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1. Introduction

Bishop volume comparison theorem and Laplacian comparison theorem are
basic tools in Riemannian geometry and geometric analysis. For Bishop vol-
ume comparison theorem, one estimates the volume of a ball in a Riemannian
manifold with the Ricci curvature bounded from below by that of the cor-
responding space form. Similarly, the Laplacian comparison theorem com-
pares the Laplacian of the Riemannian distance function on a Riemannian
manifold with a Ricci curvature lower bound to that of the corresponding
space form. Various results for Riemannian manifolds with Ricci curvature
bounded from below are based on these two comparison theorems. In this
paper, we prove analogues of these results for a natural sub-Riemannian
structure defined on a Sasakian manifold.

Recall that a Sasakian manifold is a (2n + 1)-dimensional manifold M
equipped with an almost contact structure (J,ag,vp) and a Riemannian
metric (-,-) satisfying certain compatibility conditions (see Section (3| for
the definitions). The restriction of the Riemannian metric on the distri-
bution D := ker oy defines a sub-Riemannian structure. Let By (R) be the
sub-Riemannian ball of radius R centered at « and let n be the Riemannian
volume form of the Riemannian metric (-, -). The Heisenberg group and the
complex Hopf fibration are well-known Sasakian manifolds (see Section
for more detail). Their volume forms are denoted, respectively, by 79 and
ne. We also denote their sub-Riemannian balls by and By(R) and By (R),
respectively. The following Bishop type volume comparison theorems gener-
alize the earlier three dimensional case in [11, [5] [].

Theorem 1.1. Assume that the Tanaka-Webster curvature Rm* of the
Sasakian manifold satisfies

1) (Rm*(Jv, v)v, Jv) >0,
2) S (R (wi v)v,wi) > 0,

where v is any vector in D and w1, ..., wan_o is an orthonormal frame of
{vo,v, Ju}t. Then

n(Bz(R)) < mo(Bo(R)).
Moreover, equality holds only if
1) (Rm*(Jv,v)v, Jv) =0,
2) ST (B (wi, v)v, wi) =0,
on Bz(R).
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Theorem 1.2. Assume that the Tanaka-Webster curvature Rm* of the
Sasakian manifold satisfies

1) (Rm*(Jv,v)v, Ju) > 4|v[*,
2) S (R (w, v)v, wi) > (2 — 2)[vf?,

where v is any vector in D and w1, ..., wa,_o s an orthonormal frame of
{vo, v, Ju}t. Then

1(Bx(R)) < ni(Br(R)).
Moreover, equality holds only if
1) (Rm*(Jv,v)v, Jv) = 4Jv|},
2) S22 (R (wy, v)v, wi) = (2n — 2)[v?,
on By (R).

A Laplacian type comparison theorem generalizing the one in [I] also
holds. Recall that sub-Laplacian A is defined by

2n
Af=> (Vy,Vfu),
=1

where v1, ..., v, is an orthonormal frame in D.

Theorem 1.3. Let xy be a point in M and let d(x) := d(xg,x) be the sub-
Riemannian distance from the point xg. Assume that the Tanaka-Webster
curvature Rm* of the Sasakian manifold satisfies

1) (Rm*(Jv,v)v, Jv) > K [o]*,
2) S (R (wi, v)v, wi) > (20 — 2)kalv?,

for some constants k1 and ko, where v is any vector in D and wy, ..., wan—2
is an orthonormal frame of {vo,v, Ju}*. Then

Apd < h(d,vo(d)),

where 1 (r, 2) = 2% 4+ kir?, ba(r,z) = 122 + kor?, 51 = /|t1], 52 = /|t2] and

s1(sin(s; — 51 cos(s1)) N (2n — 2)s5 cot(s2)

Mr2) = S5 " S eos(er) — s1sin(s))) r
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if?l Z 0 and EQ 2 0,

61(s1 cosh(sy)) — sinh(s1)) n (2n — 2)s3 cot(s2)

hr,2) = (2 — 2 cosh(sq) + 51 sinh(sq)) r

if 1 <0 and €3 > 0,

s1(sin(s1 — 51 cos(s1)) (2n — 2)s9 coth(ss)
r(2 — 2cos(s1) — 51 sin(s7)) r

h(r,z) =

if?l Z 0 and EQ § 0,

_ s1(s1 cosh(sy)) — sinh(sy)) (2n — 2)s5 coth(sg)
hr,z) = (2 — 2 cosh(sy) + s1 sinh(sy)) * r

Zf?l S 0 and EQ S 0.
We also have the following special case of Theorem

Corollary 1.4. Let z¢ be a point in M and let d(z) := d(xo,x) be the sub-
Riemannian distance from the point xg. Assume that the Tanaka-Webster
curvature Rm* of the Sasakian manifold satisfies

1) (Rm*(Jv,v)v, Jv) >0,
2) 2122;2 <Rm*(wivv)vawi> 20,

where v is any vector in D and w1,...,wa,_9 is an orthonormal frame of
{vo, v, Ju}t. Then
2 2
Apd < "; .

A version of Hessian comparison theorem as in [1] also hold. The proof is
very similar to and simpler than that of Theorem [I.3] We omit the statement
since it is rather lengthy.

The paper is organized as follows. In Section[2] we recall the construction
of the canonical frame introduced in [8]. In Section 3| we recall the definition
of Sasakian manifolds. We also recall the definition of parallel adapted frame
introduced in [7]. It will be used to simplify some tedious calculations in a
way very similar to the use of geodesic normal coordinates in Riemannian
geometry. The canonical frame and the corresponding curvature are com-
puted in Section Unlike the approach in [9], the computation in this paper
does not rely on any symmetry and the method can be used to deal with
more general situations.
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In Section [6 we prove a first conjugate time estimate under the lower
bounds on the Tanaka-Webster curvature. In Section [7, we discuss the
Heisenberg group, the complex Hopf fibration, and their sub-Riemannian
cut locus. The volume estimate and the proof of Theorem and are
done in Section [§ Finally, Section [J)is devoted to the proof of Theorem

2. Canonical frames and curvatures of a Jacobi curve

In this section, we recall how to construct canonical frames and define the
curvature of a curve in Lagrangian Grassmannian. We will only do the con-
struction in our simplified setting. For the most general discussion, see [§].
For completeness, we will also include the full proof of the results in our
case.

Let t — J(t) be a curve in the Lagrangian Grassmannian of a symplectic
vector space U. Let ¢! be the bilinear form on J(t) defined by

gg(€7 e) = W(é(t)v 6),

where e(+) is any curve in J such that e(t) = e.
Assume that the curve J is monotone which means that g is non-
negative definite for each t. Let J~!, J', and J? be defined by

where the superscript W denotes the symplectic complement of the sub-
space W.

We will consider the case J' # U and J? = 9. Assume that J and J !
have dimensions N and k, respectively.

Theorem 2.1. [8] Under the above assumptions, there exists a family of
frames

El(t) = (Ell(t)’ ERE Eli(t»Ta EQ(t) - (E%(t)7 R Eg(ﬂ)Ta

E3(t) = (B{(8), -, Bjr_apy (1),

FU(t) = (F{ (1), Fg()T,  F2(t) = (F{(t),..., FE (1),
(t) = (F7' (%)

t), .o FR_on ()"
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such that
1) B(t) = (BY(t), B2(), B¥(t)T, F(t) = (FY(t), F2(), F3(#)T is a sym-

plectic basis for each t,
2) EY(t) is a basis of J71(t),
3) E(t) = C1E(t) + CoF(t), F(t) = —R(t)E(t) — CTF(t),

where
I 0 0 0 O
Ci = 0 0 |,Cy= 0 I 0 |,
0 0 0 0 I

~—

0
0
0
R“ t 0 RB@®)
R22 t) R23(t)
R31 R32 t) R33(t)
and R(t) is symmetric.

The frame (E', E? E3 F!' F? F3) is called a canonical frame of the
curve J and the coefficients RY are the curvatures of the curve .J. We also
write the above equations as

B\ = B0, EX(0) = FX(0), E(t) = F¥(0)
oy PO=-RNOB® - REOE),
| F2(t) = ~RR(OEX(t) - R (B (1) — F\(1),
F(t) = R (OE\ (1) - R2(0)E*(0) — R () E()

3. Sasakian manifolds and parallel adapted frames

In this section, we recall the definition of Sasakian manifolds and introduce
the parallel adapted frames. For the part on Sasakian manifolds, we mainly
follow [3]. Parallel adapted frames were introduced in [7]. It will be used
to simplify some tedious calculations in a way very similar to the use of
geodesic normal coordinates in Riemannian geometry.

Recall that a manifold M of dimension 2n + 1 has an almost contact
structure (J,vg, ) if J: TM — TM is a (1,1) tensor, vy is a vector field,
and aq is a 1-form satisfying

J2(v) = —v +ap(v)vy and ap(vg) = 1

for all tangent vector v in T'M.
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An almost contact structure is normal if the following tensor vanishes
(v, w) — [J, I (v, w) + dag (v, w)vo,
where [J, J] is defined by
13, 3] (v, w) = I*[v, w] + [Jv, Jw] — I[Jv, w] — I[v, Jw].

A Riemannian metric (-,-) is compatible with a given almost contact
manifold if

(Jv, Jw) = (v,w) — ap(v)ag(w)

for all tangent vectors v and w in T'M.
If, in addition, the Riemannian metric satisfies the condition

(v, Jw) = dap (v, w),

then we say that the metric is associated to the given almost contact struc-
ture.

Finally, a Sasakian manifold is a normal almost contact manifold with
an associated Riemannian metric. The following results can be found in [3].
Since the sign conventions in [3] is different, we include the proof in the
appendix.

Theorem 3.1. The followings hold on a Sasakian manifold (J, vy, ap,g =
()

1) Ly, (J) =0,
2) Viy,vo =

3) %9—0
4) J= —2Vuy,

where V denotes the Levi-Civita connection.

Theorem 3.2. An almost contact metric manifold (J,vo, ao, (-, )) is Sasa-
kian if and only if it satisfies

(VyJ)w = % (v, w) vg — %ao(w)v

for all tangent vectors v and w.
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Let Rm denotes the Riemann curvature tensor.
Theorem 3.3. Assume that the almost contact metric manifold (J,vo,

ap, (+,+)) is Sasakian. Then

1 1
Rm(X,Y)vg = ZQO(Y)X - ZaO(X)Y

The Tanaka connection V* is defined by
1
V}Y =VxY + 50&0(X)JY — ao(Y)Vx’UO + VXQQ(Y)U().

The corresponding curvature operator is denoted by Rm* and we call it
Tanaka-Webster curvature.

Theorem 3.4. Assume that the tangent vectors X, Y, and Z are contained
i ker ag. Then

Rm*(X,Y)Z = (Rm(X,Y)Z)" + (Z,Vyvo) Vxvo — (Z,V xv0) Vyuo,

where the superscript X denotes the the component of X in ker ag.
If the manifold is Sasakian, then

Rm*(X,Y)Z = (Rm(X,Y)Z)" + % (Z,JY) X — % (Z,JX) JY.

Finally, we introduce the parallel adapted frames. The proofs of the
following lemmas are done in the last appendix.

Lemma 3.5. Let vy be a vector field in a Riemannian manifold M. Let
v :[0,T] — M be a curve in the Riemannian manifold M and let vy, . .., v,
be an orthonormal frame at x := ~(0). Then there is a orthonormal frame

vo(t) :=wvo(y(t)),v1(t),...,van(t) such that
1) v;i(0) = v; and
2) 0;(t) is contained in Rug for each t,

where 0;(t) denotes the covariant derivative of v(-) along v(-) and i =1,
.., 2n.

The moving frame defined in Lemma |3.5|is called parallel adapted frame
introduced in [7]. Using this frame, we obtain the following convenient local
frame.
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Lemma 3.6. Suppose that (J,vo, ) defines an almost contact structure
on M and let (-,-) be an associated Riemannian metric. For each point x in
M, there is orthonormal frame vy, vy, ..., ve, defined in a neighborhood of
such that the following conditions hold at x.

1) vvivj = - <vvﬂ}0’vj>v0;
2) V00 = Zj;éo (Vi,v0,05) vj,
3) VUOUZ‘ = VUO'UO = 0,

where 1,7 =1,...,2n.
If, in addition, the manifold M together with (J, vy, ) is Sasakian, then
the followings hold at x.

1) Vvi’l)j = % <JUi,Uj> Vo,
2) Vvivo = —%J’U@',
3) Vi, vi = Vy,v9 = 0.

The following will be useful for the later sections.

Lemma 3.7. Assume that (M, J, vy, oo, (-, -)) is Sasakian. Let vg,v1, ..., vap
be a frame defined by Lemma let Jij=(Jv;, v;), and let Ffj = (Vu,vj, Ug).
Then the following holds at x

4) Rm(vi, vj)ve = 349 ((vlfjk) — (v;T35,) — 1 Tkdis + iJ,‘ijs) Vs
ifi, 5,k #0.

4. Sub-Riemannian geodesic flows and Jacobi curves

In this section, we give a quick review on some basic notions in sub-Rieman-
nian geometry. In particular, we will introduce Jacobi curves corresponding
to the sub-Riemannian geodesic flow and its induced geometric structures.

A sub-Riemannian manifold is a triple (M, D, (-,-)), where M is a man-
ifold of dimension n, D is a distribution (sub-bundle of the tangent bundle
TM), and (-,-) is a sub-Riemannian metric (smoothly varying inner prod-
uct defined on D). Assuming that the manifold M is connected and the
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distribution D satisfies the Hormander condition (the sections of D and
their iterated Lie brackets span each tangent space, also called “bracket-
generating” condition). Then, by Chow-Rashevskii Theorem, any two given
points on the manifold M can be connected by a horizontal curve (a curve
which is almost everywhere tangent to D). Therefore, we can define the
sub-Riemannian distance d as

(4.1) d(wo, 21) = inf (),

where the infimum is taken over the set I' of all horizontal paths 7 : [0, 1] —
M satisfying v(0) = z9 and (1) = z;. The minimizers of are called
length minimizing geodesics (or simply geodesics). As in the Riemannian
case, reparametrizations of a geodesic are also geodesics. Therefore, we as-
sume that all geodesics have constant speed. These constant speed geodesics
are also minimizers of the kinetic energy functional

1
1
4.2 inf [ =|3(t)]dt,
(4.2 int [ 300
where | - | denotes the norm w.r.t. the sub-Riemannian metric.

Let H : T*M — R be the Hamiltonian defined by the Legendre trans-
form:

H(a,p) = sup ()~ 51o?)

veD

and let

i=1

be the Hamiltonian vector field. Assume, through out this paper, that the
vector field H defines a complete flow which is denoted by et The projec-
tions of the trajectories of e to the manifold M give minimizers of .

In this paper, we assume that the sub-Riemannian structure is given
by a Sasakian manifold. More precisely, assume that the almost contact
structure (J,vp,ap) together with the Riemannian structure (-,-) form a
Sasakian manifold. The distribution D is given by D = ker ag and the sub-
Riemannian metric is given by the restriction of the Riemannian metric to
D. In this case all minimizers of are given by the projections of the
trajectories of e (see [10] for more detail).
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Next, we discuss a sub-Riemannian analogue of Jacobi fields. Let w be
the symplectic form on the cotangent bundle T*M defined in local coordi-

nates (xlv - T2n41,P1y - - - 7p2n+1) by
2n+1
w= Z dp; N\ dzx;.
=1

Let @ : T*M — M be the canonical projection and let V be the vertical
sub-bundle of the cotangent bundle T*M defined by

V(Lp) ={ve T(m7p)T*M|7r*(v) =0}.

The family of Lagrangian subspaces

(43) 3(17;0) (t) = e;tH(Vetﬁ (x,p))

defined a curve in the Lagrangian Grassmannian of T{, ,T" M, called the

Jacobi curve at (z,p) of the flow et

Assuming that the manifold is Sasakian. Then Theorem [2.] applies and
we let E(t), E(t), E3(t), F'(t), F?(t), F3(t) be a canonical frame of J, ;).
This defines a splitting of the vertical space V(, ;) and the cotangent space
Tzp)T* M. More precisely, let

Vi = span{E'(0)}, V, =span{E?*(0)}, V3 =span{E3(0)}
Hy = span{F'(0)}, Ho =span{F?(0)}, Hz=span{F>(0)}.

Then V(x,p) =V ®Vy®V3and T(I,p)T*M =V @V ®VsPHI D Ho P Hs.
Note that Vi, Vo, Hi, and Hg are all 1-dimensional. V5 and Hs are (2n — 2)-
dimensional. Let o and h be, respectively, a 1-form and a function on 7*M.
Let & and h be the vector fields defined, respectively, by

w(@-)=—-a and w(h, )= —dh.
The proof of the following theorem is done in the appendix.

Theorem 4.1. For each point x in M, the above splitting of the cotangent
bundle is given by the followings

1) V1 = span{dp},
2) VQ = span{zk’l;éo hk:Jle_gl};
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3) Vs = span{>_, ap| Y p 20 arhjdr; = 0 and ag = 2}‘—1‘; > kro kPt
4) My = span{2Hhg — hoH?},
) Hg = span{ho Zkyé() hkak Zj,k:;éO thjkﬁk — HO_ZO
Z] k,1£0 h;j hlronJWO Z],k,l,s;ﬁO hjhidjsTy Ak},
6) Hs = {Zi;éo aihi + > _q Calll ZJ k0 OkNj I = 0,
ap = 2%?[ Zk arhy, co = Zid';ﬁ(] azh F()ja
Cp = Zﬁéo aijkho QCL()thjk + Ziyéo aihjl”};,j>},
where vy, V1, ...,V 1S a local frame defined in a meighborhood of a point x

by Lemma (3.6, Jij = (Jvi, v;).

The vertical splitting can be written in a coordinate free way. For this,
we identify the tangent bundle T'M with the vertical bundle V using the
Riemannian metric via

veTM — a(-) = (v,) e T"M — —d € ver.
Under this identification, we have

Theorem 4.2. For each point x in M, the above splitting of the cotangent
bundle is given by the followings

1) V1 = Ruy,

2) Vo = RJp,

3) V3 =R(p" + p(vo)vo) & {v| (v,p") = (v, Jp") = (v,v9) = 0}.
4) mHy = R(|p"[Pvo — p(vo)p™),

5) mHa = RJp",

6) mHs = {X|(X,Jp") = (X, vo) = 0},

where p* is the vector in ker oy defined by p(v) = <ph,v> and v ranges over
vectors in ker ay.

Under the above identification, we can also define a volume form m on V
by m(vy,...,v2,) = 1. The Riemannian volume on M is denoted by 7. The
proof of Theorem [£.1] also gives

Theorem 4.3. The volume forms m and n satisfy
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2) n(mF(0)) = |p"].
5. Curvatures of sub-Riemannian geodesic flows

In this section, we will focus on the computation of the curvature R%(0),
where the Jacobi curve is given by the sub-Riemannian geodesic flow. For
this, let RY : V; — V; be the operator for which the matrix representation
with respect to bases E*(0) and E7(0) of V; and V;, respectively, is given by
R¥(0). More precisely,

RY(Ej}(0 Z R}

where Rz (0) is the ki-th entry of R%(0).
For a vector v in the vertical space V, we denote the component of v in
V; by vy,. We also denote by R : V — V the operator

R(vy,)y, = R (vy,).

Theorem 5.1. Assume that the manifold is Sasakian. Then, under the
identifications of Theorem[[.3, R is given by

1) R(v) =0 for all v in Vi,

2) R(v)y, Z(Rm(Jp My, + (5 Ip >+ p(vo)?) Jp"
= (Rm*(Jp",p")p )v2 +p(vo)?Ip" for all v in Vs,

3) R(v)y, = (Rm(Jp", p")p" )y, = (Rm*(Ip", p")p")y, for all v in Vo,
4) R(v)y, =0 for all v in Vs,
5) R(v)y, = (Rm(v", p")p")y, = (Rm* (v, p")p")y, for all v in Vs,
6) R(p" + p(vo)vo) = 0,
7) R0}y, = (Rm(v", p")p")y, + §p(v0)0" = (B (v, p")p")y,

+ %p(vg) for all v in Vs satisfying <vh,ph> =0.

Proof. For i # j, let Ay,%, : Vi — H; be the operator defined by
AVﬂ-lj (V) = [ﬁ7 V]Hj7

where V' is a section in V; and the subscript H; denotes the H ;j-component
of the vector.
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It follows from ({2.1) that Ay, is tensorial and so well- deﬁned We also
define operators AV Vs AH v,, and Az, 3, in a similar way. By (2.1)), we have

Lemma 5.2. The following relations hold.

11
1) RY = Az, 0 M, 0 Ayya, 0 Ay,

2) R = Ay,v, 0 Agan, © Ay, 0 Ay,
3) R*2 = —Ay,v, 0 Ay,
4) R? = —Ay,p, o Apya,,
5) R3 = —Awn,y, 0 Ay,
6) R32 = —An,v, 0 Ay,
7) R¥ = —Aw,v, 0 Ay, -

Clearly, Ay,p, =0 and Agy,p, = 0. For the rest, we need a lemma for
which the proof is given in the appendix.

Lemma 5.3. The following holds at x

ik ] = Thifio + X, by

Pk PR = Do spo hhs ok (T5,) if ki # 0,

>k #0 hibl, = =", ko Pshu[vely — vy — wil'y] if K, i, 10,
[H B} = 30 hekiho = X0 hoJihk + Y00 b

Let aiﬁi + c40, be a vector in Hz. A computation shows that the fol-
lowings hold at x.

[FI’ aiﬁi + Cao_za]

_, - 1 - S o
= (Hak)hk - §(aj.]jkh0 + aothjk)hk + (Hc,;)ozl- + aihkb?%-aj.

On the other hand, we have

ho 1 1
oH (Hak 2aj-]jkh0 — 2a0hj-]jk) hy = 2H(Hak)hk
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and
1/ = 1 1 1 hy =
5 (HU,Z — iaijiho — 20,0th]'1'> JzkhO — iﬁ(Hal)hlh]ij
1 - 1 1 ho =
= i(Hai)Jik:hO + Zakh% + Zaghkho — ﬁ(Hai)hithjk
at x.
Therefore,
[H,a;h; + ca@qly = —§(Hai).]ikhoozk — Zakhoak — anhkhgak
ho | = . = - .
+ —O(Hai)hithjkak + (Hck)ak + aihjbé?iak.

4H

Another computation shows that

_ 1 - ho , = 1 ;
Hcep, = i(Haj)ijho — ﬁ(Hal)hlthjk + anhohk + aihjhl(vll“;j).

Hence,
L 1 3 ;
[H,a;h; + caly)y = —zho(akho — aphy)dy, — ajhshyRmy e

where Rmy ;s = (Rm(vs, vj)vg, vs).
This finishes the proof of the last three assertions. Let

h;3khy, — hohw@y + Hao + hihTh 3 j1do + hihyd jsT5ak
be a section of the bundle Hs. Then a tedious calculation shows that
[ﬁ, hid ikl — hohdl + Hao + hihTE I ndo + hihyd ;D5 ;
= - (h% + ;H> hiJir@y — hjhyhed jiRimgsd).
This finishes the proof of (3) and (4). O

6. Conjugate time estimates and Bonnet-Myer’s
type theorem

In this section, we give estimates for the first conjugate time under certain
curvature lower bound. Let ¢, : T M — M be the map defined by ¢ (x, p) =
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w(etﬁ(ac,p)), where 7 : T*M — M is the projection. Let us fix a covector
(z,p). The first conjugate time is the smallest ¢y > 0 such that the linear map
(dvt, ) (z,p) is not bijective. The curve ¢ + v;(z,p) is no longer minimizing if
t >ty (see [2]).

Theorem 6.1. Assume that the Tanaka-Webster curvature Rm* of the
Sasakian manifold satisfies

1) (Rm* (Jp", p")p", Ip") > ka|p"|*,

2) Y7 (R (wy, p")p", wi) > (2 — 2)ka|p" [,
for some non-negative constants ki and ks, where wy, ..., wa,_o s an or-

thonormal frame of {p", Jp",vo}*t. Then the first conjugate time of the

eodesic t+— Y (x 18 less than or equal to 2m and 2n .
g Vel ) 1 O A Y/ O EFw TS P

Moreover, if
1) (Rm*(Jp", p")p", Ip") = ka[p"[*,
2) 27 (R (wy, p")p", wi) = (20— 2)ksp" 2,
then the first conjugate time of the geodesic t — (x,p) is equal to the min-

. 2T 2T
mum o and .
f V/p(v0)2+ky [pt |2 V/p(vo)2+4k> |p |2

Proof. Let E(t) = (E'(t), E%(t), E3(t)), F(t) = (F'(t), F%(t), F3(t)) be a
canonical frame of the Jacobi curve J, ,)(t). Let A(t) and B(t) be matrices
defined by

(6.1) E(0) = A(t)E(t) + B(t)F(t).

On the other hand, if we differentiate the equation ([6.1]) with respect to
t, then

0= A(t)E(t) + AH)E(t) + B(t)F(t) + B(t)F(t)
= A(t)E(t) + A(t)CLE(t) + A(t)CoF (t)
+ B(t)F(t) — B(t)R(t)E(t) — B(t)CTF(t).

It follows that

(6.2) A(t)+ At)C1 — BO)R(t) =0
) B(t)+ A(t)Cy — BH)CT =0

with initial conditions B(0) = 0 and A(0) = 1.



Comparison theorems on Sasakian manifolds 931

If we set S(t) = B(t)"1A(t), then S(t) satisfies the following Riccati
equation

(6.3) S(t) — S(t)CaS(t) + CLS(t) + S(t)Cy — R(t) = 0.
Let us choose E3, (0) = p" + p(vo)v and let
Si(t)  Sa(t)  Ss(b)
St)=| Sa2(t)  Sa(t) Ss(t) |,
Ss(t)" Ss(t)" Se(t)

where S;(t) is a 2 x 2 matrix and Sg(t) is 1 x 1. Then

S1(t) — S1(t)CaS1(t) — Sa(t)Sa(t)”
— S3(t)Ss(t)T + CTS1(t) + S1(t)Cy — RY(t) = 0,
(6'4) 2 T T A H2
Su(t) — Sa(t)® — S5(t)S5 (1) — Sa(t)T CaSa(t) — R*(t) = 0,
Se(t) — Ss(t)? — S5(t)" S5(t) — S3(t)" CaSs(t) =

whereé’1:<8 é),@:(g ?),andf%l(t):(g RQS(t)>.R2(t)

is the (2n — 2) x (2n — 2) matrix with ij-th entry equal to R?;’(t).
Note that U(t) = S(t)~! also satisfies U(0) = 0 and the Riccati equation

Ut)+ Co —U®)CT —CLU#) + U)R)U(t) = 0.

This gives
t2 t3
U(t) = =tCs = 5 (C1 + CT) = £(C1CT + GaR(0)C2) + O(tY).

By using this expansion and S(¢)U(t) = I, we obtain

_(—Brou/e) f+on
Sl(”‘( E o “ivon >)
3+

2n — 2

tr(Sy(t)) = —
(For instance, one can take the dot product of the first row

s(t) = (S1.1(8),- -, S1.ant1(t)

of S(t) with the third, fourth, ..., 2n-th columns of U(¢). This gives the
order of the dominating terms of (S13(t),. .., S1,2n+1(t)) in terms of that of

+0(1),  Se(t) = — (1).
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S1.2(t). By taking the dot product of s(t) with the first and second column
of U(t), we obtain the leading order terms of Sy 1(t) and Si2(t). Similar
procedure works for other entries of S(t).)

By applying the comparison principle of Riccati equations in [12] to
S(t), we have S1(t) > I'1(t), where I' (¢) is a solution of the following Riccati
equation

Iy (t) = T (t)Col' 1 (£) + CT T (t) + T1 (1)1 — Ky = 0

with the initial condition limy o 7! (t) = 0. (Of course, one needs to apply
the comparison principle to S(t) and I'(t 4 €) and let € to zero as usual).

Here K1 = < 8 {?1 ) and ¥ = p(vg)? + k1|p"|?. Thus

(6.5) tr(CaSi(t)) > tr(Col'y(t))
VE (VEt cos(vEit) —sin(vEit))
(2 — 2cos(vEt) — VE tsin(vEL))

For the term S4(t), we can take the trace and obtain

tr(,S’4(7f))2 + (2n — 2)ty,

d |
el >
a5 2 5o

where £ = p(v9)? + kao|p"|?.
Now applying the comparison principle in [12] again we have

(6.6) tr(S4(t)) > —v/t2(2n — 2) cot(v/Eat)).
Finally, for the term Sg(t), we have

Se(t) > Se(t)2.

which implies

S6lt) 2 .

By combining this with (6.5)) and , we obtain

(6.7) tr(CoS (1)) > —v/Bs(2n — 2) cot (Viat) %

VB (VEitcos(vEit) — sin(vEit))
(2 — 2cos(vEt) — VEtsin(vEL))
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Therefore,

D rog | det Bt)| = tr(CT — S()Cs) = —tr(CoS(#))

dt
< /t5(2n — 2) cot (\/E;t>
L1 VR eos(VED) —sin(/EiT)
t (2—2cos(vEt) — VEitsin(vEt))
and hence

|det B(t)| < Caf(t)

| dei(i()toﬂ and

a(t) = tsin®2(y/at)(2 — 2 cos(\/t1t) — /e tsin(/E1t)).

Using (/6.2)) and the definition of determinant, we see that B(t) = —Cat +
31— O+ L(CoR(0)Co + C1CT ) + O(t*) and | det B(t)| = 15t2"+3 +

where C' = limy, 0

O(t2"+4).
Therefore,
|det B(t)| < tsin®"?(/Eat)(2 — 2 cos(vE1t) — Vit sin(vErt))

2p2n—2
E1E2

The first assertion follows. Let S*#2(¢) be a solution of (6.3) with R(t)
replaced by

0 0 0 0
ks | O & 0 0
r 1 0 0 Iy O
0 0 0 0
with the initial condition limt_,g(Sfl’kQ)’l =0.

A calculation similar to that of Theorem [6.1] shows that

—(k1)3/? sin(7¢) k1 (1—cos(Tt)) 0 0
ba(on(r))  (kn)!2(rcoslur)—sin(r)
Shika(py = | e 2!/ coo{m)sin(r 0 0
0 0 7\/?72C0t(\/372t)12n,2 0
1
0 0 0 1

where 7 = /€1t and s(t) = 2 — 2cos(7¢) — 7 sin(7z).
The rest follows as the proof of the previous assertion (with all inequal-
ities replaced by equalities). Il
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7. Model cases

In this section, we discuss two examples, the Heisenberg group and the
complex Hopf fibration which are relevant to the later sections. First, we
consider a Sasakian manifold (M, J, vy, ag,g = (-,-)) for which the quotient
of M by the flow of vy is a manifold B. Since £,,J =0 and £,,g = 0, they
descend to a complex structure Jp and a Riemannian metric gp on B.
Moreover, by Theorem they form a Kaihler manifold. Moreover, the
Tanaka-Webster curvature Rm* on M and the Riemann curvature tensor
Rm?” of B are related by

Lemma 7.1. The curvature tensors Rm* and Rm®P are related by
Rm*(X,Y)Z = RmP(X,Y)Z,
where X denotes the vector orthogonal to vy which project to the vector X.
Proof. Since M — B is a Riemannian submersion, we have (see [11])
VY = (VgY)' =VxY.
Since Z projects to Z, we also have
_ _ 1.~ 1.5
Vi Z=(Vo2)"+ 317 = (V z00)" + 3372 =0.
Therefore,
= VXVyZ — VYVXZ — V[X7y}Z — CM()([X, ?])V:OZ
=Rm?(X,Y)Z.

g

The first example is the Heisenberg group. In this case the manifold M is
the Euclidean space R?" 1. If we fix a coordinate system (z1,...,Zn,y1,. ..,
Yn, Z), then the 1-form «gp and the vector field vg, are given, respectively, by

] — 1 <
oy =dz — 3 E xidy; + 3 g yidr; and wvg = 0,.
i=1 i=1

The Riemannian metric is the one for which the frame

1 1
X;= 6:1:1 - iyiam Y, = ayi + ixiaza 0.
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is orthonormal. The tensor J is defined by
J(X5) =Y, J(Yi)=-Xi, J(0:)=0.

The quotient B is C" equipped with the standard complex structure and
Euclidean inner product.

Let (z, p) be a covector with |p| = 1. Assume that ¢ + 1)(x, tep) is length
minimizing between its endpoints for some € > 0. Then, we define the cut
time of (x,p) to be the largest such e. The following is well-known. We give
the proof for completeness.

Theorem 7.2. On the Heisenberg group equipped with the above sub-Rie-
mannian structure, the cut time coincides with the first conjugate time.

Proof. Let Px, = pg, — %yipz and Py, = py, + %xipz. A computation as in
[10] shows that

P;(t) := Px,(t) +iPy,(t) = P;(0)ei-
wj(t) = x;(t) + 1y, (t) = w;(0) — M(eitpz _1),

z

2(t) = 2(0) + % 3 /0 T (i ()i (5)) ds.
k=1

If (w, z) and (w, Z) are unit speed geodesics with the same length L and
end-points, then

BO) girg. _ 3y = BO it _y)

bz Pz

By taking the norms, it follows that

1 —cos(Lp.) 1—cos(Lp.)
P2 p:

Using w;(0) = w;(0) and w;(L) = w;(L), we also have

0 0
S 1) = T (et ),

Dz Pz



936 P. W. Y. Lee and C. Li

where P;j(0) = ¢ and P;(0) = e Therefore,

cos( + Lp,) — cos(f)  cos(f + Lp.) — cos(h)

I

Pz Dz
sin(6 + Lp.) —sin(f) sin(0 + Lp.) — sin(6)
Y2 Pz .

Finally, since z(L) = Z(L), a computation together with the above im-
plies that

Lp, — sin(Lp,) _ Lp, — sin(Lp,)
p? j2

1— o
(;ozs(:v) and 2 s;l(x)

By investigating the graph of , we have p, = p,.
Therefore, if L < i—f, then P;(0) = P;(0) and the two geodesics coincide.
Hence, the result follows from Theorem O

The second example is the complex Hopf fibration. We follow the dis-
cussion in [4]. In this case, the manifold is given by the sphere $?"*1 = {2 ¢
C"*Y|z| = 1}. The 1-form g and the vector field v are given, respectively,
by

1 n
ao = 3 ;(%’dyi — yidz;)

and

n
vy = 2 Z (—yié?xi + .%'iayl)
i=1
where z; = x; + 1y;.

The tangent space of S?"*! is the direct sum of ker ag and Ruvg. The
Riemannian metric is defined in such a way that vy has length one, vg is or-
thogonal to ker g, and the restriction of the metric to ker ag coincides with
the Euclidean one. The (1,1)-tensor J is defined analogously by the condi-
tions Jvy = 0 and the restriction of J to ker cg coincides with the standard
complex structure on C". The base manifold B is the complex projective
space CP" and the induced Riemannian metric is given by the Fubini-Study
metric. It follows from Lemma [7.1] that

(Rm*(JX, X)X,JX) =4 and (Rm*(v,X)X,v) =1

for all v in the orthogonal complement of {X, JX}.
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Theorem 7.3. On the complex Hopf fibration equipped with the above sub-
Riemannian structure, the cut time coincides with the first conjugate time.

Proof. The sub-Riemannian geodesic flow is given by

(a cos(|v|t) + ’Z—| sin(v|t)> e~ Hvov)

where a is the initial point of the geodesic and v is the initial (co)vector (see
[4, [10]).

By the choice of the complex coordinate system, we can assume a =
(1,0,...,0). Let v = (v1,...,v,). Then the real part of v; equal 0. Moreover,
v" = (0,v2,...,v,) is the horizontal part of v. Assume that [v"| = 1 and let
w be another such covector such that the corresponding geodesic has the
same end point and the same length L as that of v.

Under the above assumptions, we have

o? = §m(0))? =1 = fuf? — § (Im(wy)?

4
and
<a cos(||v||L) + HU—H sin(HvHL)> o~ EIm(v1)
v
- L —iLm(w,)
— <acos(HwHL) + T sm(HwHL)> e 2 ,

It follows that

<cos(yv|L) + |”—1| sin(]v|L)> e~ T Im)
v

|wl

<cos(|w\L) + sin(|wyL)) e~ 2 Tm(w)

and

(sin(eiy ) e 1m0 = (2 ol ) e 1mie,

[l |wl

for all ¢ # 1.
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By taking the norm of the second equation, we obtain

‘ 2

ol |wil* .
‘;’2 sin?(|v|L) = ’wl|2 sin?(|w|L).
If we sum over i # 1, then we have

sin?(|v|L)  sin?(|w|L)

o> Jwp?

If both |v| and |w| are less than or equal to 7, then |v| = |w|. It follows
that Im(v;) = £Im(wy).

If Im(vy) = Im(wy), then either v; = w; for all ¢ which implies that the
two geodesics coincide or sin(L|v|) =0=sin(L|w|). In this case |v|=|w|=T.

If Im(vq) = —Im(wy), then

[l

(<ot + £ sinle) ) e24m02) = (cos(ol) ~ % sinlu)).

It follows that
tan(|v[)  tan(Im(vy)/2)

| Im(vy)/2

Since |v| > 1Im(v;), we have a contradiction. Therefore, the result follows
from this and Theorem [6.1] O

8. Volume growth estimates

In this section, we prove a volume growth estimate and the proof of Theo-
rem and Theorem Let Q be the set of points (z,p) in the cotangent
space T M such that the curve t € [0, 1] — ¢¢(x, p) is a length minimizing.
Let

Y={pecQp"|=1 and ep € Q for some € > 0}.
For each p in X, we let T'(p) be the cut time which is the maximal time T'
such that ¢ € [0, T] — ¢(z, p) is length minimizing. Finally, let us denote the

ball centered at x of radius R with respect to the sub-Riemannian distance
by Br(z) and the Riemannian volume form by 7.

Theorem 8.1. Assume that the Tanaka-Webster curvature Rm* of the
Sasakian manifold satisfies

1) (R (Jph, p")p", Ip) > kalp" |,
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2) S22 Rt (wi, pM)pl, wi) > (20 — 2)ka|p! 2,

for some constants k1 and ko, where w1, ..., wo,_9 is an orthonormal frame
of span{p", Jp",vo}*. Then

min{7T'(p),R}
/ dng/ /k’(r,z)dm(r,z)
Br(z) 0 >

where (r,z) denotes the cylindrical coordinates defined by r = |p"| and z =
p(vo), Ei(r,z) = 22 + kir?, €(r, 2) = 122 + kor?. The function k is defined
by

K(r.2) = 12 {sinQ”_Q(\/g)@ — 2cos(y/€1) — \/ESIH(\/E))}
: g2ean—2
if €1 >0 and t2 > 0,

sinh?2(y/—€2)(2 — 2 cos(v/#) — \/ETSIH(\/E))]

2p2n—2
E1E2

k(r,z) =r? [

Z'ffl >0 and 32 < 0,
sin?""2(/€3)(2 — 2 cosh(y/—¥;) + /—E; sinh(y/ El))]

2p2n—2
E1E2

k(r,z) =r? [
if 81 <0 and £, > 0,
sinh?"2(y/—£3)(2 — 2 cosh(v/—£;) + J—i&sinh(\/—i&))]

2p2n—2
E1E2

k(r,z) = r? [

’iffl < 0 and EQ < 0.

Proof. We use the same notations as in the proof of Theorem [6.1
Let p; : T M — R be the function defined by 1fn = pm. It follows from
Theorem [4.3] that

(8.1) pi = [p"2| det B(1)|

Next, we replace the matrix R(t) in (6.2) by R¥**2 and denote the solu-
tions by AF*2(t) and B¥1#2(t). Then

4 det B(t)
det B(t)

4 det Bkik2 ()

= —tr(S(t)C2) < —tr(SF (1) Cy) = “det BE R (p)
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It follows that defgki% is non-increasing.

It follows that from the proof of Theorem [6.1] that

min{7T(p),R}
/ dn—// prdm
Br(z) = Jo

/ o2 [sin%—wg)@ — 2cos(VE) — VA sin(vED)
QR

2p2n—2
EIEZ

<

dm(p).

O

Proof of Theorems|[1.1 and[1.3. By the proof of Theorem and Theo-
rem the volume of sub-Riemannian ball of radius R in the Complex
Hopf fibration is given by

w2 [ S22 (VE) (2 — 2 cos(vEr) — v sin(vEr))
|p | E2E2n_2 dm(p)
Qn 1%2
Therefore, the result follows from Theorem O

9. Laplacian comparison theorem

In this section, we define a version of Hessian following [I] and prove Theo-
rem

Let f: M — R be a smooth function. The graph G of the differential
df defines a sub-manifold of the manifold T*M. Let v be a tangent vector
in T, M. Then there is a vector X in the tangent space of G at df, such
that m.(X) = v, where 7 : T*M — M is the projection. The sub-Riemannian
Hessian Hess f at z is defined by Hess f(v) = Xy. Recall that Xy is the
component of X in V with respect to the splitting TT*M =V & H.

Lemma 9.1. Under the identification in Theorem[{.3, the sub-Riemannian
Hessian is given by

1) Hess f(v) = V,Vf if v is contained in the orthogonal complement of
{vfha JVf, ’U()},

2) Hess f(Vf") =VymVf—L1(Vfuv)IVfh,
3) Hess f(JV) = Vyo;Vf = 5 (Vf,00) VI + 3|V 20,
4) Hess f(v) = VoV f + STV if v = VP00 — (w0 )V .
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Proof. Let {vy,...,v2,} be a frame defined as in Lemma [3.7 around a point
x. Since m,(h;) = v;, we have
(df )4 (kqva) = kaha + ka@a.
It follows that

ke + kadha(}_iC) = w(ﬁw (df )+ (kava)) = —dhe((df )« (kqva))
= *ka(vavcf) = —Kg <vvavf7 Uc> — kq <vf’ vva/vc> :

Therefore, we have the following at x.
ki = —ka (Vo, Vf,0i) — ka (V, Vi, 01) — kadha(h;)

k; . .

= —ka (Vo,Vfv) — EJsz‘Uof — kodho(h;) — kjdhj;(h;)
kj ko

= —kq (Vo Vfv) + Einvof + ?Jikka

and
ko = —ka (Vo Vf,v0) — ki (V f, Vo,v0) — kidhi(ho)
k; 1
= ko (Vo Vf.00) + 5 <Jvi, th> — Skidijhy = —ka (Vu, V f,0)

Hence, if v := kyv, is contained in 7, H3, then

(vof)(vsf)ks

2‘th‘2 (’Ujf).]jz) a; + Ea&a-

((df )« (ksvi))y = — (;k’ﬂjwof -
If v is contained in 7, Hs and the orthogonal complement of V f*, then
((df )« (kivi))y = = (Vi,0, V f, Va) da.
If v = Vf", then
(df)«(V "))y = = (Vyn V,v0) da + % <Jth,vi> (Vf,v0) ;.
If v =JV f*, then
()« (IV )y = [(v;£)Tjihsly — (Vav sV f,v0) do

— (Vawsfud - L wopa

L, Ui .1 -
=~ (VswsVh 00 Gt (o n)a — v P
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Finally, if v = |V f"|?vy — (vof)Vf", then we have

. VSR
Ay —

((d)- )y = = (Vo1 00) G —

(IVf,vi) @
g

Proof of Theorem[1.3 Let f(z) = —1d?(x,z0). Then the curve ¢ € [0,1] —

metf (df) is the geodesic which starts from x and ends at xo. Let E(t) =
(EL(t), E%(t), E3(t)), F(t) = (F'(t), F%(t), F3(t)) be a canonical frame of the
Jacobi curve J g qr,)(t). Let

E=Erere,. .8 VL Fr=F PR, F )

be a symplectic basis of T(,, »T*M such that £ is contained in V; and F?
is contained in H;, where (zq,p) = e" 1 (df,). Let

1.2 3 3 \T
v=(v,v0],..., 05, 1)

be a basis of T, M such that eiﬁ (dfz)«(v) = E. Let A(t) and B(t) be matrices
such that

(dfy)«(v) = A(t)E(t) + B(t)F(t).
By construction, we have B(1) = 0. We can also pick E(t) such that A(1) =
" By the definition of Hess f, we also have
Hess f(B(0)m.F(0)) = Hess f(v) = A(0)E(0).
Therefore, if we let S(t) = B(t)"'A(t), then
Hess f(m.F(0)) = S(0)E(0).
A computation as in the proof of Theorem shows that
S(t) — 8(t)CaS(t) + CES(t) + S(t)Cy — R(t) = 0.

Therefore, by applying similar computation as in the proof of Theorem

to S(1 —t), we obtain estimates for S(0). Since Ag f(x) = tr(C25(0)), the
result follows. O
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10. Appendix I

In this section, we give the proof of various known results in Section 3.

Proof of Lemma([3.1 Since the almost contact manifold is normal, we have
0= [J,J](v,v0) + dag(v, vo)ve = J?*[v, vo] — I[Tv, vo] = Ly, (I)v.

It follows that £,,(J) = 0.
Since the metric is associated to the almost contact structure,

0= Ly,ap(v) = Ly, ((v0,0)) — ao([vo, v])
= (Vi V0, v) + (vg, Vi, v) — (vo, Vi, v) + (vo, Vyvp)
= (Vy,v0,v) .

Since the metric is associated to the almost contact structure and
Ly,(J) =0, we also have

Ly, 9(v, Jw) = (Ly,dag) (v, w) = 0.

Therefore, £,,g = 0 as claimed.
By Lemma we have

(J(’Uj),’l)i> = in = QF?i =-2 <Vv_7.v0, ’U,'> .
Therefore, J = —2V . O

Proof of Theorem[3.2. Let vy, v1, ..., va, be alocal frame defined by Lemma
[3.6 Then

0= Ly, (I)(vi) = [vo, Jv;] — T[vo, vs]
= VUo (Jvl) - VJUi (UO) - vaovi + vai’UO
= (VUOJ)’UZ‘ — VJUi (vo) + vaivo

1 1
= (Vo J)v; + 5.1%2- - §J2vi = (Vo J)v;
Since Jvg = 0,
1 1
(Vy,J)vg = =IVy, 09 = §JJUZ' =~V

Since V,,v9 = 0, we also have (V,J)vg = —=J(Vy,v0) = 0.
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Finally, we need to show (V,,J)v; = %@jvo. First, by the properties of
the frame vy, ..., v,, we have

1 1
(Vo,d)vj,v0) = — (Jvj, Vo, v0) = 3 (Jvj, Jv;) = 55”
at x
By normality and properties of the frame vy, ..., v2,, we have

0= (VJM.J)UJ' — (VijJ)Ui + J(Vv],J)vi — J(VU,LJ)UJ' + dozo(vi, Uj)vg.
It follows from Lemma that
0 = ((Vaud)vj, vk) — {(Vau, D) vi, v) + (I (Vo I)vis v ) — (I(V, T)vj, vg)

(Vo I)Ivi, v) — (Vo J)vk,Jvi> + (Vo I)Jvj, v;)
+ (Vo D)ok, Jvj) + (I (Vo D)vs, v) — (I (Vi T )5, v)
(Vo I)Ivi, v) + (Vo )Jvl,vk> + (I (Vo J)vi, v5)
(Vo ) Jvj, i) + <J Uz,Uk> (J(Vo, I)vj,vg)

Since J?v; = —v;, we also have ((V,,J)Jvj,vr) = — (J(Vy,d)vj, vp).
Therefore, the above equation simplifies to

0=-2 <(VU,€J)'U1',J’UJ'> .

O
Proof of Theorem [3.3 Since the manifold is Sasakian, we have
Rm (X Y)vo VxVyuvyg— VyVxvy — V[X Y]v0
1
=5 (=Vx(IY)) + Vy (J(X)) + I[X, Y])
1
= S(-VxI(Y) + TyI(X))
1 1
= Zao(Y)X - Zao(X)Y. .

Proof of Theorem [3.4. Let V* be the Tanaka connection defined by
VXY =VxY + Oéo(X)JY — Oé()(Y)vX’U(] + Vono(Y)Q}o
Assume that X and Y are horizontal. Then

V*XY = V)(Y — <ny, ’Uo> Vo
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Therefore,

ViVYyZ =Vx(VyZ — (VyZ,vg) vg) — (Vx(VyZ — (Vy Z,v9) v0), v0) vo
== VvaZ — <VvaZ, Uo> Vo — <VyZ, 1}0> VXvO

Let Rm* be the curvature corresponding to V*. Assume that X, Y, Z are
horizontal. Then

Rm*(X,Y)Z = Vi V2 = ViV Z = Vixy 2
=VxVyZ - (VxVyZ,vg)vg — (VyZ,v9) Vxvo — VyVxZ
+ (VyVxZ,v)vo + (VxZ,vg) Vyuvy
— Vv Z + (Vixy Zwo) vo

= (Rm(X, Y)Z)h + <Z, Vyv()> Vxvo — <Z, V)ﬂ)o) Vyug.
O

11. Appendix II

This appendix is devoted to the proofs of Theorem 4.1 and Lemma [5.3

Proof of Theorem[{.1]. Let v, v1,...,ve, be the local frame defined in a
neighborhood of = by Lemma [3.6] Let I';, and J;; be defined by

Vo, op =Tve and Iy = (Jug,v5) ,

respectively. From now on, we sum over repeated indices. The indices ¢, 7,
k, s, [ ranges over 1,...,2n and a,b, ¢, d ranges over 0,...,2n.

It is clear that I, = —I'% wherever it is defined. We also have '}, =
ng = F?O = 0. Indeed, since day(vg,v;) = 0, we have

0 = ag([vo, vi]) = ng’ - Fgo = ng‘ = - 80-

Since (Jv;,vj) = —2(Vy,vo,v5), we have J;; = —2F{0 = 21“%-. Let ay,
...,ag, be the dual frame of vy,...,vs, and let h;(z,p) = p(v;). Then
™ ag, ..., ay, dhg, .. .,dh, forms a local co-frame of the cotangent bun-
dle. We will also denote 7*«; simply by «;.

The proofs of the following two lemmas are done after the proof of The-

orem (.11

Lemma 11.1. One has the following relations on the Lie bracket of the
vector fields introduced above.
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1) aa(hy) = dab,

2) [da, ) =

3) dhy(he) = Z (% — Lpe)ha,

4) (@, hp) = Yo, (Tf, — T4 e,

5) [H,di] = hi + 3404 hi (T = Ti)da if i # 0,

6) [H,di] = >t P (ij D8) 0, = — 32 kzo iy TjnC,
7) [ ] Zk;éo hk[hkv i — Zk;éOa ( _F%i)ﬁlw

8) [H,[H,do]] = ho Dok0 MGk = Dk 20 By Tjkh,

- HaO Zglk;éoh hlronJkO‘O Zg,l,s,kyéoh hi ;L Ok,

0) [H, [H, @] = 23 jpo T + Yo ladiiho — Yo ho Tl
(mod vertical) when i # 0,

10) [H,[H,[H,&)]] = hoH — 2Hhy (mod vertical).

Here, the phrase “mod wvertical” means the that the difference of the two
vectors is contained in the vertical bundle V.

The relations reduce to the following ones at x

Lemma 11.2. One has the following relations at x.

1) dhy(hi) = Jigho if i 0 # ,

2) dhj(ho) = 3 30 Jihw if  #0,

3) [di, hy) = Ldydo if i £ 0 # 4,

4) [d;, hol = § 3 jz0 JriGlk if i # 0,

5) [do, bl = 3 pso ik if 5 # 0,

6) [H,d;] = hi + 340 hyJjidlo when i # 0,

7) [H,do] = =32 jz0 by Tk,

8) [FI, [ﬁ’ dio]] = ho Zk;éo hidly, — Zj,k;éo thjkﬁk — Ha,

Now, we apply the above lemmas to prove the theorem. Since [I—_j , 0] is
vertical, @ is in J~1(0). Therefore, @y = fE*(0) for some function f on the
cotangent bundle. It follows from Theorem [2.1] that
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1) fE*(0)

2) fF(0) [H, dol) — (H2f)E*(0) — 2(H f)E*(0),

3) fE2(0) = [H,[H, [H,é))) — (H*f)Ey — 3(H*f)Ey — 3(H f)F,.
By Lemma we have

= [ﬁ70_g0] - (ﬁf)El(O)a
= [H,

2 =w(fF*0),fE*(0) = > hihjJydjpw(hy, dy) = 2H.
i1, kA0

It follows from this and Lemma [I1.1] that
1) fEQ(O) == Zk,l;,eo hidkidi,

2) fF?(0) = ho Zj,llg,l;zéo Il — 32 poso 1 jihi — Hélo
- Zj,k:,l;éo hiT'gd jedio — Zj,k,l,syé() hjhid Ty, Qs
3) —fFY(0) = fF2(0) = hoH — 2Hhg (mod vertical).

This gives the characterizations of Vi, Vs, and Hs.
Suppose that apdp is contained in V3. Since V3 and Ho are skew-
orthogonal,

(11'1) - Z akhj.]kj = w (ab&b,thijEi) = 0.
J,k#0

Since V3 and H; are skew-orthogonal, we also have
(11.2) 0=—w (abd'b, hoH — 2Hﬁo) — hohgay — 2Hag

This gives the characterizations of V3.
It also follows that
[ﬁ, ao&o + azd’z]
= (ﬁao)&o + ao[ﬁ, C_fo] + (ﬁai)&i + ai[ﬁ, dﬂ
= (ﬁao)o_fo — aothjko?k + (Haz)o_éz + a;h; + aihj(FZj — Féa)&a-
It follows from the structural equation that [ﬁ , apdp + a;@;] is contained

in V3 @ Hs. Moreover, if X; and X5 are the V3 and H3 parts of [H, apdy +
a;d;], respectively, then

m[H, X1] = 7. [H, X5).
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Suppose that aiﬁi + ¢4 is contained in Hg. Then it follows from Lemma
[[1.0) and the characterization of V3 that

T [ﬁ, aii_{i + Ca&a]
= (Hai)v; + aihj(F§¢ + T vk — aiJighovr, + ¢iv;

and

ﬂ'*[ﬁ, (ﬁao)&o — aothjk&k + (ﬁal)d} + aih]-(l“ij — Fé‘a)&a — Ca&a]
= —aothijk + (ﬁai)vi + aihj( 2]' — F;k)vk — C;V;

It follows that

. 1
Cp = aihjl“}ﬁj -+ §(aj.]jkh0 — aothjk).

It also follows from this that
(ﬁao — Co)c_fo — aohj.]jko_ik + (ﬁaz)o_@ + aih]’( %)j — ;0)&0
, o 1 1 2\ L
+ aihj(l“ﬁgj — ;k)ak — <2aijkh0 — §a0thjk + a@-hjl“k,j) (o792
= (ﬁao —co + aihjff)j)&o + (ﬁal)o_fl — aihjl“;ko?k

1 -
3 (aijkh() + aothjk) ag

is contained in Vs. Therefore,
2H <ﬁao —co+ aith‘f)j>
= ho (ﬁak - %ajho.]jk - %aohj.]jk - aihjr;‘.k) hy,
= o (Har) by = hoaiThsh
On the other hand, it follows from that
hohihsD5ay, + hohyHay — 2H Hag = 0.

Therefore, ¢y = aithf)j and this finishes the characterization of Hs.
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By the tenth relation in Lemma and the structural equation, we
can choose a vector in H; of the form

QHHO — hoﬁ + rqly.
Since H; is in the skew orthogonal complement of Hs, we have
0=w (azﬁz + €qq, QHEO — hoﬁ + rao_fa) = r;Q;.

Therefore, by (11.1), we have r; = rJ;;h; for some r, where i =1,...,2n.
Since Ho is also skew orthogonal to Hi, a tedious computation shows
that

0= w(hohko_ék — thjkﬁk — H&O — hjthlglek&o
— hjhlesl“Zld'k, 2HEO — hoﬁ + 1ol + TJijth_Zi) =2rH.

Therefore r = 0. Finally, since 2H f_ig — hoﬁ + rodp is in H1, it follows from
the structural equation that

0= w([ﬁ, 2Hl_7:0 — hoﬁ + 7‘0620], 2hohyay, — hj']jkﬁk: — 2H620)
= row([H, @), 2hohwdy, — h;jxhy, — 2Hao).
Hence, g = 0 and this gives Hi. O

Proof of Lemma[I1.1. By the definition of ha, we have 7, (hq) = vq. There-
fore, the first relatlon follows. The second relation follows from m.&, = 0.

Let 6 be the tautological 1-form defined by 6 = p,dz,. Note that H(f_ia) =
hg and w = df. The third relation follows from

dhy(he) = de(ﬁ )
ha(0(hs)) — hp(0(ha)) — 0([Ra, b))
—2dhb<fz ) — (T% — Ty he.

It is clear that [d, ﬁb] is vertical. The fourth relation follows from
dhe([da, ﬁb]) = &a(dhC(ﬁb)) = (Fgc - ng)dhd(&a) =17 —T%.

The fifth and sixth relations follow from the fourth one and H = hzﬁz The
seventh follows from the third.
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The eighth relation follows from the fifth and the sixth. Indeed,

[H,[H,do)] = —H(h;I)ar — hjdjx[H, @
= —Iydhj ()3 jrdy, — hihj (03 5)d% — hid i <ﬁk + hy(Chy — Fﬁ;Wa)
= —hhiT] Ik + hohudy — hihy (U5, g + Td ) G

— hjJehy, — Hao — hih T3 jrdo — hjhd (T3, — D) ay
= hohw@y, — hjdjrhy — Hao — hjl T3 indo — hihyd 05

By the fifth relation, we have

—

[H,[H,&]) = [H, hi] + hj( };j — ;k)ﬁk (mod vertical)
Since [ﬁj, hi] = [vj,vg], the above equation becomes

[H7 [Hv 521]]
= h(Ty — T ha — ha(T5y, — T4 hie + hi(Ty; — Tj )by (mod vertical)
= 2hlrﬁﬁk + hlJliEO - hOJikﬁk (HlOd vertical).

Finally, by the sixth relation, we have

[I_—_i7 [ﬁ7 [ﬁv 550]“
= —2H (hjJ i)y — hjJ i [H, [H, @) (mod vertical)
= —thdhj(ﬁl)ijﬁk — thhj(vl.]jk)l_ik
— 2hih; 3 i hi — 2Hho — ho H (mod vertical)
= —2hihlP§jJ]’kﬁk — 2hlhj (vlek)f_ik
— 2hh;d . Tiphi — 2Hho + hoH

(mod vertical)
= —2hhi (Il + 308 40,30 hy — 2H ho + hoH (mod vertical
) I VR ) J

Since the manifold is Sasakian, we have

[H,[H,[H,d)]] = —2Hho + hoH (mod vertical).

Proof of Lemma[5.3. Since W*Ej = vj, [, hi] is of the form

[Pk, i) = (D% = T )ha + bila = Tgiho + b dla
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at x. By applying both sides by dh;, we obtain

— b = dho[hy, hi]

= hi(dho(hi)) — hi(dho(hy))
= hi[(T3 — T6:)hs] — hil(Tro — Tog) hs)
:h&JmLs—JmeW+h[%Uﬁy—F&)—WUiO—F&H
= hs[vi( fo - (S)z) vi (I, k0 — )] = hy [UZFOk Ukr(s)z‘]
and
1 l Lo
§Jki']lshs — by = dhy[hg, by
= hy(dhy(hi)) — hi(dhy(hy))
= h[(T5 — T3)ha ] hi[(Tgy — L) hal
1
*2J15Jk5h + Jlizsh +h [vk( Flz) (Flscl 7F?k)]
at x.

It also follows that
hibR; = hihso(T5;),
and
hibl = —hshilop(T3) — ve(T5) — 0i(Th)]

at x.
Finally,

[ﬁ, ﬁz] = thkiHO — hOJikﬁk + hkbgi&a-

12. Appendix III

In this appendix, we provide the proof of Lemmas [3.5] 3.6 and 3.7

Proof of Lemma[3.5 Let wo(t) := vo(y(t)), w1 (t), ..., w,(t) be an orthonor-
mal frame defined along ~(-). Let O(-) be a family of 2n x 2n orthogonal
matrices and let K;; = (w;(t), w;(t)), and let v;(t) := 23211 O;j(t)w;(t). By
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differentiating with respect to time ¢, we have

(Bi(t), 03 () = > (Ou(t) + Oa(®)Kin(t)) Osu(8).

k.l

Therefore, by setting O(t) + O(t)K (t) = 0, we have that @; is vertical. [

Proof of Lemma[3.6. We fix a neighborhood of = on which any point in it
can be connected to x by a unique geodesic. We then define v; to be the
vector field on this neighborhood such that v;(y(t)) is a parallel adapted
frame along each geodesic v(-) with v(0) = z. It follows immediately that

Vo, v; is vertical, where ¢ = 1,...,2n and k =0, ..., 2n. Therefore,
Vo, Vi = (Vy, 0i, v0) vo = — (vi, Vi, v0) V0.
If K =0, then
0 = dagp(vo, vi) = —ap([vo, vi]) = (vo, Vi vi) — (vo, Vi, v0) -

Since |vg| = 1, we also have
(vo, Vy,vi) = (Vy,v0,v0) = 0
and hence V,,v; = 0.
It also follows that (V,,vo, v;) = — (vo, Vy,vi) = 0. Therefore, V,,,v9 = 0.

The second part follows from (V,,vg,v;) = — (Ju;,v;) for Sasakian mani-
folds. O

Proof of Lemma[3.7 Tt is clear that Fgo = 0. Since V,,v9 = 0,
0= (Vyuo,vi) = Thy = —I9; = 0.
Since Ly,9 =0,
0= Lo,g(vi, ) = = (w3, [vo,v]) = ([vo, vi], vj) = —T9; = Ty,
Since the Riemannian metric is associated to the almost contact structure,
Jji = (vi, Jvj) = dao(vi,vj) = —ao([vi, v;]) = —(TY; = ;) = 21,

The third relation follows from the property of the frame vy, . .., v, and
Theorem [3.21
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Finally, we have

Rm(v;, vj)vg = Vi, Vo, Uk = Vo, Vo, 0k = Vi, 0,10

= Z v; [ jk ’Ul + erkrzﬂ]s - Z(’Ujl—\ék)vl
l
— Z szFﬂ'Us Z F [jvs + Z Fé‘irfkvs
l,s

1 1
-y (@ir;k) ~ (T~ i+ 13ud ) v
s#£0
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