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A class of complete minimal submanifolds

and their associated families of

genuine deformations

M. Dajczer and Th. Vlachos

Concerning the problem of classifying complete submanifolds of
Euclidean space with codimension two admitting genuine isometric
deformations, until now the only known examples with the maxi-
mal possible rank four are the real Kaehler minimal submanifolds
classified by Dajczer-Gromoll [11] in parametric form. These sub-
manifolds behave like minimal surfaces, namely, if simple connected
either they admit a nontrivial one-parameter associated family of
isometric deformations or are holomorphic.

In this paper, we characterize a new class of complete minimal
genuinely deformable Euclidean submanifolds of rank four but now
the structure of their second fundamental and the way it gets mod-
ified while deforming is quite more involved than in the Kaehler
case. This can be seen as a strong indication that the above classi-
fication problem is quite challenging. Being minimal, the subman-
ifolds we introduced are also interesting by themselves. In particu-
lar, because associated to any complete holomorphic curve in CN

there is such a submanifold and, beside, the manifold in general is
not Kaehler.

Some of the very basic question in the local and global theory of isometric
immersions of Riemannian manifolds into Euclidean space remain in good
part unanswered. For instance, outside some special cases it is not known
which is the lowest codimension for which a given Riemannian manifold ad-
mits an isometric immersion. On one hand, there are several results that
assure that a submanifold must be unique, that is, isometrically rigid, when
lying in its lowest possible codimension. On the other hand, there are few
theorems classifying isometrically deformable submanifolds and their defor-
mations. This is due to the fact that rigidity is a “generic” property while
being deformable is certainly not, and hence a situation harder to deal with.

The exception for the deformation problem is the case of hypersurfaces.
In fact, in the local case the problem was mostly solved by Sbrana [21] and
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700 M. Dajczer and Th. Vlachos

Cartan [1] about a century ago; see [7] for details and a modern presentation.
A solution to the problem for compact hypersurfaces was given by Sackst-
eder [20] and by Dajczer-Gromoll [10] in the complete case. But solving the
deformation problem in codimension two turns out to be very challenging
even in the more restrictive case of complete manifolds.

In dealing with the isometric deformation problem in higher codimen-
sion, it has to be taken into account that any submanifold of a deformable
submanifold has the isometric deformations induced by the latter. In order
to obtain classifications, it is natural to exclude this type of deformations
and only study the remaining ones that were called genuine deformations in
[5].

An isometric immersion f̂ : Mn → Rn+p is a genuine deformation of a
given isometric immersion f : Mn → Rn+p, p ≥ 2, if there is no open subset
U ⊂Mn along which f |U and f̂ |U extend isometrically. That f : Mn → Rn+p

and f̂ : Mn → Rn+p extend isometrically means that there is an isometric
embedding j : Mn ↪→ Nn+q, 1 ≤ q < p, into a Riemannian manifold Nn+q

and there are isometric immersions F : Nm → Rn+q and F̂ : Nm → Rn+q

such that f = F ◦ j and f̂ = F̂ ◦ j, i.e., the following diagram commutes:

Mn Nn+q

Rn+p

Rn+p

f

f̂

F

F̂

j �
��

@
@R

��
��

��1
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The only general result for submanifolds that admit genuine deforma-
tions known at this time is the local result due to Dajczer-Florit [5]. In low
codimension, they showed that genuine deformations are only possible for
certain class of ruled submanifolds and gave a lower bound for the dimen-
sion of the rulings. In the special case of codimension two, in order to admit
genuine deformations a submanifold without flat points must have rank ρ at
most four at any point. By ρ we denote the rank of the Gauss map, that is,
ρ = n− ν, where ν stands for the standard index of relative nullity, namely,
the dimension of the kernel of the second fundamental form.

In this paper, we are interested in the global problem of genuine defor-
mations of isometric immersions with codimension two. In fact, we deal with
the noncompact case since for compact submanifolds the deformation prob-
lem was already solved by Dajczer-Gromoll [12]. We point out that there
exist several local results on genuine deformations in the special case of sub-
manifold of rank ρ = 2 but these manifolds are never complete; see [5], [8]
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A class of complete minimal submanifolds 701

and [17]. In particular, there are the minimal ones that were parametrically
classified in [4]. They admit a one-parameter associated family of isometric
deformations whose geometric nature was recently described in [13].

At this time, there is only one classification result on deformations for
complete noncompact submanifolds in Euclidean space with codimension
two, namely, the one given in [11] of minimal but non-holomorphic isometric
immersions of Kaehler manifolds. If simply connected such a submanifold ad-
mits a nontrivial one-parameter associated family of isometric deformations;
see [9]. These submanifolds are ruled (i.e., foliated by complete Euclidean
spaces) with rulings of codimension two and have rank ρ = 4 almost every-
where. As in the case of minimal surfaces, the associated family is obtained
by composing its second fundamental form with an orthogonal parallel ten-
sor in the tangent bundle given in terms of the complex structure of the
manifold. The tensor amounts to a rotation of constant angle while keeping
the the normal bundle and the induced connection unchanged. Basically, this
is also the situation of the local case discussed to in the preceding paragraph.

In this paper, we parametrically construct and characterize a new class
of complete minimal ruled submanifolds that also admit a one-parameter
associated family of isometric deformations. As before, the rulings have
codimension two and the rank is ρ = 4 almost everywhere. Moreover, the
deformations are obtained while keeping unchanged the normal bundle and
connection. But now, the second fundamental form of the deformed subman-
ifold relates to the initial one in a much more complex form, in particular,
no orthogonal tensor is involved.

It is an interesting question if the above two families of complete ruled
minimal submanifolds exhaust all examples in the same class that admit
genuine deformations. For instance, they may be examples such that the in-
tegral leaf exists but it is not totally geodesic. Of course, a much more chal-
lenging classification problem of complete submanifolds of rank four would
be to drop one of the conditions, for instance being minimal or ruled. In the
Kaehler case, it follows from [11] that there are a lot more examples without
complete rulings. From the recent results in [14] it follows that this is also
the situation in our case.

Finally, we observe that some arguments in this paper involve some un-
expected long but straightforward computations that will be only sketched.
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702 M. Dajczer and Th. Vlachos

1. The 1-isotropic surfaces

In this section, we discuss some properties of the 1-isotropic surfaces in
Euclidean space that are the basic tool for the construction of the minimal
submanifolds that are the object of this paper.

Let g : L2 → Rn+2 denote an isometric immersion of a two-dimensional
oriented Riemannian manifold into Euclidean space. The kth-normal space
of g at p ∈ L2 for k ≥ 1 is given by

Ng
k (p) = span{αk+1

g (X1, . . . , Xk+1) : X1, . . . , Xk+1 ∈ TpL}

where α2
g = αg : TL× TL→ NgL is the standard second fundamental form

with values in the normal bundle and

αsg : TL× · · · × TL→ NgL, s ≥ 3,

is the symmetric tensor called the sth-fundamental form defined inductively
by

αsg(X1, . . . , Xs) =
(
∇⊥Xs . . .∇

⊥
X3
αg(X2, X1)

)⊥
.

Here ∇⊥ is the induced connection in the normal bundle NgL and ( )⊥

means taking the projection onto the normal complement ofNg
1 ⊕ · · · ⊕N

g
s−2

in NgL.
Assume further that g : L2 → Rn+2 is minimal and substantial. The lat-

ter means that the codimension cannot be reduced, in fact, not even locally
since minimal surfaces are real analytic. Then, on an open dense subset of
L2 the normal bundle of g splits as

NgL = Ng
1 ⊕N

g
2 ⊕ · · · ⊕N

g
m, m = [(n− 1)/2],

since all higher normal bundles have rank two except possible the last one
that has rank one if n is odd; see [2], [4] or [22] for details. Moreover, the
orientation of L2 induces an orientation on each plane vector bundle Ng

s

given by the ordered pair

ξs1 = αs+1
g (X, . . . ,X), ξs2 = αs+1

g (JX, . . . ,X)

where 0 6= X ∈ TL and J is the complex structure of L2 determined by the
metric and orientation.
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A class of complete minimal submanifolds 703

If L2 is simply connected, the generalized Weierstrass parametrization
implies that there exists a one-parameter associated family of minimal im-
mersions; see [18]. An alternative way to see this goes as follows: for each
constant θ ∈ S1 = [0, π) consider the orthogonal parallel tensor field

Jθ = cos θI + sin θJ

where I is the identity map. Then, the symmetric section αg(Jθ·, ·) of the
bundle Hom(TL× TL,NgL) satisfies the Gauss, Codazzi and Ricci equa-
tions with respect to the normal bundle and normal connection of g; see
[9]. Therefore, there exists an isometric minimal immersion gθ : L2 → Rn+2

whose second fundamental form is

αgθ(X,Y ) = φθαg(JθX,Y )

where φθ : NgL→ NgθL is the parallel vector bundle isometry that identifies
the normal bundles. Explicitly, the immersion is given by the line integral

gθ(x) =

∫ x

p0

g∗ ◦ Jθ

where p0 is any fixed point in L2. In particular, we have that gθ∗ = g∗ ◦ Jθ.
Thus φθ is nothing else than parallel identification in Rn+2 that identifies all
normal subbundles Ng

j with Ngθ
j , j ≥ 1, and for simplicity will be dropped

from now on. It turns out that the associated family is trivial (i.e., each gθ
is congruent to g) if and only if g is a holomorphic curve with respect to
some complex structure of the ambient space; cf. [4].

Remark 1. The case when L2 above is non-simply-connected was consid-
ered in [14].

Now assume that g : L2 → Rn+2, n ≥ 2, is substantial and 1-isotropic.
The latter means that the surface is minimal and that the ellipse of curvature
at all points is a circle. Recall that the ellipse of curvature Eg(p) ⊂ Ng

1 (p)
of g at p ∈ L2 is defined as

Eg(p) = {αg(Xψ, Xψ) : Xψ = cosψX + sinψJX and ψ ∈ [0, 2π)}

where X ∈ TpL has unit length.

The argument for the following result is basically due to Chern [3].
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Proposition 2. Let L0 be the open subset of L2 where dimNg
1 (p) = 2.

Then, L2 r L0 consists at most of isolated points and the vector bundle Ng
1 |L0

extends smoothly to a plane bundle over L2 still denoted by Ng
1 .

Proof. The complexified tangent bundle TL⊗ C decomposes into the eigen-
spaces of the complex structure J corresponding to the eigenvalues i and −i
denoted by T ′L and T ′′L, respectively. The second fundamental form can be
complex linearly extended to TL⊗ C with values in the complexified vector
bundle NgL⊗ C and then decomposed into its (p, q)-components, p+ q = 2,
which are tensor products of p many 1-forms vanishing on T ′′L and q many
1-forms vanishing on T ′L. Since the surface is minimal the (1, 1)-part of αg
vanishes, i.e., αg(∂z, ∂̄z) = 0 where z is a complex coordinate. We thus have
the splitting

(1) αg = α(2,0) + α(0,2) where α(0,2) = α(2,0).

The Codazzi equation implies that

∇⊥∂̄zαg(∂z, ∂z) = 0

which means that α(2,0) is holomorphic as a NgL⊗ C-valued tensor field.
Since g is 1-isotropic, then dimNg

1 (p0) < 2 if and only if αg(p0) = 0.
Moreover, in (1) the summands are perpendicular with respect to the her-
mitian inner product. Hence, the zeros of αg are precisely the zeros of α(2,0).
Since α(2,0) is holomorphic, we conclude that its zeros are isolated, and hence
L2 r L0 consists at most of isolated points.

Let (U, z) be a complex chart around a point p0 ∈ L2 r L0 with z(p0) =
0. Since α(2,0) it is not identically zero and p0 is a zero of it, around p0 we
may write

α(2,0) = zmα∗(2,0)

for a positive integer m, where α∗(2,0) is a tensor field of type (2, 0) with
α∗(2,0)(p0) 6= 0. Since α(2,0)(∂z, ∂z) = αg(∂z, ∂z) is isotropic, we have that
α∗(2,0)(∂z, ∂z) is also isotropic. Define an NgL-valued tensor field on U by

α∗ = α∗(2,0) + α∗(2,0).

By definition, the (1,1)-part of α∗ vanishes, hence it maps the unit tangent
circle at each tangent plane into an ellipse which, in fact, is a circle of positive
radius since α∗(2,0)(∂z, ∂z) is isotropic. Now we may extend Ng

1 |L0
to a plane
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A class of complete minimal submanifolds 705

bundle Ng
1 defined over all L2 by defining

Ng
1 (p0) = span{imageα∗(p0)},

and this concludes the proof. �

To conclude this section, we show how to construct any 1-isotropic sim-
ply connected surface in parametric form. This procedure can easily be used
to construct complete examples as was done in a quite similar situation in
[11].

On a simply connected domain U ⊂ C, a minimal surface g : U → RN
has the generalized Weierstrass representation

g = Re

∫ z
γdz

where the Gauss map γ : U → CN of g has the expression

γ =
β

2

(
1− φ2, i(1 + φ2), 2φ

)
being β holomorphic and φ : U → CN−2 meromorphic; see [18] for details.
From [2] we have that g is 1-isotropic if and only if (φ′, φ′) = 0, where
( , ) stands for the standard symmetric inner product in CN−2. Hence, to
construct any 1-isotropic surface start with a nonzero holomorphic map
α0 : U → CN−4. Assuming that α1 : U → CN−2 has been defined already,
set

α2 = β2

(
1− φ2

1, i(1 + φ2
1), 2φ1

)
where φ1 =

∫ z
α1dz and β2 6= 0 is any holomorphic function. Then, the sur-

face with Gauss map γ = α1, i.e., g = Re α2, is 1-isotropic.

2. The results

In this section, we state the results of this paper and leave the proofs for the
following one.

Let g : L2 → Rn+2, n ≥ 3, be a substantial 1-isotropic surface and let
π : Λg → L2 denote the vector bundle of rank n− 2 whose fibers are the
orthogonal complement in the normal bundle NgL of g of the extended
first normal bundle Ng

1 of g. Associated to g we consider the immersion
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706 M. Dajczer and Th. Vlachos

Fg : Λg → Rn+2 given by

(2) Fg(p, v) = g(p) + v,

and denote by Mn the manifold Λg when it is endowed with the metric in-
duced by Fg. By construction Fg : Mn → Rn+2 is an (n− 2)-ruled submani-
fold with complete rulings, that is, there is an integrable tangent distribution
of dimension n− 2 whose leaves are mapped diffeomorphically by F onto
complete affine subspaces of the ambient space.

In the sequel, we denote by H the tangent distribution orthogonal to the
rulings. An embedded surface j : L2 →Mn is called an integral surface of H
if j∗TpL = H(j(p)) at every point p ∈ L2.

Theorem 3. Let g : L2 → Rn+2, n ≥ 4, be a 1-isotropic substantial surface.
Then the associated immersion Fg : Mn → Rn+2 is an (n− 2)-ruled minimal
submanifold with rank ρ = 4 on an open dense subset of Mn. Moreover, the
rulings of Fg are complete and the integral surface L2 of H is unique and
totally geodesic. Furthermore, the metric of Mn is complete if L2 is complete.

Conversely, let F : Mn → Rn+2, n ≥ 4, be an (n− 2)-ruled minimal im-
mersion with rank ρ = 4 on an open dense subset of Mn. Assume that H
admits a totally geodesic integral surface j : L2 →Mn which is a global cross
section to the rulings. Then, the surface g = F ◦ j : L2 → Rn+2 is 1-isotropic
and F can be parametrized by (2).

The vertical bundle V = kerπ∗ of the submersion π decomposes orthog-
onally as

V = V1 ⊕ V0

on an open dense subset of L2, where V1 denotes the plane bundle deter-
mined by Ng

2 . We assume without loss of generality that this decomposition
holds globally. In the sequel, we consider the orthogonal decomposition of
the tangent bundle of Mn given by TM = H⊕ V where we identify isomet-
rically (and use the same notation) the subbundle V tangent to the rulings
with the corresponding normal subbundle to g. Then, it follows from the
proof that the relative nullity leaves of F are identified with the fibers of V0.

Let J be the endomorphism of TM such that J |H : H → H is the almost
complex structure in H determined by the orientation and restricted to V is
the identity, and set

Jθ = cos θI + sin θJ .
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Theorem 4. Let g : L2 → Rn+2, n ≥ 4, be a simply connected 1-isotropic
substantial surface. Then Fg : Mn → Rn+2 allows a smooth one-parameter
family of minimal genuine isometric deformations Fθ : Mn → Rn+2, θ ∈ S1,
such that F0 = Fg and each Fθ carries the same ruling and relative nullity
leaves as Fg.

Moreover, there is a parallel vector bundle isometry Ψθ : NFgM → NFθM
such that the relation between the second fundamental forms of Fθ and Fg
is given by

(3) αFθ(X,Y ) = Ψθ

(
R−θαFg(X,Y ) + 2κ sin(θ/2)β(J−θ/2X,Y )

)
where Rθ is the rotation of angle θ on NFgM that preserves orientation, κ
is the radius of the ellipse of curvature of g and β is the traceless bilinear
form defined by (19).

Remark 5. Quite similar arguments give that the above two results hold
for dimension n = 3 and rank ρ = 3.

If g is holomorphic with respect to some parallel complex structure in
Rn+2, then taking a rotation of angle θ that preserves orientation in each
Ng
s , s ≥ 2, induces an intrinsic isometry Sθ on Mn.

Theorem 6. If g is holomorphic then Fg ◦ S−θ is congruent to Fθ for any
θ ∈ S1.

3. The proofs

Let g : L2 → Rn+2, n ≥ 4, be a substantial oriented minimal surface. We
choose local positively oriented orthonormal frames {e1, e2} in TL and
{e3, e4} in Ng

1 such that

αg(e1, e1) = κe3 and αg(e1, e2) = µe4

where κ, µ are the semi-axes of the ellipse of curvature. We also take a
local orthonormal normal frame {e5, . . . , en+2} such that {e2r+1, e2r+2} is a
positively oriented frame field spanningNg

r for every even r. When n = 2m+
1 is odd, then e2m+1 spans the last normal bundle. We refer to {e1, . . . , en+2}
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as an adapted frame of g and consider the one-forms

ωij = 〈∇̃ei, ej〉 for 1 ≤ i, j ≤ n+ 2.

Then, we have from

α3
g(e1, e1, e1) + α3

g(e1, e2, e2) = 0 and α3
g(e1, e1, e2) = α3

g(e2, e1, e1)

that

(4) ω45 = − 1

λ
∗ ω35 and ω46 = − 1

λ
∗ ω36

where λ = µ/κ, ∗ denotes the Hodge operator, i.e., ∗ω(e) = −ω(Je), and J
is the complex structure of L2 induced by the metric and the orientation.
We denote by

V = a1e1 + a2e2, W = b1e1 + b2e2,

Y = c1e1 + c2e2, and Z = d1e1 + d2e2

the dual vector fields of ω35, ω36, ω45 and ω46, respectively. Then (4) is equiv-
alent to

Y = − 1

λ
JV and Z = − 1

λ
JW,

and hence

λc1 = a2, λc2 = −a1, λd1 = b2, and λd2 = −b1.

Clearly F = Fg is an immersion and the horizontal bundle H is the or-
thogonal complement of V in the tangent bundle of Mn, i.e., we have at
(p, v) ∈Mn that

T(p,v)M = H(p, v)⊕ V(p, v).

Fixed (p, v) ∈Mn, define a normal vector field δv in a neighborhood U
of p by

(5) δv(q) =
∑
j≥5

〈v, ej(p)〉ej(q).

Let βi, 1 ≤ i ≤ 2, be the curves in Mn satisfying βi(0) = (p, v) given by

βi(s) = (ci(s), δv(ci(s)))
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where each ci(s) is a smooth curve in L2 such that c′i(0) = ei(p). Then
Y1, Y2 ∈ T(p,v)M where

(6) Yi = β′i(0), 1 ≤ i ≤ 2.

Let Gi, Hi ∈ C∞(M), 1 ≤ i ≤ 2, be the functions

Gi = t2ω
i
56 + t3ω

i
57 + t4ω

i
58, Hi = −t1ωi56 + t3ω

i
67 + t4ω

i
68

where ωkij = ωij(ek) and tj ∈ C∞(M) is defined by

tj(q, w) = 〈w, ej+4(q)〉, 1 ≤ j ≤ 4.

The vertical bundle V can be orthogonally decomposed as V = V1 ⊕ V0

where V1 denotes the plane bundle determined by Ng
2 . Let {E3, E4} and

{E5, . . . , En} be the local orthonormal frames of V1 and V0, respectively,
such that

F∗Ej = ej+2, 3 ≤ j ≤ n.

Lemma 7. The vectors X1, X2 ∈ T(p,v)M defined as

(7) Xi = Yi +GiE3 +HiE4 −
∑
j≥7

〈∇⊥eiδv, ej〉Ej−2

satisfy X1, X2 ∈ H(p, v) and

F∗X1 = g∗e1 − ϕ1e3 −
1

λ
ϕ2e4, F∗X2 = g∗e2 − ϕ2e3 +

1

λ
ϕ1e4

where

ϕj = t01aj + t02bj , j = 1, 2,

and t0j = tj(p, v). Moreover, the normal space NFM(p, v) is spanned by

ξ = g∗(t
0
1V (p) + t02W (p)) + e3(p), η = g∗(t

0
1Y (p) + t02Z(p)) + e4(p).

In particular, if g is 1-isotropic we have

‖X1‖2 = ‖X2‖2 = Ω2 = 1 + ‖t01V (p) + t02W (p)‖2, 〈X1, X2〉 = 0

and

‖ξ‖ = Ω = ‖η‖, 〈ξ, η〉 = 0.
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Proof. We obtain from

F∗Yi = g∗pei(p) +
∑
j≥3

〈∇⊥eiδv, ej〉(p)ej(p)

that

F∗Yi −
∑
j≥5

〈∇⊥eiδv, ej〉(p)F∗Ej−2 = g∗pei(p)−
∑

3≤k≤4

〈∇⊥eiek, δv〉(p)ek(p).

On the other hand,

〈∇⊥eiδv, e5〉(p) = −t02ωi56(p)− t03ωi57(p)− t04ωi58(p) = −Gi(p, v),

〈∇⊥eiδv, e6〉(p) = t01ω
i
56(p)− t03ωi67(p)− t04ωi68(p) = −Hi(p, v)

and

〈∇⊥eie3, δv〉(p) = t01ω
i
35(p) + t02ω

i
36(p) = t01ai(p) + t02bi(p),

〈∇⊥eie4, δv〉(p) = t01ω
i
45(p) + t02ω

i
46(p) = t01ci(p) + t02di(p)

where also t0j = tj(p, v), 3 ≤ j ≤ 4. Hence,

F∗Xi = g∗ei − (t01ai + t02bi)e3 − (t01ci + t02di)e4, i = 1, 2.

The remaining of the proof is immediate. �

Lemma 8. The following equations hold:

ξ∗E3 = g∗V, ξ∗E4 = g∗W, and ξ∗ = 0 on V0,(8)

η∗E3 = g∗Y, η∗E4 = g∗Z, and η∗ = 0 on V0,(9)

ξ∗X1 = g∗
(
(e1(ϕ1)− κ)e1 + e1(ϕ2)e2(10)

+ ω1
12J(t1V + t2W ) +G1V +H1W

)
+ κϕ1e3 + (ω1

34 + λκϕ2)e4 + a1e5 + b1e6,

ξ∗X2 = g∗
(
e2(ϕ1)e1 + (e2(ϕ2) + κ)e2(11)

+ ω2
12J(t1V + t2W ) +G2V +H2W

)
− κϕ2e3 + (ω2

34 + λκϕ1)e4 + a2e5 + b2e6,

η∗X1 = g∗
(
e1(ψ1)e1 + (e1(ψ2)− λκ)e2(12)

+ σω1
12(t1V + t2W )− σG1JV − σH1JW

)
− (ω1

34 − κψ1)e3 + λκψ2e4 + σa2e5 + σb2e6,
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η∗X2 = g∗
(
(e2(ψ1)− λκ)e1 + e2(ψ2)e2(13)

+ σω2
12(t1V + t2W )− σG2JV − σH2JW

)
− (ω2

34 + κψ2)e3 + λκψ1e4 − σa1e5 − σb1e6

where σ = 1/λ and ψj = t01cj + t02dj , j = 1, 2.

Proof. Let γ(s) = (c(s), v(s)) be a curve in Mn so that γ(0) = (p, v) and
γ′(0) ∈ V(p, v), that is, c′(0) = 0. We have that

ξ∗γ
′(0) = 〈Dv/ds(0), e5(p)〉g∗V (p) + 〈Dv/ds(0), e6(p)〉g∗W (p),

or equivalently, that

ξ∗γ
′(0) = 〈F∗γ′(0), e5(p)〉g∗V (p) + 〈F∗γ′(0), e6(p)〉g∗W (p).

From this we obtain (8). Similarly, we have

η∗γ
′(0) = 〈F∗γ′(0), e5(p)〉g∗Y (p) + 〈F∗γ′(0), e6(p)〉g∗Z(p)

from which we obtain (9).
Making use of Lemma 7 and the Gauss and Weingarten formulas for g

we compute equations (10) to (13). We only argue for (10) since the proof
of the other equations is completely similar. We have from (7) and (8) that

ξ∗Xi = ξ∗Yi +Gig∗V +Hig∗W, 1 ≤ i ≤ 2.

In view of (6) and since

(ξ ◦ βi)(s) = t01g∗V (ci(s)) + t02g∗W (ci(s)) + e3(ci(s))

we obtain

ξ∗Y1 = t01
(
g∗∇e1V + αg(e1, V )

)
(p) + t02

(
g∗∇e1W + αg(e1,W )

)
(p)

− κ(p)g∗e1(p) +∇⊥e1e3(p),

and the desired formula for ξ∗X1 follows by direct computations. �
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Lemma 9. If g is a 1-isotropic surface, then the shape operators of Fg with
respect to the orthonormal tangent frame

Ei = Xi/Ω, i = 1, 2, and F∗Ej = ej+2, 3 ≤ j ≤ n,

vanish along V0 and restricted to H⊕ V1 are given by
(14)

Aξ =


κ+ h1 h2 r1 s1

h2 −κ− h1 r2 s2

r1 r2 0 0
s1 s2 0 0

 , Aη =


h2 κ− h1 r2 s2

κ− h1 −h2 −r1 −s1

r2 −r1 0 0
s2 −s1 0 0


where riΩ = −ai, siΩ = −bi,

hi = − 1

Ω2

(
t1(ei(a1)− a2Bi − b1ωi56) + t2(ei(b1)− b2Bi + a1ω

i
56)

+ t3(a1ω
i
57 + b1ω

i
67) + t4(a1ω

i
58 + b1ω

i
68)
)

and Bi = ωi12 + ωi34, i = 1, 2.

Proof. Since g is 1-isotropic, then (10) to (13) hold for ψ1 = ϕ2 and ψ2 =
−ϕ1. On the other hand, a straightforward computation shows that the Ricci
equations

〈R⊥(e1, e2)eα, eβ〉 = 0

for α = 3, 4 and β = 5, 6 are equivalent to

e1(a2)− e2(a1) + a1B1 + a2B2 − b2ω1
56 + b1ω

2
56 = 0,

e1(b2)− e2(b1) + b1B1 + b2B2 + a2ω
1
56 − a1ω

2
56 = 0,

e1(a1) + e2(a2)− a2B1 + a1B2 − b1ω1
56 − b2ω2

56 = 0,

e1(b1) + e2(b2)− b2B1 + b1B2 + a1ω
1
56 + a2ω

2
56 = 0,

and for α = 3, 4 and β = 7, 8 are equivalent to

a2ω
1
57 − a1ω

2
57 + b2ω

1
67 − b1ω2

67 = 0,

a2ω
1
58 − a1ω

2
58 + b2ω

1
68 − b1ω2

68 = 0,

a1ω
1
57 + a2ω

2
57 + b1ω

1
67 + b2ω

2
67 = 0,

a1ω
1
58 + a2ω

2
58 + b1ω

1
68 + b2ω

2
68 = 0.

We thus have that

〈AξEi, Ej〉 = −〈F∗Ei, ξ∗Ej〉 and 〈AηEi, Ej〉 = −〈F∗Ei, η∗Ej〉, 1 ≤ i, j ≤ n,
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and the result follows by a straightforward computation. �

Proof of Theorem 3. We first prove the converse. Let F : Mn → Rn+2, n ≥ 4,
be an (n− 2)-ruled minimal immersion with rank ρ = 4 on an open dense
subset. Then the tangent bundle splits as TM = H⊕ V, where H is orthog-
onal to the rulings and V splits as V = V1 ⊕ V0 with the fibers of V0 being
the relative nullity leaves.

The normal space of the surface g = F ◦ j at any point x ∈ L2 is given
by

NgL(x) = F∗(j(x))V ⊕NFM(j(x)).

Let Λg be the subbundle of the normal bundle of g whose fiber at x ∈ L2 is
F∗(j(x))V. Observe that

F (p)− g ◦ π(p) = F (p)− F (j(x)) ∈ F∗(j(x))V

for any p ∈Mn, where x = π(p), since p and j(x) belong to the same leaf
of V. Since F maps diffeomorphically the leaves of V onto complete affine
subspaces, it follows that the map T : Mn → Λg given by

T (p) = (π(p), F (p)− g ◦ π(p))

is a global diffeomorphism. Clearly the immersion F̃ = F ◦ T−1 satisfies

F̃ (x, v) = g(x) + v,

i.e., F̃ = Fg is of the form (2). Identifying Mn with Λg via T , we have that
F = Fg and j is the zero section of Λg.

It remains to show that g is 1-isotropic. Being j totally geodesic, we have
that

(15) αg(X,Y ) = αF (j∗X, j∗Y )

for all X,Y ∈ TL. This and our assumptions imply that g is minimal. The
horizontal and the vertical bundles satisfy

F∗(p, v)V = (Ng
1 (p))⊥ ⊂ NgL(p),

F∗(p, v)H ⊆ g∗TpL⊕ (Λg(p))
⊥,

NFM(p, v) ⊆ g∗TpL⊕ (Λg(p))
⊥

and now (15) yields Ng
1 = Λ⊥g .
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Let {e1, . . . , en+2} be an adapted frame of g. Setting

gij = 〈Xi, Xj〉F , bξij = 〈ξ∗Xi, F∗Xj〉
and bηij = 〈η∗Xi, F∗Xj〉, i, j = 1, 2,

and using Lemma 7 and Lemma 8, we find that

g11 = 1 + ϕ2
1 + σ2ϕ2

2, g12 = (1− σ2)ϕ1ϕ2, g22 = 1 + ϕ2
2 + σ2ϕ2

1,

and

bξ11 = e1(ϕ1)− κ− ω1
12ϕ2 +G1a1 +H1b1 − κϕ2

1 − σϕ2(ω1
34 + µϕ2),

bξ12 = e1(ϕ2) + ω1
12ϕ1 +G1a2 +H1b2 − κϕ1ϕ2 + σϕ1(ω1

34 + µϕ2),

bξ21 = e2(ϕ1)− ω2
12ϕ2 +G2a1 +H2b1 + κϕ1ϕ2 − σϕ2(ω2

34 + µϕ1),

bξ22 = e2(ϕ2) + κ+ ω2
12ϕ1 +G2a2 +H2b2 + κϕ2

2 + σϕ1(ω2
34 + µϕ1)

and

bη11 = e1(ψ1)− ω1
12ψ2 + σG1a2 + σH1b2 + ω1

34ϕ1 − κ(ϕ1ψ1 + ϕ2ψ2),

bη12 = e1(ψ2)− µ+ ω1
12ψ1 − σG1a1 − σH1b1 + ω1

34ϕ2 + κ(ϕ1ψ2 − ϕ2ψ1),

bη21 = e2(ψ1)− µ− ω2
12ψ2 + σG2a2 + σH2b2 + ω2

34ϕ1 + κ(ϕ1ψ2 − ϕ2ψ1),

bη22 = e2(ψ2) + ω2
12ψ1 − σG2a1 − σH2b1 + ω2

34ϕ2 + κ(ϕ1ψ1 + ϕ2ψ2).

From our assumptions, we have

(16) g11b
ξ
22 − g12(bξ12 + bξ21) + g22b

ξ
11 = 0

and

(17) g11b
η
22 − g12(bη12 + bη21) + g22b

η
11 = 0.

Viewing (16) and (17) as polynomials were the coefficients of t41, t
4
2, t

2
1t

2
2 must

vanish gives

(λ2 − 1)(a2
1 + a2

2)(a2
1 − a2

2) = 0 = (λ2 − 1)(b21 + b22)(b21 − b22)

and

(λ2 − 1)a1a2(a2
1 + a2

2) = 0 = (λ2 − 1)b1b2(b21 + b22).

Hence λ = 1 since otherwise, we have from the above that ω35 = ω36 = ω45 =
ω46 = 0, which is a contradiction.
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We now prove the direct statement. Observe that g = Fg ◦ j, where j
is the zero section of Mn. Clearly, we have that j is an integral surface of
the distribution orthogonal to the rulings which is also totally geodesic and
a global cross section to the rulings. Up to the uniqueness of the integral
surface and completeness of Mn the proof now follows from Lemma 9. In
fact, it is very easy to see that the metric of Mn is complete if the metric of
L2 is complete.

Assume that there exists a second integral surface j̃ : L2 →Mn. Set
g̃ = Fg ◦ j̃ and let T̃ : Mn → Λg̃ be the diffeomorphism given by

T̃ (p) = (π(p), F (p)− g̃(π(p)).

Then T̃ ◦ T−1 : Λg → Λg̃ is

T̃ ◦ T−1(x, v) = (x, v + g(x)− g̃(x)).

Hence Λg and Λg̃ can be identified by parallel translation, thus there exists
a section δ of Λg such that g̃ = g + δ. It follows from

(18) g̃∗X = g∗X +∇⊥Xδ

that ∇⊥Xδ ∈ N
g
1 for any X ∈ TL. If δ is constant, then g lies in an affine

subspace Rn+1 of Rn+2 perpendicular to δ which has been excluded. Thus,
there is µ = ∇⊥X0

δ 6= 0 for some X0 ∈ TL. From (18) we have that∇⊥Y µ ∈ N
g
1

for any Y ∈ TL. This easily implies that Ng
1 is parallel in the normal bundle

and thus g lies in R4, a contradiction. �

Proof of Theorem 4. For each θ ∈ S1, we define Fθ : Λg → Rn+2 by

Fθ(p, v) = gθ(p) + v.

In the sequel, corresponding quantities of Fθ are denoted by the same symbol
used for Fg marked with θ. That Fθ is isometric to Fg is immediate. Since
the tangent frame {e1, e2} has been fixed, we have for the adapted frames
of gθ that

eθ3 = R1
θe3 and eθ4 = R1

θe4

where R1
θ is the rotation of angle θ on Ng

1 . We complete the adapted frame
choosing

eθj = ej , 5 ≤ j ≤ n+ 2.
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Clearly, it holds that ωθ34 = ω34 and ωθij = ωij for i, j ≥ 5. Moreover,

ωθ35 = cos θω35 − sin θ ∗ ω35 and ωθ36 = cos θω36 − sin θ ∗ ω36.

Hence, the dual vector fields of ωθ36 and ωθ36 are given, respectively, by

Vθ = J−θV and Wθ = J−θW.

Thus,

aθ1 = a1 cos θ + a2 sin θ, aθ2 = a2 cos θ − a1 sin θ

and

bθ1 = b1 cos θ + b2 sin θ, bθ2 = b2 cos θ − b1 sin θ.

It follows from (5), (6) and (7) that

Xθ
i = Xi, i = 1, 2.

By Lemma 7, the normal bundle of Fθ is spanned by

ξθ = gθ∗J−θ(t1V + t2W ) +R1
θe3, ηθ = −gθ∗Jπ/2−θ(t1V + t2W ) +R1

θe4.

A straightforward computation yields that the map Ψθ : NFgM → NFθM
given by

Ψθξ = ξθ and Ψθη = ηθ

is a parallel vector bundle isometry. The shape operators of Fθ vanish on V0

and restricted to H⊕ V1 are given with respect to the frame {E1, . . . , En}
by

Aθξθ =


κ+ hθ1 hθ2 rθ1 sθ1
hθ2 −κ− hθ1 rθ2 sθ2
rθ1 rθ2 0 0
sθ1 sθ2 0 0

 , Aθηθ =


hθ2 κ− hθ1 rθ2 sθ2

κ− hθ1 −hθ2 −rθ1 −sθ1
rθ2 −rθ1 0 0
sθ2 −sθ1 0 0


where rθiΩ = −aθi , sθiΩ = −bθi and

hθ1 = h1 cos θ + h2 sin θ, hθ2 = −h1 sin θ + h2 cos θ.

Let Lθ denote the endomorphism of TM such that Lθ|V = 0 and Lθ|H : H →
H is the reflection given by

Lθ|H =

[
− sin(θ/2) cos(θ/2)
cos(θ/2) sin(θ/2)

]
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with respect to the tangent frame {E1, E2}. It follows easily that

AθΨθξ = ARθξ − 2κ sin(θ/2)Lθ and AθΨθη = ARθη − 2κ sin(θ/2)JLθ.

By a direct computation we obtain

αFθ(X,Y ) = Ψθ

(
R−θαFg(X,Y )− 2κ

Ω2
sin(θ/2)(〈LθX,Y 〉ξ + 〈LθJX,Y 〉η)

)
.

Define β as the symmetric section of Hom(TM × TM,NFgM) with nullity
V such that

(19) β(E1, E1) =
1

Ω2
ξ = −β(E2, E2) and β(E1, E2) = − 1

Ω2
η,

and the proof of (3) follows easily.
Finally, that the isometric deformation Fθ of Fg is genuine is immediate

from (14) since the shape operators of Fg have rank four for any normal
direction along an open dense subset. �

Proof of Theorem 6. Being g holomorphic, there exists an isometry τ of Rn+2

such that gθ = τ ◦ g. The higher fundamental forms satisfy

αs+1
gθ = τ∗ ◦ αs+1

g for any s ≥ 1.

It was shown in [4] that the almost complex structure J induces an almost
complex structure Js on each Ng

s defined by

Jsα
s+1
g (X1, . . . , Xs+1) = αs+1

g (JX1, . . . , Xs+1).

In the present case each Js : Ng
s → Ng

s is an isometry. Thus, we have

αs+1
gθ = Rsθ ◦ αs+1

g ,

where Rsθ = cos θI + sin θJs. Hence Rsθ = τ∗|Ng
s
. It is now easy to see that

Fθ = τ ◦ Fg ◦ S−θ, and this concludes the proof. �

4. The case of holomorphic curves

Let the substantial surface g : L2 → Rn+2, n ≥ 6, be a holomorphic curve
with respect to some parallel complex structure in Rn+2. Let {e1, e2} be an
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orthonormal tangent frame such that

αs+1
g (e1, . . . , e1) = κse2s+1,

αs+1
g (e1, . . . , e1, e2) = κse2s+2, 1 ≤ s ≤ n/2.

Then, set τs = κs/κs−1, 1 ≤ s ≤ n/2, with κ0 = 1. It is well-known that κs
can be defined as the radius of the sth-curvature ellipse (cf. [13]) and that
the functions τs are completely determined by the metric of L2 in an explicit
form by a result of Calabi (cf. [19]).

We see next that in this case of a holomorphic curve g the second funda-
mental form of the associated minimal ruled submanifold Fg : Mn → Rn+2

is substantially simpler than in the general case and completely determined
by the metric of the surface.

Proposition 10. Let g : L2 → Rn+2, n ≥ 6, be holomorphic. Then the shape
operators of Fg : Mn → Rn+2 with respect to the orthonormal tangent frame

Ei = Xi/Ω, i = 1, 2, and F∗Ej = ej+2, 3 ≤ j ≤ n.

vanish along V0 and restricted to H⊕ V1 are given by
(20)

Aξ =


τ1 + h1 h2 r 0
h2 −τ1 − h1 0 r
r 0 0 0
0 r 0 0

 , Aη =


h2 τ1 − h1 0 r

τ1 − h1 −h2 −r 0
0 −r 0 0
r 0 0 0


where

h1 = − 1

1 + (t21 + t22)τ2
2

(
t1e1(τ2)− t2e2(τ2) + t3τ2τ3

)
,

h2 = − 1

1 + (t21 + t22)τ2
2

(
t1e2(τ2) + t2e1(τ2) + t4τ2τ3

)
,

r = − τ2√
1 + (t21 + t22)τ2

2

·

Moreover, the second fundamental form of Fg depends only on the metric
of L2.

Proof. From the choice of the normal frame and the definition of higher
fundamental forms, we find that the normal connection forms

ωjαβ = 〈∇⊥ejeα, eβ〉, 1 ≤ j ≤ 2, 3 ≤ α, β ≤ n+ 2,
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satisfy

αs+1
g (e1, . . . , e1) = (∇⊥e1α

s
g(e1, . . . , e1))Ng

s

= κs−1(∇⊥e1e2s−1)Ng
s

= κs−1

(
ω1

2s−1,2s+1e2s+1 + ω1
2s−1,2s+2e2s+2

)
.

Similarly, we find

αs+1
g (e1, . . . , e1, e2) = κs−1

(
ω1

2s,2s+1e2s+1 + ω1
2s,2s+2e2s+2

)
,

αs+1
g (e2, e2, e1 . . . , e1) = κs−1

(
ω2

2s,2s+1e2s+1 + ω2
2s,2s+2e2s+2

)
,

αs+1
g (e2, e1 . . . , e1) = κs−1

(
ω2

2s−1,2s+1e2s+1 + ω2
2s−1,2s+2e2s+2

)
.

Thus, we obtain

(21) ω2s−1,2s+1 = ω2s,2s+2 = τsω1, ω2s−1,2s+2 = −ω2s,2s+1 = τsω2.

Moreover, from part (ii) of Lemma 6 in [23] it follows that

(22) ω2s+1,2s+2 = (s+ 1)ω12 + ∗d log κs, 1 ≤ s ≤ n/2.

Then, using (21), (22) we have from Lemma 9 that the second fundamental
form of Fg is given by (20). �

Remark 11. Notice that in order to obtain the expressions of the shape
operators in the above result we only used that the first three ellipses of
curvature are circles. In [16] we will discuss when Mn is Kaehler.
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