1

4‖Ω‖ω

)
(3.76)

+
1

4‖Ω‖ω
CA3 +

k−1∑
i=1

(
Λi −

1

4‖Ω‖ω
Λi+1

)
Bk
i+1 t

k−i−1 fk−i.

Choosing Λ1 large enough and Λi ≤ 1
4‖Ω‖ω Λi+1 for 1 ≤ i ≤ k − 1, we have

(3.77) ∂tGk ≤
1

4‖Ω‖ω
(2∆RGk + CA3).

Note that

(3.78) max
z∈M

G(z, 0) = Λk B
k
kf0 =

(k − 1)!

2
Λk (|Rm|2 + |DT |2) ≤ CA2.

Applying the maximum principle to the inequality satisfied by Gk, we have

(3.79) max
z∈M

G(z, t) ≤ CA2 + CA3 t ≤ CA2.

Finally, we get

(3.80) |DkRm|+ |Dk+1T | ≤ CA t−
k

2 .

The proof of Theorem 2 is complete. �

3.3. Doubling estimates for the curvature and torsion

Let

(3.81) f(z, t) = |DT |2ω + |Rm|2ω + |T |4ω

and denote f(t) = maxz∈M f(z, t). We can derive a doubling-time estimate
for f(t), which roughly says that f(t) cannot blow up quickly.

Proposition 1. There is a constant C depending on a lower bound for
‖Ω‖ω such that

(3.82) max
M

(
|DT |2 + |Rm|2 + |T |4

)
(t) ≤ 4 max

M

(
|DT |2 + |Rm|2 + |T |4

)
(0)

for all t ∈
[
0, 1

4Cf
1
2 (0)

]
.
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Proof. The proof is standard and we apply the maximum principle to f(z, t).
Recall the evolution equations, by taking k = 0 in (3.29),

∂t|Rm|2 ≤
1

2‖Ω‖ω

{
1

2
∆R|Rm|2 − |DRm|2 + C|D2T | · |Rm| · |T |(3.83)

+ C|DRm| · |Rm| · |T |+ C|DT |2 · |Rm|
+ C|DT | · |Rm|2 + C|Rm|3 + C|DT | · |Rm| · |T |2

+ C|Rm|2 · |T |2 + C|Rm| · |T |4
}
.

We apply the Young’s inequalities and get

∂t|Rm|2 ≤
1

2‖Ω‖ω

{
1

2
∆R|Rm|2 −

1

2
|DRm|2 +

1

2
|D2T |2(3.84)

+ C
(
|DT |3 + |Rm|3 + |T |6

)}
.

Similarly, considering the evolution equation for |DT |2 and |T |2, we can
derive

∂t|∇T |2 ≤
1

2‖Ω‖ω

{
1

2
∆R|DT |2 −

1

2
|D2T |2 +

1

2
|DRm|2(3.85)

+ C
(
|DT |3 + |Rm|3 + |T |6

)}
and

(3.86) ∂t|T |4 ≤
1

2‖Ω‖ω

{
1

2
∆R|T |4 + C

(
|DT |3 + |Rm|3 + |T |6

)}
.

Putting the above evolution equations together, we have

∂tf(z, t) ≤ 1

2‖Ω‖ω

{
1

2
∆Rf + C

(
|DT |3 + |Rm|3 + |T |6

)}
(3.87)

≤ 1

2‖Ω‖ω

(
1

2
∆Rf + Cf

3

2

)
.

Finally, by the maximum principle, we have

(3.88) ∂tf(t) ≤ C

2‖Ω‖ω
f

3

2
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which implies that

(3.89) f(t) ≤ f(0)(
1− 2C f

1

2 (0) t
)2 .

Thus, as long as the flow exists and t ≤ 1− 1

A

2Cf
1
2 (0)

, we have f(t) ≤ A2f(0). �

3.4. A criterion for the long-time existence of the flow

We can give now the proof of Theorem 3. We begin by observing that,
under the given hypotheses, the metrics ω(t) are uniformly equivalent for
t ∈ (T − δ, T ). Our goal is to show that the metrics are uniformly bounded
in C∞ for some interval t ∈ (T − δ, T ). This would imply the existence of the
limit ω(T ) of a subsequence ω(tj) with tj → T . By the short-time existence
theorem for the Anomaly flow proved in [22], it follows that the flow extends
to [0, T + ε) for some ε > 0.

3.4.1. C1 bounds for the metric. We need to establish the C∞ con-
vergence of (subsequence of) the metrics gk̄j(t) as t→ T . We have already
noted the C0 uniform boundedness of gk̄j(t). In this section, we establish the
C1 bounds. For this, we fix a reference metric ĝk̄j and introduce the relative
endomorphism

(3.90) hjm(t) = ĝjp̄gp̄m(t).

The uniform C0 bound of gk̄j(t) is equivalent to the C0 bound of h(t). We
need to estimate the derivatives of h(t). For this, recall the curvature relation
between two different metrics gk̄j(t) and ĝk̄j ,

(3.91) Rk̄j
p
m = R̂p

k̄jm
− ∂k̄(hpq∇̂jhpm)

where ∇̂ denotes the covariant derivative with respect to ĝk̄j . This rela-
tion can be viewed as a second order PDE in h, with bounded right hand
sides because the curvature Rk̄j

p
m is assumed to be bounded, and which is

uniformly elliptic because the metrics gk̄j(t) are uniformly equivalent (and
hence the relative endomorphisms h(t) are uniformly bounded away from 0
and ∞). It follows that

‖h‖C1,α ≤ C.(3.92)
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3.4.2. Ck bounds for the metric. We will use the notation Gk for the

summation of norms squared of all combinations of ∇̂m∇̂` acting on g such
that m+ ` = k. For example,

(3.93) G2 = |∇̂∇̂g|2 + |∇̂∇̂g|2 + |∇̂∇̂g|2.

We introduce the tensor

(3.94) Θk
ij = −gk ¯̀∇̂ig¯̀j ,

which is the difference of the background connection and the evolving con-
nection: Θ = Γ0 − Γ. We will use the notation Sk for the summation of norms
squared of all combinations of ∇m∇` acting on Θ such that m+ ` = k. For
example,

(3.95) S2 = |∇∇Θ|2 + |∇∇Θ|2 + |∇∇Θ|2.

Our evolution equation is

(3.96) ∂tgp̄q =
1

2‖Ω‖ω
Ψp̄q,

where Ψp̄q = −R̃p̄q + gαβ̄gsr̄Tβ̄sqT̄αr̄p̄.

Proposition 2. Suppose all covariant derivatives of curvature and torsion
of g(t) with respect to the evolving connection ∇ are bounded on [0, T ). Then
all covariant derivatives of Φp̄q

2‖Ω‖ω with respect to the evolving connection ∇
are bounded on [0, T ).

Proof. Compute

(3.97) ∇m∇`
(

Ψp̄q

2‖Ω‖ω

)
=

1

2

∑
i≤m

∑
j≤`
∇i∇j

(
1

‖Ω‖ω

)
∇m−i∇`−jΨp̄q.

We have

∇i∇j
(

1

‖Ω‖ω

)
= −∇i∇j−1

(
T

‖Ω‖ω

)
(3.98)

=
1

‖Ω‖ω

∑
∇i1∇i2T i3 ∗ ∇i4∇i5T i6 ∗ T i7 ∗ T i8 .

Since Ψ is written in terms of curvature and torsion, and ‖Ω‖ω has a lower
bound, the proposition follows. �
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Proposition 3. Suppose all covariant derivatives of curvature and torsion
of g(t) with respect to the evolving connection ∇ are bounded on [0, T ). If
Gi ≤ C and Si−1 ≤ C for all non-negative integers i ≤ k, then Gk+1 ≤ C
and Sk ≤ C on [0, T ).

Proof. By the previous proposition, all covariant derivatives of Ψp̄q

2‖Ω‖ω with

respect to the evolving connection ∇ are bounded on [0, T ). Let m+ ` =
k + 1, and compute

∇̂m∇̂` Ψp̄q

2‖Ω‖ω
= (∇+ Θ)m(∇+ Θ)`

Ψp̄q

2‖Ω‖ω
(3.99)

= ∇m∇`−1
(

Θ
Ψp̄q

2‖Ω‖ω

)
+O(1)

= ∇m∇`−1
Θ · Ψp̄q

2‖Ω‖ω
+O(1),

where O(1) represents terms which involve evolving covariant derivatives of
Ψp̄q

2‖Ω‖ω and up to (k − 1)th order evolving covariant derivatives of Θ, which
are bounded by assumption. If ` = 0, the right-hand side is replaced by
∇m−1Θ · Ψp̄q

2‖Ω‖ω . Next, we compute

∇m∇`−1
Θ
k̄
īj̄ = −g`k̄∇m∇`−1∇̂īgj̄`(3.100)

= −g`k̄(∇̂ −Θ)m(∇̂ −Θ)`−1∇̂īgj̄`
= −g`k̄∇̂m∇̂`−1 ∇̂īgj̄` +O(1).

It follows that

(3.101)

∣∣∣∣∇̂m∇̂` Ψp̄q

2‖Ω‖ω

∣∣∣∣ ≤ C (1 + |∇̂m∇̂` g|
)
.

By differentiating the evolution equation and using the above estimate, we
have

(3.102) ∂t|∇̂m∇̂`g|2ĝ ≤ C
(

1 + |∇̂m∇̂` g|2ĝ
)
,

hence |∇̂m∇̂` g| has exponential growth. This proves Gk+1 ≤ C. Then Sk ≤
C now follows from (3.100), since ∇m∇`Θ = ∇m∇`Θ and we can exchange
evolving covariant derivatives up to bounded terms. �

By the C1 bound on the metric, we have G1 ≤ C. We see that S0 =
|Θ| ≤ C by definition of Θ. Hence we can apply the previous proposition to
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deduce any estimate of the form

(3.103) |∇̂m∇̂` g| ≤ C.

By differentiating the evolution equation with respect to time, we obtain

(3.104) ∂it∇̂m∇̂`g = ∇̂m∇̂`∂it
(

Ψp̄q

2‖Ω‖ω

)
.

Time derivatives of Ψp̄q

2‖Ω‖ω can be expressed as time derivatives of connec-
tions, curvature and torsion, which in previous sections have been written as

covariant derivatives of curvature and torsion. It follows that ∇̂m∇̂`∂it
( Ψp̄q

2‖Ω‖ω

)
can be written in terms of evolving covariant derivatives of curvature and
torsion, and hence is bounded. Therefore

(3.105)
∣∣∣∂it∇̂m∇̂` g∣∣∣ ≤ C,

on [0, T ).

4. Appendix

Appendix A. Conventions for differential forms

Let ϕ be a (p, q)-form on the manifold X. We define its components
ϕk̄1···k̄qj1···jp by

(A.1) ϕ =
1

p!q!

∑
ϕk̄1···k̄qj1···jp dz

jp ∧ · · · ∧ dzj1 ∧ dz̄kq ∧ · · · ∧ dz̄k1 .

Although φ can be expressed in several ways under the above form, we re-
serve the notation ϕk̄1···k̄qj1···jp for the uniquely defined coefficients ϕk̄1···k̄qj1···jp
which are anti-symmetric under permutation of any two of the barred indices
or any two of the unbarred indices.

To each Hermitian metric gk̄j corresponds a Hermitian, positive (1, 1)-
form defined by

(A.2) ω = igk̄j dz
j ∧ dz̄k.

The Hermitian property gk̄j = gj̄k is then equivalent to the condition ω = ω.
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Appendix B. Conventions for Chern unitary connections

Let E → X be a holomorphic vector bundle over a complex manifold X. Let
Hᾱβ be a Hermitian metric on E. The Chern unitary connection is defined
by

(B.1) ∇k̄V α = ∂k̄V
α, ∇kV α = Hαγ̄∂k(Hγ̄βV

β)

for V α any section of E. Its curvature tensor is then defined by

(B.2) [∇j ,∇k̄]V α = Fk̄j
α
βV

β.

Explicitly, we have

(B.3) ∇kV α = ∂kV
α +AαkβV

β, Aαkβ = Hαγ̄∂kHγ̄β

and

(B.4) Fk̄j
α
β = −∂k̄Aαjβ = −∂k̄(Hαγ̄∂jHγ̄β).

In particular, when E = T 1,0(X), and gk̄j is a Hermitian metric on X, we
have the corresponding formulas

∇k̄V p = ∂k̄V
p, ∇kV p = gpm̄∂k(gm̄qV

q)

[∇j ,∇k̄]V p = Rk̄j
p
qV

q

Rk̄j
p
q = −∂k̄A

p
jq = −∂k̄(gpm̄∂jgm̄q).(B.5)

Our convention for the curvature form Rm is

(B.6) Rm = Rk̄j
p
qdz

j ∧ dz̄k.

It is the same as in [10, 11], but it differs from that of [30] by a factor of i.

When the metric on X has torsion, the commutator identities [∇j ,∇k]
for the Chern connections on any holomorphic vector bundle are given by
Hence for any tensor A, we have

(B.7) [∇j ,∇k]A = T λjk∇λA, [∇j̄ ,∇k̄]A = T̄ λ̄j̄k̄∇λ̄A.
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Some useful examples are

∇c∇a∇b̄Aījk̄` = ∇a∇c∇b̄Aījk̄` − T λca∇λ∇b̄Aījk̄`
= ∇a∇b̄∇cAījk̄` − T λca∇λ∇b̄Aījk̄`

+∇a(Rb̄c̄iλ̄Aλ̄jk̄` +Rb̄ck̄
λ̄Aījλ̄` −Rb̄cλjAīλk̄` −Rb̄cλ`Aījk̄λ)(B.8)

and

∇c∇d̄∇a∇b̄A = ∇c∇a∇d̄∇b̄A+∇(Rm ∗ ∇̄A)

= ∇a∇c∇d̄∇b̄A+ T ∗ ∇∇̄∇̄A+∇(Rm ∗ ∇̄A)

= ∇a∇c∇b̄∇d̄A+∇∇(T̄ ∗ ∇̄A) + T ∗ ∇∇̄∇̄A+∇(Rm ∗ ∇̄A)

= ∇a∇b̄∇c∇d̄A+∇∇(T̄ ∗ ∇̄A) + T ∗ ∇∇̄∇̄A+∇(Rm ∗ ∇̄A).(B.9)

The general pattern is

∇(k)∇(`)∇a∇b̄A = ∇a∇b̄∇(k)∇(`)
A(B.10)

+
∑

ν+λ=k

∑
µ+ρ=`

∇(ν)∇(µ)
Rm ∗ ∇(λ)∇(ρ)

A

+
∑

ν+λ=k

∑
µ+ρ=`+1

∇(ν)∇(µ)
T ∗ ∇(λ)∇(ρ)

A

+
∑

ν+λ=k+1

∑
µ+ρ=`

∇(ν)∇(µ)
T ∗ ∇(λ)∇(ρ)

A.

Appendix C. Identities for non-Kähler metrics

When the metric is not Kähler, the integration by parts formula becomes

(C.1)

∫
X
∇jV j ωn =

∫
X

(Appj −A
p
jp)V

j ωn =

∫
X
gpq̄Tq̄pj V

j ωn.

It is convenient to introduce

(C.2) Tj = gpq̄Tq̄pj

so that the above equation becomes

(C.3)

∫
X
∇jV j ωn =

∫
X
TjV

j ωn.
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C.1. The adjoints ∂̄† and ∂† with torsion

Since the signs are crucial, we work out in detail the operators ∂̄† and ∂† on
the space Λ1,1 of (1, 1)-forms.

Consider first the operator ∂̄ : Λ1,0 → Λ1,1. Explicitly,

(C.4) ∂̄(fjdz
j) = ∂k̄fjdz̄

k ∧ dzj = −∂k̄fjdzj ∧ dz̄k

which means that

(C.5) (∂̄f)k̄j = −∂k̄fj .

Let Φ = Φp̄qdz
q ∧ dz̄p be a (1, 1)-form. The adjoint ∂̄† is characterized by

the equation

(C.6) 〈∂̄f,Φ〉 = 〈f, ∂̄†Φ〉

which is equivalent to

(C.7)

∫
X

(−∂k̄fj)Φp̄qg
pk̄gjq̄

ωn

n!
=

∫
X
fj(∂̄†Φ)qg

jq̄ω
n

n!
.

Integrating by parts, we find

(C.8) (∂̄†Φ)q = gkp̄(∇kΦp̄q − T jkjΦp̄q) = gkp̄(∇kΦp̄q − TkΦp̄q).

Similarly, we work out ∂†. For f = fk̄dz̄
k, we have ∂f = ∂jfk̄dz

j ∧ dz̄k, so
that (∂f)k̄j = ∂jfk̄. Thus, the equation 〈∂f,Φ〉 = 〈f, ∂†Φ〉 becomes

(C.9)

∫
X
∂jfk̄Φp̄qg

pk̄gjq̄
ωn

n!
=

∫
X
fk̄(∂

†Φ)p̄g
pk̄ω

n

n!
.

This results now into

(C.10) (∂†Φ)q̄ = −gpj̄(∇j̄Φq̄p − T̄j̄Φq̄p).

C.2. Bianchi identities for non-Kähler metrics

It is well-known that the Riemann curvature tensor of Kähler metrics satis-
fies the following important identities

R¯̀mk̄j = Rk̄m¯̀j = Rk̄j ¯̀m

∇qR¯̀m
k
j = ∇mR¯̀q

k
j , ∇p̄R¯̀m

k
j = ∇¯̀Rp̄m

k
j .(C.11)
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For general Hermitian metrics, these identities become

R¯̀mk̄j = R¯̀jk̄m +∇¯̀Tk̄jm

R¯̀mk̄j = Rk̄m¯̀j +∇mT̄jk̄ ¯̀

and

(C.12)

∇mRk̄jpq = ∇jRk̄mpq + T rjmRk̄r
p
q,

∇mRk̄j p̄q = ∇jRk̄mp̄q + T rjmRk̄rp̄q

∇m̄Rk̄jpq = ∇k̄Rm̄jpq + T̄ r̄ k̄m̄Rr̄j
p
q,

∇m̄Rk̄jp̄q = ∇k̄Rm̄jp̄q + T̄ r̄ k̄m̄Rr̄jp̄q.

Observe that to interchange, say m and q in the second Bianchi identity for
non-Kähler metrics, we have to use the first Bianchi identity and differenti-
ate, resulting into

(C.13) ∇mRk̄j p̄q −∇qRk̄j p̄m = ∇q∇k̄Tp̄mj +∇m∇k̄Tp̄qj + T rqmRk̄rp̄j .

The occurrence of D2T on the right hand side is a source of potential diffi-
culties, so it is desirable not to exchange this type of pairs of indices.

Acknowledgements. The authors would like to thank the referees for a
particularly careful reading of their paper, and in particular for pointing out
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