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A structural theory of operations between real-valued (or extended-
real-valued) functions on a nonempty subset A of Rn is initiated. It
is shown, for example, that any operation ∗ on a cone of functions
containing the constant functions, which is pointwise, positively
homogeneous, monotonic, and associative, must be one of 40 ex-
plicitly given types. In particular, this is the case for operations be-
tween pairs of arbitrary, or continuous, or differentiable functions.
The term pointwise means that (f ∗ g)(x) = F (f(x), g(x)), for all
x ∈ A and some function F of two variables. Several results in the
same spirit are obtained for operations between convex functions or
between support functions. For example, it is shown that ordinary
addition is the unique pointwise operation between convex func-
tions satisfying the identity property, i.e., f ∗ 0 = 0 ∗ f = f , for all
convex f , while other results classify Lp addition. The operations
introduced by Volle via monotone norms, of use in convex analy-
sis, are shown to be, with trivial exceptions, precisely the pointwise
and positively homogeneous operations between nonnegative con-
vex functions. Several new families of operations are discovered.
Some results are also obtained for operations that are not nec-
essarily pointwise. Orlicz addition of functions is introduced and
a characterization of the Asplund sum is given. With one excep-
tion, a full set of examples is provided showing that none of the
assumptions made can be omitted.
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1. Introduction

Throughout mathematics and wherever it finds applications, there is a need
to combine two or more functions to produce a new function. The four
basic arithmetic operations, together with composition, are so fundamental
that there seems no need to question their existence or utility, for example
in calculus. In more advanced mathematics, other operations make their
appearance, but are still sometimes tied to simpler operations, as is the case
for convolution, which via the Fourier transform becomes multiplication. Of
course, a myriad of different operations have been found useful. One such
is Lp addition +p, defined for f and g in a suitable class of nonnegative
functions by

(1) (f +p g)(x) = (f(x)p + g(x)p)1/p ,
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for 0 < p <∞, and by (f +∞ g)(x) = max{f(x), g(x)}. Particularly for 1 ≤
p ≤ ∞, Lp addition is of paramount significance in functional analysis and
its many applications. It is natural to extend Lp addition to −∞ ≤ p < 0
by defining

(f +p g)(x) =

{
(f(x)p + g(x)p)1/p , if f(x)g(x) 6= 0,

0, otherwise.

when −∞ < p < 0, and (f +−∞ g)(x) = min{f(x), g(x)}.
But what is so special about Lp addition, or, for that matter, ordi-

nary addition? This is a motivating question for our investigation, which
focuses on operations ∗ : Φ(A)m → Φ(A), m ≥ 2, where Φ(A) is a class of
real-valued (or extended-real-valued) functions on a nonempty subset A of
n-dimensional Euclidean space Rn. (See Section 2 for basic definitions and
notation.) We offer a variety of answers, usually stating that an operation ∗
satisfying just a few natural properties must belong to rather special class
of operations. What emerges is the beginning of a structural theory of op-
erations between functions.

Our most general results need no restriction on Φ(A) other than that
it is a cone (i.e., rf ∈ Φ(A) whenever f ∈ Φ(A) and r ≥ 0) of real-valued
functions, a property enjoyed by the classes of arbitrary, or continuous, or
differentiable functions, among many others. For example, in Theorem 7.6,
we prove that if m = 2, Φ(A) is a cone containing the constant functions,
and ∗ is pointwise, positively homogeneous, monotonic, and associative, then
∗ must be one of 40 types of operations. Of the properties assumed, the last
three are familiar; see Section 5 for precise definitions of these and other
properties. The first property, pointwise, means that there is a function
F : E ⊂ Rm → R such that

(2) (∗(f1, . . . , fm))(x) = F (f1(x), . . . , fm(x)),

for all f1, . . . , fm in Φ(A) and all x ∈ A, where ∗(f1, . . . , fm) denotes the re-
sult of combining the functions f1, . . . , fm via the operation ∗. The pointwise
property is, to be sure, a quite restrictive one, immediately eliminating com-
position, for example. Nonetheless, (2) is general enough to admit a huge
assortment of operations, and it is surprising that with just three other
assumptions the possibilities can be narrowed to a relatively small number.

Behind Theorem 7.6 is a contribution to the theory of associative real-
valued functions of two variables: A positively homogeneous, monotonic, and
associative function F : R2 → R must be one of 40 types explicitly given in
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Theorem 4.7. Study of the associativity equation goes back at least to Abel’s
pioneering work and, with the widespread interest in triangular norms and
copulas, and their applications, has generated an extensive literature; see,
for example, [3–5, 18]. More specifically, Theorem 4.7 is in a line of results
beginning with Bohnenblust’s celebrated paper [6] on Lp spaces and related
ones of Aczél [1] on functional equations and Pearson [22] on semiring the-
ory. None of these known results suffice for our purposes, since the latter two
assume the continuity of F and all concern only positively homogeneous and
associative functions F on [0,∞)2. The monotonicity assumption in Theo-
rem 4.7 is crucial, since it appears to be difficult to characterize positively
homogeneous, continuous, and associative functions F : R2 → R.

For nonnegative functions, the situation is easier. Theorem 7.4 implies
that if Φ(A) is a cone of nonnegative functions and ∗ is pointwise, positively
homogeneous, monotonic (or pointwise continuous), and associative, then ∗
must be one of six types of functions (or three types of functions, respec-
tively), including Lp addition, for some −∞ ≤ p 6= 0 ≤ ∞. Here we are able
to use Pearson’s results in [22] without too much extra work. Except for
Lp addition, the various types of functions listed in Theorem 7.4 are either
rather trivial or trivial modifications of Lp addition.

The key Lemmas 7.10 and 7.11 provide a link to various results con-
cerning classes of convex functions. Convex functions are of wide interest in
their own right and the recent text [7] of Borwein and Vanderwerff is devoted
entirely to them. They are the focus of convex analysis, a vast subject that
arose from the pioneering work of Fenchel and others and found its proper
place with the masterly exposition of Rockafellar [25]. The extraordinarily
large number of citations to [25] testifies to the many applications of convex
analysis in diverse fields of mathematics, engineering, and economics. Of the
key lemmas just mentioned, we confine attention here to Lemma 7.11, which
states that a pointwise operation ∗ : Φ(A)m → Cvx(A) must be monotonic,
with an associated function F that is increasing in each variable, when Φ(A)
is Cvx(A), Cvx+(A), Supp(Rn), or Supp+(Rn). Here Cvx(A) is the class of
real-valued convex functions on a nontrivial convex set A in Rn, Supp(Rn)
is the class of support functions of nonempty compact convex sets in Rn,
and the superscript + denotes the nonnegative functions in these classes.
This has several fundamental consequences for convex analysis, which we
now describe.

In Theorem 7.15 we prove that ∗ : Cvx(A)m → Cvx(A) is pointwise and
positively homogeneous if and only if there is a nonempty compact convex
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set M ⊂ [0,∞)m such that

(3) (∗(f1, . . . , fm))(x) = hM (f1(x), . . . , fm(x)) ,

for all f1, . . . , fm ∈ Cvx(A) and all x ∈ A, where hM is the support func-
tion of M . We call an operation defined by (3), for an arbitrary nonempty
compact convex subset M of Rm, M -addition, and denote it by ⊕M . As far
as we know, the operations ∗ : Cvx(A)m → Cvx(A) in Theorem 7.15 have
not be considered before. The same theorem also characterizes the point-
wise and positively homogeneous operations ∗ : Cvx+(A)m → Cvx+(A) as
those satisfying (3) for some 1-unconditional compact convex set M in Rm,
but in this case, at least for m = 2, such operations were first introduced
by Volle [29]. He observed that if ‖ · ‖ is a monotone norm on R2 (i.e.,
‖(x1, y1)‖ ≤ ‖(x2, y2)‖ whenever x1 ≤ x2 and y1 ≤ y2), then the operation
(f +‖·‖ g)(x) = ‖ (f(x), g(x)) ‖ still preserves the convexity of nonnegative
real-valued functions, where (1) corresponds to the Lp norm. From The-
orem 7.15 it is an easy step to Theorem 7.16, which characterizes Volle’s
operations as being, with trivial exceptions, precisely the pointwise and posi-
tively homogeneous operations ∗ : Cvx+(A)2 → Cvx+(A). Moreover, in The-
orem 7.17 it is shown, again with trivial exceptions, that any pointwise, pos-
itively homogeneous, and associative operation ∗ : Cvx+(A)2 → Cvx+(A)
must be Lp addition, for some 1 ≤ p ≤ ∞. Theorem 7.18 completely char-
acterizes the pointwise, positively homogeneous, and associative operations
∗ : Cvx(A)2 → Cvx(A); with trivial exceptions, they are either ordinary ad-
dition or defined by

(4) (f ∗ g)(x) =


(f +p g)(x), if f(x), g(x) ≥ 0,

f(x), if f(x) ≥ 0, g(x) < 0,

g(x), if f(x) < 0, g(x) ≥ 0,

− (|f |+q |g|) (x), if f(x), g(x) < 0,

for all f, g ∈ Cvx(A) and x ∈ A and for some 1 ≤ p ≤ ∞ and −∞ ≤ q ≤ 0.
Here Theorem 4.7 is used in an essential way, the function F associated with
the operation ∗ defined by (4) (with m = 2) being one of the 40 listed in
that result. Again, it appears that these operations have not been considered
before. In Theorem 7.21 we give a somewhat surprising characterization of
ordinary addition by proving it to be the unique pointwise operation ∗ :
Cvx(A)2 → Cvx(A) satisfying the identity property, i.e., f ∗ 0 = 0 ∗ f = f ,
for all f ∈ Cvx(A). Remark 7.23 explains why there does not seem to be a
natural version of Theorem 7.21 that applies to the class Cvx+(A).
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All the results in the previous paragraph have counterparts for opera-
tions ∗ : Supp(Rn)m → Supp(Rn) or ∗ : Supp+(Rn)m → Supp+(Rn); indeed,
the same results hold verbatim, if the condition of positive homogeneity is
omitted. Such operations can be transferred in a natural manner to opera-
tions between compact convex sets, so they are in part anticipated by work
of Gardner, Hug, and Weil [12], of which the present paper can be regarded
as a sequel. Even in this context, however, parts (c) and (d) of Theorem 7.20
are new, giving a partial answer to the still unresolved question of the role
of associativity in classifying operations between arbitrary compact convex
sets.

In convex analysis it is essential to work not only with real-valued func-
tions but also with extended-real-valued functions. We undertake this task
in Section 9. Basically, all our main results from Section 7 go through for
operations between functions in the classes Cvx(A), Cvx +(A), Supp(Rn),
and Supp +(Rn), though of course further operations do arise in the analy-
sis. Here A is a nontrivial convex subset of Rn, Cvx(A) represents the class
of extended-real-valued convex functions f : A→ (−∞,∞], Supp(Rn) is the
class of extended-real-valued support functions of nonempty closed convex
sets in Rn, and the superscript + signifies the nonnegative members of these
classes.

We stress that for each of the previously described results, and indeed
those throughout the paper (with one exception; see the comment after
Corollary 10.9), we provide a full set of examples showing that none of the
assumptions we make can be omitted. In particular, the assumption that the
operations are pointwise is essential. Nevertheless, in certain circumstances
it is possible to classify operations that are not necessarily pointwise, pro-
vided they are associative. Our inspiration here is the work of Milman and
Rotem [20] on operations between closed convex sets, and we lean heavily
on their methods to achieve our results. In Theorem 10.5, we prove that
any operation ∗ : Cvx +(A)2 → Cvx +(A) or ∗ : Supp +(Rn)2 → Supp +(Rn)
that is monotonic, associative, weakly homogeneous, and has the identity
and δ-finite properties, must be Lp addition, for some 1 ≤ p ≤ ∞. The δ-
finite property is a weak technical condition defined in (55) and (56) be-
low. Weak homogeneity is introduced here for the first time and serves
two purposes: It directly relates to (and is much weaker than) positive
homogeneity and it allows us to avoid the slightly artificial “homothety”
property used in [20]. Indeed, Theorem 10.3 states that in the presence
of monotonicity and the identity property, the homothety property implies
weak homogeneity. In Theorem 10.8 we establish a corresponding result for
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operations ∗ : Supp +(Rn)2 → Supp +(Rn), which immediately yields Corol-
lary 10.9, a characterization of Lp addition as an operation between closed
convex (or compact convex) sets containing the origin, that strengthens [20,
Theorems 2.2 and 6.1]. As in [20], the proofs of the latter results require in
addition the weak assumption that ∗ is (pointwise) continuous from below
when dealing with compact convex sets.

Returning to pointwise operations, we briefly mention two other contri-
butions. The first is the introduction in Section 8 of Orlicz addition between
functions. This is motivated by recent developments in the Brunn-Minkowski
theory, the heart of convex geometry, in which Orlicz addition of sets, a gen-
eralization of Lp addition of sets, was recently discovered; see [13, 14, 30, 31].
Orlicz addition, denoted by +ϕ and defined by (42) below, is an operation
+ϕ : Φ(A)m → Φ(A) in several useful instances, for example when Φ(A) is
the class of nonnegative Borel or nonnegative continuous functions on A, or
Cvx+(A), or Supp+(Rn). It has the remarkable features that the function
F associated with +ϕ (as in (2)) is implicit and that when m = 2, +ϕ is in
general neither commutative nor associative.

The second contribution referred to above is Theorem 11.1, a character-
ization of the so-called Asplund sum among operations between log-concave
functions on Rn.

The paper is organized as follows. After Sections 2 and 3 on prelim-
inaries and background results, Section 4 is primarily devoted to proving
Theorem 4.7, our classification of positively homogeneous, monotonic, and
associative functions F : R2 → R. The proof is of necessity long and techni-
cal and we recommend skipping it on a first reading. Most of the properties
of operations we employ are listed and defined in Section 5, while Section 6
defines the most important operations for our investigation. Pointwise op-
erations between real-valued functions are the focus of Section 7, where
many of the results described above can be found. Section 8 introduces Or-
licz addition of functions. In Section 9, we characterize pointwise operations
between extended-real-valued functions. Section 10 is concerned with oper-
ations that are not necessarily pointwise and the short Section 11 records
our characterization of the Asplund sum.

2. Preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space
Rn. The standard orthonormal basis for Rn will be {e1, . . . , en}. Otherwise,
we usually denote the coordinates of x ∈ Rn by x1, . . . , xn. We write [x, y]
for the line segment with endpoints x and y.
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The extended real numbers are the elements of the set R = R ∪ {−∞} ∪
{∞}.

If X is a set in Rn, we denote by clX and relintX the closure and
relative interior of X (with respect to its affine hull). If S is a subspace of
Rn, then X|S is the (orthogonal) projection of X on S.

If t ∈ R, then tX = {tx : x ∈ X}. The set −X = (−1)X is the reflection
of X in the origin.

A set X is a cone if rx ∈ X whenever x ∈ X and r ≥ 0.
A set is o-symmetric if it is centrally symmetric, with center at the origin.

We shall call a set in Rn 1-unconditional if it is symmetric with respect
to each coordinate hyperplane; this is traditional in convex geometry for
compact convex sets.

Let Kn be the class of nonempty compact convex subsets of Rn, let Kns
denote the class of o-symmetric members of Kn and let Kno be the class of
members of Kn containing the origin. A set K ∈ Kn is called a convex body
if its interior is nonempty and nontrivial if it contains more than one point.
We shall also need the notation CCn and CCno for the classes of nonempty
closed (not necessarily bounded) convex sets in Rn and those containing the
origin.

If K ∈ CCn, then

(5) hK(x) = sup{x · y : y ∈ K},

for x ∈ Rn, is its support function, which determines K uniquely. Support
functions are positively homogeneous, that is,

hK(rx) = rhK(x),

for all x ∈ Rn and r ≥ 0, and are therefore often regarded as functions on
Sn−1. They are also subadditive, i.e.,

hK(x+ y) ≤ hK(x) + hK(y),

for all x, y ∈ Rn. Any real-valued function on Rn that is sublinear, that is,
both positively homogeneous and subadditive, is the support function of
a unique compact convex set. Proofs of these facts can be found in [27].
Gruber’s book [15] is also a good general reference for convex sets.

A set K in Rn is star-shaped at o if o ∈ K and for each x ∈ Rn \ {o},
the intersection K ∩ {cx : c ≥ 0} is a (possibly degenerate) compact line
segment. If K is star-shaped at o, we define its radial function ρK for x ∈
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Rn \ {o} by

ρK(x) = max{c ≥ 0 : cx ∈ K}.

This definition is a slight modification of [11, (0.28)]; as defined here, the
domain of ρK is always Rn \ {o}. Radial functions are homogeneous of degree
−1, that is,

ρK(rx) = r−1ρK(x),

for all x ∈ Rn \ {o} and r > 0, and are therefore often regarded as functions
on the unit sphere Sn−1. Conversely, any nonnegative and homogeneous of
degree −1 function on Rn \ {o} is the radial function of a unique subset of
Rn that is star-shaped at o.

A star set in Rn is a bounded Borel set that is star-shaped at o. We
denote the class of star sets in Rn by Sn and the class of o-symmetric
members of Sn by Sns . Note that Sn is closed under finite unions, countable
intersections, and intersections with subspaces. Also, if a set K in Rn is star-
shaped at o, then K ∈ Sn if and only if ρK , restricted to Sn−1, is a bounded
Borel-measurable function. Our definitions and notation differ from those
used elsewhere, such as [11, Section 0.7].

We denote the class of real-valued convex functions on a setA by Cvx(A),
while Cvx(A) represents the class of extended-real-valued convex functions
f : A→ (−∞,∞]. In these contexts, it will always be assumed that A is a
nontrivial convex set in Rn. The class of support functions of sets in Kn (or
extended-real-valued support functions of sets in CCn) will be denoted by
Supp(Rn) (or Supp(Rn), respectively). A superscript + signifies the nonneg-
ative members of these classes, so that Supp+(Rn) is the class of support
functions of sets in Kno .

We define a number of functions from R2 to R that will play an important
role. The coordinate projections are denoted by

Π1(s, t) = s and Π2(s, t) = t.

We set

Mp(s, t) = sgn
(

sgn(s)|s|p + sgn(t)|t|p
)∣∣∣ sgn(s)|s|p + sgn(t)|t|p

∣∣∣1/p
when 0 < p <∞, and

Mp(s, t) =

{
1
2

(
sgn(s) + sgn(t)

)
(|s|p + |t|p)1/p, if st 6= 0,

0, otherwise.
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when −∞ < p < 0, s, t ∈ R. Let

M∞(s, t) =

{
s, if −|s| ≤ t ≤ |s|
t, otherwise,

and

M−∞(s, t) =
1

2
(sgn(s) + sgn(t)) min{|s|, |t|},

for all s, t ∈ R. Finally, it will be convenient to define M0(s, t) = 0, though
this notation is often used for the geometric mean of s and t.

Note that on [0,∞)2, we have Mp(s, t) = (sp + tp)1/p, for p > 0, M∞(s, t)
= max{s, t}, and M−∞(s, t) = min{s, t}. For p < 0, the first equality still
holds on (0,∞)2. On (−∞, 0]2, we have Mp(s, t) = −(|s|p + |t|p)1/p, for p >
0, M∞(s, t) = min{s, t}, and M−∞(s, t) = max{s, t}. For p < 0, the previous
formula for Mp holds on (−∞, 0)2.

3. Background results

The following properties of functions F : [0,∞)2 → R have been considered
by other authors (see, for example, [12]):

(i) (Positive homogeneity) F (rs, rt) = rF (s, t), for r, s, t ≥ 0.
(ii) (Increasing in each variable) F (s, t) ≤ F (s′, t′), for 0 ≤ s ≤ s′ and 0 ≤

t ≤ t′.
(iii) (Symmetry) F (s, t) = F (t, s).
(iv) F (0, 1) = 1;
(v) (Associativity) F (s, F (t, u)) = F (F (s, t), u), for s, t, u ≥ 0.

Here we introduce the following weaker version of (i):

(vi) (Weak homogeneity) There is a set Q, dense in [0,∞) and containing
0, such that F (rs, rt) = rF (s, t), for r ≥ 0 and s, t ∈ Q.

We use the same labels for the corresponding properties of functions F :
(0,∞)2 → R. The associativity equation (v) has generated a large literature;
see, for example, [3], [4], and [5]. The following result is due to Bohnenblust
[6].

Proposition 3.1. If F : [0,∞)2 → R satisfies properties (i)–(v), then F =
Mp on [0,∞)2, for some 0 < p ≤ ∞.

In [9, Theorem 4], Fleming states: The conclusion of Bohnenblust’s the-
orem remains true even with condition (iii) of the hypotheses removed. He
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means to say also that (iv) should be replaced by F (1, 0) = F (0, 1) = 1 (or
else the function F (s, t) = t for all s, t ≥ 0 would be a counterexample).
Fleming ascribes this result to B. Randrianantoanina in a personal commu-
nication. See also [10, Theorem 9.5.3].

For s, t ≥ 0, let

G1(s, t) = log
(
es + et − 1

)
;

G2(s, t) =

{
min{s, t}, if s > 0 and t > 0,

max{s, t}, if s = 0 or t = 0;

G3(s, t) = t = Π2(s, t);

G4(s, t) = min{s, t} = M−∞(s, t);

G5(s, t) = s+ t+
√
st.

Then one can check that for i = 1, . . . , 5, the function Gi(s, t) satisfies
all but the ith of properties (i)–(v).

There are some related results that weaken some of the above assump-
tions but require that F is continuous. One of them is due to Aczél [2,
Theorem 2]. He shows that if F is continuous and satisfies only (i), (ii)
(but with strict inequalities), and (v), then F = Mp on [0,∞)2, for some
0 < p ≤ ∞.

The following result, stronger than Aczél’s, was proved by Pearson [22,
Theorem 2] in a paper on topological semigroups.

Proposition 3.2. Let F : [0,∞)2 → [0,∞) be a continuous function satis-
fying (i) and (v). Then on [0,∞)2, either F = Π1, or F = Π2, or F = Mp,
for some −∞ ≤ p ≤ ∞.

The functions G1 and G5 above are continuous and show that (i) and (v)
are necessary in the previous proposition, while G2 shows that the continuity
hypothesis cannot be omitted. Note that Proposition 3.2 also implies that
any function F : [0,∞)2 → [0,∞) that satisfies (i) and (v), but not (ii),
cannot be continuous. Indeed, if such a function were continuous, it would
have to be one of the possibilities given by Proposition 3.2, but each of these
satisfies (ii).

The first conclusion of the following proposition (see [12, p. 3307]) shows
that Proposition 3.2 implies Aczél’s result mentioned above, since it implies
that if F : [0,∞)2 → R satisfies (i) (and hence (vi)) and (ii), then F is non-
negative.
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Proposition 3.3. Suppose that F : [0,∞)2 → R satisfies (ii) and (vi) (or
F : (0,∞)2 → [0,∞) satisfies (ii) and (vi) for r > 0). Then

(a) F ≥ 0 on [0,∞)2.
(b) F is continuous on (0,∞)2, and positive on (0,∞)2 unless it is iden-

tically zero.
(c) F satisfies (i) (or (i) for r > 0, respectively).

Proof. Suppose that F : [0,∞)2 → R satisfies (ii) and (vi).
(a) If s ∈ Q, then by (vi), F (0, 0) = F (0 · s, 0 · s) = 0 · F (s, s) = 0. From

(ii), it then follows that F ≥ 0.
(b) Let s0, t0>0 and fix 0<ε0<min{s0, t0}. Choose s′0∈(s0−ε0/2, s0)∩

Q and t′0 ∈ (t0 − ε0/2, t0) ∩Q. Let 0 ≤ ε < ε0, s ∈ (s0 − ε/2, s0 + ε/2), and
t ∈ (t0 − ε/2, t0 + ε/2). Using (ii), the fact that max{1/s′0, 1/t′0} ≤ 2/ε0, and
(vi), we obtain

F (s, t) ≤ F (s′0 + ε, t′0 + ε) ≤ F
(
s′0(1 + 2ε/ε0), t′0(1 + 2ε/ε0)

)
= (1 + 2ε/ε0)F (s′0, t

′
0) ≤ (1 + 2ε/ε0)F (s0, t0).

Similarly, F (s, t) ≥ (1− 2ε/ε0)F (s0, t0) and hence

|F (s, t)− F (s0, t0)| ≤ 2

ε0
F (s0, t0)ε.

Therefore F is continuous at (s0, t0).
To prove the remaining claim in (b), suppose that F (s1, t1) = 0 for

some s1, t1 > 0. By (ii), there are s′1 ∈ (0, s1) ∩Q and t′1 ∈ (0, t1) ∩Q with
F (s′1, t

′
1) = 0. Let s, t ≥ 0 and choose r > 0 so that rs ≤ s′1 and rt ≤ t′1.

Then, by (ii) and (vi), we have F (s, t) ≤ F (s′1/r, t
′
1/r) = F (s′1, t

′
1)/r = 0.

Therefore F is identically zero.
(c) As F is continuous on (0,∞)2 by (b) and Q ∩ (0,∞) is dense in

(0,∞), (vi) implies F (rs, rt) = rF (s, t), for all r, s, t > 0. With arguments
similar to those used to prove (b), it can be shown that s 7→ F (s, 0) is con-
tinuous on (0,∞), where 0 ∈ Q is used. This and (vi) show that F (rs, 0) =
rF (s, 0), for all r, s > 0. Similarly, F (0, rt) = rF (0, t), for all r, t > 0. To-
gether with the fact F (0, 0) = 0, shown in (a), this yields the positive ho-
mogeneity of F .

Now suppose that F : (0,∞)2 → [0,∞) satisfies (ii) and (vi) for r >
0. Part (a) is trivially true, and (b) and (c) follow from the proofs given
above. �
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Define F : [0,∞)2 → [0,∞) by F (s, t) = s = Π1(s, t) on (0,∞)2 and
F (s, t) = 0, otherwise. Then F satisfies (i), (ii), and (v), but it is not continu-
ous on the positive s-axis. This shows that it is not possible to conclude from
the hypotheses of Proposition 3.3 that F : [0,∞)2 → [0,∞) is continuous,
even if it is also assumed that F is associative.

Pearson [22, Theorem 1] also proved the following result.

Proposition 3.4. Let F : (0,∞)2 → (0,∞) be a continuous function sat-
isfying (i) and (v) for r, s, t, u > 0. Then on (0,∞)2, either F = Π1, or
F = Π2, or F = Mp, for some −∞ ≤ p 6= 0 ≤ ∞.

Proposition 3.4 implies Bohnenblust’s Proposition 3.1, in its stronger
form with (iii) removed and (iv) replaced by F (1, 0) = F (0, 1) = 1. To see
this, let F : [0,∞)2 → [0,∞) satisfy the hypotheses of this version of Propo-
sition 3.1. Since F is not identically zero, Proposition 3.3(b) shows that the
restriction of F to (0,∞)2 is continuous and positive, and it follows from
Proposition 3.4 that this restriction must be of one of the forms given there.
Then the continuity of F on [0,∞)2 and F (1, 0) = F (0, 1) = 1 eliminate all
the functions listed in Proposition 3.4 except for those satisfying F = Mp,
for some 0 < p ≤ ∞.

We conclude that if F : (0,∞)2 → (0,∞) satisfies (i) and (v), then (ii) is
equivalent to the continuity of F . This follows from Proposition 3.4 and the
arguments that lead to continuity in Proposition 3.3(b). The example given
after Proposition 3.3 shows that the continuity of a function F : [0,∞)2 →
[0,∞) satisfying (i) and (v) is no longer equivalent to (ii).

We close this section with another result of Aczél [1] (see also [3, Sec-
tion 6.2]), which, with stronger other assumptions, allows the positive ho-
mogeneity to be dropped.

Proposition 3.5. Let D be an interval in R, finite or infinite, which is
open on one side. A function F : D2 → D is continuous, strictly increasing
in each variable, and associative if and only if there exists a continuous and
strictly monotonic function φ : D → R such that for all s, t ∈ D,

(6) F (s, t) = φ−1 (φ(s) + φ(t)) .

4. Positively homogeneous, increasing, and associative
functions

Properties (i)–(v) are as listed at the beginning of Section 3.
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Lemma 4.1. If F : [0,∞)2 → [0,∞) satisfies (i) and (v), then either
F (s, 0) = 0, for all s ≥ 0, or F (s, 0) = s, for all s ≥ 0. Also, either F (0, t) =
0, for all t ≥ 0, or F (0, t) = t, for all t ≥ 0.

Proof. If F (s, 0) = 0, for some s > 0, then (i) implies F (s, 0) = 0, for all
s ≥ 0. Hence we may assume that F (s, 0) = a, for some a > 0 and s > 0. By
(i), we have F (0, 0) = 0 and (v) yields

F (a, 0) = F (F (s, 0), 0) = F (s, F (0, 0)) = F (s, 0) = a.

By (i) again, it follows that F (s, 0) = s, for all s ≥ 0. The argument for
F (0, t) is similar. �

Corollary 4.2. Let F : [0,∞)2 → [0,∞) satisfy (i), (ii), and (v). Then on
[0,∞)2, F is one of the following six types of functions: Π1, or Π2, or Mp,
for some −∞ ≤ p ≤ ∞, or

F (s, t) =

{
Π1(s, t), if t > 0,

0, if t = 0,
or F (s, t) =

{
Π2(s, t), if s > 0,

0, if s = 0,

or

F (s, t) =

{
Mp(s, t), if s, t > 0,

0, if s = 0 or t = 0,

for some 0 < p ≤ ∞.

Proof. Assume F 6= M0, i.e., F is nonzero on [0,∞)2. By Proposition 3.3(b),
the restriction of F to (0,∞)2 is positive and continuous, so by Proposi-
tion 3.4, it must be of one of the forms listed there. Also, by Lemma 4.1,
either F (s, 0) = 0, for all s ≥ 0, or F (s, 0) = s, for all s ≥ 0 and in addition
either F (0, t) = 0, for all t ≥ 0, or F (0, t) = t, for all t ≥ 0. Considering all
possibilities and bearing in mind that F must be increasing in each variable
and associative, we conclude that F must be one of the functions listed in
the statement of the corollary. �

The functions G1, G2, and G5 defined after Proposition 3.1 show that
none of the assumptions (i), (ii), and (v) in the previous corollary can be
omitted.

Pearson [22, Theorem 3] also proves a version of Proposition 3.2 for
continuous, homogeneous functions F : R2 → R that satisfy the associativity
property (v) on R. Here homogeneous means that F (rs, rt) = rF (s, t) for
all s, t ∈ R and all r ∈ R. He proves that such a function must be one of 10
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types of functions, essentially variants of those given in Proposition 3.2. We
prove a variant of this result, where the associative function F : R2 → R is
assumed to be increasing in each variable, but not necessarily continuous,
and the homogeneity condition is replaced by positive homogeneity. More
precisely, we work with the following conditions:

(i′) F (rs, rt) = rF (s, t), for r ≥ 0 and s, t ∈ R;
(ii′) F (s, t) ≤ F (s′, t′) for s ≤ s′ and t ≤ t′;
(v′) F (s, F (t, u)) = F (F (s, t), u) for s, t, u ∈ R.

The functions Π1, Π2, and Mp, −∞ ≤ p ≤ ∞, all satisfy (i′), (ii′), and (v′).
However, there are also non-continuous functions satisfying (i′), (ii′), and
(v′). A complete list will be given in Theorem 4.7, the proof of which requires
several lemmas. It will be convenient to denote by Qi, i = 1, . . . , 4, the ith
open quadrant of R2.

Lemma 4.3. Suppose that F : R2 → R satisfies (i′), (ii′), and (v′). Then
on Q1, F is either Π1, or Π2, or Mp, for some −∞ ≤ p ≤ ∞. Moreover, on
Q3, F is either Π1, or Π2, or Mq, for some −∞ ≤ q ≤ ∞.

Proof. In view of (ii′), the restriction of F to clQ1 is bounded from below
by F (0, 0) = 0. Hence, by Proposition 3.3(b), on Q1, F is either M0 or it
is a continuous mapping into (0,∞) satisfying (i) and (v). Proposition 3.4
now yields the desired result.

The second statement is obtained by applying this to −F (−s,−t) and
using −Πi(−s,−t) = Πi(s, t), i = 1, 2, and −Mp(−s,−t) = Mp(s, t), for all
s, t > 0. �

Lemma 4.4. Let i ∈ {1, . . . , 4}. If F : R2 → R satisfies (i′), (ii′), and (v′),
and F = 0 on Qi, then F = 0 on clQi.

Proof. Suppose that F = 0 on Q1. Then, for s ≥ 0, we have by (i′) and (ii′)
that

0 = F (0, 0) ≤ F (s, 0) ≤ F (s, 1) = 0.

Hence, F (s, 0) = 0, for all s ≥ 0. In a similar way one shows F (0, t) = 0 for
all t ≥ 0. This proves the lemma for i = 1. A similar argument disposes of
the case i = 3.

Suppose that F = 0 on Q4. If F = 0 on Q1, then F (s, 0) = 0, for all
s ≥ 0, as we have seen. Otherwise, by Lemma 4.3, we have F (s, 1) > 0 for
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all s > 0. Therefore

F (s, 0) = F (s, F (1,−1)) = F (F (s, 1),−1) = 0,

for all s ≥ 0. This, together with the same argument applied to −F (−t,−s),
proves the lemma for i = 4, and the case i = 2 follows similarly. �

Next, we determine F in the part of the fourth quadrant where it is
positive, based on its behavior in the first quadrant. Applying the following
lemma to F (t, s), analogous results are obtained for the second quadrant.
In a similar way, an application to −F (−s,−t) yields properties of F on the
second and fourth quadrant given its values in the third quadrant.

Lemma 4.5. Let F : R2 → R satisfy (i′), (ii′), and (v′), and let s > 0.

(a) If F = M0 on Q1, then F (s, t) = 0, for all t ≤ 0, or F (s, t) = t, for all
t ≤ 0.

(b) If F = Mp on Q1, for some 0 < p <∞, and F > 0 somewhere in Q4,
then there is a constant c ≥ 0, independent of s, with

F (s, t) = (sp − c(−t)p)1/p ,(7)

for all t ≤ 0 such that F (s, t) ≥ 0.
(c) If F 6= Mp on Q1 for any 0 ≤ p <∞, and F > 0 somewhere in Q4,

then F (s, t) = s, for all t ≤ 0 such that F (s, t) ≥ 0.

Proof. By (i′), we may assume without loss of generality that s = 1.
To prove (a), we apply Lemma 4.1 to −F (−s,−t) on [0,∞)2 to conclude

that either F (0, t) = t, for all t ≤ 0, or F (0, t) = 0 for all t ≤ 0. In the latter
case, we obtain

0 = F (0, t) ≤ F (1, t) ≤ F (1, 1) = 0,

and thus F (1, t) = 0, for all t ≤ 0. Suppose that F (0, t) = t, for all t ≤ 0. If
t ≤ 0, then (i′), (v′), F (1, t) ≤ F (1, 1) = 0, and Lemma 4.4 with i = 1 imply
that

−F (1, t)2 = (−F (1, t))F (1, t) = F (−F (1, t), F (1, t)(−t))
= F (−F (1, t), F (−t,−t2)) = F (F (−F (1, t),−t),−t2)

= F (0,−t2) = −t2.

As F (1, t) ≤ 0, this gives F (1, t) = t, for all t ≤ 0, as required.
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To prove (b), suppose that F = Mp on Q1, for some 0 < p <∞. If F > 0
somewhere in Q4, Lemma 4.1 and (ii′) imply that F = Mp on (0,∞)×
[0,∞). This yields (7) when t = 0. For t < 0 such that F (1, t) ≥ 0 and fixed
s > 0 it gives

(sp + F (1, t)p)1/p = F (s, F (1, t)) = F (F (s, 1), t) = F (s, 1)F (1, F (s, 1)−1t).

Taking s = ((t/t′)p − 1)1/p, for some t < t′ < 0, we obtain

F (1, t) =
(
1− h(t′)(−t)p

)1/p
,(8)

where h(t′) = (1− F (1, t′)p)/|t′|p. As this holds whenever t < t′ < 0, h can-
not depend on t′ and must be a constant, c, say. By Lemma 4.1, c ≥
(1− F (1, 0)p)/|t′|p ≥ 0. Therefore (b) follows from (8).

For (c), note that by Lemma 4.3, the assumption F 6= Mp on Q1, for
any 0 ≤ p <∞, implies that on Q1, F is either Π1, or Π2, or M∞, or Mp,
for some −∞ ≤ p < 0. Hence F (1, 1) ≤ 1. If t ≤ 0 is such that F (1, t) ≥ 0,
this gives

F (1, 0) ≥ F (1, t) ≥ F (F (1, 1), t) = F (1, F (1, t)) ≥ F (1, 0).

By Lemma 4.1 and the assumption that F > 0 somewhere in Q4, we have
F (1, 0) = 1 and hence F (1, t) = 1. �

Lemma 4.6. Let F : R2 → R satisfy (i′), (ii′), and (v′).

(a) If F ≥ 0 on Q4, then on Q4, F = M0 or F = Π1.
(b) If F ≤ 0 on Q4, then on Q4, F = M0 or F = Π2.
(c) If F attains positive, negative, and zero values on Q4, then there is a

0 < p <∞ and a t0 < 0 such that

F (1, t) =

{
(1− (t/t0)p)1/p, if t ≥ t0,

−((−t)p − (−t0)p)1/p, if t < t0,
(9)

for all t < 0. Also, F = Mp on Q1 and Q3.
(d) If F attains positive and negative values on Q4 and F 6= 0 on Q4, then

there is a t0 < 0 such that

F (1, t) =

{
1, if t0 < t < 0,

t, if t < t0,
(10)

and F (1, t0) ∈ {1, t0}. Also, F = M∞ on Q1 and Q3.
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Proof. To prove (a), suppose that F ≥ 0 and F 6= M0 on Q4, so that F > 0
somewhere in Q4. By parts (a), (b), and (c) of Lemma 4.5, there is a 0 <
p <∞ and a constant c ≥ 0 such that

F (s, t) = (sp − c(−t)p)1/p,

for all (s, t) ∈ Q4. This function is well defined only if sp − c(−t)p ≥ 0, for
all t < 0. It follows that c = 0 and hence that F = Π1 on Q4.

Part (b) follows from (a) applied to −F (−t,−s).
For (c) and (d), suppose that F attains positive and negative values on

Q4. By (ii′), there are t0 ≤ t′0 < 0 such that

F (1, t)


< 0, for t < t0,

= 0, for t0 < t < t′0,

> 0, for t′0 < t < 0.

By (ii′), F (1, 0) > 0 and hence by (ii′) again and Proposition 3.4, on Q1,
F = Π1 or F = Mp for some 0 < p ≤ ∞. Similarly, on Q3, F = Π2 or F =
Mq, for some 0 < q ≤ ∞.

We now consider two cases, assuming first that F 6= Π1, Π2, or M∞
on at least one of Q1 and Q3. Without loss of generality, assume that on
Q3, F = Mq, for some 0 < q <∞. Lemma 4.5(b), applied to −F (−t,−s),
provides a constant c′ ≥ 0 such that

F (1, t) = −((−t)q − c′)1/q,

for all t < t′0. By Lemma 4.5(b), (c), there is 0 < p <∞ and a constant c ≥ 0
such that

F (1, t) = (1− c(−t)p)1/p,

for all t0 < t < 0. If c > 0, then on Q1, F = Mp. The last two displayed
equations can only hold when t0 = t′0, and we obtain

F (1, t) =

{
(1− c(−t)p)1/p, if t0 < t < 0,

−((−t)q − c′)1/q, if t < t0.

Let s > 0 satisfy 1 < −st0 < 21/q. As −1/s > t0 > −21/q/s, we have

F (s,−1) = sF

(
1,−1

s

)
= (sp − c)1/p
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and

F (s, F (−1,−1)) = F (s,−21/q) = −(2− c′sq)1/q.

The previous expression is negative and therefore equals

F (F (s,−1),−1)) = F ((sp − c)1/p,−1) = −(1− c′(sp − c)q/p)1/q.

As s can vary in an open interval, we must have p = q and cc′ = 1. Since
c ≤ (−t0)−p and c′ ≤ (−t0)q, we obtain (9), where the case t = t0 follows
from (ii′). Now c > 0, so F = Mp on Q1 ∪Q3. Note that F = 0 somewhere
in Q4.

It remains to consider the case where F = Π1 or F = M∞ on Q1, and
F = Π2 or F = M∞ on Q3. Then F 6= 0 on Q4. Indeed, if t < 0 is such that
F (1, t) = 0, then Lemma 4.1 and the fact that F > 0 somewhere in Q4 yield

1 = F (1, 0) = F (1, F (1, t)) = F (F (1, 1), t) = F (1, t) = 0,

a contradiction. Applying Lemma 4.5(c), both to F and to −F (−t,−s), we
obtain

F (1, t) =

{
1, if t > t0,

t, if t < t0,

for t < 0, and F (1, t0) ∈ {1, t0}. It remains to show that F 6= Π1 on Q1 and
F 6= Π2 on Q3. If the former holds, then F (1, 2) = 1 and therefore

1 = F (1, 2) = F (1, 2F (1, t)) = F (1, F (2, 2t))

= F (F (1, 2), 2t) = F (1, 2t) = 2t,

for all t such that 2t < t0 < t < 0, a contradiction. A similar argument shows
that F 6= Π2 on Q3. �

Theorem 4.7. Let F : R2 → R satisfy conditions (i′), (ii′), and (v′). Then
F is of one of the following 40 types of functions:

F (s, t) =


G1(s, t), if s > 0, t > 0,

G2(s, t), if s < 0, t < 0,

0, otherwise,

(11)
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where G1 ∈ {Π1,Π2,Mp}, −∞ ≤ p ≤ ∞, and G2 ∈ {Π1,Π2,Mq}, −∞ ≤ q ≤
∞;

(12)

F (s, t) =


Π1(s, t), if s ≥ 0,

G(s, t), if s < 0, t < 0,

0, otherwise,

or F (s, t) =


Π2(s, t), if t ≥ 0,

G(s, t), if s < 0, t < 0,

0, otherwise,

or F (s, t) =


Π1(s, t), if s ≤ 0,

G(s, t), if s > 0, t > 0,

0, otherwise,

or F (s, t) =


Π2(s, t), if t ≤ 0,

G(s, t), if s > 0, t > 0,

0, otherwise,

where G ∈ {Π1,Π2,Mp}, −∞ ≤ p ≤ ∞;

(13)

F (s, t) =


Mp(s, t), if s ≥ 0, t ≥ 0,

Π1(s, t), if s ≥ 0, t < 0,

Π2(s, t), if s < 0, t ≥ 0,

G(s, t), otherwise,

or F (s, t) =


G(s, t), if s > 0, t > 0,

Π1(s, t), if s ≤ 0, t > 0,

Π2(s, t), if s > 0, t ≤ 0,

Mp(s, t), otherwise,

for some 0 < p ≤ ∞ and G ∈ {Π1,Π2,Mq}, −∞ ≤ q ≤ ∞;

(14) F (s, t) =


Mp(s, t), if s > 0, t > 0,

Π1(s, t), if t ≤ 0,

Π2(s, t), otherwise,
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or F (s, t) =


Mp(s, t), if s > 0, t > 0,

Π2(s, t), if s ≤ 0,

Π1(s, t), otherwise,

or F (s, t) =


Π2(s, t), if s ≥ 0, t < 0,

Π1(s, t), if t ≥ 0,

Mp(s, t), otherwise,

or F (s, t) =


Π1(s, t), if s < 0, t ≥ 0,

Π2(s, t), if s ≥ 0,

Mp(s, t), otherwise,

for some 0 < p ≤ ∞;

(15)

F (s, t) =


Mp(s, t), if s ≥ 0, t ≥ 0,

Π1(s, t), if s > 0, t < 0,

Π2(s, t), if s < 0, t > 0,

Mq(s, t), otherwise,

or F (s, t) =


Mp(s, t), if s ≥ 0, t ≥ 0,

Π1(s, t), if s < 0, t > 0,

Π2(s, t), if s > 0, t < 0,

Mq(s, t), otherwise,

for some 0 < p ≤ ∞ and 0 < q ≤ ∞;

F (s, t) = Π1(s, t) or F (s, t) = Π2(s, t);(16)

F (s, t) =



Mp(s, t), if st ≥ 0,

(sp − (t/t0)p)1/p, if s > 0, st0 ≤ t < 0,

−((−t)p − (−t0s)p)1/p, if s > 0, st0 ≥ t,
(tp − (s/t0)p)1/p, if t > 0, tt0 < s < 0,

−((−s)p − (−t0t)p)1/p, if t > 0, tt0 ≥ s,

(17)

for some t0 < 0 and 0 < p <∞;

F (s, t) =


M∞(s, t), if st ≥ 0,

s, if (s > 0, st0 < t < 0) or (t > 0, s < tt0),

G(s, t), if (s > 0, st0 = t) or (t > 0, s = tt0),

t, otherwise,

(18)
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for some t0 < 0 and G ∈ {Π1,Π2}, or G(s, t) =

{
t, if s ≥ 0,

s, otherwise,
or

G(s, t) =

{
s, if s ≥ 0,

t, otherwise.

Proof. We consider six cases, depending on the restrictions of F to Q2 and
Q4.

Case 1: Suppose that F = M0 on Q2 ∪Q4. By Lemma 4.4, we have F =
M0 on clQ2 ∪ clQ4 and hence F is of the form (11), by Propositions 3.3(b)
and 3.4 applied to F and −F (−s,−t).

Case 2: Suppose that F = M0 on exactly one of Q2 and Q4, and that
F does not change sign on the other. By considering one of F , F (t, s),
−F (−s,−t), or −F (−t,−s), we may assume that F = M0 on Q2 and 0 6≡
F ≥ 0 on Q4. We have F = M0 on clQ2 by Lemma 4.4 and F = Π1 on Q4

by Lemma 4.6(a). Hence,

F (1, 2) = F (F (1,−1), 2) = F (1, F (−1, 2)) = F (1, 0).

The only function in Lemma 4.3 that satisfies this requirement together with
F (1, 0) ≥ F (1,−1) = 1 is Π1. By (ii′), F (s, t) = Π1(s, t) for all s > 0, t ∈ R.
As

F (0, t) = F (F (−1, 1), t) = F (−1, F (1, t)) = F (−1, 1) = 0,

for all t < 0, we get F (s, t) = Π1(s, t) for all s ≥ 0 and t ∈ R. Taking all the
possibilities into account, we conclude that F is of the form (12).

Case 3: Suppose that F 6= M0 on Q2 and on Q4, and F does not change
sign on Q2 ∪Q4. Assume first that F > 0 somewhere in Q2 and somewhere
in Q4. By Lemma 4.6(a) applied to F and F (t, s), we have F = Π1 on Q4

and F = Π2 on Q2. On Q1, we have F (s, t) ≥ max{F (s,−1), F (−1, t)} =
max{s, t}, due to (ii′). Therefore, by Propositions 3.3(b) and 3.4, on Q1,
F = Mp, for some 0 < p ≤ ∞. Moreover, this holds on clQ1 due to (ii′). If
F = 0 on both negative half-axes, then F is the first function in (13). The
second function in (13) is obtained when F ≤ 0 on Q2 ∪Q4. If F = 0 on the
negative t-axis, and F 6≡ 0 on the negative s-axis, then Lemma 4.1 applied
to −F (−s,−t) implies that F (s, 0) = s, for all s < 0. Then

F (s,−1) = F (F (s, 0),−1) = F (s, F (0,−1)) = F (s, 0) = s,

for s < 0, so F = Π1 on Q3. Therefore F is the first function in (14). If F = 0
on the negative s-axis, and F 6≡ 0 on the negative t-axis, similar arguments
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show that F is the second function in (14). The remaining two functions in
(14) are obtained the same way when F ≤ 0 on Q2 ∪Q4. Finally, if F 6≡ 0
on both negative half-axes, then Lemma 4.1 applied to −F (−s,−t) implies
that F (s, 0) = s, for all s < 0, and F (0, t) = t, for all t < 0. By (ii′), on Q3,
we have F (s, t) ≤ min{F (s, 0), F (0, t)} = min{s, t}, so Propositions 3.3(b)
and 3.4, applied to −F (−s,−t), show that on Q3, F = Mq, for some 0 <
q ≤ ∞. Consequently, F is of the form (15).

Case 4: Suppose that F 6= M0 on Q2 and on Q4, and F ≤ 0 on Q2 and
F ≥ 0 on Q4. Then F = Π1 on Q2 ∪Q4, by Lemma 4.6(a) applied to F and
Lemma 4.6(b) applied to −F (−t,−s). For t > 0,

F (1, t) = F (F (1,−1), t) = F (1, F (−1, t)) = F (1,−1) = 1,

so F = Π1 on Q1. The same argument applied to −F (−s,−t) shows that
F = Π1 on Q3. By (ii′), F = Π1. Similarly, if instead F ≥ 0 on Q2 and F ≤ 0
on Q4, then F = Π2.

Case 5: Suppose that F 6= M0 on Q2 and on Q4, and on at least one
of these quadrants, say Q4, F changes sign and is zero somewhere. By
Lemma 4.6(c), there is a 0 < p <∞ and a t0 < 0 such that F = Mp on Q1 ∪
Q3 and (9) holds. Applying Lemma 4.6(a),(b),(c) to the function F (t, s), we
see that on Q2, either F = Π1, or F = Π2, or

F (s, 1) =

{
(1− (s/t1)r)1/r if s ≥ t1,

−((−s)r − (−t1)r)1/r if s < t1,
(19)

for s < 0 and some 0 < r <∞ and t1 < 0. Note that Lemma 4.6(d) does not
apply, as F 6= M∞ on Q1 ∪Q3.

For t0 < t < 0, we have F (1, t) > 0 by (9) and hence

(F (1, t)p + 1)1/p = F (F (1, t), 1) = F (1, F (t, 1)).(20)

If F = Π1 or F = Π2 on Q2, the right-hand side of (20) would be F (1, t) or
21/p, respectively. In either case, this is different from the left-hand side of
(20), so F is of the form (19) on Q2. Equation (20) with max{t0, t1} < t < 0
gives p = r and t0 = t1. This yields the function in (17). The assumption
that F 6= M0 on Q4 and F changes sign and is zero somewhere on Q2 yields
the same function.

Case 6: Suppose that F 6= 0 onQ2 and onQ4, and on at least one of these
quadrants, Q4 say, F changes sign but is never zero. By Lemma 4.6(d), there
is a t0 < 0 such that (10) holds, F (1, t0) ∈ {1, t0}, and F = M∞ on Q1 ∪Q3.
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Applying Lemma 4.6(a),(b),(d) to F (t, s), we see that on Q2, either
F = Π1, or F = Π2, or

F (s, 1) =

{
1 if 0 > s > t2,

s if s < t2,
(21)

for s<0 and some t2<0, and also F (t2, 1)∈{t2, 1}. Note that Lemma 4.6(c)
does not apply, as F 6= Mp on Q1 ∪Q3 for any 0 < p <∞.

It is not possible that F = Π1 on Q2, since otherwise, for any t0 < t < 0
and s > −1/t > 0, we would have

st = min{−1, st} = F (−1, st) = F (F (−1, s), st) = F (−1, F (s, st)) = −1,

a contradiction. For −1/t0 > s > 0 and t0 > t > −1/s, we have

F (F (−1, s), st) = F (−1, F (s, st)) = F (−1, sF (1, t)) = F (−1, st) = −1.(22)

If F = Π2 on Q2, (22) simplifies to st = −1, so F must satisfy (21). If t0 > t2,
we could find −1/t0 > s > −1/t2 and t0 > t > −1/s, for which (22) again
gives st = −1. Hence t0 ≤ t2. Applying this argument to F (t, s) shows that
t0 ≥ t2, so t0 = t2. This yields the functions in (18). Note that for t0 = −1
and G = Π1, the function F in (18) coincides with M∞. �

It is straightforward, though tedious, to check that all the functions
listed in Theorem 4.7 satisfy (i′), (ii′), and (v′), so the result characterizes
all functions with these properties. For (s, t) ∈ R2, let H1(s, t) = 1,

H2(s, t) =


min{s, t}, if st 6= 0,

t, if s = 0,

s, if t = 0,

and H3(s, t) = 2s+ t. Then H1, H2, and H3 do not satisfy (i′), (ii′), and
(v′), respectively, but they satisfy all other conditions on F in Theorem 4.7.
Therefore none of the conditions (i′), (ii′), and (v′) can be omitted.

The following corollary provides a version of the result of Pearson [22,
Theorem 3] mentioned earlier, where the continuity assumption is replaced
by the increasing property.

Corollary 4.8. Let F : R2 → R satisfy F (rs, rt) = rF (s, t) for all s, t ∈ R
and all r ∈ R, (ii′), and (v′). Then F is one of the following seven types of
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functions:

F (s, t) =

{
G(s, t), if st > 0,

0, otherwise,
(23)

with G ∈ {Π1,Π2,Mp}, for some −∞ ≤ p ≤ ∞;

F (s, t) = Π1(s, t), F (s, t) = Π2(s, t), or F (s, t) = Mp(s, t),

for some 0 < p ≤ ∞;

F (s, t) =

{
s, if −|s| < t < |s|,
t, otherwise.

Proof. The functions in the statement of the corollary are exactly those listed
in Theorem 4.7 which also satisfy F (s, t) = −F (−s,−t), for all s, t ∈ R. Note
that the last function given is M∞, with values on the line {(s,−s) : s ∈ R}
changed. �

5. Properties of operations between functions

For certain classes Φ(A) ⊂ Ψ(A) of real-valued functions on a nonempty
subset A of Rn, we consider natural properties to impose on an arbitrary
m-ary operation ∗ : Φ(A)m → Ψ(A), where m ≥ 2. When m = 2, we will
write f ∗ g rather than ∗(f, g). In the following list, it is assumed that Φ(A)
and Ψ(A) are appropriate classes for the property under consideration. The
properties are supposed to hold for all appropriate f, g, h, fj , gj , fij ∈ Φ(A).

1. (Commutativity) f ∗ g = g ∗ f .

2. (Associativity) f ∗ (g ∗ h) = (f ∗ g) ∗ h.

3. (Homothety) There exists a function ξ : N→ [0,∞) such that

m� f = f ∗ · · · ∗ f = ξ(m)f,(24)

where the operation ∗ is taken m times and is independent of the order
of evaluation.

4. (Positive homogeneity) ∗(rf1, . . . , rfm) = r(∗(f1, . . . , fm)), for all
r ≥ 0.
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5. (Weak homogeneity) There is a set Q, dense in {f(x) : x ∈ A, f ∈
Φ(A)} and containing 0, such that

∗(rq1f, . . . , rqmf) = r(∗(q1f, . . . , qmf)),

for all r ≥ 0 and q1, . . . , qm ∈ Q.

6. (Identity) ∗(0, . . . , 0, fj , 0, . . . , 0) = fj .

7. (Continuity)

fij → f0j , j = 1, . . . ,m ⇒ ∗(fi1, . . . , fim)→ ∗(f01, . . . , f0m)

as i→∞.

8. (Monotonicity) fj ≤ gj , j = 1, . . . ,m⇒ ∗(f1, . . . , fm) ≤ ∗(g1, . . . , gm).

9. (Strict monotonicity) ∗ is monotonic and fj < gj , j = 1, . . . ,m ⇒
∗(f1, . . . , fm) < ∗(g1, . . . , gm).

10. (Pointwise) There is a function F : E ⊂ Rm → R associated with ∗
such that

(25) ∗ (f1, . . . , fm)(x) = F (f1(x), . . . , fm(x)) ,

for all x ∈ A.

Properties 3 and 5 will only be used in Section 10. Property 5 is much
weaker than Property 4, since the functions qif in Property 5 are all multi-
ples of the same function f .

Note that for Φ(A) to be appropriate for positive or weak homogeneity
(Properties 4 and 5), it is necessary that Φ(A) be a cone, i.e., rf ∈ Φ(A)
whenever f ∈ Φ(A) and r ≥ 0. Hence {f(x) : x ∈ A, f ∈ Φ(A)} is a cone in
R, so for a nontrivial class Φ(A), the set Q in Property 5 is dense in [0,∞),
(−∞, 0], or R, depending on the class. Weak homogeneity is slightly weaker
than the assumption that ∗ is positively homogeneous on all one-dimensional
cones {rf : r ≥ 0}, f ∈ Φ(A).

Of course, continuity (Property 7) is with respect to some suitable topol-
ogy. We shall call ∗ pointwise continuous if the convergence is pointwise, and
pointwise continuous from below if it satisfies the continuity property for all
pointwise convergent, increasing sequences of functions.
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6. Examples of pointwise operations

The usual arithmetic operations between functions are of course pointwise
operations, whereas composition of functions is not.

For −∞ ≤ p 6= 0 ≤ ∞, the pth sum of nonnegative real-valued (or
extended-real-valued) functions f and g on a nonempty subset A of Rn
is defined by

(26) (f +p g)(x) = (f(x)p + g(x)p)1/p ,

if −∞ < p 6= 0 <∞,

(27) (f +∞ g)(x) = max {f(x), g(x)} ,

and

(28) (f +−∞ g)(x) = min {f(x), g(x)} .

In the context of convex analysis, Seeger [28] appears to have been the
first to consider the pth sum, noting that if A is a nontrivial convex set,
Minkowski’s inequality implies that if p ≥ 1, then the pth sum of nonnega-
tive real-valued (or extended-real-valued) convex functions is again such a
function. For 1 ≤ p ≤ ∞, the operation +p, which we shall call Lp addition,
has all the properties listed in Section 5, where continuity is taken to be
pointwise continuity.

Suppose that ‖ · ‖ is a norm on R2. One can define

(29) (f +‖·‖ g)(x) = ‖ (f(x), g(x)) ‖.

Then (26) and (27) correspond to the Lp norm and L∞ norm, respectively.
Volle [29] noticed that when ‖ · ‖ is a monotone norm, i.e., ‖(x1, y1)‖≤
‖(x2, y2)‖ whenever x1 ≤ x2 and y1 ≤ y2, then the operation +‖·‖ still pre-
serves the convexity of nonnegative real-valued (or extended-real-valued)
functions.

Still more generally, let M be an arbitrary nonempty compact convex
set in Rm, m ≥ 2, and define the M-sum of functions f1, . . . , fm by

(30) ⊕M (f1, . . . , fm)(x) = hM (f1(x), . . . , fm(x)) .

Then (29) corresponds to the special case when M is a o-symmetric convex
body in R2, since every such set generates a norm on R2, and monotone
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norms derive from sets M such that the support function hM is increasing
in each variable.

Of course, the operations (26)–(30) still make sense as operations be-
tween arbitrary functions, provided the functions involved are replaced by
their absolute values where appropriate. However, even Lp addition does not
in general preserve convexity if p > 1 and the functions are not nonnegative.
In view of this, we can extend the definition of Lp addition to arbitrary
functions on Rn, by analogy with [12, Example 6.7], by setting

(31) (f +p g)(x) =

{
(max{f(x), 0}p + max{g(x), 0}p)1/p , if 1 < p <∞,

max{max{f(x), 0},max{g(x), 0}}, if p =∞.

Then, since max{f, 0} is a nonnegative convex function whenever f is con-
vex, the operation +p defined by (31) preserves convexity. It also has all the
properties listed in Section 5 (again where continuity is taken to be pointwise
continuity) except Property 6, the identity property.

For the remainder of this section, we assume that the dimension n is at
least 2.

As an operation between support functions, (30) was effectively intro-
duced in [12]. To explain this, we begin by recalling from [12, Section 6] that
if M is an arbitrary subset of Rm, m ≥ 2, the M -sum ⊕M (K1, . . . ,Km) of
arbitrary sets K1, . . . ,Km in Rn is defined by

⊕M (K1, . . . ,Km) =


m∑
j=1

ajx
(j) : x(j) ∈ Kj , (a1, . . . , am) ∈M


=
⋃
{a1K1 + · · ·+ amKm : (a1, . . . , am) ∈M} .

In [12, Theorem 6.5], it is proved that

(32) h⊕M (K1,...,Km)(x) = hM (hK1
(x), . . . , hKm

(x)) ,

for x ∈ Rn, holds either if K1, . . . ,Km ∈ Kns and M is a 1-unconditional
compact convex subset of Rm, or if K1, . . . ,Km ∈ Kn and M is a compact
convex subset of [0,∞)m. It follows that under these assumptions, the op-
eration ⊕M defined by (30) preserves support functions of compact convex
sets.

It appears that M -addition was first introduced, for centrally symmetric
compact convex sets K and L and a 1-unconditional convex body M in R2,
by Protasov [23, 24], motivated by work on the joint spectral radius in the
theory of normed algebras.
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An operation ∗ : (Kn)m → Kn is called projection covariant if

(∗(K1, . . . ,Km))|S = ∗(K1|S, . . . ,Km|S),

for any subspace S in Rn. Important examples are Minkowski addition and
Lp addition for p > 1. By [13, Theorem 3.3 and Corollary 3.4], an oper-
ation ∗ : (Kns )m → Kn is continuous and GL(n)-covariant if and only if it
is projection covariant, and such operations are precisely those defined for
all K1, . . . ,Km ∈ Kns by ∗(K1, . . . ,Km) = ⊕M (K1, . . . ,Km), where M is a
1-unconditional compact convex subset of Rm. In view of (30) and (32), we
have

h∗(K1,...,Km)(x) = h⊕M (K1,...,Km)(x)

= hM (hK1
(x), . . . , hKm

(x)) = ⊕M (hK1
, . . . , hKm

)(x),

for all K1, . . . ,Km ∈ Kns and all x ∈ Rn. In other words, a projection co-
variant operation between o-symmetric compact convex sets corresponds
to the pointwise operation of taking M -sums of their support functions.
Moreover, the equation h∗(K1,...,Km) = ∗(hK1

, . . . , hKm
) allows an operation

between compact convex sets to be transferred to one between their support
functions, and vice versa. In this context, [13, Lemma 3.2] says that pointwise
operations between support functions of o-symmetric compact convex sets,
with associated positively homogeneous function F , correspond precisely to
projection covariant operations between the sets themselves.

Without origin symmetry, the picture is more complicated. By [13, The-
orem 3.5 and Corollary 3.6], an operation ∗ : (Kn)m → Kn (or ∗ : (Kno )m →
Kn) is continuous and GL(n)-covariant if and only if it is projection covari-
ant, and the latter holds if and only if there is an M ∈ CC2m such that

(33) h∗(K1,...,Km)(x) = hM (h−K1
(x), hK1

(x), . . . , h−Km
(x), hKm

(x)) ,

for all K1, . . . ,Km ∈ Kn (or all K1, . . . ,Km ∈ Kno , respectively) and x ∈ Rn.
Note that in this case the right-hand side of (33) corresponds to a pointwise
operation that involves the support functions of the reflections in the origin
of the sets concerned as well.

However, suppose that an operation ∗ : (Kno )m → Kn is both projection
covariant and a pointwise operation between support functions with asso-
ciated function F when defined by ∗(hK1

, . . . , hKm
) = h∗(K1,...,Km). (An im-

portant example of such an operation is Orlicz addition; see [13, (5.2)] and
note that the associated function F in this case is defined implicitly. See
also Section 8 below.) Then there is an M ∈ CCm such that F = hM . To see
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this, let x ∈ Rn and K1, . . . ,Km ∈ Kno . Choose K ′1, . . . ,K
′
m ∈ Kno such that

hK′j (x) = hKj
(x) and hK′j (−x) = 0, j = 1, . . . ,m. Then, by (33),

F (hK1
(x), . . . , hKm

(x)) = F
(
hK′1(x), . . . , hK′m(x)

)
= (∗(hK′1 , . . . , hK′m))(x) = h∗(K′1,...,K′m)(x)

= hM (h−K′1(x), hK′1(x), . . . , h−K′m(x), hK′m(x))

= hM (0, hK1
(x), . . . , 0, hKm

(x)),

for all x ∈ Rn. Replacing M by its projection onto the {x2, x4, . . . , x2m}-
plane in R2m and identifying the latter with Rm, we see that

F (hK1
(x), . . . , hKm

(x)) = hM (hK1
(x), . . . , hKm

(x)),

for all x ∈ Rn and K1, . . . ,Km ∈ Kno , and hence F = hM .
An operation ∗ : (Sn)m → Sn is called section covariant if

(∗(K1, . . . ,Km)) ∩ S = ∗(K1 ∩ S, . . . ,Km ∩ S),

for any subspace S in Rn. Important examples are radial addition and, more
generally, pth radial addition for −∞ ≤ p 6= 0 ≤ ∞ [12, Section 5.4] and
radial Orlicz addition [14, 31]. A straightforward extension of the proof of
[12, Theorem 7.17] implies that if an operation ∗ : (Sns )m → Sn is positively
homogeneous and rotation and section covariant, then there is a function
F : [0,∞)m → [0,∞) such that

ρ∗(K1,...,Km)(x) = F (ρK1
(x), . . . , ρKm

(x)) ,

for allK1, . . . ,Km ∈ Sns and all x ∈ Rn \ {o}. In other words, such operations
between o-symmetric star sets correspond to pointwise operations between
their radial functions when defined by ∗(ρK1

, . . . , ρKm
) = ρ∗(K1,...,Km).

7. Pointwise operations on real-valued functions

Throughout this section, Φ(A) will be a class of real-valued functions on a
nonempty subset A of Rn, n ≥ 2.

Define

(34) D = {s ∈ R : f(x) = s for some f ∈ Φ(A) and x ∈ A}.

If Φ(A) is a cone, then D is also a cone and hence unless it is trivial, it must
be R, [0,∞), or (−∞, 0].
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Let α be a cardinal number such that α ≤ |D|, where |D| is the cardinal-
ity of the set D defined by (34). We say that Φ(A) has the α-point property
if whenever S ⊂ D has cardinality α, there is an injection φ : S → Φ(A) and
an x ∈ A such that (φ(s)) (x) = s for all s ∈ S.

Let ∗ be a pointwise operation on Φ(A)m, m ≥ 2, with associated func-
tion F . We call the set Dm ⊂ Rm the proper domain of F .

Any class Φ(A) containing the constant functions with values in D has
the α-point property for any α ≤ |D|. The same is true for any cone Φ(A)
of nonnegative functions. For cones of arbitrary functions, this is not true;
indeed, the cone generated by the functions f(t) = max{0, t} and g(t) =
min{0, t}, t ∈ R, does not even have the 2-point property. It is not difficult
to see that any cone that has the 2-point property also has the α-point
property for any α ≤ |D|.

Lemma 7.1. Let ∗ be a pointwise operation on Φ(A)m whose associated
function F has proper domain Dm.

(a) If Φ(A) is a cone with the 2-point property, then ∗ is positively homo-
geneous if and only if F is positively homogeneous on Dm.

(b) If Φ(A) has the ℵ0-point property, then ∗ is pointwise continuous if
and only if F is continuous on Dm.

(c) If m = 2 and Φ(A) has the 3-point property, then ∗ is associative if and
only if F is associative on D2, that is, F (F (s, t), u) = F (s, F (t, u)),
for s, t, u ∈ D.

Proof. All three stated properties of F clearly imply the corresponding prop-
erty of ∗, even without assuming an α-point property. We therefore only
consider the remaining implications.

(a) Since Φ(A) is a cone with the 2-point property, it has the α-point
property when α ≤ |D|, and D is also a cone. Given s1, . . . , sm ∈ D, choose
fj ∈ Φ(A) and x ∈ A such that fj(x) = sj , j = 1, . . . ,m. Let r ≥ 0. Then

F (rs1, . . . , rsm) = F (rf1(x), . . . , rfm(x)) = (∗(rf1, . . . , rfm)) (x)

= r(∗(f1, . . . , fm))(x) = rF (f1(x), . . . , fm(x))

= rF (s1, . . . , sm).

(b) Given sij ∈ D, i ∈ N ∪ {0}, j = 1, . . . ,m, such that sij → s0j as i→
∞ for j = 1, . . . ,m, choose fij ∈ Φ(A) and x ∈ A such that fij(x) = sij ,
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i ∈ N ∪ {0}, j = 1, . . . ,m. Then

F (si1, . . . , sim) = F (fi1(x), . . . , fim(x)) = (∗(fi1, . . . , fim))(x)

→ (∗(f01, . . . , f0m))(x) = F (f01(x), . . . , f0m(x))

= F (s01, . . . , s0m),

as i→∞.
(c) Given s, t, u ∈ D, choose f, g, h ∈ Φ(A) and x ∈ A such that f(x) = s,

g(x) = t, and h(x) = u. Then

F (F (s, t), u) = F (F (f(x), g(x)) , h(x))

= ((f ∗ g) ∗ h) (x) = (f ∗ (g ∗ h)) (x) = F (s, F (t, u)) . �

We say that Φ(A) has the point separation property (or strict point
separation property) if whenever f(x) ≤ g(x) (or f(x) < g(x), respectively)
for some f, g ∈ Φ(A) and x ∈ A, there are f, g ∈ Φ(A) with f(x) = f(x),
g(x) = g(x), and f ≤ g (or f < g, respectively).

Any class Φ(A) containing the constant functions with values in D has
the point separation property and strict point separation property. Also, any
cone Φ(A) of nonnegative functions (or of negative functions) has the point
separation property. Another example is provided by the following lemma,
which will find use later. Notation for the various classes of functions is
defined in Section 2. Recall that for classes Cvx(A) or Cvx+(A), it is always
assumed that A is a nontrivial convex set in Rn.

Lemma 7.2. Let Φ(A) be Cvx(A), Cvx+(A), Supp(Rn), or Supp+(Rn).
Then Φ(A) has the α-point property, for each α ≤ |R|, and the point sepa-
ration property.

Proof. Since Cvx(A) contains all the constant functions, and Cvx+(A) and
Supp+(Rn) are cones of nonnegative functions, our remarks above show that
the lemma holds for these three classes.

Let Φ(A) = Supp(Rn). The α-point property for any α ≤ |R| follows eas-
ily by fixing x = e1 and setting φ(s) = h{se1} for s ∈ S ⊂ R in the definition
of this property. For the point separation property, suppose that K,L ∈ Kn,
x ∈ Rn, and hK(x) ≤ hL(x). Choose K,L ∈ Kn such that hK(x) = hK(x),
hL(x) = hL(x), and K ⊂ L. Then hK ≤ hL, as required. �

By our earlier remarks, Cvx(A) and Cvx+(A) have the strict point sep-
aration property, but Supp(Rn) and Supp+(Rn) do not, since all such func-
tions vanish at the origin.
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Lemma 7.3. Let ∗ be a pointwise operation on Φ(A)m, m ≥ 2, whose as-
sociated function F has proper domain Dm and assume that Φ(A) has the
2m-point property and the point separation property (or strict point sepa-
ration property). Then ∗ is monotonic (or strictly monotonic, respectively)
if and only if F is increasing (or strictly increasing, respectively) in each
variable on Dm.

Proof. If F is increasing (or strictly increasing) in each variable on Dm, then
∗ is clearly monotonic (or strictly monotonic, respectively).

Suppose that ∗ is monotonic. Given sj , tj ∈ D with sj ≤ tj , j = 1, . . . ,m,
use the 2m-point property to choose fj , gj ∈ Φ(A) and x ∈ A such that
fj(x) = sj and gj(x) = tj , j = 1, . . . ,m. Using the point separation prop-
erty, we may assume without loss of generality that fj ≤ gj , j = 1, . . . ,m.
Then

F (s1, . . . , sm) = F (f1(x), . . . , fm(x)) = (∗(f1, . . . , fm))(x)

≤ (∗(g1, . . . , gm))(x) = F (g1(x), . . . , gm(x)) = F (t1, . . . , tm).

The case when ∗ is strictly monotonic follows in a similar fashion. �

Theorem 7.4. Let Φ(A) be a cone of nonnegative functions and let ∗ :
Φ(A)2 → Φ(A) be a pointwise operation. Suppose that ∗ is positively homo-
geneous, either monotonic or pointwise continuous, and associative. Then
for all f, g ∈ Φ(A) and x ∈ A, we have (f ∗ g)(x) = F (f(x), g(x)), where F
is either one of the six types of functions listed in Corollary 4.2 or one of
the three types of functions listed in Proposition 3.2, respectively.

Proof. Let F be the function associated with ∗. The assumptions imply
that F is nonnegative and has proper domain [0,∞)2 and that Φ(A) has the
ℵ0-point property and the point separation property. If ∗ : Φ(A)2 → Φ(A)
is positively homogeneous, pointwise continuous, monotonic, or associative,
then by Lemma 7.1(a),(b),(c) and Lemma 7.3, F is positively homogeneous,
continuous, increasing in each variable, or associative, respectively. The con-
clusion follows from Proposition 3.2 and Corollary 4.2. �

The following simple lemma provides circumstances in which the positive
homogeneity of ∗ is guaranteed.

Lemma 7.5. Let Φ(A) ⊂ Ψ(A) be classes of positively homogeneous func-
tions on A and let ∗ : Φ(A)m → Ψ(A) be a pointwise operation. If Φ(A) is
a cone, then ∗ is positively homogeneous.



i
i

“5-Gardner” — 2018/8/20 — 17:53 — page 820 — #34 i
i

i
i

i
i

820 R. J. Gardner and M. Kiderlen

Proof. Let F be the function associated with ∗. If r ≥ 0, then for f, g ∈ Φ(A),
f ∗ g ∈ Ψ(A) is positively homogeneous and hence

r(f ∗ g)(x) = (f ∗ g)(rx) = F (f(rx), g(rx))

= F (rf(x), rg(x)) = (rf ∗ rg)(x),

for all x ∈ A, so ∗ is positively homogeneous. �

The assumptions on Φ(A) in the next theorem are satisfied if Φ(A) is a
cone containing the constant functions.

Theorem 7.6. Let Φ(A) be a cone and let ∗ : Φ(A)2 → Φ(A) be a pointwise
operation whose associated function F has proper domain R2. Suppose that
Φ(A) has the 2-point property and the point separation property, and that ∗
is positively homogeneous, monotonic, and associative. Then for all f, g ∈
Φ(A) and x ∈ A, we have (f ∗ g)(x) = F (f(x), g(x)), where F is one of the
40 types of functions listed in Theorem 4.7.

Proof. Since Φ(A) is a cone with the 2-point property, it also has the 3-point
property. Let F be the function associated with ∗. If ∗ : Φ(A)2 → Φ(A) is
positively homogeneous, monotonic, or associative, then by Lemma 7.1(a),(c)
and Lemma 7.3, F is positively homogeneous, increasing in each variable,
or associative, respectively. The conclusion follows from Theorem 4.7. �

Example 7.7. In each of the following examples, we assume that Φ(A) is
a cone of functions on a nonempty set A in Rn and that either functions
in Φ(A) are nonnegative or Φ(A) contains the constant functions. We will
make use of the functions H1, H2, and H3 defined before Corollary 4.8.

(a) Choose x0 ∈ A and define

(f ∗ g)(x) = f(x0) + g(x),

for all f, g ∈ Φ(A) and x ∈ A. Then ∗ is positively homogeneous, pointwise
continuous, monotonic, and associative, but not pointwise. This shows that
the pointwise property cannot be dropped in Theorems 7.4 and 7.6.

(b) Define

(f ∗ g)(x) = H1(f(x), g(x)) = 1,

for all f, g ∈ Φ(A) and x ∈ A. Then ∗ is pointwise continuous, monotonic,
and associative, but not positively homogeneous. This shows that the latter
property cannot be omitted in Theorems 7.4 and 7.6.
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(c) Define (f ∗ g)(x) = H2(f(x), g(x)), for all f, g ∈ Φ(A) and x ∈ A. By
Lemmas 7.1 and 7.3, the operation ∗ is positively homogeneous and asso-
ciative, but not monotonic and not pointwise continuous. This shows that
pointwise continuity and monotonicity cannot be omitted in Theorems 7.4
and 7.6.

(d) Define

(f ∗ g)(x) = H3(f(x), g(x)) = 2f(x) + g(x),

for all f, g ∈ Φ(A) and x ∈ A. Then ∗ is positively homogeneous, pointwise
continuous, and monotonic, but not associative. This shows that associativ-
ity cannot be dropped in Theorems 7.4 and 7.6.

The operation ∗ in Theorems 7.4 and 7.6 need not be commutative, even
if ∗ is pointwise continuous and monotonic, as is shown by the operation ∗
with associated function F = Π1, for example. In particular, the associated
function need not be of the form (6).

Theorem 7.8. Let ∗ : Φ(A)2 → Φ(A) be a pointwise operation whose asso-
ciated function F has proper domain D2, where D ⊂ R is an interval open
on one side. Suppose that Φ(A) has the ℵ0-point property and the strict point
separation property. Then ∗ is pointwise continuous, strictly monotonic, and
associative if and only if there is a continuous and strictly monotonic func-
tion φ : D → R, such that for all f, g ∈ Φ(A) and x ∈ A, we have

(35) (f ∗ g)(x) = φ−1 (φ(f(x)) + φ(g(x))) .

Proof. By Lemmas 7.1 and 7.3, the operation ∗ is pointwise continuous,
strictly monotonic, and associative if and only if its associated function F is
continuous, strictly increasing in each variable, and associative. In view of
Proposition 3.5, this yields the assertion. �

Let m ≥ 2. We say that Φ(A) has the m-linear interpolation property
with associated subclass Γ(A) if there is a Γ(A) ⊂ Φ(A) such that for all
sj , tj ∈ D, j = 1, . . . ,m, there are fj ∈ Γ(A) and x, y ∈ A such that fj(x) =
sj , fj(y) = tj , and fj is linear on [x, y], for j = 1, . . . ,m.

Note that if Φ(A) has them-linear interpolation property with associated
subclass Γ(A), then Φ(A) also has the m-point property, and since m ≥ 2,
if Φ(A) is a nontrivial cone this extends to the α-point property, for any
α ≤ |R|.
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If Φ(A) has the m-linear interpolation property with associated subclass
Γ(A), then D is an interval, because if s1, t1 ∈ D and 0 ≤ λ ≤ 1, we can
choose f ∈ Γ(A) and x, y ∈ A such that f(x) = s1, f(y) = t1, and

(1− λ)s1 + λt1 = (1− λ)f(x) + λf(y) = f ((1− λ)x+ λy) ∈ D.

Remark 7.9. (a) For each m ≥ 2, the class Cvx(A) has the m-linear inter-
polation property with the affine functions on A as the associated subclass.

(b) If A is compact and m ≥ 2, then Cvx+(A) also has the m-linear inter-
polation property with the nonnegative affine functions on A as the associ-
ated subclass. If A is arbitrary, then functions of the form f(x) = a‖x0 − x‖,
where x0 ∈ Rn and a > 0, restricted to A, can serve as the associated sub-
class.

(c) For eachm ≥ 2, the class Supp(Rn) (or Supp+(Rn)), for whichD = R
(or D = [0,∞), respectively), has the m-linear interpolation property with
the support functions of singletons (or line segments, respectively) as the
associated subclass. Indeed, let sj , tj ∈ R, j = 1, . . . ,m. Then we may take
x = e1, y = e2, and fj = h{sje1+tje2} (or fj = h[o,sje1+tje2], respectively).

Lemma 7.10. Let Φ(A) be a class of functions on a nontrivial convex set
A in Rn, let m ≥ 2, and let Φ(A) have the m-linear interpolation property
with associated subclass Γ(A). Suppose that ∗ is a pointwise operation on
Φ(A)m whose associated function F has proper domain Dm. Consider the
statements:

(a) ∗(f1, . . . , fm) ∈ Cvx(A), for all f1, . . . , fm ∈ Φ(A);
(b) ∗(f1, . . . , fm) ∈ Cvx(A), for all f1, . . . , fm ∈ Γ(A);
(c) F is convex on Dm.
Then (a)⇒ (b)⇒ (c). If ∗ is monotonic, Φ(A) ⊂ Cvx(A), and Φ(A) has

the 2m-point property and the point separation property, then (a)⇔ (b)⇔
(c).

Proof. Clearly, (a) implies (b). Suppose (b) holds. Let sj , tj ∈ D, j = 1, . . . ,
m, and let 0 ≤ λ ≤ 1. Set s = (s1, . . . , sm) and t = (t1, . . . , tm). Choose fj ∈
Γ(A) and x, y ∈ A such that fj(x) = sj and fj(y) = tj , with fj linear on
[x, y]. Then

fj ((1− λ)x+ λy) = (1− λ)fj(x) + λfj(y) = (1− λ)sj + λtj ,
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for j = 1, . . . ,m. Let H(z) = (∗(f1, . . . , fm))(z) = F (f1(z), . . . , fm(z)), for
all z ∈ A. By assumption, H is convex, so

F ((1− λ)s+ λt) = F ((1− λ)s1 + λt1, . . . , (1− λ)sm + λtm)

= F (f1 ((1− λ)x+ λy) , . . . , fm ((1− λ)x+ λy))

= H ((1− λ)x+ λy) ≤ (1− λ)H(x) + λH(y)

= (1− λ)F (f1(x), . . . , fm(x)) + λF (f1(y), . . . , fm(y))

= (1− λ)F (s) + λF (t).

This proves that F is convex on Dm, so (c) is true.
Now suppose that ∗ is monotonic, Φ(A) ⊂ Cvx(A), Φ(A) has the 2m-

point property and the point separation property, and (c) holds. Let fj ∈
Φ(A), j = 1, . . . ,m, let x, y ∈ A, and let 0 ≤ λ ≤ 1. By Lemma 7.3, F is
increasing in each variable. Using this and the convexity of fj and F , we
obtain

(∗(f1, . . . , fm)) ((1− λ)x+ λy)

= F (f1 ((1− λ)x+ λy) , . . . , fm ((1− λ)x+ λy))

≤ F ((1− λ)f1(x) + λf1(y), . . . , (1− λ)fm(x) + λfm(y))

= F ((1− λ) (f1(x), . . . , fm(x)) + λ (f1(y), . . . , fm(y)))

≤ (1− λ)F (f1(x), . . . , fm(x)) + λF (f1(y), . . . , fm(y))

= (1− λ)(∗(f1, . . . , fm))(x) + λ(∗(f1, . . . , fm))(y).

This shows that ∗(f1, . . . , fm) is convex, so (a) holds. �

Lemma 7.11. Let Φ(A) be Cvx(A), Cvx+(A), Supp(Rn), or Supp+(Rn).
If ∗ : Φ(A)m → Cvx(A), m ≥ 2, is a pointwise operation, then the associated
function F is increasing in each variable and hence ∗ is monotonic.

Proof. Suppose that Φ(A) is Cvx(A) or Cvx+(A). Let s1, . . . , sm, t1 ∈ D
with s1 < t1 be given. Define fj ≡ sj on A, for j = 2, . . . ,m, and choose
a convex function f1 on A and x, y ∈ A such that f1(x) = f1(y) = t1 and
f1((x+ y)/2) = s1. By assumption, the function

H(z) = F (f1(z), s2, . . . , sm)

= F (f1(z), . . . , fm(z)) = (∗(f1, . . . , fm))(z),
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for z ∈ A, is convex. Therefore

F (s1, . . . , sm) = F

(
f1

(
x+ y

2

)
, s2, . . . , sm

)
= H

(
x+ y

2

)
≤ 1

2
H(x) +

1

2
H(y) = F (t1, s2, . . . , sm).

Hence F is increasing in the first variable, and similarly F is increasing in
the other variables. Thus F is increasing in each variable. By Lemma 7.2,
we can apply Lemma 7.3 to conclude that ∗ is monotonic.

Now suppose that Φ(A) is Supp(Rn) or Supp+(Rn). Let s1, . . . , sm, t1 ∈
D with s1 < t1 be given. Let

K =

{
conv {0, (2s1 − t1)e1 + t1e2, t1e1 + (2s1 − t1)e2}, if s1 ≥ 0,

[(2s1 − t1)e1 + t1e2, t1e1 + (2s1 − t1)e2], if s1 < 0,

f1 = hK , x = e1, and y = e2. When Φ(A) is Supp+(Rn), then s1 ∈ D =
[0,∞), so o ∈ K. Then a routine calculation shows that we again have
f1(x) = f1(y) = t1 and f1((x+ y)/2) = s1. If fj = h{sj(e1+e2)}, j = 2, . . . ,m,
then fj(x) = fj((x+ y)/2) = fj(y) = sj , for j = 2, . . . ,m. With these ex-
pressions in hand, the argument follows that in the previous paragraph. �

Lemma 7.12. Let F : [0,∞)m → R, m ≥ 2 be a positively homogeneous
and convex function. If F is increasing in each variable, then there is an M ∈
Km such that F = hM on [0,∞)m and hM is increasing in each variable.

Proof. For s1, . . . , sm ∈ R, let

G(s1, . . . , sm) = F (s+
1 , . . . , s

+
m),

where t+ = max{t, 0} is the positive part of t. Then G = F on [0,∞)m and it
is easy to check, using the properties of F and the fact that the positive part
function is convex, that G is positively homogeneous and convex on Rm. It
then follows that there is an M ∈ Km such that G = hM and hence F = hM
on [0,∞)m. Using the fact that the positive part function is increasing, we
see that G = hM is also increasing in each variable. �

Example 7.13. The assumption that F is increasing in each variable in
Lemma 7.12 is essential. Indeed, [17, Theorem 2.2] implies that if C is
a cone with nonempty interior properly contained in Rn, then there is a
positively homogeneous and convex function F on C that cannot be ex-
tended to the support function of a set in Kn. A specific example is the
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function F (x1, x2) = x1 + x2 − 2
√
x1x2, for x1, x2 ≥ 0, which is the sup-

port function of the unbounded closed convex set M = {(x1, x2) ∈ R2 : x2 ≤
x1/(x1 − 1), x1 < 1}.

Theorem 7.14. Let Φ(A) ⊂ Cvx(A) be a cone and let ∗ be a pointwise
operation on Φ(A)m, m ≥ 2, that is positively homogeneous. Let Dm be the
proper domain of the function F associated with ∗. Suppose that Φ(A) has
the m-linear interpolation property with associated subclass Γ(A), and that
∗(f1, . . . , fm) ∈ Cvx(A), whenever f1, . . . , fm ∈ Γ(A). If

(a) D = {0}, or D = R, or
(b) D = [0,∞), Φ(A) has the point separation property, and ∗ is mono-

tonic,

then there is an M ∈ Km such that

(36) (∗(f1, . . . , fm))(x) = hM (f1(x), . . . , fm(x)) ,

for all f1, . . . , fm ∈ Φ(A) and all x ∈ A.
If in addition ∗(f1, . . . , fm) ≥ 0 whenever f1, . . . , fm ∈ Γ(A), then (36)

holds with M ∈ Kmo .

Proof. Since the cone Φ(A) has the m-linear interpolation property with
associated subclass Γ(A) ⊂ Φ(A), it also has the α-point property for any
α ≤ |D|. By Lemma 7.1(a), the function F associated with ∗ is positively
homogeneous on its proper domain Dm, where D is a cone in R, i.e., D ∈
{{0}, (−∞, 0], [0,∞),R}. Our assumptions and Lemma 7.10 imply that F
is convex on Dm. When (a) holds, the case D = {0} is trivial and if D = R,
then F : Rm → R is a positively homogeneous convex function, so there is
an M ∈ Km with F = hM . (This follows from the continuity of F and [25,
Theorem 13.2].) Thus (36) holds.

If (b) holds, Lemma 7.3 implies that F is increasing in each variable on
[0,∞)m. Then Lemma 7.12 yields an M ∈ Km such that F = hM .

To prove the last statement, suppose that ∗(f1, . . . , fm) ≥ 0 whenever
f1, . . . , fm ∈ Γ(A). Since Φ(A) has the m-linear interpolation property with
associated subclass Γ(A), given sj ∈ D, j = 1, . . . ,m, there are fj ∈ Γ(A)
and x ∈ A such that fj(x) = sj , j = 1, . . . ,m. Then

hM (s1, . . . , sm) = F (f1(x), . . . , fm(x)) = (∗(f1, . . . , fm))(x) ≥ 0.

This implies that the set M in (36) may be replaced by conv (M ∪ {o}) ∈
Kmo . �
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Examples 7.7(a) and (b) show that the pointwise and positive homo-
geneity assumptions cannot be dropped in Theorem 7.14. The assumption
that ∗ is monotonic in Theorem 7.14(b) also cannot be dropped. To see this,
recall that by Remark 7.9(b) with A = Bn, if m ≥ 2, then Cvx+(Bn) has the
m-linear interpolation property with associated subclass Γ(Bn) consisting
of the nonnegative affine functions on Bn. The operation ∗ : Cvx+(Bn)2 →
Cvx+(Bn) with associated function

F (s, t) =

{
0, if st > 0,

max{s, t}, otherwise,

for s, t ∈ D = [0,∞), is positively homogeneous and has the property that
f ∗ g ∈ Cvx+(Bn), for all f, g ∈ Γ(Bn). But if (36) held, then hM (s, t) =
F (s, t) = 0, for s, t > 0 would imply M ⊂ (−∞, 0]2, which contradicts
hM (1, 0) = F (1, 0) = 1.

Theorem 7.15. Let Φ(A) be Cvx(A) or Supp(Rn). The following are equiv-
alent.

(a) The operation ∗ : Φ(A)m → Φ(A), m ≥ 2, is pointwise and positively
homogeneous.

(b) There is an M ∈ Km with M ⊂ [0,∞)m such that ∗ = ⊕M , i.e., (36)
holds for all f1, . . . , fm ∈ Φ(A) and all x ∈ A.

When Φ(A) = Supp(Rn), the assumption of positive homogeneity can be
omitted.

All the above statements hold when Cvx(A) and Supp(Rn) are replaced
by Cvx+(A) and Supp+(Rn), respectively, where in (b) M ∈ Kmo is 1-
unconditional (or, equivalently, the intersection of a 1-unconditional com-
pact convex set with [0,∞)m).

Proof. First we show that (a)⇒(b). Clearly, all four classes Φ(A) under con-
sideration have the point separation property and the m-linear interpolation
property with associated subclass Γ(A) = Φ(A). By Lemma 7.11, F is in-
creasing in each variable and ∗ is monotonic, so Theorem 7.14 implies that
(36) holds, where hM = F is increasing in each variable.

Now assume that Φ(A) is Cvx(A) or Supp(Rn). As hM is increasing,
hM (−ej) ≤ hM (0) = 0, for 1 ≤ j ≤ m. This implies M ⊂ [0,∞)m.

In the remaining cases, Φ(A) only contains nonnegative functions, so
M ∈ Kmo by the last statement in Theorem 7.14. Using the fact that hM
is increasing in each variable, its subadditivity is inherited by the function
G(s1, . . . , sm) = hM (|s1|, . . . , |sm|), for s1, . . . , sm ∈ R. (See [13, p. 440] for
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a similar argument.) Consequently, G is the support function of some M ′ ∈
Km, which must be 1-unconditional due to the symmetry of G. As hM = hM ′

on [0,∞)m, (36) holds with M replaced by M ′.
If Φ(A) consists of support functions, then ∗ is positively homogeneous,

by Lemma 7.5, so this assumption can be omitted.
For (b)⇒(a), note that the operation ⊕M is pointwise and positively

homogeneous, so it suffices to show that ⊕M : Φ(A)m → Φ(A) when M has
the stated properties. To this end, we first claim that the right-hand side
of (36) is a convex function. By Lemma 7.10, it suffices to show that hM is
increasing in each variable. To see this, recall that by (5), we have

hM (s1, . . . , sm) = sup{s1x1 + · · ·+ smxm : (x1, . . . , xm) ∈M}.

If M ⊂ [0,∞)m, then xj ≥ 0, for j = 1, . . . ,m, so hM is increasing on Rm.
If, on the other hand, M is 1-unconditional and sj ≥ 0, j = 1, . . . ,m, the
supremum is attained for some xj ≥ 0, j = 1, . . . ,m, so hM is increasing on
[0,∞)m.

Therefore ∗(f1, . . . , fm) is a convex function, for all f1, . . . , fm ∈ Φ(A),
where Φ(A) is any of the four classes under consideration. This completes the
proof when Φ(A) = Cvx(A). When Φ(A) = Cvx+(A), we have M ∈ Kmo and
hence ∗(f1, . . . , fm) is also nonnegative. If Φ(A) is Supp(Rn) or Supp+(Rn),
then [12, Corollary 6.6] and M ⊂ [0,∞)m (or M ∩ [0,∞)m ⊂ [0,∞)m for the
1-unconditional M ∈ Kno , respectively) imply that ∗(f1, . . . , fm) ∈ Φ(A). �

We can now characterize Volle’s operations (29).

Theorem 7.16. Let Φ(A) be Cvx+(A) or Supp+(Rn). The following are
equivalent.

(a) The operation ∗ : Φ(A)2 → Φ(A) is pointwise and positively homoge-
neous.

(b) Either f ∗ g = af or f ∗ g = ag, for some a ≥ 0 and all f, g ∈ Φ(A),
or there is a monotone norm ‖ · ‖ such that

(f ∗ g)(x) = (f +‖·‖ g)(x) = ‖(f(x), g(x))‖,(37)

for all f, g ∈ Φ(A) and x ∈ A.

When Φ(A) = Supp+(Rn), the assumption of positive homogeneity can
be omitted.

Proof. If (a) holds, then by Theorem 7.15 with m = 2, there is a 1-
unconditional M ∈ K2

o such that (f ∗ g)(x) = hM (f(x), g(x)), for all f, g ∈
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Φ(A) and x ∈ A. If M is not full dimensional, then it must be a (possibly
degenerate) o-symmetric line segment parallel to one of the coordinate axes.
This implies that either f ∗ g = af or f ∗ g = ag, for some a ≥ 0. Otherwise,
M ′ is an o-symmetric convex body and hM ′ = ‖ · ‖ is a monotone norm.

The converse is clear since all the latter operations are positively homo-
geneous. �

Theorem 7.17. Let Φ(A) be Cvx+(A) or Supp+(Rn). The following are
equivalent.

(a) The operation ∗ : Φ(A)2 → Φ(A) is pointwise, positively homogeneous,
and associative.

(b) Either f ∗ g = 0, or f ∗ g = f , or f ∗ g = g, for all f, g ∈ Φ(A), or
f ∗ g = f +p g, for some 1 ≤ p ≤ ∞ and all f, g ∈ Φ(A).

When Φ(A) = Supp+(Rn), the assumption of positive homogeneity can
be omitted.

Proof. If (a) holds, the operation ∗ must be one of the operations listed in
Theorem 7.16. It follows that its associated function F is positively homo-
geneous, continuous, and associative. Then F must be one of the functions
listed in Proposition 3.2. However, the cases when 0 6= p < 1 are excluded
since these do not preserve convexity.

The converse is clear since all the listed operations are positively homo-
geneous and associative. �

Theorem 7.18. Let Φ(A) be Cvx(A) or Supp(Rn). The following are equiv-
alent.

(a) The operation ∗ : Φ(A)2 → Φ(A) is pointwise, positively homogeneous,
and associative.

(b) Either f ∗ g = 0, or f ∗ g = f , or f ∗ g = g, or (f ∗ g)(x) =
max{f(x), 0}, or (f ∗ g)(x) = max{g(x), 0}, or f ∗ g = f + g, for all
f, g ∈ Φ(A), or there are 1 ≤ p ≤ ∞ and −∞ ≤ q ≤ 0 such that

(38) (f ∗ g)(x) =


(f +p g)(x), if f(x), g(x) ≥ 0,

f(x), if f(x) ≥ 0, g(x) < 0,

g(x), if f(x) < 0, g(x) ≥ 0,

− (|f |+q |g|) (x), if f(x), g(x) < 0,

for all f, g ∈ Φ(A) and x ∈ A.

When Φ(A) = Supp(Rn), the assumption of positive homogeneity can be
omitted.
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Proof. Suppose that (a) holds. By Lemma 7.1(c), Theorem 7.15, and the
continuity of support functions, (36) holds, where the function hM : R2 → R
is positively homogeneous, continuous, associative. By Lemma 7.11, hM is
also increasing in each variable. Then hM must be one of the 40 functions
listed in Theorem 4.7. By Remark 7.9(b),(c) and Lemma 7.10, hM must be
convex. However, the only nonzero convex functions among the 40 listed are
the first and second functions in (12), with G = M0, which can be written as
F (s, t) = max{s, 0} and F (s, t) = max{t, 0}, respectively; the first function
in (13), with p ≥ 1 and G = Mq, where q ≤ 0, which leads to (38); the two
functions in (16), namely F (s, t) = s and F (s, t) = t; and the function in
(17), with p = 1 and t0 = −1, which is just F (s, t) = s+ t. (To check the
convexity of the first function in (13), with p ≥ 1 and G = Mq, where q ≤ 0,
one shows that the Hessian of F vanishes and Fss ≥ 0 for s, t < 0, and notes
that Fs = 1 on the coordinate axes.)

The converse is clear since all the listed operations are positively homo-
geneous and associative. �

It is interesting to identify the compact convex sets M in R2 whose
support functions hM in (36) give rise to the seven operations provided by
Theorem 7.18. They are, in order: M = {o}, M = {e1}, M = {e2}, M =
[o, e1], M = [o, e2], M = {e1 + e2}, and for (38), M equal to one of a family
of convex bodies satisfying [e1, e2] ⊂M ⊂ [0, 1]2. In the latter case, if q = 0,
then M is the part of the unit ball in l2p′ contained in [0,∞)2, where 1/p+
1/p′ = 1, and this corresponds to the general Lp addition defined by (31).
All these sets M are contained in [0,∞)2 and the corresponding operations
in Theorem 7.18 represent a new family that play the same role for arbitrary
convex functions as Lp addition does for nonnegative convex functions.

Examples 7.7(a), (b), and (d) define operations that preserve nonnega-
tivity and convexity. Thus Examples 7.7(a) and (b) show that the pointwise
and positive homogeneity assumptions cannot be omitted in Theorems 7.15,
7.16, 7.17, and 7.18, and the associativity assumption in Theorems 7.17
and 7.18 cannot be removed due to Example 7.7(d).

Lemma 7.19. Let ∗ : (Kno )2 → Kno be an arbitrary operation such that

(39) r(pK ∗ qK) = (rpK) ∗ (rqK),

for all K ∈ Kno and r > 0 and some p, q > 0 with p 6= q. If ∗ has an identity
I ∈ Kno such that I ∗K = K = K ∗ I, for all K ∈ Kno , then I = {o}. The
same holds true for operations ∗ : (Kn)2 → Kn.
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Proof. Taking r = 1/p in (39), we obtain

r(pI ∗ qI) = (rpI) ∗ (rqI) = I ∗ (rqI) = rqI,

and hence pI ∗ qI = qI. With r = 1/q instead, we get pI ∗ qI = pI, so pI =
qI. Since p 6= q and I ∈ Kno (or I ∈ Kn, as appropriate), it follows that I =
{o}. �

The following result is in the spirit of [12, Theorem 7.9]; note that the
latter deals only with operations between o-symmetric sets.

Theorem 7.20. Let ∗ : (Kno )2 → Kno be defined by

(40) hK∗L(x) = F (hK(x), hL(x)),

for some F : [0,∞)2 → [0,∞) and all K,L ∈ Kno and x ∈ Rn. Then F = hM
for some 1-unconditional M ∈ Kno . Furthermore,

(a) ∗ is associative if and only if F is given by one of the four operations
in Theorem 7.17(b) with f = hK and g = hL, where hK∗L = hK ∗ hL;

(b) ∗ is associative and has an identity if and only if ∗ = +p, for some
1 ≤ p ≤ ∞.

For operations ∗ : (Kn)2 → Kn satisfying (40) for some F : R2 → R and all
K,L ∈ Kn and x ∈ Rn, we have F = hM for some M ∈ Kn such that M ⊂
[0,∞)2. In this case,

(c) ∗ is associative if and only if F is given by one of the seven operations
in Theorem 7.18(b) with f = hK and g = hL, where hK∗L = hK ∗ hL;

(d) ∗ is associative and has an identity if and only if ∗ = +.

Proof. Let ∗ : (Kno )2 → Kno be defined by (40). Define a pointwise operation
� : Supp+(Rn)2 → Supp+(Rn) by hK � hL = hK∗L. In view of (40), the first
statement in the theorem follows directly from Theorem 7.15 with ∗ replaced
by �. It is easy to check that � is associative or has the identity property if
∗ is associative or has an identity, respectively, where in the latter case we
can appeal to Lemma 7.19 to see that the identity must be {o}. Then (a)
and (b) are consequences of Theorem 7.17.

The argument for operations ∗ : (Kn)2 → Kn is similar, where Theo-
rem 7.18 is used instead of Theorem 7.17; note the operation in (38) does
not have the identity property. �

Of the seven operations mentioned in Theorem 7.20(c), the one corre-
sponding to (38) seems to be new. It is easily seen to be continuous in the
Hausdorff metric and GL(n) covariant. As was remarked above, M is one of



i
i

“5-Gardner” — 2018/8/20 — 17:53 — page 831 — #45 i
i

i
i

i
i

Operations between functions 831

a family of convex bodies satisfying [e1, e2] ⊂M ⊂ [0, 1]2; the new operation
represents a spectrum, parameterized by q, of extensions of Lp addition to
arbitrary compact convex sets. The case q = 0 corresponds to the extension
given in [12, Example 6.7], but this is essentially just the usual Lp addi-
tion applied to the convex hulls of sets with the origin. We suggest the case
q = −∞ instead as the most natural extension. It has the advantage, for
example, of preserving convexity, unlike the extension proposed by Lutwak,
Yang, and Zhang in [19] (see also [12, p. 2311]).

Another continuous, associative, andGL(n)-covariant operation ∗ : (Kn)2

→ Kn different from Lp addition is given in [12, Example 9.5]. Of course,
both operations must coincide with Lp addition when restricted to the o-
symmetric sets, by [12, Corollary 7.10] (or Theorem 7.17). Note that while
Theorem 7.20 can be regarded as a contribution to the understanding of
projection covariant operations between arbitrary compact convex sets, the
role of associativity is still not completely clear, since the general form of
such operations is (33).

Theorem 7.21. Let ∗ : Cvx(A)2 → Cvx(A) be a pointwise operation. The
following statements are equivalent:

(a) ∗ is strictly monotonic, associative, and satisfies 0 ∗ 0 = 0;
(b) ∗ has the identity property;
(c) f ∗ g = f + g, for all f, g ∈ Cvx(A).

Proof. If (a) holds, then Lemma 7.10 shows that the function F : R2 → R
associated with ∗ is convex and hence continuous on R2. By Lemma 7.1(b),
∗ is also pointwise continuous, so Theorem 7.8 implies that there is a φ :
R→ R such that (35) holds. If φ(0) = a, then since 0 ∗ 0 = 0 we have 0 =
(0 ∗ 0)(x) = φ−1(2a), for any x ∈ A, so φ(0) = 2a and hence a = 0. Then (b)
follows directly from (35) and φ(0) = 0.

Assume that (b) holds. Again by Lemma 7.10, the function F : R2 → R
associated with ∗ is convex, and since ∗ has the identity property, we have
F (s, 0) = s and F (0, t) = t, for all s, t ∈ R. If G(s, t) = F (s, t)− s− t, then
G is also convex on R2 and vanishes on the coordinate axes. For s, t ∈
R with st 6= 0, choose s0, t0 ∈ R such that (s, t) lies on the line segment
[(s0, 0), (0, t0)]. Since G(s0, 0) = G(0, t0) = 0, the convexity of G implies that
G(s, t) ≤ 0. If G(s, t) < 0, we can choose s1, t1 ∈ R such that the relative in-
terior of the line segment [(s, t), (s1, t1)] meets one of the coordinate axes,
say at (s2, t2). Now the convexity of G implies that G(s2, t2) < 0, a contra-
diction. Hence G ≡ 0 and so F (s, t) = s+ t, yielding f ∗ g = f + g for all
f, g ∈ Cvx(A). Therefore (c) holds.
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Since (c) obviously implies (a), the proof is complete. �

Example 7.22. Define

(f ∗ g)(x) = log
(
ef(x) + eg(x)

)
,

for all f, g ∈ Cvx(Rn) and x ∈ Rn. The function F (s, t) = log(es + et), s, t ∈
R, is convex and (strictly) increasing in each variable, since its Hessian
vanishes and Fss > 0, Fs > 0, and Ft > 0 on R2, and corresponds to taking
φ(r) = er, r ∈ R, in Theorem 7.8. Therefore the operation ∗ : Cvx(Rn)2 →
Cvx(Rn) is pointwise continuous, strictly monotonic, and associative, but it
is not positively homogeneous, nor does it have the identity property. Note
however that ∗ has the somewhat unnatural property that 0 ∗ 0 = log 2,
showing that the condition 0 ∗ 0 = 0 cannot be omitted in Theorem 7.21(a).

Suppose we define

(f ∗ g)(x) = log
(
ef(x) + eg(x)

)
− log 2,

for all f, g ∈ Cvx(Rn) and x ∈ Rn. The function F (s, t) = log(es + et)−
log 2, s, t ∈ R, is convex and (strictly) increasing in each variable, so Lemma
7.10 shows that ∗ : Cvx(Rn)2 → Cvx(Rn), and ∗ is clearly strictly mono-
tonic and satisfies 0 ∗ 0 = 0. This shows that the associativity assumption
in Theorem 7.21(a) cannot be dropped.

The operation defined by (38) shows that the assumption in Theo-
rem 7.21 that ∗ is strictly monotonic cannot be replaced by the weaker
assumption that ∗ is monotonic. The pointwise assumption in Theorem 7.21
is also necessary, as can be seen for part (a) by defining

(f ∗ g)(x) = f(x) + f(−x) + g(x) + g(−x)

and for part (b) by choosing x0 ∈ A and defining

(f ∗ g)(x) = eg(x0)f(x) + ef(x0)g(x),

for all f, g ∈ Cvx(A) and x ∈ A.

Remark 7.23. There does not seem to be a natural version of Theo-
rem 7.21 that applies to the class Cvx+(A). Of course, the properties in
Theorem 7.21(a),(b) are also satisfied when ∗ = +p, 1 ≤ p ≤ ∞. However,
these properties do not even characterize Lp addition. A counterexample
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is the pointwise operation ∗ with associated function F given by (6) with
φ(t) = t log(t+ 1), t ≥ 0. A routine calculation shows that φ is continuous,
strictly increasing, and convex on [0,∞), and that φ/φ′ is convex on (0,∞).
Mulholland [21, Theorem 2], improving an earlier result of Bosanquet [8]
(see also [16, 106(ii), p. 88]) shows that these properties imply the midpoint
convexity [21, Inequality (SM)] of F . As F is continuous, it follows that F
is convex on [0,∞)2, so Lemma 7.10 implies that ∗ : Cvx+(A)2 → Cvx+(A).
That ∗ also satisfies all properties in Theorem 7.21(a),(b) is straightforward.

On the other hand, the class of pointwise operations ∗ : Cvx+(A)2 →
Cvx+(A) satisfying Theorem 7.21(a) is quite restricted. It is necessary that
the function F associated with ∗ is of the form (6) with a continuous and
strictly monotonic function φ : [0,∞)→ [0,∞), and if φ is differentiable,
both φ and − log φ′ must be convex. To see this, note that Remark 7.9(b),
Lemmas 7.2, 7.3, and 7.10, and Theorem 7.21(a) imply that F is convex
and strictly increasing in each variable on its proper domain [0,∞)2. Lemma
7.12 shows that F is the restriction to [0,∞)2 of the support function of a
convex body, and hence continuous. By Lemmas 7.1(b) and 7.2, ∗ is point-
wise continuous. Therefore, by Theorem 7.8, ∗ must take the form (35) and
then F must be given by (6), where φ : [0,∞)→ [0,∞) is continuous and
strictly monotonic. When φ is differentiable, it is not difficult to prove that
any suitable function φ must be convex on [0,∞); see [21, Section 8] for
further remarks on necessary conditions for [21, Inequality (SM)] to hold
for φ. The convexity of − log φ′ is equivalent to ∂2F (s, t)/∂s2 ≥ 0, s, t ≥ 0,
which is satisfied as F is convex.

8. Orlicz addition of functions

Let Φ(A) be a class of Borel functions on a nonempty subset A of Rn,
n ≥ 2. Define D by (34). Suppose that ϕ : Rm → R exists such that for
d1, . . . , dm ∈ D, not all zero, there is a unique solution λ of

(41) ϕ

(
d1

λ
, . . . ,

dm
λ

)
= 1.

Then for f1, . . . , fm ∈ Φ(A) and x ∈ A, we define (+ϕ(f1, . . . , fm))(x) by

(42) ϕ

(
f1(x)

(+ϕ(f1, . . . , fm))(x)
, . . . ,

fm(x)

(+ϕ(f1, . . . , fm))(x)

)
= 1,

if f1(x) · · · fm(x) 6= 0 and by (+ϕ(f1, . . . , fm))(x) = 0 otherwise. We call the
pointwise operation +ϕ Orlicz addition.
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Let Cvx+
0 ([0,∞)m), m ∈ N, be the set of convex functions ϕ : [0,∞)m →

[0,∞) that are increasing in each variable and satisfy ϕ(o) = 0 and ϕ(ej) =
1, j = 1, . . . ,m. (The normalization is a matter of convenience and other
choices are possible.) For ϕ ∈ Cvx+

0 ([0,∞)m), Orlicz addition of sets in Kno
was introduced in [13] (where the notation Φm was used for Cvx+

0 ([0,∞)m)),
and this operation corresponds to Orlicz addition of functions in
Supp+(Rn) when defined by (42). It follows from the results in [13] that
+ϕ : Supp+(Rn)m → Supp+(Rn) and +ϕ is positively homogeneous, point-
wise continuous, monotonic, and has the identity property, but it is not in
general commutative or associative.

More generally, when ϕ ∈ Cvx+
0 ([0,∞)m) and Φ(A) is a class of non-

negative Borel functions on A, the Orlicz addition defined by (42) fits into
a general framework also introduced in [13] and which we now briefly de-
scribe. In [13, Section 4], take Z = Φ(A)m and suppose that µ is a Borel
measure in Φ(A)m. With the notation of [13], Lϕ(Φ(A)m, µ) is a vector
space and (4.2) there defines a norm ‖ · ‖ϕ on this space. (The triangle
inequality is proved explicitly in [13, Proposition 4.1] and the positive ho-
mogeneity is an easy consequence of the definition (4.2).) Following [13],
define hx : Φ(A)m → [0,∞)m by

hx(f1, . . . , fm) = (f1(x), . . . , fm(x)),

for all x ∈ A. We define

Fµ(x) = ‖hx‖ϕ

= inf

{
λ > 0 :

∫
Φ(A)m

ϕ

(
f1(x)

λ
, . . . ,

fm(x)

λ

)
dµ(f1, . . . , fm) ≤ 1

}
,

for all x ∈ A. Some conditions on µ are required to ensure that the previous
integral is well defined and that hx ∈ Lϕ(Φ(A)m, µ), and for these we can
follow [14]. We assume that µ is a nonzero finite Borel measure in Φ(A)m

with support C contained in a bounded separable subset of Φ(A)m, where
the topology is the one generated by the supremum pseudonorm on Φ(A).
The function on C ×A that maps (f1, . . . , fm, x) to the previous integrand
is continuous in each of the first m variables and Borel measurable in x.
Then the fact that C is separable ensures that this function is jointly Borel
measurable, and Fµ(x) ∈ R as C is bounded; see the second paragraph of
[14, Section 3].

Using the properties of ϕ and the fact that ‖ · ‖ϕ is a norm, it is easy to
show that if Φ(A) = Cvx+(A), then Fµ ∈ Cvx+(A).
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The special case when µ = δ{(f1,...,fm)}, for some fixed f1, . . . , fm ∈ Φ(A),
leads, as in [13], to the formula

(+ϕ(f1, . . . , fm))(x) = Fµ(x) = inf

{
λ > 0 : ϕ

(
f1(x)

λ
, . . . ,

fm(x)

λ

)
≤ 1

}
,

for x ∈ A. This formula can be used to define Orlicz addition +ϕ on Φ(A)m

and is equivalent to (42). Moreover, in some cases, we have +ϕ : Φ(A)m →
Φ(A); for example, when Φ(A) is the class of nonnegative Borel or nonnega-
tive continuous functions on A, or, as we have seen, Cvx+(A) or Supp+(Rn).

In [13], it was shown that Orlicz addition and M -addition of sets in Kno
are intimately related, and the same is true for addition of functions. Let
Φ(A) be a class of arbitrary Borel functions on a nonempty subset A of Rn.
Recall that for M ∈ Kn, the M -sum ⊕M (f1, . . . , fm) of f1, . . . , fm ∈ Φ(A) is
defined by (30). Our first simple observation is that if (30) holds, then (42)
holds with ϕ = hM and +ϕ = ⊕M . This is an immediate consequence of the
homogeneity of hM .

In particular, the operation ⊕M : Φ(A)m → Φ(A) resulting from (38),
where Φ(A) is Cvx(A) or Supp(Rn), is also an Orlicz addition, since in (42)
one need only take m = 2 and ϕ = hM . This shows that the definition (42)
can be valid even for classes of functions that are not necessarily nonnegative.
Now suppose that (42) defines an Orlicz addition on Φ(A)m, where Φ(A) is
Cvx(A) or Supp(Rn). By multiplying numerators and denominators of the
components in (42) and using the uniqueness of the solution to (41), we
see that +ϕ is positively homogeneous. Since +ϕ is clearly pointwise, when
+ϕ : Φ(A)m → Φ(A) and Φ(A) is one of the four classes in Theorem 7.15,
we conclude from this theorem that +ϕ = ⊕M , for some suitable M .

9. Pointwise operations on extended real-valued
convex functions

Recall from Section 2 that Cvx(A) is the class of extended-real-valued con-
vex functions on a nontrivial convex set A in Rn, n ≥ 2, and Supp(Rn) is the
class of support functions of sets in CCn. In this section we consider pointwise
operations ∗ : Υ(A)m → Υ(A), m ≥ 2, where Υ(A) ⊂ Cvx(A), with associ-
ated function F defined on its proper domain Dm ⊂ (−∞,∞]m, where

D = {s ∈ (−∞,∞] : f(x) = s for some f ∈ Υ(A) and x ∈ A}.

For such operations, we define the Properties 1–10 listed in Section 5 in
exactly the same way. We adopt the convention∞ · 0 = 0 · ∞ = 0, so that a
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positively homogeneous operation ∗ satisfies 0 ∗ · · · ∗ 0 = 0. If ∗ is a pointwise
operation with associated function F , then F : E ⊂ (−∞,∞]m → (−∞,∞].
The α-point property and the point separation property are defined as in
Section 7, and then Lemmas 7.1 and 7.3 hold with almost the same proofs,
when the 3-point property instead of the 2-point property is assumed in
Lemma 7.1(a).

Let m ≥ 2. We say that Υ(A) has the m-linear interpolation property
with associated subclass Γ(A) ⊂ Υ(A) if for all sj , tj ∈ D ∩ R, j = 1, . . . ,m,
there are fj ∈ Γ(A) and x, y ∈ A such that fj(x) = sj , fj(y) = tj , and fj
is linear on [x, y], for j = 1, . . . ,m. Furthermore, we say that Υ(A) has the
m-V-property if for all sj , tj ∈ D with sj ≤ tj , j = 1, . . . ,m, there are fj ∈
Υ(A) and x, y ∈ A such that fj(x) = fj(y) = tj and fj((x+ y)/2) = sj , for
j = 1, . . . ,m.

For eachm≥2, the classes Cvx(A), Cvx +(A), Supp(Rn), and Supp +(Rn)
all have the m-linear interpolation property for suitable subclasses (compare
Remark 7.9) and the m-V -property.

Lemma 9.1. Let Υ(A) ⊂ Cvx(A) and suppose that ∗ : Υ(A)m → Υ(A),
m ≥ 2, is a pointwise operation whose associated function F has proper do-
main Dm.

(a) If Υ(A) has the m-linear interpolation property, then F is convex on
(D ∩ R)m.

(b) If Υ(A) has the m-V -property, then F is increasing in each variable
on Dm.

Proof. For (a), just replace D by D ∩ R in the first part of the proof of
Lemma 7.10. Part (b) follows from the argument in the first part of the
proof of Lemma 7.11, using ∗ : Υ(A)m → Υ(A) and the m-V -property. �

For the next result, we need some notation. Let

tp =

{
0, if −∞ < t ≤ 0,

∞, if 0 < t ≤ ∞
and t

y
=

{
0, if t ∈ R,
∞, if t =∞.

As both functions are increasing and convex, the functions fp(x) = f(x)p

and f
y
(x) = f(x)

y
are convex whenever f : Rn → (−∞,∞] is convex. If

hK ∈ Supp +(Rn), then hK ≥ 0, so

(hK)p(x) =

{
0, if hK(x) = 0,

∞, otherwise
= hN(K,o)◦(x),
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for x ∈ Rn, where N(K, o) is the normal cone of K at o, and

N(K, o)◦ = {y ∈ Rn : x · y ≤ 0 for all x ∈ N(K, o)}

is its polar cone; see, for example, [25, Section 14] for details. In a similar way,

h
y
K = hS(K◦,o)◦ , where K◦ = {y ∈ Rn : x · y ≤ 1 for all x ∈ K} is the polar

set of K, and S(K◦, o) = cl {λx : x ∈ K◦, λ ≥ 0} is the support cone of K◦

at o. This shows in particular that p and y map functions in Supp +(Rn) to
support functions of nonempty closed convex cones.

The following result corresponds to Theorem 7.16. As in that theorem,
(46) can also be formulated in terms of monotone norms.

Theorem 9.2. Let Υ(A) be Cvx +(A) or Supp +(Rn). The following are
equivalent.

(a) The operation ∗ : Υ(A)2 → Υ(A) is pointwise and positively homoge-
neous.

(b) The operation ∗ is one of the following:

(43)

f ∗ g = f
y
g
y
, f ∗ g = f

y
, f ∗ g = g

y
, f ∗ g = f

y
gp,

f ∗ g = fpgy, f ∗ g = f
y
gp + g

y
, f ∗ g = fpgy + f

y
,

f ∗ g = f
y

+ g
y
, or f ∗ g = fpgy + f

y
gp,

or

f ∗ g = fp + g
y
, or f ∗ g = f

y
+ gp,(44)

or there is an a > 0 such that

(45)
f ∗ g = af + fpgy, f ∗ g = af + g

y
,

f ∗ g = ag + f
y
gp, or f ∗ g = ag + f

y
,

or there is a 1-unconditional set M ∈ CC2
o such that

(f ∗ g)(x) = hM (f(x), g(x)),(46)

for all x ∈ Rn and f, g ∈ Υ(A).

When Υ(A) = Supp +(Rn), the assumption of positive homogeneity can
be dropped.
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Proof. For (a) ⇒ (b), note that Υ(A) is a cone that has the |R|-point
property, the 2-linear interpolation property with associated subclass Υ(A),
and the 2-V -property. If Υ(A) = Cvx +(A), then ∗ is positively homoge-
neous by assumption, while if Υ(A) = Supp +(Rn), this follows from the
proof of Lemma 7.5. In either case, Lemma 7.1(a) implies that the func-
tion F : [0,∞]2 → [0,∞] associated with ∗ is also positively homogeneous.
Lemma 9.1 implies that F is convex on (D ∩ R)2 = [0,∞)2 and increasing
in each variable on D2 = [0,∞]2. We claim that F is lower semicontinu-

ous on [0,∞)2. Indeed, let s(k) = (s
(k)
1 , s

(k)
2 ) ∈ [0,∞)2, k ∈ N, converge to

s = (s1, s2) ∈ [0,∞)2. If si > 0, we may assume that s
(k)
i > 0, so

αk = max
{
si/s

(k)
i : i ∈ {1, 2}, si > 0

}
> 0.

Since αks
(k)
i ≥ si, i = 1, 2, we obtain

F (s(k)) = α−1
k F (αks

(k)) ≥ α−1
k F (s)→ F (s),(47)

as k →∞, proving the claim. Let F : R2 → [0,∞] be defined by F = F on
[0,∞)2 and F =∞, otherwise. Then F is positively homogeneous, convex,
proper (since F (0) = 0), and lower semicontinuous. The same is true for
the function H(s, t) = F (|s|, |t|), s, t ∈ R, as follows from the fact that on
[0,∞)2, F = F is increasing in each variable. By [25, Theorem 13.2], there
is an M ∈ CC2 such that H = hM . Due to the symmetry of H, the set M is
1-unconditional and hence M ∈ CC2

o. The fact that H = F = F on [0,∞)2

yields (46) whenever f(x), g(x) <∞.
It remains to determine the values of F (s,∞) and F (∞, t), for s, t ∈

[0,∞), and F (∞,∞). Suppose that F (r,∞) <∞ for 0 < r < s, which im-
plies that F (r,∞) <∞ and F (r, 0) <∞ for 0 < r <∞ due to the positive
homogeneity and increasing property of F . Set f = hsBn and g = h(−∞,0]n ,
and note that f, g ∈ Υ(A). Then

(f ∗ g)(x) = F (f(x), g(x)) =

{
F (s‖x‖, 0), if x ∈ [0,∞)n,

F (s‖x‖,∞), otherwise,

is convex and finite on Rn, and hence continuous, so F (s,∞) = F (s, 0). If,
on the other hand, F (r,∞) =∞, for some r ∈ (0, s), positive homogeneity
yields F (s,∞) =∞. This and the same argument for F (∞, t) gives

F (·,∞) ∈ {F (·, 0),∞} and F (∞, ·) ∈ {F (0, ·),∞},(48)
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on (0,∞). The positive homogeneity of F also implies that

F (0,∞) ∈ {0,∞}, F (∞, 0) ∈ {0,∞}, and F (∞,∞) ∈ {0,∞}.(49)

We now distinguish several cases depending on the dimension of M .
Assume first that M = {0}. The increasing property of F , (48), and (49)

allow for the functions F (s, t) ≡ 0 ≡ hM (s, t), F (s, t) = s
y
t
y
, F (s, t) = s

y
,

F (s, t) = t
y
, F (s, t) = s

y
tp, F (s, t) = spty, F (s, t) = s

y
tp + t

y
, F (s, t) =

spty + s
y
, F (s, t) = s

y
+ t
y
, or F (s, t) = spty + s

y
tp. This yields the op-

erations in (43).
When the 1-unconditional set M is 1-dimensional, it must be an o-

symmetric line segment or line parallel to a coordinate axis. In the latter
case, the increasing property of F , (48), and (49) provide the possibilities

F (s, t) = hM (s, t), F (s, t) = sp + t
y
, or F (s, t) = s

y
+ tp. This yields the

operations in (44). When M is a line segment of length 2a > 0, say, we

obtain F (s, t) = hM (s, t), F (s, t) = as+ spty, F (s, t) = as+ t
y
, F (s, t) =

at+ s
y
tp, or F (s, t) = at+ s

y
. This yields the operations in (45).

Finally, when M is full-dimensional, there is an x ∈M ∩ (0,∞)2, so

F (s, t) = hM (s, t) ≥ (s, t) · x→∞,

when (s, t) ∈ [0,∞)2 is such that at least one component tends to ∞. The
increasing property of F then implies F = hM on [0,∞]2, yielding the op-
eration (46) also obtained in the other cases for lower-dimensional M .

For (b) ⇒ (a), note that all the operations in (b) are clearly pointwise
and positively homogeneous. Those listed in (43), (44), and (45) map Υ(A)2

to Υ(A) because Υ(A) is closed under addition, the product of increasing
nonnegative convex functions is convex, and the product of support functions
of two closed convex cones is the support function of their intersection.
Finally, the argument used in the proof of Theorem 7.15 for Cvx+(A) and
Supp+(Rn) shows that the operation in (46) maps Υ(A)2 to Υ(A). �

In the statement of Theorem 9.2, one can replace M ∈ CC2
o with an

M ∈ K2
o if the operations

f ∗ g = fp + gp, f ∗ g = af + gp, and f ∗ g = ag + fp,(50)

for a ≥ 0, are added to those already listed. Indeed, the only unbounded 1-
unconditional sets in CC2

o are R2 and the slabs {x ∈ R2 : |x · ei| ≤ a}, a ≥ 0,
i = 1, 2, corresponding to the three functions in (50).
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A counterpart of Theorem 7.17 can now be proved.

Theorem 9.3. Let Υ(A) be Cvx +(A) or Supp +(Rn). The following are
equivalent.

(a) The operation ∗ is pointwise, positively homogeneous, and associative.
(b) The operation ∗ is one of the following:

f ∗ g = f
y
g
y
, f ∗ g = f

y
+ g
y
, f ∗ g = fp + gp,(51)

or

f ∗ g = af + g
y
, f ∗ g = ag + f

y
,

f ∗ g = af + gp, f ∗ g = ag + fp,
(52)

with a ∈ {0, 1}, or f ∗ g = 0, f ∗ g = f , f ∗ g = g, or there is a 1 ≤
p ≤ ∞ with

f ∗ g = f +p g,

for all f, g ∈ Υ(A).

When Υ(A) = Supp +(Rn), the assumption of positive homogeneity can
be dropped.

Proof. We have (s+ t)y = sy + ty, (st)y = syty, (sy)y = sy, and (sy)p = sy,
for all 0 ≤ s, t ≤ ∞, and the same relations with y and p interchanged. Using
this, one can show that the 11 operations in (b) are the only associative
operations among those in (43), (44), (45), and (50). For the case where ∗ is
given by (46) with M ∈ K2, Theorem 7.17 yields the remaining operations.

�

Theorems 9.2 and 9.3 yield positively homogeneous, projection covari-
ant operations ∗ : (CCno )2 → CCno different from M -addition. One example
deriving from the first operation in (45) is

K ∗ L = aK + (N(K, o)◦ ∩ S(L◦, o)◦) ,

where a > 0 is fixed and K,L ∈ CCno . As ∗ is pointwise when considered as
operation on support functions, ∗ is projection covariant. The operation

K ∗ L = K + S(L◦, o)◦,
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for K,L ∈ CCno , is positively homogeneous, projection covariant, and asso-
ciative. Indeed, the corresponding operation on support functions is the first
one in (52) with a = 1.

We transfer these results to operations on closed convex sets.

Theorem 9.4. Let ∗ : (CCno )2 → CCno be defined by

hK∗L(x) = F (hK(x), hL(x)),

for some F : [0,∞]2 → [0,∞] and all K,L ∈ CCno and x ∈ Rn. Then F is
given by one of the 16 operations in Theorem 9.2 with f = hK and g = hL,
where hK∗L = hK ∗ hL. Furthermore,

(a) The operation ∗ is associative if and only if F is given by the one
of the 11 operations in Theorem 9.3 with f = hK and g = hL, where
hK∗L = hK ∗ hL.

(b) The operation ∗ is associative and satisfies the identity property (with
identity {0}) if and only if ∗ = +p, for some 1 ≤ p ≤ ∞.

Proof. Let ∗ : (CCno )2 → CCno be defined as in the statement of the theorem.
As in the proof of Theorem 7.20, it is easy to show that the pointwise
operation � : Supp +(Rn)2 → Supp +(Rn) defined by hK � hL = hK∗L is as-
sociative or has the identity property if ∗ is associative or has the identity
property (with identity {0}), respectively. The first claim in the statement
of the theorem follows directly from Theorem 9.2 and (a) follows from The-
orem 9.3. Of the operations listed in Theorem 9.3, only +p has the identity
property, yielding (b). �

It seems that results corresponding to Theorems 9.2 and 9.3 for oper-
ations ∗ : Supp(Rn)2 → Supp(Rn) cannot be obtained in a similar fashion,
because the increasing property of F is insufficient to establish the lower
semicontinuity needed, as in the proof of Theorem 9.2, to identify F (or
H) as hM for a suitable set M . However, we can state the following result,
corresponding to the implication (b)⇒ (c) in Theorem 7.21.

Theorem 9.5. Let ∗ : Cvx(A)2 → Cvx(A) be a pointwise operation. Then
∗ has the identity property if and only if f ∗ g = f + g, for all f, g ∈ Cvx(A).

Proof. Suppose that ∗ : Cvx(A)2 → Cvx(A) is pointwise, with associated
function F : (−∞,∞]2 → (−∞,∞], and that ∗ has the identity property.
Since Cvx(A) has the 2-linear interpolation property, F is convex on R2

by Lemma 9.1(a). The identity property for ∗ implies that the convex set
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{(s, t) ∈ R2 : F (s, t) <∞} contains the coordinate axes and therefore must
be R2. Consequently, F : R2 → R and ∗ : Cvx(A)2 → Cvx(A), so by Theo-
rem 7.21, F (s, t) = s+ t, for all s, t ∈ R. Since Cvx(A) has the 2-V -property,
Lemma 9.1(b) implies that F is increasing in each variable on (−∞,∞]2.
Therefore F =∞ on (−∞,∞]2 \ R2 and it follows that F (s, t) = s+ t, for
all s, t ∈ (−∞,∞], and hence f ∗ g = f + g, for all f, g ∈ Cvx(A). The con-
verse is obvious. �

10. Arbitrary operations

In this section, we consider operations between functions that are not neces-
sarily pointwise. It is assumed throughout that n ≥ 2. The following propo-
sition follows from results of Milman and Rotem [20, Theorems 2.2 and 6.1],
the ideas behind which we employ often. See Section 5 for the definitions of
the homothety and pointwise-continuous-from-below properties.

Proposition 10.1. Let ∗ : Supp +(Rn)2 → Supp +(Rn) be monotonic, as-
sociative, and have the homothety and identity properties. Then ∗ = +p,
for some 1 ≤ p ≤ ∞. The same holds for operations ∗ : Supp+(Rn)2 →
Supp+(Rn) that are in addition pointwise continuous from below.

The statement of the relevant part of [20, Theorems 2.2 and 6.1] is as
follows, where properties assumed are the natural analogues for sets of those
defined in Section 5 for functions, continuity is respect to the Hausdorff
metric, and continuity from below makes use of the ordering of sets by
inclusion. Then Proposition 10.1 follows from Proposition 10.2 by defining
hK ∗ hL = hK∗L. Note that the identity in Proposition 10.2 is {o} (and, by
Lemma 7.19, must be for operations ∗ : (Kno )2 → Kno ), but other results in
[20] allow for different identity elements.

Proposition 10.2. Let ∗ : (CCno )2 → CCno be monotonic, associative, and
have the homothety and identity properties (with identity {o}). Then ∗ = +p,
for some 1 ≤ p ≤ ∞. The same holds for operations ∗ : (Kno )2 → Kno that are
in addition continuous from below.

The second statement of Proposition 10.1 overlaps with Theorem 7.17,
trading the pointwise assumption for monotonicity, homothety, identity, and
continuity-from-below properties. With Theorem 7.15 in hand, we know that
a pointwise operation ∗ : Supp+(Rn)2 → Supp+(Rn) must be⊕M for some 1-
unconditional compact convex set M in R2. Then ∗ = ⊕M is monotonic and
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continuous, and if it is associative, then it also has the homothety property,
as can be seen in view of (24) by defining ξ : N→ [0,∞) by ξ(1) = 1 and
ξ(k) = hM (ξ(k − 1), 1), for k = 2, . . . . However, the remaining assumption
in Proposition 10.1, the identity property, is only satisfied if M contains e1

and e2 in its boundary.
The methods used in Proposition 10.1 do not appear to produce a re-

sult for associative operations ∗ : Supp(Rn)2 → Supp(Rn) that overlaps with
Theorem 7.18. Indeed, the homothety property is not satisfied when ∗ is the
operation corresponding to (38).

Our main goal is to strengthen and extend Propositions 10.1 and 10.2
via the weak homogeneity property defined in Section 5. See Theorems 10.5
and 10.8 and Corollary 10.9. Though the following result is not stated ex-
plicitly in [20], its proof is essentially given there.

Theorem 10.3. Let Υ(A) be a cone of nonnegative extended-real-valued
functions on a nonempty set A in Rn and let ∗ : Υ(A)2 → Υ(A) be mono-
tonic and have the homothety and identity properties. Then ∗ is weakly ho-
mogeneous.

Proof. Since ∗ has the homothety property, there is a function ξ(m), m ∈ N,
such that (24) holds. The monotonicity and identity properties imply that for
a suitable function f , we have f ∗ f ≥ f ∗ 0 = f and hence ξ(2) ≥ 1. If ξ(2) =
1, these properties imply f ∗ g = max{f, g}, as in [20, Proposition 4.2], and
the claim follows. Hence we may assume that ξ(2) > 1.

In the proof of [20, Claim 3.2], ξ(m) is shown to be increasing and
multiplicative, which forces it to be of the form ξ(m) = mq for some q > 0.
Let Q = {(m/n)q : m ∈ N ∪ {0}, n ∈ N}. As in the proof of [20, Claim 3.3],
for r ≥ 0, s = (m/n)q, t = (m′/n′)q, and a suitable function f , we can use
the homothety property to obtain

(rsf) ∗ (rtf) =
(
r
(m
n

)q
f
)
∗
(
r

(
m′

n′

)q
f

)
=

(
(mn′)q

(
r1/q

nn′

)q
f

)
∗

(
(m′n)q

(
r1/q

nn′

)q
f

)

=
(
mn′ +m′n

)
�

((
r1/q

nn′

)q
f

)
= r

(
m

n
+
m′

n′

)q
f,

where, as in (24), the number to the left of the symbol � indicates the
number of times that the operation ∗ is taken. Combining this with the
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same equations for r = 1 yields

(rsf) ∗ (rtf) = r((sf) ∗ (tf)),

as required. �

For x ∈ A and s ∈ (−∞,∞], define

δs,x(y) =

{
s, if y = x,

∞, otherwise,

for y ∈ A. Then δs,x ∈ Cvx +(A), for s ∈ [0,∞]. Note also that if x 6= y, then
δs,x + δt,y =∞, so it is natural to allow the identically infinite function in
our considerations.

The restriction to r, s, t > 0 in the next result is needed because 0 · δs,x =
0 6= δ0,x.

Lemma 10.4. Let x ∈ A ⊂ Rn and let Υ(A) be a cone of nonnegative
extended-real-valued functions such that δs,x ∈ Υ(A), for s ≥ 0. If ∗ :
Υ(A)2 → Υ(A) is monotonic and has the identity property, then there is
an Fx : [0,∞]2 → [0,∞] such that

(53) δs,x ∗ δt,x = δFx(s,t),x,

for s, t ≥ 0, where Fx(s, t) ≥ max{s, t} and Fx is increasing in each variable.
If in addition ∗ is associative or weakly homogeneous, then Fx satisfies the
associativity equation or (vi) of Section 3 (weak homogeneity) for r, s, t > 0,
respectively.

Proof. If x ∈ A and s, t ≥ 0, then

δs,x ∗ δt,x ≥ max{δs,x ∗ 0, 0 ∗ δt,x} = max{δs,x, δt,x}.

Then (53) must hold for some Fx(s, t) ≥ max{s, t}. The monotonicity of ∗
and (53) show that Fx is increasing in each variable.

Suppose that ∗ is associative and s, t, u ≥ 0. Then by (53),

δFx(s,(Fx(t,u))),x = δs,x ∗ δFx(t,u),x = δs,x ∗ (δt,x ∗ δu,x)

= (δs,x ∗ δt,x) ∗ δu,x = δFx(Fx(s,t),u),x,

so Fx satisfies the associativity equation.
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Let r, s, t > 0. Then Fx(s, t) ≥ max{s, t} > 0. In view of (53), if ∗ has the
weak homogeneity property, there is a set Q, dense in [0,∞] and containing
0, such that

δrFx(s,t),x = rδFx(s,t),x = r(δs,x ∗ δt,x)(54)

= (rδs,x) ∗ (rδt,x) = δrs,x ∗ δrt,x = δFx(rs,rt),x,

for all positive s, t ∈ Q. This shows that Fx satisfies (vi) of Section 3 for
r, s, t > 0. �

Henceforth in this section the set A is assumed to be a nontrivial convex
set.

We now show that in Proposition 10.1 the homothety property can be re-
placed by weak homogeneity and an additional weaker assumption, defined
as follows. We say that ∗ : Cvx +(A)2 → Cvx +(A) (or ∗ : Supp +(Rn)2 →
Supp +(Rn)) has the δ-finite property if whenever x ∈ A (or x ∈ Sn−1, re-
spectively), there is an sx > 0 such that

(55) (δsx,x ∗ δsx,x) (x) <∞

(or

(56)
(
hH(sx,x) ∗ hH(sx,x)

)
(x) <∞,

respectively, where H(s, x) = {y∈Rn : x · y ≤ s}). Note that when x∈Sn−1,
hH(s,x)(y) = δs,x(y), for all y ∈ Sn−1. In either situation, if ∗ has the homo-
thety property then ∗ has the δ-finite property, since if x ∈ A, then by (24),
we have

(δ1,x ∗ δ1,x) (x) = ξ(2)δ1,x(x) = ξ(2) <∞

and similarly if x ∈ Sn−1, then (24) yields
(
hH(1,x) ∗ hH(1,x)

)
(x) = ξ(2) <

∞.

Theorem 10.5. Let ∗ : Cvx +(A)2 → Cvx +(A) (or ∗ : Supp +(Rn)2 →
Supp +(Rn)) be monotonic, associative, weakly homogeneous, and have the
identity and δ-finite properties. Then ∗ = +p, for some 1 ≤ p ≤ ∞.

Proof. Suppose that ∗ : Cvx +(A)2 → Cvx +(A) has all the listed proper-
ties. Fix x ∈ A. By Lemma 10.4, (53) holds for a nontrivial function Fx :
[0,∞)2 → [0,∞] that is increasing in each variable and satisfies the asso-
ciativity equation and (vi) of Section 3 (weak homogeneity) for r, s, t > 0.
The δ-finite property allows us to conclude that there is an sx > 0 such that
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Fx(sx, sx) <∞, from which the increasing and weak homogeneity proper-
ties of Fx easily imply that Fx : [0,∞)2 → [0,∞). By Proposition 3.3, the
restriction of Fx to (0,∞)2 satisfies the hypotheses of Proposition 3.4, which
then implies that on (0,∞)2, we have Fx = 0, or Fx = Π1, or Fx = Π2,
or Fx = Mp(x), for some −∞ ≤ p(x) 6= 0 ≤ ∞. By Lemma 10.4, we have
Fx(s, t) ≥ max{s, t}, for s, t ≥ 0, and it follows that on (0,∞)2, we have
Fx = Mp(x), for some 0 < p(x) ≤ ∞. Since Fx is increasing in each variable
on [0,∞)2, this yields Fx(s, 0) = Fx(0, s) = s, so by (53), we obtain

(57) δs,x ∗ δ0,x = δ0,x ∗ δs,x = δs,x,

for s ≥ 0.
We claim that

(58) f ∗ δ0,x = δ0,x ∗ f = δf(x),x,

for each f ∈ Cvx +(A). Indeed, arguing as in [20, Claim 3.4], we have

f ∗ δ0,x ≥ f ∗ 0 = f and f ∗ δ0,x ≥ 0 ∗ δ0,x = δ0,x,

which shows that f ∗ δ0,x ≥ δf(x),x. On the other hand, (57) implies

f ∗ δ0,x ≤ δf(x),x ∗ δ0,x = δf(x),x.

Thus f ∗ δ0,x = δf(x),x and δ0,x ∗ f = δf(x),x follows similarly, proving the
claim.

Now let f, g ∈ Cvx +(A). By (58), we have

(59) (f ∗ g) ∗ δ0,x = δ(f∗g)(x),x.

Also, from (57), we have δ0,x ∗ δ0,x = δ0,x, so following [20, Claim 3.5], and
using the associativity of ∗, (58), and Fx = Mp(x), we obtain

(f ∗ g) ∗ δ0,x = (f ∗ g) ∗ (δ0,x ∗ δ0,x) = f ∗ (g ∗ δ0,x) ∗ δ0,x

= f ∗ (δ0,x ∗ g) ∗ δ0,x = (f ∗ δ0,x) ∗ (g ∗ δ0,x)

= δf(x),x ∗ δg(x),x = δMp(x)(f(x),g(x)),x.

Comparing this and (59), we see that

(f ∗ g)(x) = Mp(x)(f(x), g(x)).(60)
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Next, we prove that p(x) is independent of x. The choice f = g ≡ 1 in
(60) implies that q(x) = 21/p(x) is convex on A. By (60) with f = g, the func-
tion q has the property that fq ∈ Cvx +(A) is convex for all f ∈ Cvx +(A).
Suppose that q is not constant on A. Then there is a non-degenerate line
segment L = {x0 + ty0 : 0 ≤ t ≤ 1} ⊂ A such that on L, q strictly decreases
with t. Let f ∈ Cvx +(A) be such that f(x0 + ty0) = t, for 0 ≤ t ≤ 1. Since
h(t) = (fq)(x0 + ty0) is convex on [0, 1], we have

h((1− λ)0 + λ1) ≤ (1− λ)h(0) + λh(1),

for 0 < λ < 1, which reduces to q(λ) ≤ q(1). This contradiction means that
q, and therefore p, must be constant on A. The restriction p ≥ 1 is necessary
to preserve convexity.

For operations ∗ : Supp +(Rn)2 → Supp +(Rn), we can argue as above,
replacing δs,x by the support function of the half-space H(s, x) = {y ∈ Rn :
x · y ≤ s}, x ∈ Sn−1, to obtain (60). It then suffices to observe that the
operation ∗ : (Kns )2 → Kn defined by

hK∗L(x) = (hK ∗ hL)(x) = Mp(x)(hK(x), hL(x))

is associative and projection covariant, from which [12, Theorem 7.9] implies
that p(x) = p ≥ 1, for all x ∈ Sn−1. �

Before describing examples showing that none of the assumptions in
Theorem 10.5 can be omitted, we make the following general observation.
Suppose that � is an associative operation between functions in a given class
of nonnegative functions. Define ∗ by

f ∗ g =

{
f � g, if f 6= 0 and g 6= 0,

max{f, g}, if f = 0 or g = 0,
(61)

for all f and g in the class. Then ∗ is also associative and has the identity
property. Moreover, if � is weakly homogeneous or has the δ-finite property,
then ∗ also has these properties, respectively.

Example 10.6. Consider the following five operations ∗ : Cvx +(A)2 →
Cvx +(A).

(a) For all f, g ∈ Cvx +(A), let f � g = f and define f ∗ g by (61). Of the
properties listed in Theorem 10.5, ∗ has all except that it is not monotonic.

(b) Let ∗ be defined by (29), where the monotone norm is generated by
a 1-unconditional planar convex body, containing e1 and e2 in its boundary,
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different from the unit ball in l2p, 1 ≤ p ≤ ∞. Of the properties listed in
Theorem 10.5, ∗ has all except that it is not associative.

(c) For all f, g ∈ Cvx +(A), let f � g = f + g + 1 and define f ∗ g by (61).
Of the properties listed in Theorem 10.5, ∗ has all except that it is not weakly
homogeneous. A more exotic example with the same properties is as fol-
lows. Let F : [0,∞)2 → [0,∞) be as in Remark 7.23 and define (f ∗ g)(x) =
F (f(x), g(x)), for all f, g ∈ Cvx +(A) and x ∈ A such that f(x), g(x) <∞,
and (f ∗ g)(x) =∞, otherwise. That ∗ : Cvx +(A)2 → Cvx +(A) is an easy
consequence of the fact that F is convex and increasing in each variable.

(d) Let f ∗ g = f , for all f, g ∈ Cvx +(A). Of the properties listed in
Theorem 10.5, ∗ has all except the identity property.

(e) If f ∈ Cvx +(A), let Mf = sup{f(x) : x ∈ A} and define

f � g = Mf +Mg,

for all f, g ∈ Cvx +(A). Of the properties listed in Theorem 10.5, the oper-
ation ∗ defined in (61) has all except that it is not δ-finite.

For operations ∗ : Supp +(Rn)2 → Supp +(Rn), the definitions in (a), (b),
and (d) serve the same purpose. Examples for operations ∗ : Supp +(Rn)2 →
Supp +(Rn) corresponding to (c) and (e) above may be obtained as follows.

If f, g ∈ Supp +(Rn), let (f � g)(x) = f + g + ‖x‖, for x ∈ Rn, and then
define f ∗ g by (61). Then ∗ has all the properties listed in Theorem 10.5
except weak homogeneity. Note that the second example under (c) above
does not work when f and g are support functions.

For f ∈ Supp +(Rn), letRf = sup{f(u) : u ∈ Sn−1}. If f, g ∈ Supp +(Rn),
let (f � g)(x) = (Rf +Rg)‖x‖, for x ∈ Rn, and then define f ∗ g by (61).
Then ∗ has all the properties listed in Theorem 10.5 except the δ-finite
property.

Example 10.7. For f, g ∈ Cvx(Rn), the function

(f�g)(x) = inf
y+z=x

{f(y) + g(z)},

for x ∈ Rn, is called the infimal convolution of f and g. See, for example, [25,
p. 34] or [27, p. 39]. The operation � preserves convexity, but the infimum
may be −∞. However, we may consider � as an operation � : Cvx +(Rn)2 →
Cvx +(Rn). It is then positively homogeneous, monotonic, commutative, and
associative. Since f�δ0,o = f , � has an identity different from the function
0. Lemma 10.4 still holds with Υ(A) = Cvx +(Rn), because the proof is valid
when the function 0 is replaced by δ0,o; in this case Fx(s, t) =∞, if x 6= o,
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and Fo(s, t) = s+ t. But Theorem 10.5 does not apply, as � does not satisfy
the δ-finite property.

We say that ∗ : Supp+(Rn)2 → Supp+(Rn) has the point-bounded prop-
erty if whenever x ∈ Sn−1, there are reals cx, sx > 0 such that for all f, g ∈
Supp+(Rn) with f(x), g(x) < sx, we have (f ∗ g)(x) < cx.

If ∗ : Supp+(Rn)2 → Supp+(Rn) is monotonic and has the homothety
property, then ∗ is point-bounded. Indeed, suppose that x ∈ Sn−1 and f, g ∈
Supp+(Rn) satisfy f(x), g(x) < 1. If h = max{f, g}, then h ∈ Supp+(Rn)
and h(x) < 1, so by the homothety property,

(f ∗ g)(x) ≤ (h ∗ h)(x) = ξ(2)h(x) < ξ(2),

so ∗ has the point-bounded property with sx = 1 and cx = ξ(2).
By Proposition 10.3 and our remarks concerning the δ-finite and point-

bounded properties, Theorem 10.5 and the next result extend and strengthen
Proposition 10.1. The following argument follows that of [20, Proposition 6.1]
and makes use of the continuity-from-below assumption.

Theorem 10.8. Let ∗ : Supp +(Rn)2 → Supp +(Rn) be monotonic, asso-
ciative, weakly homogeneous, pointwise continuous from below, and have the
identity and point-bounded properties. Then ∗ = +p, for some 1 ≤ p ≤ ∞.

Proof. It is more convenient to work with sets than with functions, so we
begin by noting that if ∗ : Supp +(Rn)2 → Supp +(Rn) has the stated prop-
erties, we can define an operation ∗ : (Kno )2 → Kno by hK∗L = hK ∗ hL and
this operation is also monotonic, associative, and has {o} as identity. By [27,
Theorem 1.8.15], this operation is continuous from below in the sense that
if (Ki) and (Li) are increasing sequences in Kno converging to K and L in
Kno , respectively, then Ki ∗ Li → K ∗ L, as i→∞.

For K,L ∈ CCno , define

(62) K � L = cl ∪ {K ∗ L : K ⊂ relintK,L ⊂ relintL and K,L ∈ Kno }.

It is not hard to show (see the proof of [20, Proposition 6.1]) that K �
L ∈ CCno . As ∗ is monotonic and continuous from below, K � L = K ∗ L for
K,L ∈ Kno , showing that � is an extension of ∗.

The monotonicity of � follows easily from that of ∗. If K ∈ CCno , then

K � {o} = cl ∪ {K ∗ {o} : K ⊂ relintK and K ∈ Kno }
= cl ∪ {K : K ⊂ relintK and K ∈ Kno } = K,
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so {o} is an identity for �. With this in hand, the weak homogeneity of
∗ : (Kno )2 → Kno (meaning that Property 5 of Section 5 holds for the support
functions of the sets concerned) implies that � is weakly homogeneous.

The associativity of � will also follow easily from that of ∗ if we can
prove that

(K � L) �M = cl ∪ {(K ∗ L) ∗M : K ⊂ relintK,L ⊂ relintL,(63)

M ⊂ relintM, and K,L,M ∈ Kno }.

To this end, note first that forK,L,M ∈ Kno withK ⊂ relintK, L ⊂ relintL,
and M ⊂ relintM , we have

(K ∗ L) ∗M = (K � L) �M ⊂ (K � L) �M,

where we used that � is a monotonic extension of ∗. Therefore in (63), the
right-hand side is contained in the left-hand side. For the reverse inclusion,
let J,M ∈ Kno be such that J ⊂ relint (K � L) and M ⊂ relintM . Then there
is a convex polytope P = conv {p1, . . . , pm} such that J ⊂ P ⊂ relint (K �
L). (Without loss of generality, we may assume that dim(K � L) = n. Then
J ⊂ int (K � L), so λJ ⊂ int (K � L) for some λ > 1. The existence of P then
follows from [27, Theorem 1.8.19].) Now

pi ∈ P ⊂ relint (K � L)

= relint ∪ {K ∗ L : K ⊂ relintK,L ⊂ relintL and K,L ∈ Kno },

so there are Ki, Li ∈ Kno with Ki ⊂ relintK, Li ⊂ relintL, and pi ∈ Ki ∗
Li, for i = 1, . . . ,m. Let K = conv ∪ {Ki : 1 ≤ i ≤ m} and L = conv ∪
{Li : 1 ≤ i ≤ m}. Then the increasing property of ∗ implies that P =
conv {p1, . . . , pm} ⊂ K ∗ L and therefore J ⊂ K ∗ L. The increasing prop-
erty of ∗ yields J ∗M ⊂ (K ∗ L) ∗M , completing the proof of the reverse
inclusion. Thus � is associative.

Define � : Supp +(Rn)2 → Supp +(Rn) by hK � hL = hK�L. Then � is
monotonic, associative, weakly homogeneous, and has the identity prop-
erty. We claim that � has the δ-finite property. Indeed, let x ∈ Sn−1 and let
cx, sx > 0 witness the point-bounded property of ∗. Then

Hsx,x �Hsx,x = cl ∪ {K ∗ L : K,L ⊂ relintHsx,x and K,L ∈ Kno }.

Since hK(x), hL(x) < sx for all K,L in the right-hand side of the previous
equation, we have hK∗L(x) < cx and hence hHsx,x�Hsx,x

(x) < cx <∞, as re-
quired.
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Since � satisfies all the properties listed in Theorem 10.5, we have � = +p,
for some 1 ≤ p ≤ ∞. Let ε > 0 and let Kε = K + εBn, for each K ∈ Kno . If
K,L ∈ Kno , then

K +p L = K � L ⊂ K ∗ L ⊂ Kε � Lε = Kε +p Lε,

where the two inclusions follow directly from (62). Since +p is continuous,
on letting ε→ 0+, we obtain K ∗ L = K +p L, as required. �

The following corollary strengthens Proposition 10.2. Note that by
Lemma 7.19, any identity for a weakly homogeneous operation ∗ : (Kno )2 →
Kno must be {o}.

Corollary 10.9. Let ∗ : (CCno )2 → CCno be monotonic, associative, weakly
homogeneous, and have the identity property (with identity {o}) and the
δ-finite property. Then ∗ = +p, for some 1 ≤ p ≤ ∞.

The same holds for operations ∗ : (Kno )2 → Kno that are in addition con-
tinuous from below, if the δ-finite property is replaced by the point-bounded
property.

We do not know if the hypothesis of pointwise continuity from below
is necessary in Theorem 10.8 and Corollary 10.9. However, the operations
defined in Example 10.6 for support functions show that none of the other
assumptions in these results can be dropped.

11. The Asplund sum

Background for the following material can be found in [26] or [27, Sections 1.6
and 9.5], for example.

Denote by CV(Rn), n ≥ 2, the class of lower semicontinuous functions
in Cvx(Rn) \ {∞}. (We warn the reader that some authors use different
notation for this class.)

The class of log-concave functions on Rn, assumed upper semicontinuous
and with the zero function excluded, is

LC(Rn) = {exp(−f) : f ∈ CV(Rn)}.

If K ∈ CCn, then hK ∈ CV(Rn) and 1K ∈ LC(Rn).
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For f, g ∈ LC(Rn), define the Asplund sum (or sup-convolution) f ? g by

f ? g(x) = sup
x=y+z

f(y)g(z),

for all x ∈ Rn. Then 1K ? 1L = 1K+L for K,L ∈ CCn.
For f ∈ CV(Rn), let Lf be the Legendre transform of f , defined by

(Lf)(x) = sup
y∈Rn

(x · y − f(y)).

Define S : LC(Rn)→ CV(Rn) by (Sf) = L(− log f). Then S(1K) = hK ,
for all K ∈ CCn. The map S : LC(Rn)→ CV(Rn) is a bijection, is order
preserving (i.e., f ≤ g ⇒ Sf ≤ Sg), and satisfies S(f ? g) = Sf + Sg.

Rotem [26, Theorem 3] proves that if T : LC(Rn)→ CV(Rn) is order
preserving and satisfies T (1K) = hK for all K ∈ CCn, and ⊕ : LC(Rn)2 →
LC(Rn) is an operation satisfying T (f ⊕ g) = T f + T g, then

(T f)(x) =
1

c
(Sf)(cx),

for some c > 0, and f ⊕ g = f ? g.

Theorem 11.1. Let ∗ : LC(Rn)2 → LC(Rn) have the identity property (with
identity 1{o}) and be such that the operation � : CV(Rn)2 → CV(Rn) defined
by f � g = S(S−1f ∗ S−1g), for f, g ∈ CV(Rn), is pointwise. Then ∗ = ? is
the Asplund sum.

Proof. If f ∈ CV(Rn), then

f � 0 = S(S−1f ∗ S−10) = S(S−1f ∗ 1{o}) = S(S−1f) = f,

and similarly 0 � f = f , so � has the identity property.
It is easy to see that for each m ≥ 2, CV(Rn) has the m-linear interpo-

lation property (with associated subclass the affine functions on Rn, for ex-
ample) and the m-V -property, so Lemma 9.1 holds when Υ(Rn) = CV(Rn).
Since Cvx(Rn) ⊂ CV(Rn), Theorem 9.5 also holds when Υ(Rn) = CV(Rn),
with the same proof. By Theorem 9.5, � = +, so

f ∗ g = S−1(Sf � Sg) = S−1(Sf + Sg) = f ? g,

for all f, g ∈ LC(Rn), as required. �
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