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916 P. W. Y. Lee and C. Li

1. Introduction

Bishop volume comparison theorem and Laplacian comparison theorem are
basic tools in Riemannian geometry and geometric analysis. For Bishop vol-
ume comparison theorem, one estimates the volume of a ball in a Riemannian
manifold with the Ricci curvature bounded from below by that of the cor-
responding space form. Similarly, the Laplacian comparison theorem com-
pares the Laplacian of the Riemannian distance function on a Riemannian
manifold with a Ricci curvature lower bound to that of the corresponding
space form. Various results for Riemannian manifolds with Ricci curvature
bounded from below are based on these two comparison theorems. In this
paper, we prove analogues of these results for a natural sub-Riemannian
structure defined on a Sasakian manifold.

Recall that a Sasakian manifold is a (2n+ 1)-dimensional manifold M
equipped with an almost contact structure (J, α0, v0) and a Riemannian
metric 〈·, ·〉 satisfying certain compatibility conditions (see Section 3 for
the definitions). The restriction of the Riemannian metric on the distri-
bution D := kerα0 defines a sub-Riemannian structure. Let Bx(R) be the
sub-Riemannian ball of radius R centered at x and let η be the Riemannian
volume form of the Riemannian metric 〈·, ·〉. The Heisenberg group and the
complex Hopf fibration are well-known Sasakian manifolds (see Section 7
for more detail). Their volume forms are denoted, respectively, by η0 and
ηH . We also denote their sub-Riemannian balls by and B0(R) and BH(R),
respectively. The following Bishop type volume comparison theorems gener-
alize the earlier three dimensional case in [1, 5, 6].

Theorem 1.1. Assume that the Tanaka-Webster curvature Rm∗ of the
Sasakian manifold satisfies

1) 〈Rm∗(Jv, v)v,Jv〉 ≥ 0,

2)
∑2n−2

i=1 〈Rm∗(wi, v)v, wi〉 ≥ 0,

where v is any vector in D and w1, . . . , w2n−2 is an orthonormal frame of
{v0, v,Jv}⊥. Then

η(Bx(R)) ≤ η0(B0(R)).

Moreover, equality holds only if

1) 〈Rm∗(Jv, v)v,Jv〉 = 0,

2)
∑2n−2

i=1 〈Rm∗(wi, v)v, wi〉 = 0,

on Bx(R).
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Comparison theorems on Sasakian manifolds 917

Theorem 1.2. Assume that the Tanaka-Webster curvature Rm∗ of the
Sasakian manifold satisfies

1) 〈Rm∗(Jv, v)v,Jv〉 ≥ 4|v|4,

2)
∑2n−2

i=1 〈Rm∗(wi, v)v, wi〉 ≥ (2n− 2)|v|2,

where v is any vector in D and w1, . . . , w2n−2 is an orthonormal frame of
{v0, v,Jv}⊥. Then

η(Bx(R)) ≤ ηH(BH(R)).

Moreover, equality holds only if

1) 〈Rm∗(Jv, v)v,Jv〉 = 4|v|4,

2)
∑2n−2

i=1 〈Rm∗(wi, v)v, wi〉 = (2n− 2)|v|2,

on Bx(R).

A Laplacian type comparison theorem generalizing the one in [1] also
holds. Recall that sub-Laplacian ∆H is defined by

∆f =

2n∑
i=1

〈∇vi∇f, vi〉 ,

where v1, . . . , v2n is an orthonormal frame in D.

Theorem 1.3. Let x0 be a point in M and let d(x) := d(x0, x) be the sub-
Riemannian distance from the point x0. Assume that the Tanaka-Webster
curvature Rm∗ of the Sasakian manifold satisfies

1) 〈Rm∗(Jv, v)v,Jv〉 ≥ k1|v|4,

2)
∑2n−2

i=1 〈Rm∗(wi, v)v, wi〉 ≥ (2n− 2)k2|v|2,

for some constants k1 and k2, where v is any vector in D and w1, . . . , w2n−2

is an orthonormal frame of {v0, v,Jv}⊥. Then

∆Hd ≤ h(d, v0(d)),

where k1(r, z) = z2 + k1r
2, k2(r, z) = 1

4z
2 + k2r

2, s1 =
√
|k1|, s2 =

√
|k2| and

h(r, z) =
s1(sin(s1 − s1 cos(s1))

r(2− 2 cos(s1)− s1 sin(s1))
+

(2n− 2)s2 cot(s2)

r
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918 P. W. Y. Lee and C. Li

if k1 ≥ 0 and k2 ≥ 0,

h(r, z) =
s1(s1 cosh(s1))− sinh(s1))

r(2− 2 cosh(s1) + s1 sinh(s1))
+

(2n− 2)s2 cot(s2)

r

if k1 ≤ 0 and k2 ≥ 0,

h(r, z) =
s1(sin(s1 − s1 cos(s1))

r(2− 2 cos(s1)− s1 sin(s1))
+

(2n− 2)s2 coth(s2)

r

if k1 ≥ 0 and k2 ≤ 0,

h(r, z) =
s1(s1 cosh(s1))− sinh(s1))

r(2− 2 cosh(s1) + s1 sinh(s1))
+

(2n− 2)s2 coth(s2)

r

if k1 ≤ 0 and k2 ≤ 0.

We also have the following special case of Theorem 1.3.

Corollary 1.4. Let x0 be a point in M and let d(x) := d(x0, x) be the sub-
Riemannian distance from the point x0. Assume that the Tanaka-Webster
curvature Rm∗ of the Sasakian manifold satisfies

1) 〈Rm∗(Jv, v)v,Jv〉 ≥ 0,

2)
∑2n−2

i=1 〈Rm∗(wi, v)v, wi〉 ≥ 0,

where v is any vector in D and w1, . . . , w2n−2 is an orthonormal frame of
{v0, v,Jv}⊥. Then

∆Hd ≤
2n+ 2

d
.

A version of Hessian comparison theorem as in [1] also hold. The proof is
very similar to and simpler than that of Theorem 1.3. We omit the statement
since it is rather lengthy.

The paper is organized as follows. In Section 2, we recall the construction
of the canonical frame introduced in [8]. In Section 3, we recall the definition
of Sasakian manifolds. We also recall the definition of parallel adapted frame
introduced in [7]. It will be used to simplify some tedious calculations in a
way very similar to the use of geodesic normal coordinates in Riemannian
geometry. The canonical frame and the corresponding curvature are com-
puted in Section 5. Unlike the approach in [9], the computation in this paper
does not rely on any symmetry and the method can be used to deal with
more general situations.
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Comparison theorems on Sasakian manifolds 919

In Section 6, we prove a first conjugate time estimate under the lower
bounds on the Tanaka-Webster curvature. In Section 7, we discuss the
Heisenberg group, the complex Hopf fibration, and their sub-Riemannian
cut locus. The volume estimate and the proof of Theorem 1.1 and 1.2 are
done in Section 8. Finally, Section 9 is devoted to the proof of Theorem 1.3.

2. Canonical frames and curvatures of a Jacobi curve

In this section, we recall how to construct canonical frames and define the
curvature of a curve in Lagrangian Grassmannian. We will only do the con-
struction in our simplified setting. For the most general discussion, see [8].
For completeness, we will also include the full proof of the results in our
case.

Let t 7→ J(t) be a curve in the Lagrangian Grassmannian of a symplectic
vector space V. Let g0

t be the bilinear form on J(t) defined by

g0
t (e, e) = ω(ė(t), e),

where e(·) is any curve in J such that e(t) = e.
Assume that the curve J is monotone which means that g0

t is non-
negative definite for each t. Let J−1, J1, and J2 be defined by

J−2(t) = {e(t)|ė(t), ë(t) ∈ J(t)},
J−1(t) = {e(t)|ė(t) ∈ J(t)},
J1(t) = span{e(t), ė(t)|e(·) ∈ J} = (J−1)∠

J2(t) = span{e(t), ė(t), ë(t)|e(·) ∈ J} = (J−2)∠

where the superscript W∠ denotes the symplectic complement of the sub-
space W .

We will consider the case J1 6= V and J2 = V. Assume that J and J−1

have dimensions N and k, respectively.

Theorem 2.1. [8] Under the above assumptions, there exists a family of
frames

E1(t) = (E1
1(t), . . . , E1

k(t))T , E2(t) = (E2
1(t), . . . , E2

k(t))T ,

E3(t) = (E3
1(t), . . . , E3

N−2k(t))
T ,

F 1(t) = (F 1
1 (t), . . . , F 1

k (t))T , F 2(t) = (F 2
1 (t), . . . , F 2

k (t))T ,

F 3(t) = (F 3
1 (t), . . . , F 3

N−2k(t))
T
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such that

1) E(t) = (E1(t), E2(t), E3(t))T , F (t) = (F 1(t), F 2(t), F 3(t))T is a sym-
plectic basis for each t,

2) E1(t) is a basis of J−1(t),

3) Ė(t) = C1E(t) + C2F (t), Ḟ (t) = −R(t)E(t)− CT1 F (t),

where

C1 =

 0 I 0
0 0 0
0 0 0

 , C2 =

 0 0 0
0 I 0
0 0 I

 ,

R(t) =

 R11(t) 0 R13(t)
0 R22(t) R23(t)

R31(t) R32(t) R33(t)

 ,

and R(t) is symmetric.

The frame (E1, E2, E3, F 1, F 2, F 3) is called a canonical frame of the
curve J and the coefficients Rij are the curvatures of the curve J . We also
write the above equations as

Ė1(t) = E2(t), Ė2(t) = F 2(t), Ė3(t) = F 3(t),

Ḟ 1(t) = −R11(t)E1(t)−R13(t)E3(t),

Ḟ 2(t) = −R22(t)E2(t)−R23(t)E3(t)− F 1(t),

Ḟ 3(t) = −R31(t)E1(t)−R32(t)E2(t)−R33(t)E3(t).

(2.1)

3. Sasakian manifolds and parallel adapted frames

In this section, we recall the definition of Sasakian manifolds and introduce
the parallel adapted frames. For the part on Sasakian manifolds, we mainly
follow [3]. Parallel adapted frames were introduced in [7]. It will be used
to simplify some tedious calculations in a way very similar to the use of
geodesic normal coordinates in Riemannian geometry.

Recall that a manifold M of dimension 2n+ 1 has an almost contact
structure (J, v0, α0) if J : TM → TM is a (1, 1) tensor, v0 is a vector field,
and α0 is a 1-form satisfying

J2(v) = −v + α0(v)v0 and α0(v0) = 1

for all tangent vector v in TM .
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Comparison theorems on Sasakian manifolds 921

An almost contact structure is normal if the following tensor vanishes

(v, w) 7→ [J,J](v, w) + dα0(v, w)v0,

where [J,J] is defined by

[J,J](v, w) = J2[v, w] + [Jv,Jw]− J[Jv, w]− J[v,Jw].

A Riemannian metric 〈·, ·〉 is compatible with a given almost contact
manifold if

〈Jv,Jw〉 = 〈v, w〉 − α0(v)α0(w)

for all tangent vectors v and w in TM .
If, in addition, the Riemannian metric satisfies the condition

〈v,Jw〉 = dα0(v, w),

then we say that the metric is associated to the given almost contact struc-
ture.

Finally, a Sasakian manifold is a normal almost contact manifold with
an associated Riemannian metric. The following results can be found in [3].
Since the sign conventions in [3] is different, we include the proof in the
appendix.

Theorem 3.1. The followings hold on a Sasakian manifold (J, v0, α0, g =
〈·, ·〉)

1) Lv0(J) = 0,

2) ∇v0v0 = 0,

3) Lv0g = 0,

4) J = −2∇v0,

where ∇ denotes the Levi-Civita connection.

Theorem 3.2. An almost contact metric manifold (J, v0, α0, 〈·, ·〉) is Sasa-
kian if and only if it satisfies

(∇vJ)w =
1

2
〈v, w〉 v0 −

1

2
α0(w)v

for all tangent vectors v and w.
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Let Rm denotes the Riemann curvature tensor.

Theorem 3.3. Assume that the almost contact metric manifold (J, v0,
α0, 〈·, ·〉) is Sasakian. Then

Rm(X,Y )v0 =
1

4
α0(Y )X − 1

4
α0(X)Y.

The Tanaka connection ∇∗ is defined by

∇∗XY = ∇XY +
1

2
α0(X)JY − α0(Y )∇Xv0 +∇Xα0(Y )v0.

The corresponding curvature operator is denoted by Rm∗ and we call it
Tanaka-Webster curvature.

Theorem 3.4. Assume that the tangent vectors X, Y , and Z are contained
in kerα0. Then

Rm∗(X,Y )Z = (Rm(X,Y )Z)h + 〈Z,∇Y v0〉∇Xv0 − 〈Z,∇Xv0〉∇Y v0,

where the superscript Xh denotes the the component of X in kerα0.
If the manifold is Sasakian, then

Rm∗(X,Y )Z = (Rm(X,Y )Z)h +
1

4
〈Z,JY 〉JX − 1

4
〈Z,JX〉JY.

Finally, we introduce the parallel adapted frames. The proofs of the
following lemmas are done in the last appendix.

Lemma 3.5. Let v0 be a vector field in a Riemannian manifold M . Let
γ : [0, T ]→M be a curve in the Riemannian manifold M and let v0, . . . , v2n

be an orthonormal frame at x := γ(0). Then there is a orthonormal frame
v0(t) := v0(γ(t)), v1(t), . . . , v2n(t) such that

1) vi(0) = vi and

2) v̇i(t) is contained in Rv0 for each t,

where v̇i(t) denotes the covariant derivative of v(·) along γ(·) and i = 1,
. . . , 2n.

The moving frame defined in Lemma 3.5 is called parallel adapted frame
introduced in [7]. Using this frame, we obtain the following convenient local
frame.
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Lemma 3.6. Suppose that (J, v0, α0) defines an almost contact structure
on M and let 〈·, ·〉 be an associated Riemannian metric. For each point x in
M , there is orthonormal frame v0, v1, . . . , v2n defined in a neighborhood of x
such that the following conditions hold at x.

1) ∇vivj = −〈∇viv0, vj〉 v0,

2) ∇viv0 =
∑

j 6=0 〈∇viv0, vj〉 vj,

3) ∇v0vi = ∇v0v0 = 0,

where i, j = 1, . . . , 2n.
If, in addition, the manifold M together with (J, v0, α0) is Sasakian, then

the followings hold at x.

1) ∇vivj = 1
2 〈Jvi, vj〉 v0,

2) ∇viv0 = −1
2Jvi,

3) ∇v0vi = ∇v0v0 = 0.

The following will be useful for the later sections.

Lemma 3.7. Assume that (M,J, v0, α0, 〈·, ·〉) is Sasakian. Let v0, v1, . . . , v2n

be a frame defined by Lemma 3.6, let Jij =〈Jvi, vj〉, and let Γkij =〈∇vivj , vk〉.
Then the following holds at x

1) Γi00 = Γ0
0i = Γ0

i0 = 0,

2) Γ0
ij = −Γ0

ji = 1
2Jij,

3) vkJij = 0 if i, j, k 6= 0,

4) Rm(vi, vj)vk =
∑

s6=0

(
(viΓ

s
jk)− (vjΓ

s
ik)−

1
4JjkJis + 1

4JikJjs

)
vs

if i, j, k 6= 0.

4. Sub-Riemannian geodesic flows and Jacobi curves

In this section, we give a quick review on some basic notions in sub-Rieman-
nian geometry. In particular, we will introduce Jacobi curves corresponding
to the sub-Riemannian geodesic flow and its induced geometric structures.

A sub-Riemannian manifold is a triple (M,D, 〈·, ·〉), where M is a man-
ifold of dimension n, D is a distribution (sub-bundle of the tangent bundle
TM), and 〈·, ·〉 is a sub-Riemannian metric (smoothly varying inner prod-
uct defined on D). Assuming that the manifold M is connected and the
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distribution D satisfies the Hörmander condition (the sections of D and
their iterated Lie brackets span each tangent space, also called “bracket-
generating” condition). Then, by Chow-Rashevskii Theorem, any two given
points on the manifold M can be connected by a horizontal curve (a curve
which is almost everywhere tangent to D). Therefore, we can define the
sub-Riemannian distance d as

(4.1) d(x0, x1) = inf
γ∈Γ

l(γ),

where the infimum is taken over the set Γ of all horizontal paths γ : [0, 1]→
M satisfying γ(0) = x0 and γ(1) = x1. The minimizers of (4.1) are called
length minimizing geodesics (or simply geodesics). As in the Riemannian
case, reparametrizations of a geodesic are also geodesics. Therefore, we as-
sume that all geodesics have constant speed. These constant speed geodesics
are also minimizers of the kinetic energy functional

(4.2) inf
γ∈Γ

∫ 1

0

1

2
|γ̇(t)|2dt,

where | · | denotes the norm w.r.t. the sub-Riemannian metric.
Let H : T ∗M → R be the Hamiltonian defined by the Legendre trans-

form:

H(x, p) = sup
v∈D

(
p(v)− 1

2
|v|2
)

and let

~H =

n∑
i=1

(Hpi∂xi
−Hxi

∂pi)

be the Hamiltonian vector field. Assume, through out this paper, that the

vector field ~H defines a complete flow which is denoted by et
~H . The projec-

tions of the trajectories of et
~H to the manifold M give minimizers of (4.2).

In this paper, we assume that the sub-Riemannian structure is given
by a Sasakian manifold. More precisely, assume that the almost contact
structure (J, v0, α0) together with the Riemannian structure 〈·, ·〉 form a
Sasakian manifold. The distribution D is given by D = kerα0 and the sub-
Riemannian metric is given by the restriction of the Riemannian metric to
D. In this case all minimizers of (4.2) are given by the projections of the

trajectories of et
~H (see [10] for more detail).
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Next, we discuss a sub-Riemannian analogue of Jacobi fields. Let ω be
the symplectic form on the cotangent bundle T ∗M defined in local coordi-
nates (x1, . . . , x2n+1, p1, . . . , p2n+1) by

ω =

2n+1∑
i=1

dpi ∧ dxi.

Let π : T ∗M →M be the canonical projection and let V be the vertical
sub-bundle of the cotangent bundle T ∗M defined by

V(x,p) = {v ∈ T(x,p)T
∗M |π∗(v) = 0}.

The family of Lagrangian subspaces

(4.3) J(x,p)(t) := e−t
~H

∗ (Vet ~H(x,p))

defined a curve in the Lagrangian Grassmannian of T(x,p)T
∗M , called the

Jacobi curve at (x, p) of the flow et
~H .

Assuming that the manifold is Sasakian. Then Theorem 2.1 applies and
we let E1(t), E2(t), E3(t), F 1(t), F 2(t), F 3(t) be a canonical frame of J(x,p).
This defines a splitting of the vertical space V(x,p) and the cotangent space
T(x,p)T

∗M . More precisely, let

V1 = span{E1(0)}, V2 = span{E2(0)}, V3 = span{E3(0)}
H1 = span{F 1(0)}, H2 = span{F 2(0)}, H3 = span{F 3(0)}.

Then V(x,p) = V1 ⊕ V2 ⊕ V3 and T(x,p)T
∗M = V1 ⊕ V2 ⊕ V3 ⊕H1 ⊕H2 ⊕H3.

Note that V1, V2, H1, and H2 are all 1-dimensional. V3 and H3 are (2n− 2)-
dimensional. Let α and h be, respectively, a 1-form and a function on T ∗M .
Let ~α and ~h be the vector fields defined, respectively, by

ω(~α, ·) = −α and ω(~h, ·) = −dh.

The proof of the following theorem is done in the appendix.

Theorem 4.1. For each point x in M , the above splitting of the cotangent
bundle is given by the followings

1) V1 = span{~α0},

2) V2 = span{
∑

k,l 6=0 hkJkl~αl},
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3) V3 = span{
∑

b ab~αb|
∑

j,k 6=0 akhjJkj = 0 and a0 = h0

2H

∑
k 6=0 akhk},

4) H1 = span{2H~h0 − h0
~H},

5) H2 = span{h0
∑

k 6=0 hk~αk −
∑

j,k 6=0 hjJjk
~hk −H~α0

−
∑

j,k,l 6=0 hjhlΓ
k
0lJjk~α0 −

∑
j,k,l,s 6=0 hjhlJjsΓ

s
kl~αk},

6) H3 = {
∑

i 6=0 ai
~hi +

∑
a ca~αa|

∑
j,k 6=0 akhjJkj = 0,

a0 = h0

2H

∑
k 6=0 akhk, c0 =

∑
i,j 6=0 aihjΓ

i
0j ,

ck =
∑

j 6=0

(
1
2ajJjkh0 − 1

2a0hjJjk +
∑

i 6=0 aihjΓ
i
kj

)
},

where v0, v1, . . . , v2n is a local frame defined in a neighborhood of a point x
by Lemma 3.6, Jij = 〈Jvi, vj〉.

The vertical splitting can be written in a coordinate free way. For this,
we identify the tangent bundle TM with the vertical bundle V using the
Riemannian metric via

v ∈ TM → α(·) = 〈v, ·〉 ∈ T ∗M → −~α ∈ ver.

Under this identification, we have

Theorem 4.2. For each point x in M , the above splitting of the cotangent
bundle is given by the followings

1) V1 = Rv0,

2) V2 = RJph,

3) V3 = R(ph + p(v0)v0)⊕ {v|
〈
v, ph

〉
=
〈
v,Jph

〉
= 〈v, v0〉 = 0}.

4) π∗H1 = R(|ph|2v0 − p(v0)ph),

5) π∗H2 = RJph,

6) π∗H3 = {X|
〈
X,Jph

〉
= 〈X, v0〉 = 0},

where ph is the vector in kerα0 defined by p(v) =
〈
ph, v

〉
and v ranges over

vectors in kerα0.

Under the above identification, we can also define a volume form m on V
by m(v0, . . . , v2n) = 1. The Riemannian volume on M is denoted by η. The
proof of Theorem 4.1 also gives

Theorem 4.3. The volume forms m and η satisfy
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1) m(E(0)) = 1
|ph| ,

2) η(π∗F (0)) = |ph|.

5. Curvatures of sub-Riemannian geodesic flows

In this section, we will focus on the computation of the curvature Rij(0),
where the Jacobi curve is given by the sub-Riemannian geodesic flow. For
this, let Rij : Vi → Vj be the operator for which the matrix representation
with respect to bases Ei(0) and Ej(0) of Vi and Vj , respectively, is given by
Rij(0). More precisely,

Rij(Eik(0)) =
∑
l

Rijkl(0)Ejl (0),

where Rijkl(0) is the kl-th entry of Rij(0).
For a vector v in the vertical space V, we denote the component of v in

Vi by vVi . We also denote by R : V → V the operator

R(vVi)Vj = Rij(vVi).

Theorem 5.1. Assume that the manifold is Sasakian. Then, under the
identifications of Theorem 4.2, R is given by

1) R(v) = 0 for all v in V1,

2) R(v)V2 = (Rm(Jph, ph)ph)V2 +
(

1
4 |p

h|2 + p(v0)2
)
Jph

= (Rm∗(Jph, ph)ph)V2 + p(v0)2Jph for all v in V2,

3) R(v)V3 = (Rm(Jph, ph)ph)V3 = (Rm∗(Jph, ph)ph)V3 for all v in V2,

4) R(v)V1 = 0 for all v in V3,

5) R(v)V2 = (Rm(vh, ph)ph)V2 = (Rm∗(vh, ph)ph)V2 for all v in V3,

6) R(ph + p(v0)v0) = 0,

7) R(v)V3 = (Rm(vh, ph)ph)V3 + 1
4p(v0)2vh = (Rm∗(vh, ph)ph)V3

+ 1
4p(v0)2vh for all v in V3 satisfying

〈
vh, ph

〉
= 0.

Proof. For i 6= j, let ΛViHj
: Vi → Hj be the operator defined by

ΛViHj
(V ) = [ ~H, V ]Hj

,

where V is a section in Vi and the subscript Hj denotes the Hj-component
of the vector.
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It follows from (2.1) that ΛViHj
is tensorial and so well-defined. We also

define operators ΛViVj , ΛHiVj , and ΛHiHj
in a similar way. By (2.1), we have

Lemma 5.2. The following relations hold.

1) R11 = ΛH1V1 ◦ ΛH2H1
◦ ΛV2H2

◦ ΛV1V2,

2) R13 = ΛH1V3 ◦ ΛH2H1
◦ ΛV2H2

◦ ΛV1V2,

3) R22 = −ΛH2V2 ◦ ΛV2H2
,

4) R23 = −ΛH2V3 ◦ ΛV2H2
,

5) R31 = −ΛH3V1 ◦ ΛV3H3
,

6) R32 = −ΛH3V2 ◦ ΛV3H3
,

7) R33 = −ΛH3V3 ◦ ΛV3H3
.

Clearly, ΛH1V1 ≡ 0 and ΛH1V3 ≡ 0. For the rest, we need a lemma for
which the proof is given in the appendix.

Lemma 5.3. The following holds at x

1) [~hk,~hi] = Jki~h0 +
∑

a b
a
ki~αa,

2)
∑

k 6=0 hkb
0
ki =

∑
k,s6=0 hkhsvk(Γ

s
0i) if k, i 6= 0,

3)
∑

k 6=0 hkb
l
ki = −

∑
s,k 6=0 hshk[vkΓ

s
il − vkΓsli − viΓskl] if k, i, l 6= 0,

4) [ ~H,~hi] =
∑

k 6=0 hkJki
~h0 −

∑
k 6=0 h0Jik~hk +

∑
k 6=0,a hkb

a
ki~αa.

Let ai~hi + ca~αa be a vector in H3. A computation shows that the fol-
lowings hold at x.

[ ~H, ai~hi + ca~αa]

= ( ~Hak)~hk −
1

2
(ajJjkh0 + a0hjJjk)~hk + ( ~Hci)~αi + aihkb

j
ki~αj .

On the other hand, we have

h0

2H

(
~Hak −

1

2
ajJjkh0 −

1

2
a0hjJjk

)
hk =

h0

2H
( ~Hak)hk
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and

1

2

(
~Hai −

1

2
ajJjih0 −

1

2
a0hjJji

)
Jikh0 −

1

2

h0

2H
( ~Hai)hihjJjk

=
1

2
( ~Hai)Jikh0 +

1

4
akh

2
0 +

1

4
a0hkh0 −

h0

4H
( ~Hai)hihjJjk

at x.
Therefore,

[ ~H, ai~hi + ca~αa]V = −1

2
( ~Hai)Jikh0~αk −

1

4
akh

2
0~αk −

1

4
a0hkh0~αk

+
h0

4H
( ~Hai)hihjJjk~αk + ( ~Hck)~αk + aihjb

k
ji~αk.

Another computation shows that

~Hck =
1

2
( ~Haj)Jjkh0 −

h0

4H
( ~Hal)hlhjJjk +

1

2
a0h0hk + aihjhl(vlΓ

i
kj).

Hence,

[ ~H, ai~hi + ca~αa]V = −1

4
h0(akh0 − a0hk)~αk − aihshlRmilsk~αk.

where Rmijks = 〈Rm(vi, vj)vk, vs〉.
This finishes the proof of the last three assertions. Let

hjJjk~hk − h0hk~αk +H~α0 + hjhlΓ
k
0lJjk~α0 + hjhlJjsΓ

s
kl~αk

be a section of the bundle H2. Then a tedious calculation shows that[
~H, hjJjk~hk − h0hk~αk +H~α0 + hjhlΓ

k
0lJjk~α0 + hjhlJjsΓ

s
kl~αk

]
V

= −
(
h2

0 +
1

2
H

)
hiJik~αk − hjhkhsJjiRmkils~αl.

This finishes the proof of (3) and (4). �

6. Conjugate time estimates and Bonnet-Myer’s
type theorem

In this section, we give estimates for the first conjugate time under certain
curvature lower bound. Let ψt : T ∗xM →M be the map defined by ψt(x, p) =
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π(et
~H(x, p)), where π : T ∗M →M is the projection. Let us fix a covector

(x, p). The first conjugate time is the smallest t0 > 0 such that the linear map
(dψt0)(x,p) is not bijective. The curve t 7→ ψt(x, p) is no longer minimizing if
t > t0 (see [2]).

Theorem 6.1. Assume that the Tanaka-Webster curvature Rm∗ of the
Sasakian manifold satisfies

1)
〈
Rm∗(Jph, ph)ph,Jph

〉
≥ k1|ph|4,

2)
∑2n−2

i=1

〈
Rm∗(wi, p

h)ph, wi
〉
≥ (2n− 2)k2|ph|2,

for some non-negative constants k1 and k2, where w1, . . . , w2n−2 is an or-
thonormal frame of {ph,Jph, v0}⊥. Then the first conjugate time of the
geodesic t 7→ψt(x, p) is less than or equal to 2π√

p(v0)2+k1|ph|2
and 2π√

p(v0)2+4k2|ph|2
.

Moreover, if

1)
〈
Rm∗(Jph, ph)ph,Jph

〉
= k1|ph|4,

2)
∑2n−2

i=1

〈
Rm∗(wi, p

h)ph, wi
〉

= (2n− 2)k2|ph|2,

then the first conjugate time of the geodesic t 7→ ψt(x, p) is equal to the min-
imum of 2π√

p(v0)2+k1|ph|2
and 2π√

p(v0)2+4k2|ph|2
.

Proof. Let E(t) = (E1(t), E2(t), E3(t)), F (t) = (F 1(t), F 2(t), F 3(t)) be a
canonical frame of the Jacobi curve J(x,p)(t). Let A(t) and B(t) be matrices
defined by

(6.1) E(0) = A(t)E(t) +B(t)F (t).

On the other hand, if we differentiate the equation (6.1) with respect to
t, then

0 = Ȧ(t)E(t) +A(t)Ė(t) + Ḃ(t)F (t) +B(t)Ḟ (t)

= Ȧ(t)E(t) +A(t)C1E(t) +A(t)C2F (t)

+ Ḃ(t)F (t)−B(t)R(t)E(t)−B(t)CT1 F (t).

It follows that

Ȧ(t) +A(t)C1 −B(t)R(t) = 0

Ḃ(t) +A(t)C2 −B(t)CT1 = 0
(6.2)

with initial conditions B(0) = 0 and A(0) = I.
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If we set S(t) = B(t)−1A(t), then S(t) satisfies the following Riccati
equation

(6.3) Ṡ(t)− S(t)C2S(t) + CT1 S(t) + S(t)C1 −R(t) = 0.

Let us choose E3
2n−1(0) = ph + p(v0)v and let

S(t) =

 S1(t) S2(t) S3(t)
S2(t)T S4(t) S5(t)
S3(t)T S5(t)T S6(t)

 ,

where S1(t) is a 2× 2 matrix and S6(t) is 1× 1. Then

Ṡ1(t)− S1(t)C̃2S1(t)− S2(t)S2(t)T

− S3(t)S3(t)T + C̃T1 S1(t) + S1(t)C̃1 − R̃1(t) = 0,

Ṡ4(t)− S4(t)2 − S5(t)S5(t)T − S2(t)T C̃2S2(t)− R̃2(t) = 0,

Ṡ6(t)− S6(t)2 − S5(t)TS5(t)− S3(t)T C̃2S3(t) = 0,

(6.4)

where C̃1 =

(
0 1
0 0

)
, C̃2 =

(
0 0
0 1

)
, and R̃1(t) =

(
0 0
0 R22(t)

)
. R̃2(t)

is the (2n− 2)× (2n− 2) matrix with ij-th entry equal to R33
ij (t).

Note that U(t) = S(t)−1 also satisfies U(0) = 0 and the Riccati equation

U̇(t) + C2 − U(t)CT1 − C1U(t) + U(t)R(t)U(t) = 0.

This gives

U(t) = −tC2 −
t2

2
(C1 + CT1 )− t3

6
(C1C

T
1 + C2R(0)C2) +O(t4).

By using this expansion and S(t)U(t) = I, we obtain

S1(t) =

(
−12
t3 +O(1/t2) 6

t2 +O(1/t)
6
t2 +O(1/t) −4

t +O(1)

)
,

tr(S4(t)) = −2n− 2

t
+O(1), S6(t) = −1

t
+O(1).

(For instance, one can take the dot product of the first row

s(t) = (S1,1(t), . . . , S1,2n+1(t))

of S(t) with the third, fourth, . . . , 2n-th columns of U(t). This gives the
order of the dominating terms of (S1,3(t), . . . , S1,2n+1(t)) in terms of that of
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S1,2(t). By taking the dot product of s(t) with the first and second column
of U(t), we obtain the leading order terms of S1,1(t) and S1,2(t). Similar
procedure works for other entries of S(t).)

By applying the comparison principle of Riccati equations in [12] to
S(t), we have S1(t) ≥ Γ1(t), where Γ1(t) is a solution of the following Riccati
equation

Γ̇1(t)− Γ1(t)C̃2Γ1(t) + C̃T1 Γ1(t) + Γ1(t)C̃1 −K1 = 0

with the initial condition limt→0 Γ−1
1 (t) = 0. (Of course, one needs to apply

the comparison principle to S(t) and Γ(t+ ε) and let ε to zero as usual).

Here K1 =

(
0 0
0 k1

)
and k1 = p(v0)2 + k1|ph|2. Thus

tr(C̃2S1(t)) ≥ tr(C̃2Γ1(t))(6.5)

=

√
k1(
√
k1t cos(

√
k1t)− sin(

√
k1t))

(2− 2 cos(
√
k1t)−

√
k1t sin(

√
k1t))

.

For the term S4(t), we can take the trace and obtain

d

dt
tr(S4(t)) ≥ 1

2n− 2
tr(S4(t))2 + (2n− 2)k2,

where k2 = 1
4p(v0)2 + k2|ph|2.

Now applying the comparison principle in [12] again we have

(6.6) tr(S4(t)) ≥ −
√

k2(2n− 2) cot(
√
k2t)).

Finally, for the term S6(t), we have

Ṡ6(t) ≥ S6(t)2.

which implies

S6(t) ≥ −1

t
.

By combining this with (6.5) and (6.6), we obtain

tr(C2S(t)) ≥ −
√

k2(2n− 2) cot
(√

k2t
)
− 1

t
(6.7)

+

√
k1(
√
k1t cos(

√
k1t)− sin(

√
k1t))

(2− 2 cos(
√
k1t)−

√
k1t sin(

√
k1t))

.
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Therefore,

d

dt
log | detB(t)| = tr(CT1 − S(t)C2) = −tr(C2S(t))

≤
√

k2(2n− 2) cot
(√

k2t
)

+
1

t
−
√
k1(
√
k1t cos(

√
k1t)− sin(

√
k1t))

(2− 2 cos(
√
k1t)−

√
k1t sin(

√
k1t))

and hence

| detB(t)| ≤ Ca(t)

where C = limt0→0
| detB(t0)|
a(t0) and

a(t) = t sin2n−2(
√

k2t)(2− 2 cos(
√
k1t)−

√
k1t sin(

√
k1t)).

Using (6.2) and the definition of determinant, we see that B(t) = −C2t+
1
2(C1 − CT1 )t2 + 1

6(C2R(0)C2 + C1C
T
1 )t3 +O(t4) and |detB(t)| = 1

12 t
2n+3 +

O(t2n+4).
Therefore,

| detB(t)| ≤ t sin2n−2(
√
k2t)(2− 2 cos(

√
k1t)−

√
k1t sin(

√
k1t))

k21k
2n−2
2

.

The first assertion follows. Let Sk1,k2(t) be a solution of (6.3) with R(t)
replaced by

Rk1,k2 =


0 0 0 0
0 k1 0 0
0 0 k2I2n−2 0
0 0 0 0


with the initial condition limt→0(Sk1,k2t )−1 = 0.

A calculation similar to that of Theorem 6.1 shows that

Sk1,k2(t) =


−(k1)3/2 sin(τt)

s(t)
k1(1−cos(τt))

s(t) 0 0
k1(1−cos(τt))

s(t)
(k1)1/2(τt cos(τt)−sin(τt))

s(t) 0 0

0 0 −
√
k2 cot(

√
k2t)I2n−2 0

0 0 0 −1
t

,
where τt =

√
k1t and s(t) = 2− 2 cos(τt)− τt sin(τt).

The rest follows as the proof of the previous assertion (with all inequal-
ities replaced by equalities). �
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7. Model cases

In this section, we discuss two examples, the Heisenberg group and the
complex Hopf fibration which are relevant to the later sections. First, we
consider a Sasakian manifold (M,J, v0, α0, g = 〈·, ·〉) for which the quotient
of M by the flow of v0 is a manifold B. Since Lv0J = 0 and Lv0g = 0, they
descend to a complex structure JB and a Riemannian metric gB on B.
Moreover, by Theorem 3.2, they form a Kähler manifold. Moreover, the
Tanaka-Webster curvature Rm∗ on M and the Riemann curvature tensor
RmB of B are related by

Lemma 7.1. The curvature tensors Rm∗ and RmB are related by

Rm∗(X̄, Ȳ )Z̄ = RmB(X,Y )Z,

where X̄ denotes the vector orthogonal to v0 which project to the vector X.

Proof. Since M → B is a Riemannian submersion, we have (see [11])

∇∗X̄ Ȳ = (∇X̄ Ȳ )h = ∇XY .

Since Z̄ projects to Z, we also have

∇∗v0Z̄ = (∇v0Z̄)h +
1

2
JZ̄ = (∇Z̄v0)h +

1

2
JZ̄ = 0.

Therefore,

Rm∗(X̄, Ȳ )Z̄ = ∇∗X̄∇
∗
Ȳ Z̄ −∇

∗
Ȳ∇
∗
X̄ Z̄ −∇

∗
[X̄,Ȳ ]Z̄

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z − α0([X̄, Ȳ ])∇∗v0Z̄

= RmB(X,Y )Z.
�

The first example is the Heisenberg group. In this case the manifold M is
the Euclidean space R2n+1. If we fix a coordinate system (x1, . . . , xn, y1, . . . ,
yn, z), then the 1-form α0 and the vector field v0, are given, respectively, by

α0 = dz − 1

2

n∑
i=1

xidyi +
1

2

n∑
i=1

yidxi and v0 = ∂z.

The Riemannian metric is the one for which the frame

Xi = ∂xi
− 1

2
yi∂z, Yi = ∂yi +

1

2
xi∂z, ∂z
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is orthonormal. The tensor J is defined by

J(Xi) = Yi, J(Yi) = −Xi, J(∂z) = 0.

The quotient B is Cn equipped with the standard complex structure and
Euclidean inner product.

Let (x, p) be a covector with |ph| = 1. Assume that t 7→ ψ(x, tεp) is length
minimizing between its endpoints for some ε > 0. Then, we define the cut
time of (x, p) to be the largest such ε. The following is well-known. We give
the proof for completeness.

Theorem 7.2. On the Heisenberg group equipped with the above sub-Rie-
mannian structure, the cut time coincides with the first conjugate time.

Proof. Let PXi
= pxi

− 1
2yipz and PYi

= pyi + 1
2xipz. A computation as in

[10] shows that

Pj(t) := PXj
(t) + iPYj

(t) = Pj(0)eitpz ,

wj(t) := xj(t) + iyj(t) = wj(0)− iPj(0)

pz
(eitpz − 1),

z(t) := z(0) +
1

2

n∑
k=1

∫ t

0
Im(w̄k(s)ẇk(s))ds.

If (w, z) and (w̃, z̃) are unit speed geodesics with the same length L and
end-points, then

P̃j(0)

p̃z
(eiLp̃z − 1) =

Pj(0)

pz
(eiLpz − 1).

By taking the norms, it follows that

1− cos(Lp̃z)

p̃2
z

=
1− cos(Lpz)

p2
z

.

Using wj(0) = w̃j(0) and wj(L) = w̃j(L), we also have

eiθ̃

p̃z
(eiLp̃z − 1) =

eiθ

pz
(eiLpz − 1),
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where Pj(0) = eiθ and P̃j(0) = eiθ̃. Therefore,

cos(θ + Lpz)− cos(θ)

pz
=

cos(θ̃ + Lp̃z)− cos(θ̃)

p̃z
,

sin(θ + Lpz)− sin(θ)

pz
=

sin(θ̃ + Lp̃z)− sin(θ̃)

p̃z
.

Finally, since z(L) = z̃(L), a computation together with the above im-
plies that

Lp̃z − sin(Lp̃z)

p̃2
z

=
Lpz − sin(Lpz)

p2
z

.

By investigating the graph of 1−cos(x)
x2 and x−sin(x)

x2 , we have pz = p̃z.

Therefore, if L < 2π
pz

, then Pj(0) = P̃j(0) and the two geodesics coincide.
Hence, the result follows from Theorem 6.1. �

The second example is the complex Hopf fibration. We follow the dis-
cussion in [4]. In this case, the manifold is given by the sphere S2n+1 = {z ∈
Cn+1||z| = 1}. The 1-form α0 and the vector field v0 are given, respectively,
by

α0 =
1

2

n∑
i=1

(xidyi − yidxi)

and

v0 = 2

n∑
i=1

(−yi∂xi
+ xi∂yi)

where zj = xj + iyj .
The tangent space of S2n+1 is the direct sum of kerα0 and Rv0. The

Riemannian metric is defined in such a way that v0 has length one, v0 is or-
thogonal to kerα0, and the restriction of the metric to kerα0 coincides with
the Euclidean one. The (1,1)-tensor J is defined analogously by the condi-
tions Jv0 = 0 and the restriction of J to kerα0 coincides with the standard
complex structure on Cn. The base manifold B is the complex projective
space CPn and the induced Riemannian metric is given by the Fubini-Study
metric. It follows from Lemma 7.1 that

〈Rm∗(JX,X)X,JX〉 = 4 and 〈Rm∗(v,X)X, v〉 = 1

for all v in the orthogonal complement of {X, JX}.
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Theorem 7.3. On the complex Hopf fibration equipped with the above sub-
Riemannian structure, the cut time coincides with the first conjugate time.

Proof. The sub-Riemannian geodesic flow is given by(
a cos(|v|t) +

v

|v|
sin(|v|t)

)
e−it〈v0,v〉,

where a is the initial point of the geodesic and v is the initial (co)vector (see
[4, 10]).

By the choice of the complex coordinate system, we can assume a =
(1, 0, . . . , 0). Let v = (v1, . . . , vn). Then the real part of v1 equal 0. Moreover,
vh = (0, v2, . . . , vn) is the horizontal part of v. Assume that |vh| = 1 and let
w be another such covector such that the corresponding geodesic has the
same end point and the same length L as that of v.

Under the above assumptions, we have

|v|2 − 1

4
(Im(v1))2 = 1 = |w|2 − 1

4
(Im(w1))2

and (
a cos(||v||L) +

v

||v||
sin(||v||L)

)
e−

iL

2
Im(v1)

=

(
a cos(||w||L) +

w

||w||
sin(||w||L)

)
e−

iL

2
Im(w1).

It follows that (
cos(|v|L) +

v1

|v|
sin(|v|L)

)
e−

iL

2
Im(v1)

=

(
cos(|w|L) +

w1

|w|
sin(|w|L)

)
e−

iL

2
Im(w1)

and (
vi
|v|

sin(|v|L)

)
e−

iL

2
Im(v1) =

(
wi
|w|

sin(|w|L)

)
e−

iL

2
Im(w1).

for all i 6= 1.
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By taking the norm of the second equation, we obtain

|vi|2

|v|2
sin2(|v|L) =

|wi|2

|w|2
sin2(|w|L).

If we sum over i 6= 1, then we have

sin2(|v|L)

|v|2
=

sin2(|w|L)

|w|2
.

If both |v| and |w| are less than or equal to π
L , then |v| = |w|. It follows

that Im(v1) = ±Im(w1).
If Im(v1) = Im(w1), then either vi = wi for all i which implies that the

two geodesics coincide or sin(L|v|)=0=sin(L|w|). In this case |v|= |w|= π
L .

If Im(v1) = −Im(w1), then(
cos(|v|) +

v1

|v|
sin(|v|)

)
eiLIm(v1) =

(
cos(|v|)− v1

|v|
sin(|v|)

)
.

It follows that
tan(|v|)
|v|

=
tan(Im(v1)/2)

Im(v1)/2
.

Since |v| > 1
2 Im(v1), we have a contradiction. Therefore, the result follows

from this and Theorem 6.1. �

8. Volume growth estimates

In this section, we prove a volume growth estimate and the proof of Theo-
rem 1.1 and Theorem 1.2. Let Ω be the set of points (x, p) in the cotangent
space T ∗xM such that the curve t ∈ [0, 1] 7→ ψt(x, p) is a length minimizing.
Let

Σ = {p ∈ Ω||ph| = 1 and εp ∈ Ω for some ε > 0}.

For each p in Σ, we let T (p) be the cut time which is the maximal time T
such that t ∈ [0, T ] 7→ ψt(x, p) is length minimizing. Finally, let us denote the
ball centered at x of radius R with respect to the sub-Riemannian distance
by BR(x) and the Riemannian volume form by η.

Theorem 8.1. Assume that the Tanaka-Webster curvature Rm∗ of the
Sasakian manifold satisfies

1)
〈
Rm∗(Jph, ph)ph,Jph

〉
≥ k1|ph|4,
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2)
∑2n−2

i=1

〈
Rm∗(wi, p

h)ph, wi
〉
≥ (2n− 2)k2|ph|2,

for some constants k1 and k2, where w1, . . . , w2n−2 is an orthonormal frame
of span{ph,Jph, v0}⊥. Then∫

BR(x)
dη ≤

∫ min{T (p),R}

0

∫
Σ
k(r, z)dm(r, z)

where (r, z) denotes the cylindrical coordinates defined by r = |ph| and z =
p(v0), k1(r, z) = z2 + k1r

2, k2(r, z) = 1
4z

2 + k2r
2. The function k is defined

by

k(r, z) = r2

[
sin2n−2(

√
k2)(2− 2 cos(

√
k1)−

√
k1 sin(

√
k1))

k21k
2n−2
2

]
if k1 ≥ 0 and k2 ≥ 0,

k(r, z) = r2

[
sinh2n−2(

√
−k2)(2− 2 cos(

√
k1)−

√
k1 sin(

√
k1))

k21k
2n−2
2

]
if k1 ≥ 0 and k2 ≤ 0,

k(r, z) = r2

[
sin2n−2(

√
k2)(2− 2 cosh(

√
−k1) +

√
−k1 sinh(

√
−k1))

k21k
2n−2
2

]
if k1 ≤ 0 and k2 ≥ 0,

k(r, z) = r2

[
sinh2n−2(

√
−k2)(2− 2 cosh(

√
−k1) +

√
−k1 sinh(

√
−k1))

k21k
2n−2
2

]
if k1 ≤ 0 and k2 ≤ 0.

Proof. We use the same notations as in the proof of Theorem 6.1.
Let ρt : T ∗xM → R be the function defined by ψ∗t η = ρtm. It follows from

Theorem 4.3 that

(8.1) ρt = |ph|2| detB(t)|.

Next, we replace the matrix R(t) in (6.2) by Rk1,k2 and denote the solu-
tions by Ak1,k2(t) and Bk1,k2(t). Then

d
dt detB(t)

detB(t)
= −tr(S(t)C2) ≤ −tr(Sk1,k2(t)C2) =

d
dt detBk1,k2(t)

detBk1,k2(t)
.
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It follows that detB(t)
detBk1,k2 (t) is non-increasing.

It follows that from the proof of Theorem 6.1 that∫
BR(x)

dη =

∫
Σ

∫ min{T (p),R}

0
ρtdm

≤
∫

ΩR

|ph|2
[

sin2n−2(
√
k2)(2− 2 cos(

√
k1)−

√
k1 sin(

√
k1))

k21k
2n−2
2

]
dm(p).

�

Proof of Theorems 1.1 and 1.2. By the proof of Theorem 6.1 and Theo-
rem 7.3, the volume of sub-Riemannian ball of radius R in the Complex
Hopf fibration is given by∫

ΩR

|ph|2
[

sin2n−2(
√
k2)(2− 2 cos(

√
k1)−

√
k1 sin(

√
k1))

k21k
2n−2
2

]
dm(p).

Therefore, the result follows from Theorem 8.1. �

9. Laplacian comparison theorem

In this section, we define a version of Hessian following [1] and prove Theo-
rem 1.3.

Let f : M → R be a smooth function. The graph G of the differential
df defines a sub-manifold of the manifold T ∗M . Let v be a tangent vector
in TxM . Then there is a vector X in the tangent space of G at dfx such
that π∗(X) = v, where π : T ∗M →M is the projection. The sub-Riemannian
Hessian Hess f at x is defined by Hess f(v) = XV . Recall that XV is the
component of X in V with respect to the splitting TT ∗M = V ⊕H.

Lemma 9.1. Under the identification in Theorem 4.2, the sub-Riemannian
Hessian is given by

1) Hess f(v) = ∇v∇f if v is contained in the orthogonal complement of
{∇fh,J∇f, v0},

2) Hess f(∇fh) = ∇∇fh∇f − 1
2 〈∇f, v0〉J∇fh,

3) Hess f(J∇f) = ∇J∇f∇f − 1
2 〈∇f, v0〉∇fh + 1

2 |∇f
h|2v0,

4) Hess f(v) = ∇v∇f + |∇f |2
2 J∇f if v = |∇fh|2v0 − (v0f)∇fh.
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Proof. Let {v0, . . . , v2n} be a frame defined as in Lemma 3.7 around a point
x. Since π∗(~hi) = vi, we have

(df)∗(kava) = ka~ha + k̄a~αa.

It follows that

k̄c + kadha(~hc) = ω(~hc, (df)∗(kava)) = −dhc((df)∗(kava))

= −ka(vavcf) = −ka 〈∇va∇f, vc〉 − ka 〈∇f,∇vavc〉 .

Therefore, we have the following at x.

k̄i = −ka 〈∇va∇f, vi〉 − ka 〈∇f,∇vavi〉 − kadha(~hi)

= −ka 〈∇va∇f, vi〉 −
kj
2

Jjiv0f − k0dh0(~hi)− kjdhj(~hi)

= −ka 〈∇va∇f, vi〉+
kj
2

Jjiv0f +
k0

2
Jikvkf

and

k̄0 = −ka 〈∇va∇f, v0〉 − ki 〈∇f,∇viv0〉 − kidhi(~h0)

= −ka 〈∇va∇f, v0〉+
ki
2

〈
Jvi,∇fh

〉
− 1

2
kiJijhj = −ka 〈∇va∇f, v0〉 .

Hence, if v := kava is contained in π∗H3, then

((df)∗(kivi))V = −
(

1

2
kjJjiv0f −

(v0f)(vsf)ks
2|∇fh|2

(vjf)Jji

)
~αi + k̄a~αa.

If v is contained in π∗H3 and the orthogonal complement of ∇fh, then

((df)∗(kivi))V = −〈∇kivi∇f, va〉 ~αa.

If v = ∇fh, then

((df)∗(∇fh))V = −
〈
∇∇fh∇f, va

〉
~αa +

1

2

〈
J∇fh, vi

〉
〈∇f, v0〉 ~αi.

If v = J∇fh, then

((df)∗(J∇f))V = [(vjf)Jji~hi]V − 〈∇J∇f∇f, v0〉 ~α0

− 〈∇J∇f∇f, vi〉 ~αi −
vif

2
(v0f)~αi

= −〈∇J∇f∇f, va〉 ~αa +
vif

2
(v0f)~αi −

1

2
|∇fh|2~α0.
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Finally, if v = |∇fh|2v0 − (v0f)∇fh, then we have

((df)∗(v))V = −〈∇v∇f, va〉 ~αa −
|∇f |2

2
〈J∇f, vi〉 ~αi.

�

Proof of Theorem 1.3. Let f(x) = −1
2d

2(x, x0). Then the curve t ∈ [0, 1] 7→
πet

~H(dfx) is the geodesic which starts from x and ends at x0. Let E(t) =
(E1(t), E2(t), E3(t)), F (t) = (F 1(t), F 2(t), F 3(t)) be a canonical frame of the
Jacobi curve J(x,dfx)(t). Let

E = (E1, E2, E3
1 , . . . , E3

2n−1)T ,F = (F1,F2,F3
1 , . . . ,F3

2n−1)T

be a symplectic basis of T(x0,p)T
∗M such that E i is contained in Vi and F i

is contained in Hi, where (x0, p) = e1· ~H(dfx). Let

v = (v1, v2, v3
1, . . . , v

3
2n−1)T

be a basis of TxM such that et
~H
∗ (dfx)∗(v) = E . Let A(t) and B(t) be matrices

such that

(dfx)∗(v) = A(t)E(t) +B(t)F (t).

By construction, we have B(1) = 0. We can also pick E(t) such that A(1) =
I.

By the definition of Hess f , we also have

Hess f(B(0)π∗F (0)) = Hess f(v) = A(0)E(0).

Therefore, if we let S(t) = B(t)−1A(t), then

Hess f(π∗F (0)) = S(0)E(0).

A computation as in the proof of Theorem 6.1 shows that

Ṡ(t)− S(t)C2S(t) + CT1 S(t) + S(t)C1 −R(t) = 0.

Therefore, by applying similar computation as in the proof of Theorem 6.1
to S(1− t), we obtain estimates for S(0). Since ∆Hf(x) = tr(C2S(0)), the
result follows. �
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10. Appendix I

In this section, we give the proof of various known results in Section 3.

Proof of Lemma 3.1. Since the almost contact manifold is normal, we have

0 = [J,J](v, v0) + dα0(v, v0)v0 = J2[v, v0]− J[Jv, v0] = JLv0(J)v.

It follows that Lv0(J) = 0.
Since the metric is associated to the almost contact structure,

0 = Lv0α0(v) = Lv0(〈v0, v〉)− α0([v0, v])

= 〈∇v0v0, v〉+ 〈v0,∇v0v〉 − 〈v0,∇v0v〉+ 〈v0,∇vv0〉
= 〈∇v0v0, v〉 .

Since the metric is associated to the almost contact structure and
Lv0(J) = 0, we also have

Lv0g(v,Jw) = (Lvodα0)(v, w) = 0.

Therefore, Lv0g = 0 as claimed.
By Lemma 3.7, we have

〈J(vj), vi〉 = Jji = 2Γ0
ji = −2

〈
∇vjv0, vi

〉
.

Therefore, J = −2∇v0. �

Proof of Theorem 3.2. Let v0, v1, . . . , v2n be a local frame defined by Lemma
3.6. Then

0 = Lv0(J)(vi) = [v0,Jvi]− J[v0, vi]

= ∇v0(Jvi)−∇Jvi(v0)− J∇v0vi + J∇viv0

= (∇v0J)vi −∇Jvi(v0) + J∇viv0

= (∇v0J)vi +
1

2
J2vi −

1

2
J2vi = (∇v0J)vi

Since Jv0 = 0,

(∇viJ)v0 = −J∇viv0 =
1

2
JJvi = −1

2
vi.

Since ∇v0v0 = 0, we also have (∇v0J)v0 = −J(∇v0v0) = 0.
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Finally, we need to show (∇viJ)vj = 1
2δijv0. First, by the properties of

the frame v1, . . . , vn, we have

〈(∇viJ)vj , v0〉 = −〈Jvj ,∇viv0〉 =
1

2
〈Jvj ,Jvi〉 =

1

2
δij

at x
By normality and properties of the frame v1, . . . , v2n, we have

0 = (∇JviJ)vj − (∇JvjJ)vi + J(∇vjJ)vi − J(∇viJ)vj + dα0(vi, vj)v0.

It follows from Lemma 3.7 that

0 = 〈(∇JviJ)vj , vk〉 −
〈
(∇JvjJ)vi, vk

〉
+
〈
J(∇vjJ)vi, vk

〉
− 〈J(∇viJ)vj , vk〉

= −〈(∇vkJ)Jvi, vj〉 −
〈
(∇vjJ)vk,Jvi

〉
+ 〈(∇vkJ)Jvj , vi〉

+ 〈(∇viJ)vk,Jvj〉+
〈
J(∇vjJ)vi, vk

〉
− 〈J(∇viJ)vj , vk〉

= −〈(∇vkJ)Jvi, vj〉+
〈
(∇vjJ)Jvi, vk

〉
+ 〈J(∇vkJ)vi, vj〉

− 〈(∇viJ)Jvj , vk〉+
〈
J(∇vjJ)vi, vk

〉
− 〈J(∇viJ)vj , vk〉 .

Since J2vj = −vj , we also have 〈(∇viJ)Jvj , vk〉 = −〈J(∇viJ)vj , vk〉.
Therefore, the above equation simplifies to

0 = −2 〈(∇vkJ)vi,Jvj〉 .
�

Proof of Theorem 3.3. Since the manifold is Sasakian, we have

Rm(X,Y )v0 = ∇X∇Y v0 −∇Y∇Xv0 −∇[X,Y ]v0

=
1

2
(−∇X(J(Y )) +∇Y (J(X)) + J[X,Y ])

=
1

2
(−∇XJ(Y ) +∇Y J(X))

=
1

4
α0(Y )X − 1

4
α0(X)Y.

�

Proof of Theorem 3.4. Let ∇∗ be the Tanaka connection defined by

∇∗XY = ∇XY + α0(X)JY − α0(Y )∇Xv0 +∇Xα0(Y )v0

Assume that X and Y are horizontal. Then

∇∗XY = ∇XY − 〈∇XY, v0〉 v0.
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Therefore,

∇∗X∇∗Y Z = ∇X(∇Y Z − 〈∇Y Z, v0〉 v0)− 〈∇X(∇Y Z − 〈∇Y Z, v0〉 v0), v0〉 v0

= ∇X∇Y Z − 〈∇X∇Y Z, v0〉 v0 − 〈∇Y Z, v0〉∇Xv0

Let Rm∗ be the curvature corresponding to ∇∗. Assume that X,Y, Z are
horizontal. Then

Rm∗(X,Y )Z = ∇∗X∇∗Y Z −∇∗Y∇∗XZ −∇∗[X,Y ]Z

= ∇X∇Y Z − 〈∇X∇Y Z, v0〉 v0 − 〈∇Y Z, v0〉∇Xv0 −∇Y∇XZ
+ 〈∇Y∇XZ, v0〉 v0 + 〈∇XZ, v0〉∇Y v0

−∇[X,Y ]Z +
〈
∇[X,Y ]Z, v0

〉
v0

= (Rm(X,Y )Z)h + 〈Z,∇Y v0〉∇Xv0 − 〈Z,∇Xv0〉∇Y v0.
�

11. Appendix II

This appendix is devoted to the proofs of Theorem 4.1 and Lemma 5.3.

Proof of Theorem 4.1. Let v0, v1, . . . , v2n be the local frame defined in a
neighborhood of x by Lemma 3.6. Let Γcab and Jij be defined by

∇vavb = Γcabvc and Jij = 〈Jvi, vj〉 ,

respectively. From now on, we sum over repeated indices. The indices i, j,
k, s, l ranges over 1, . . . , 2n and a, b, c, d ranges over 0, . . . , 2n.

It is clear that Γcab = −Γbac wherever it is defined. We also have Γi00 =
Γ0

0i = Γ0
i0 = 0. Indeed, since dα0(v0, vi) = 0, we have

0 = α0([v0, vi]) = Γ0
0i − Γ0

i0 = Γ0
0i = −Γi00.

Since 〈Jvi, vj〉 = −2 〈∇viv0, vj〉, we have Jij = −2Γji0 = 2Γ0
ij . Let α0,

. . . , α2n be the dual frame of v0, . . . , v2n and let hi(x, p) = p(vi). Then
π∗α0, . . . , π

∗αn, dh0, . . . , dhn forms a local co-frame of the cotangent bun-
dle. We will also denote π∗αi simply by αi.

The proofs of the following two lemmas are done after the proof of The-
orem 4.1.

Lemma 11.1. One has the following relations on the Lie bracket of the
vector fields introduced above.
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1) αa(~hb) = δab,

2) [~αa, ~αb] = 0,

3) dhb(~hc) =
∑

a(Γ
a
cb − Γabc)ha,

4) [~αa,~hb] =
∑

c(Γ
a
bc − Γacb)~αc,

5) [ ~H, ~αi] = ~hi +
∑

j 6=0,a hj(Γ
i
aj − Γija)~αa if i 6= 0,

6) [ ~H, ~α0] =
∑

j,k 6=0 hj(Γ
0
kj − Γ0

jk)~αk = −
∑

j,k 6=0 hjJjk~αk,

7) [ ~H,~hi] =
∑

k 6=0 hk[
~hk,~hi]−

∑
k 6=0,a ha(Γ

a
ik − Γaki)

~hk,

8) [ ~H, [ ~H, ~α0]] = h0
∑

k 6=0 hk~αk −
∑

k,j 6=0 hjJjk
~hk

−H~α0 −
∑

j,l,k 6=0 hjhlΓ
k
0lJjk~α0 −

∑
j,l,s,k 6=0 hjhlJjsΓ

s
kl~αk,

9) [ ~H, [ ~H, ~αi]] = 2
∑

l,k 6=0 hlΓ
k
li
~hk +

∑
l 6=0 hlJli

~h0 −
∑

k 6=0 h0Jik~hk
(mod vertical) when i 6= 0,

10) [ ~H, [ ~H, [ ~H, ~α0]]] = h0
~H − 2H~h0 (mod vertical).

Here, the phrase “mod vertical” means the that the difference of the two
vectors is contained in the vertical bundle V.

The relations reduce to the following ones at x

Lemma 11.2. One has the following relations at x.

1) dhj(~hi) = Jijh0 if i 6= 0 6= j,

2) dhj(~h0) = 1
2

∑
k 6=0 Jjkhk if j 6= 0,

3) [~αi,~hj ] = 1
2Jij~α0 if i 6= 0 6= j,

4) [~αi,~h0] = 1
2

∑
k 6=0 Jki~αk if i 6= 0,

5) [~α0,~hj ] =
∑

k 6=0 Jjk~αk if j 6= 0,

6) [ ~H, ~αi] = ~hi +
∑

j 6=0 hjJji~α0 when i 6= 0,

7) [ ~H, ~α0] = −
∑

j,k 6=0 hjJjk~αk,

8) [ ~H, [ ~H, ~α0]] = h0
∑

k 6=0 hk~αk −
∑

j,k 6=0 hjJjk
~hk −H~α0,

Now, we apply the above lemmas to prove the theorem. Since [ ~H, ~α0] is
vertical, ~α0 is in J−1(0). Therefore, ~α0 = fE1(0) for some function f on the
cotangent bundle. It follows from Theorem 2.1 that
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1) fE2(0) = [ ~H, ~α0]− ( ~Hf)E1(0),

2) fF 2(0) = [ ~H, [ ~H, ~α0]]− ( ~H2f)E1(0)− 2( ~Hf)E2(0),

3) fḞ 2(0) = [ ~H, [ ~H, [ ~H, ~α0]]]− ( ~H3f)E1 − 3( ~H2f)E2 − 3( ~Hf)F2.

By Lemma 11.1, we have

f2 = ω(fF 2(0), fE2(0)) =
∑

i,l,j,k 6=0

hihjJilJjkω(~hl, ~αk) = 2H.

It follows from this and Lemma 11.1 that

1) fE2(0) = −
∑

k,l 6=0 hkJkl~αl,

2) fF 2(0) = h0
∑

j,k,l 6=0 hk~αk −
∑

j,k 6=0 hjJjk
~hk −H~α0

−
∑

j,k,l 6=0 hjhlΓ
k
0lJjk~α0 −

∑
j,k,l,s 6=0 hjhlJjsΓ

s
kl~αk,

3) −fF 1(0) = fḞ 2(0) = h0
~H − 2H~h0 (mod vertical).

This gives the characterizations of V1, V2, and H2.
Suppose that ab~αb is contained in V3. Since V3 and H2 are skew-

orthogonal,

−
∑
j,k 6=0

akhjJkj = ω
(
ab~αb, hjJij~hi

)
= 0.(11.1)

Since V3 and H1 are skew-orthogonal, we also have

0 = −ω
(
ab~αb, h0

~H − 2H~h0

)
= h0hkak − 2Ha0(11.2)

This gives the characterizations of V3.
It also follows that

[ ~H, a0~α0 + ai~αi]

= ( ~Ha0)~α0 + a0[ ~H, ~α0] + ( ~Hai)~αi + ai[ ~H, ~αi]

= ( ~Ha0)~α0 − a0hjJjk~αk + ( ~Hai)~αi + ai~hi + aihj(Γ
i
aj − Γija)~αa.

It follows from the structural equation that [ ~H, a0~α0 + ai~αi] is contained
in V3 ⊕H3. Moreover, if X1 and X2 are the V3 and H3 parts of [ ~H, a0~α0 +
ai~αi], respectively, then

π∗[ ~H,X1] = π∗[ ~H,X2].
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Suppose that ai~hi + ca~αa is contained inH3. Then it follows from Lemma
11.1 and the characterization of V3 that

π∗[ ~H, ai~hi + ca~αa]

= ( ~Hai)vi + aihj(Γ
k
ji + Γjki)vk − aiJikh0vk + civi

and

π∗[ ~H, ( ~Ha0)~α0 − a0hjJjk~αk + ( ~Hai)~αi + aihj(Γ
i
aj − Γija)~αa − ca~αa]

= −a0hjJjkvk + ( ~Hai)vi + aihj(Γ
i
kj − Γijk)vk − civi

It follows that

ck = aihjΓ
i
kj +

1

2
(ajJjkh0 − a0hjJjk).

It also follows from this that

( ~Ha0 − c0)~α0 − a0hjJjk~αk + ( ~Hai)~αi + aihj(Γ
i
0j − Γij0)~α0

+ aihj(Γ
i
kj − Γijk)~αk −

(
1

2
ajJjkh0 −

1

2
a0hjJjk + aihjΓ

i
kj

)
~αk

= ( ~Ha0 − c0 + aihjΓ
i
0j)~α0 + ( ~Hai)~αi − aihjΓijk~αk

− 1

2
(ajJjkh0 + a0hjJjk) ~αk

is contained in V3. Therefore,

2H
(
~Ha0 − c0 + aihjΓ

i
0j

)
= h0

(
~Hak −

1

2
ajh0Jjk −

1

2
a0hjJjk − aihjΓijk

)
hk

= h0

(
~Hak

)
hk − h0aiΓ

i
jkhjhk

On the other hand, it follows from (11.2) that

h0hlhsΓ
s
lkak + h0hk ~Hak − 2H ~Ha0 = 0.

Therefore, c0 = aihjΓ
i
0j and this finishes the characterization of H3.
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By the tenth relation in Lemma 11.1 and the structural equation, we
can choose a vector in H1 of the form

2H~h0 − h0
~H + ra~αa.

Since H1 is in the skew orthogonal complement of H3, we have

0 = ω
(
ai~hi + ca~αa, 2H~h0 − h0

~H + ra~αa

)
= riai.

Therefore, by (11.1), we have ri = rJijhj for some r, where i = 1, . . . , 2n.
Since H2 is also skew orthogonal to H1, a tedious computation shows

that

0 = ω
(
h0hk~αk − hjJjk~hk −H~α0 − hjhlΓk0lJjk~α0

− hjhlJjsΓskl~αk, 2H~h0 − h0
~H + r0~α0 + rJijhj~αi

)
= 2rH.

Therefore r = 0. Finally, since 2H~h0 − h0
~H + r0~α0 is in H1, it follows from

the structural equation that

0 = ω([ ~H, 2H~h0 − h0
~H + r0~α0], 2h0hk~αk − hjJjk~hk − 2H~α0)

= r0ω([ ~H, ~α0], 2h0hk~αk − hjJjk~hk − 2H~α0).

Hence, r0 = 0 and this gives H1. �

Proof of Lemma 11.1. By the definition of ~ha, we have π∗(~ha) = va. There-
fore, the first relation follows. The second relation follows from π∗~αa = 0.

Let θ be the tautological 1-form defined by θ = padxa. Note that θ(~ha) =
ha and ω = dθ. The third relation follows from

dhb(~ha) = dθ(~ha,~hb)

= ~ha(θ(~hb))− ~hb(θ(~ha))− θ([~ha,~hb])
= 2dhb(~ha)− (Γcab − Γcba)hc.

It is clear that [~αa,~hb] is vertical. The fourth relation follows from

dhc([~αa,~hb]) = ~αa(dhc(~hb)) = (Γdbc − Γdcb)dhd(~αa) = Γacb − Γabc.

The fifth and sixth relations follow from the fourth one and ~H = hi~hi. The
seventh follows from the third.
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The eighth relation follows from the fifth and the sixth. Indeed,

[ ~H, [ ~H, ~α0]] = − ~H(hjJjk)~αk − hjJjk[ ~H, ~αk]

= −hldhj(~hl)Jjk~αk − hlhj(vlJjk)~αk − hjJjk
(
~hk + hl(Γ

k
al − Γkla)~αa

)
= −hlhjΓjlsJsk~αk + h0hk~αk − hlhj(ΓsljJsk + ΓslkJjs)~αk

− hjJjk~hk −H~α0 − hjhlΓk0lJjk~α0 − hjhlJjs(Γskl − Γslk)~αk

= h0hk~αk − hjJjk~hk −H~α0 − hjhlΓk0lJjk~α0 − hjhlJjsΓskl~αk.

By the fifth relation, we have

[ ~H, [ ~H, ~αi]] = [ ~H,~hi] + hj(Γ
i
kj − Γijk)

~hk (mod vertical)

Since π∗[~hj ,~hk] = [vj , vk], the above equation becomes

[ ~H, [ ~H, ~αi]]

= hl(Γ
a
li − Γail)

~ha − ha(Γaik − Γaki)
~hk + hl(Γ

i
kl − Γilk)

~hk (mod vertical)

= 2hlΓ
k
li
~hk + hlJli~h0 − h0Jik~hk (mod vertical).

Finally, by the sixth relation, we have

[ ~H, [ ~H, [ ~H, ~α0]]]

= −2 ~H(hjJjk)~hk − hjJjk[ ~H, [ ~H, ~αk]](mod vertical)

= −2hldhj(~hl)Jjk~hk − 2hlhj(vlJjk)~hk

− 2hlhjJjkΓ
i
lk
~hi − 2H~h0 − h0

~H(mod vertical)

= −2hihlΓ
i
ljJjk

~hk − 2hlhj(vlJjk)~hk

− 2hlhjJjkΓ
i
lk
~hi − 2H~h0 + h0

~H(mod vertical)

= −2hlhj(JikΓ
j
li + JjiΓ

k
li + vlJjk)~hk − 2H~h0 + h0

~H(mod vertical)

Since the manifold is Sasakian, we have

[ ~H, [ ~H, [ ~H, ~α0]]] = −2H~h0 + h0
~H(mod vertical).

�

Proof of Lemma 5.3. Since π∗~hj = vj , [~hk,~hi] is of the form

[~hk,~hi] = (Γaki − Γaik)
~ha + baki~αa = Jki~h0 + baki~αa
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at x. By applying both sides by dhl, we obtain

− b0ki = dh0[~hk,~hi]

= ~hk(dh0(~hi))− ~hi(dh0(~hk))

= ~hk[(Γ
s
i0 − Γs0i)hs]− ~hi[(Γsk0 − Γs0k)hs]

= h0[JksJis − JisJks] + hs[vk(Γ
s
i0 − Γs0i)− vi(Γsk0 − Γs0k)]

= hs[vk(Γ
s
i0 − Γs0i)− vi(Γsk0 − Γs0k)] = hs[viΓ

s
0k − vkΓs0i]

and

1

2
JkiJlshs − blki = dhl[~hk,~hi]

= ~hk(dhl(~hi))− ~hi(dhl(~hk))
= ~hk[(Γ

a
il − Γali)ha]− ~hi[(Γakl − Γalk)ha]

= −1

2
JilJkshs +

1

2
JklJishs + hs[vk(Γ

s
il − Γsli)− vi(Γskl − Γslk)]

at x.
It also follows that

hkb
0
ki = hkhsvk(Γ

s
0i),

and

hkb
l
ki = −hshk[vk(Γsil)− vk(Γsli)− vi(Γskl)]

at x.
Finally,

[ ~H,~hi] = hkJki~h0 − h0Jik~hk + hkb
a
ki~αa.

�

12. Appendix III

In this appendix, we provide the proof of Lemmas 3.5, 3.6, and 3.7.

Proof of Lemma 3.5. Let w0(t) := v0(γ(t)), w1(t), . . . , wn(t) be an orthonor-
mal frame defined along γ(·). Let O(·) be a family of 2n× 2n orthogonal
matrices and let Kij = 〈ẇi(t), wj(t)〉, and let vi(t) :=

∑2n
j=1Oij(t)wj(t). By
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differentiating with respect to time t, we have

〈v̇i(t), vj(t)〉 =
∑
k,l

(
Ȯik(t) +Oil(t)Klk(t)

)
Ojk(t).

Therefore, by setting Ȯ(t) +O(t)K(t) = 0, we have that v̇i is vertical. �

Proof of Lemma 3.6. We fix a neighborhood of x on which any point in it
can be connected to x by a unique geodesic. We then define vi to be the
vector field on this neighborhood such that vi(γ(t)) is a parallel adapted
frame along each geodesic γ(·) with γ(0) = x. It follows immediately that
∇vkvi is vertical, where i = 1, . . . , 2n and k = 0, . . . , 2n. Therefore,

∇vkvi = 〈∇vkvi, v0〉 v0 = −〈vi,∇vkv0〉 v0.

If k = 0, then

0 = dα0(v0, vi) = −α0([v0, vi]) = 〈v0,∇v0vi〉 − 〈v0,∇viv0〉 .

Since |v0| = 1, we also have

〈v0,∇v0vi〉 = 〈∇viv0, v0〉 = 0

and hence ∇v0vi = 0.
It also follows that 〈∇v0v0, vi〉 = −〈v0,∇v0vi〉 = 0. Therefore,∇v0v0 = 0.

The second part follows from 〈∇viv0, vj〉 = −〈Jvi, vj〉 for Sasakian mani-
folds. �

Proof of Lemma 3.7. It is clear that Γ0
i0 = 0. Since ∇v0v0 = 0,

0 = 〈∇v0v0, vi〉 = Γi00 = −Γ0
0i = 0.

Since Lv0g = 0,

0 = Lv0g(vi, vj) = −〈vi, [v0, vj ]〉 − 〈[v0, vi], vj〉 = −Γ0
ji − Γ0

ij .

Since the Riemannian metric is associated to the almost contact structure,

Jji = 〈vi,Jvj〉 = dα0(vi, vj) = −α0([vi, vj ]) = −(Γ0
ij − Γ0

ji) = 2Γ0
ji.

The third relation follows from the property of the frame v0, . . . , v2n and
Theorem 3.2.
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Finally, we have

Rm(vi, vj)vk = ∇vi∇vjvk −∇vj∇vivk −∇[vi,vj ]vk

=
∑
l

(viΓ
l
jk)vl +

∑
l,s

ΓljkΓ
s
ilvs −

∑
l

(vjΓ
l
ik)vl

−
∑
l,s

ΓlikΓ
s
jlvs −

∑
l,s

ΓlijΓ
s
lkvs +

∑
l,s

ΓljiΓ
s
lkvs

=
∑
s 6=0

(
(viΓ

s
jk)− (vjΓ

s
ik)−

1

4
JjkJis +

1

4
JikJjs

)
vs

�
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