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A class of complete minimal submanifolds
and their associated families of
genuine deformations

M. DAJCZER AND TH. VLACHOS

Concerning the problem of classifying complete submanifolds of
Euclidean space with codimension two admitting genuine isometric
deformations, until now the only known examples with the maxi-
mal possible rank four are the real Kaehler minimal submanifolds
classified by Dajczer-Gromoll [IT] in parametric form. These sub-
manifolds behave like minimal surfaces, namely, if simple connected
either they admit a nontrivial one-parameter associated family of
isometric deformations or are holomorphic.

In this paper, we characterize a new class of complete minimal
genuinely deformable Euclidean submanifolds of rank four but now
the structure of their second fundamental and the way it gets mod-
ified while deforming is quite more involved than in the Kaehler
case. This can be seen as a strong indication that the above classi-
fication problem is quite challenging. Being minimal, the subman-
ifolds we introduced are also interesting by themselves. In particu-
lar, because associated to any complete holomorphic curve in CV
there is such a submanifold and, beside, the manifold in general is
not Kaehler.

Some of the very basic question in the local and global theory of isometric
immersions of Riemannian manifolds into Euclidean space remain in good
part unanswered. For instance, outside some special cases it is not known
which is the lowest codimension for which a given Riemannian manifold ad-
mits an isometric immersion. On one hand, there are several results that
assure that a submanifold must be unique, that is, isometrically rigid, when
lying in its lowest possible codimension. On the other hand, there are few
theorems classifying isometrically deformable submanifolds and their defor-
mations. This is due to the fact that rigidity is a “generic” property while
being deformable is certainly not, and hence a situation harder to deal with.

The exception for the deformation problem is the case of hypersurfaces.
In fact, in the local case the problem was mostly solved by Sbrana [21] and

699



700 M. Dajczer and Th. Vlachos

Cartan [I] about a century ago; see [7] for details and a modern presentation.
A solution to the problem for compact hypersurfaces was given by Sackst-
eder [20] and by Dajczer-Gromoll [10] in the complete case. But solving the
deformation problem in codimension two turns out to be very challenging
even in the more restrictive case of complete manifolds.

In dealing with the isometric deformation problem in higher codimen-
sion, it has to be taken into account that any submanifold of a deformable
submanifold has the isometric deformations induced by the latter. In order
to obtain classifications, it is natural to exclude this type of deformations
and only study the remaining ones that were called genuine deformations in
[5]. R

An isometric immersion f: M™ — R"™ is a genuine deformation of a
given isometric immersion f: M™ — R™*P p > 2. if there is no open subset
U C M™ along which f|y and f |u extend isometrically. That f: M™ — R"P
and f : M™ — R™P egtend isometrically means that there is an isometric
embedding j: M™ — N"t4 1< ¢ < p, into a Riemannian manifold N"*4
and there are isometric immersions F': N — R""4 and F: N™ — R4
such that f = Foj and f = F o j, i.e., the following diagram commutes:

R™tP

The only general result for submanifolds that admit genuine deforma-
tions known at this time is the local result due to Dajczer-Florit [5]. In low
codimension, they showed that genuine deformations are only possible for
certain class of ruled submanifolds and gave a lower bound for the dimen-
sion of the rulings. In the special case of codimension two, in order to admit
genuine deformations a submanifold without flat points must have rank p at
most four at any point. By p we denote the rank of the Gauss map, that is,
p =n — v, where v stands for the standard index of relative nullity, namely,
the dimension of the kernel of the second fundamental form.

In this paper, we are interested in the global problem of genuine defor-
mations of isometric immersions with codimension two. In fact, we deal with
the noncompact case since for compact submanifolds the deformation prob-
lem was already solved by Dajczer-Gromoll [12]. We point out that there
exist several local results on genuine deformations in the special case of sub-
manifold of rank p = 2 but these manifolds are never complete; see [5], [§]
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and [17]. In particular, there are the minimal ones that were parametrically
classified in [4]. They admit a one-parameter associated family of isometric
deformations whose geometric nature was recently described in [13].

At this time, there is only one classification result on deformations for
complete noncompact submanifolds in Euclidean space with codimension
two, namely, the one given in [I1] of minimal but non-holomorphic isometric
immersions of Kaehler manifolds. If simply connected such a submanifold ad-
mits a nontrivial one-parameter associated family of isometric deformations;
see [9]. These submanifolds are ruled (i.e., foliated by complete Euclidean
spaces) with rulings of codimension two and have rank p = 4 almost every-
where. As in the case of minimal surfaces, the associated family is obtained
by composing its second fundamental form with an orthogonal parallel ten-
sor in the tangent bundle given in terms of the complex structure of the
manifold. The tensor amounts to a rotation of constant angle while keeping
the the normal bundle and the induced connection unchanged. Basically, this
is also the situation of the local case discussed to in the preceding paragraph.

In this paper, we parametrically construct and characterize a new class
of complete minimal ruled submanifolds that also admit a one-parameter
associated family of isometric deformations. As before, the rulings have
codimension two and the rank is p = 4 almost everywhere. Moreover, the
deformations are obtained while keeping unchanged the normal bundle and
connection. But now, the second fundamental form of the deformed subman-
ifold relates to the initial one in a much more complex form, in particular,
no orthogonal tensor is involved.

It is an interesting question if the above two families of complete ruled
minimal submanifolds exhaust all examples in the same class that admit
genuine deformations. For instance, they may be examples such that the in-
tegral leaf exists but it is not totally geodesic. Of course, a much more chal-
lenging classification problem of complete submanifolds of rank four would
be to drop one of the conditions, for instance being minimal or ruled. In the
Kaehler case, it follows from [11] that there are a lot more examples without
complete rulings. From the recent results in [14] it follows that this is also
the situation in our case.

Finally, we observe that some arguments in this paper involve some un-
expected long but straightforward computations that will be only sketched.
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1. The 1-isotropic surfaces

In this section, we discuss some properties of the 1-isotropic surfaces in
Euclidean space that are the basic tool for the construction of the minimal
submanifolds that are the object of this paper.

Let g: L?> — R™*2 denote an isometric immersion of a two-dimensional
oriented Riemannian manifold into Euclidean space. The k**-normal space
of g at p € L? for k > 1 is given by

N{(p) = span{af ™ (X1, ..., Xpp1) : X1, o, Xi1 € TpL}

where ag =ay: TL xTL — NyL is the standard second fundamental form
with values in the normal bundle and

ag: TL x -+ xTL — NgL, s2>3,

is the symmetric tensor called the s?-fundamental form defined inductively
by

1
(X1, ..., X) = (V&s...vf(sag(xg,xl)) .

Here V= is the induced connection in the normal bundle N,L and ( )*
means taking the projection onto the normal complement of NY & --- & NY_,
in NyL.

Assume further that g: L? — R"*? is minimal and substantial. The lat-
ter means that the codimension cannot be reduced, in fact, not even locally
since minimal surfaces are real analytic. Then, on an open dense subset of
L? the normal bundle of g splits as

NyL=N{&N{&---®Nj, m=][n-1)/2],

since all higher normal bundles have rank two except possible the last one
that has rank one if n is odd; see [2], [4] or [22] for details. Moreover, the
orientation of L? induces an orientation on each plane vector bundle N7
given by the ordered pair

&=a"N(X,...,X), &=a"(JX,...,X)

where 0 # X € TL and J is the complex structure of L? determined by the
metric and orientation.
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If L? is simply connected, the generalized Weierstrass parametrization
implies that there exists a one-parameter associated family of minimal im-
mersions; see [I8]. An alternative way to see this goes as follows: for each
constant § € S = [0, 7) consider the orthogonal parallel tensor field

Jg = cosOI +sin6J

where I is the identity map. Then, the symmetric section agy(Jp-,-) of the
bundle Hom(T'L x TL, NyL) satisfies the Gauss, Codazzi and Ricci equa-
tions with respect to the normal bundle and normal connection of g; see
[9]. Therefore, there exists an isometric minimal immersion gg: L? — R"+2
whose second fundamental form is

Qg, (X, Y) = ¢9a9(J9X7 Y)

where ¢g: NyL — Ny, L is the parallel vector bundle isometry that identifies
the normal bundles. Explicitly, the immersion is given by the line integral

go(x) = / g« 0 Jy
Po

where pg is any fixed point in L?. In particular, we have that gg, = g« o Jp.
Thus ¢y is nothing else than parallel identification in R"2 that identifies all
normal subbundles V. ]“-q with IV, ]‘99, j > 1, and for simplicity will be dropped
from now on. It turns out that the associated family is trivial (i.e., each gy
is congruent to g) if and only if ¢ is a holomorphic curve with respect to
some complex structure of the ambient space; cf. [4].

Remark 1. The case when L? above is non-simply-connected was consid-
ered in [I4].

Now assume that ¢g: L? — R"™2 n > 2, is substantial and 1-isotropic.
The latter means that the surface is minimal and that the ellipse of curvature
at all points is a circle. Recall that the ellipse of curvature £9(p) C Ny (p)
of g at p € L? is defined as

EI(p) = {ay(Xy, Xy) : Xy = cospX +sinpJX and ¢ € [0,2m)}

where X € T}, L has unit length.

The argument for the following result is basically due to Chern [3].
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Proposition 2. Let Ly be the open subset of L? where dim Ny (p) = 2.
Then, L? \. Lg consists at most of isolated points and the vector bundle N,
extends smoothly to a plane bundle over L? still denoted by N7.

Proof. The complexified tangent bundle T'L ® C decomposes into the eigen-
spaces of the complex structure J corresponding to the eigenvalues ¢ and —1¢
denoted by T"L and T" L, respectively. The second fundamental form can be
complex linearly extended to T'L ® C with values in the complexified vector
bundle NyL ® C and then decomposed into its (p, ¢)-components, p + ¢ = 2,
which are tensor products of p many 1-forms vanishing on 7" L and ¢ many
1-forms vanishing on T"L. Since the surface is minimal the (1, 1)-part of «
vanishes, i.e., ay(0., 0.) = 0 where z is a complex coordinate. We thus have
the splitting

1) Qg = a®0) 4 002 where 9?2 = o(2,0),
The Codazzi equation implies that
V3.04(0:,0.) =0

which means that (29 is holomorphic as a NyL @ C-valued tensor field.

Since g is 1-isotropic, then dim NY(pg) < 2 if and only if ay4(po) = 0.
Moreover, in the summands are perpendicular with respect to the her-
mitian inner product. Hence, the zeros of oy are precisely the zeros of a(20),
Since a29) is holomorphic, we conclude that its zeros are isolated, and hence
L? \ Ly consists at most of isolated points.

Let (U, z) be a complex chart around a point py € L% \ Lo with z(pg) =
0. Since a(29 it is not identically zero and pg is a zero of it, around py we
may write

2,0) 2,0)

a(20) = X
for a positive integer m, where a*29 is a tensor field of type (2,0) with
a*@9 (pg) # 0. Since a29(9,,0.) = ay(0;,0;) is isotropic, we have that

a*20)(9,,8,) is also isotropic. Define an N, L-valued tensor field on U by
By definition, the (1,1)-part of a* vanishes, hence it maps the unit tangent

circle at each tangent plane into an ellipse which, in fact, is a circle of positive
radius since a*(29)(a,, 9.) is isotropic. Now we may extend NY|z, to a plane



A class of complete minimal submanifolds 705

bundle N{ defined over all L? by defining

N{(po) = span{image a* (po)},

and this concludes the proof. [l

To conclude this section, we show how to construct any 1-isotropic sim-
ply connected surface in parametric form. This procedure can easily be used
to construct complete examples as was done in a quite similar situation in
[11].

On a simply connected domain U C C, a minimal surface g: U — RN
has the generalized Weierstrass representation

z
g:Re/ vdz

where the Gauss map v: U — CV of g has the expression

=0 (-0 +6),20)

being B holomorphic and ¢: U — C¥~2 meromorphic; see [I8] for details.
From [2] we have that ¢ is 1-isotropic if and only if (¢',¢') =0, where
(,) stands for the standard symmetric inner product in C¥~2. Hence, to
construct any l-isotropic surface start with a nonzero holomorphic map
ag: U — CN=%, Assuming that a;: U — CV~2 has been defined already,
set

az =By (1= 62,i(1+ %), 2¢1)

where ¢1 = [ “a1dz and B # 0 is any holomorphic function. Then, the sur-
face with Gauss map v = aq, i.e., g = Re ao, is 1-isotropic.

2. The results

In this section, we state the results of this paper and leave the proofs for the
following one.

Let g: L? — R™"*2, n > 3, be a substantial 1-isotropic surface and let
m: Ay — L? denote the vector bundle of rank n —2 whose fibers are the
orthogonal complement in the normal bundle NyL of g of the extended
first normal bundle Ny of g. Associated to g we consider the immersion
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Fy: Ay — R™"2 given by

(2) Fy(p,v) = g(p) + v,

and denote by M™ the manifold A, when it is endowed with the metric in-
duced by Fy. By construction F,: M™ — R"*2 is an (n — 2)-ruled submani-
fold with complete rulings, that is, there is an integrable tangent distribution
of dimension n — 2 whose leaves are mapped diffeomorphically by F' onto
complete affine subspaces of the ambient space.

In the sequel, we denote by H the tangent distribution orthogonal to the
rulings. An embedded surface j: L? — M" is called an integral surface of H
if .7,L = H(j(p)) at every point p € L2

Theorem 3. Letg: L? — R"™2, n > 4, be a 1-isotropic substantial surface.
Then the associated immersion Fy: M™ — R"™2 is an (n — 2)-ruled minimal
submanifold with rank p = 4 on an open dense subset of M™. Moreover, the
rulings of F, are complete and the integral surface L? of H is unique and
totally geodesic. Furthermore, the metric of M™ is complete if L? is complete.

Conversely, let F: M™ — R""2 n >4, be an (n — 2)-ruled minimal im-
mersion with rank p =4 on an open dense subset of M"™. Assume that H
admits a totally geodesic integral surface j: L*> — M™ which is a global cross
section to the rulings. Then, the surface g = F o j: L?> — R"*2 js 1-isotropic
and F' can be parametrized by @

The vertical bundle V = ker 7, of the submersion © decomposes orthog-

onally as
y=va)

on an open dense subset of L?, where V! denotes the plane bundle deter-
mined by NJ. We assume without loss of generality that this decomposition
holds globally. In the sequel, we consider the orthogonal decomposition of
the tangent bundle of M" given by TM = H & V where we identify isomet-
rically (and use the same notation) the subbundle V tangent to the rulings
with the corresponding normal subbundle to g. Then, it follows from the
proof that the relative nullity leaves of F' are identified with the fibers of VY.

Let J be the endomorphism of T'M such that J |y : H — H is the almost
complex structure in H determined by the orientation and restricted to V is
the identity, and set

Jo = cosOI +sinhJ.
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Theorem 4. Let g: L? — R""2 n >4, be a simply connected 1-isotropic
substantial surface. Then Fy: M™ — R™*2 qallows a smooth one-parameter
family of minimal genwine isometric deformations Fp: M™ — R"*2 9 € S!,
such that Fy = Fy and each Fy carries the same ruling and relative nullity
leaves as F.

Moreover, there is a parallel vector bundle isometry Wyg: Np M — Ng, M
such that the relation between the second fundamental forms of Fy and F,
s given by

(3) aF, (X, Y) = \IJQ(R,QO[FQ (X, Y) + 2k Sin(Q/Q)ﬁ(j,Q/QX, Y))

where Ry is the rotation of angle 6 on Ng,M that preserves orientation, k
is the radius of the ellipse of curvature of g and B is the traceless bilinear

form defined by (@

Remark 5. Quite similar arguments give that the above two results hold
for dimension n = 3 and rank p = 3.

If ¢g is holomorphic with respect to some parallel complex structure in
R"*2, then taking a rotation of angle @ that preserves orientation in each
N7, s > 2, induces an intrinsic isometry Sp on M™.

Theorem 6. If g is holomorphic then Fy o S_g is congruent to Fy for any
0 e St

3. The proofs

Let g: L? — R"2 n >4, be a substantial oriented minimal surface. We
choose local positively oriented orthonormal frames {e;,es} in T'L and
{es,e4} in N{ such that

agler,er) = kes and  og(er,ex) = pey

where &, are the semi-axes of the ellipse of curvature. We also take a
local orthonormal normal frame {es, ..., ent+2} such that {ea;11,e2,42} is a
positively oriented frame field spanning N for every even r. When n = 2m +
1is odd, then ey, +1 spans the last normal bundle. We refer to {ei, ..., e 42}
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as an adapted frame of g and consider the one-forms
wij = (Vei,ej) for 1<i,j<n+2.
Then, we have from
3 3 . 3 3
ay(er,e1,e1) +agler, ez, ea) =0 and  ay(er,er,ea) = ay(ez, e1,e1)
that
1 1
(4) W45 = _X * W35 and w46 = _X * W3g

where A\ = p/k, * denotes the Hodge operator, i.e., sw(e) = —w(Je), and J
is the complex structure of L? induced by the metric and the orientation.
We denote by

V =a1e1 + asea, W = bieq + baeo,
Y =cie1 +cee9, and Z =dje; + doeo

the dual vector fields of w35, wsg, was and wyg, respectively. Then is equiv-
alent to

1 1
Y = _XJV and Z = _XJW’

and hence
Act =az, Acg = —ai, Adi=bs, and Ady= —by.

Clearly F' = F, is an immersion and the horizontal bundle H is the or-
thogonal complement of V in the tangent bundle of M", i.e., we have at
(p,v) € M™ that

TipyM = H(p,v) © V(p,v).

Fixed (p,v) € M"™, define a normal vector field J, in a neighborhood U
of p by

() 6u(a) =) _ (v, ¢j(p)ej(a)-

7>5

Let ;, 1 <i <2, be the curves in M" satisfying (3;(0) = (p,v) given by

Bi(s) = (ci(s), 6u(ci(s)))
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where each ¢;(s) is a smooth curve in L? such that ¢/(0) = e;(p). Then
Yl, Y, € T(pﬂ))M where

(6) Y; = Bl0), 1<i<2.
Let G;, H; € C>*(M), 1 <1i <2, be the functions
G = towlg + tawks + tawls, H; = —tiwl + tawhs + tawis
where wfj = wjj(ex) and t; € C°°(M) is defined by
(g w) = (w,e5ra(e)), 1<) <4

The vertical bundle V can be orthogonally decomposed as V = V! ¢ )}°
where V! denotes the plane bundle determined by N§. Let {Es, E4} and
{Es,...,E,} be the local orthonormal frames of V! and V°, respectively,
such that

F*Ej :6j+2, 3§j STL
Lemma 7. The vectors X1, X5 € T(p,v)M defined as

(7) Xi=Yi+GiEs+ HiEy— > (V26y,¢;)Ej o
Jj=7

satisfy X1, Xo € H(p,v) and

1 1
F. X1 = g«e1 — p1e3 — 3 P2€4; Fi. X5 = g«e2 — poe3 + NPres

where
©j :t?aj—i—tgbj, j = 1,2,
and t‘;- =tj(p,v). Moreover, the normal space NpM (p,v) is spanned by
§=g.(B0V(p) +13W (p)) +es(p), 1= g.(t)Y (p) + 152 (p)) + ea(p).
In particular, if g is 1-isotropic we have
IX1]” = [[Xa|?> = Q2 = 1+ [V (p) + W (p)|?, (X1, X2) =0

and
1€l == nll, (&mn) =0.
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Proof. We obtain from

F.Y; = gu,ei(p) + > (VEdu, ) (p)es(p)
>3

that

FY; = (VEdw, e))(p)FuEj—2 = guei(p) — Y (Vier, u)(p)ex(p)-
j>5 3<k<4

On the other hand,

(VE6,,e5)(p) = —t3wie(p) — t3wiz(p) — thwis(p) = —Gi(p,v),
(Vdu,e6)(p) = twis(p) — t3wiz () — tSwis(p) = —Hi(p, v)

and

tYa;(p) + t3bi(p),
t9ei(p) + t9di(p)

(Veres, 8u) (p) = t1wis (p) + t3wis(p)
(Verea, 80) (p) = t1wis (p) + thwis(p)

where also t(;- =tj(p,v), 3 <j < 4. Hence,
F. X, = g«€; — (t(l)ai + tgbi)eg — (t(l)ci + tgdi)&l, 1 =1,2.
The remaining of the proof is immediate.

Lemma 8. The following equations hold:

(8) &B3 =gV, &Ey=gW, and & =0 on VO,
9) nEs=g.Y, nEi=gZ, and n.=0 on)",
(10) & X1 = g« ((e1(1) — K)e1 + e1(pa)ex

+wip (0 V + W) + GV + HiW)
+ rpres + (wiy + Akpa)es + ares + byeg,
(11) & Xo = g« (62(901)61 + (e2(p2) + K)ea
+wh (01 V + toW) + GoV + HaW)
— Kpaes + (w3 + Akp1)eq + ages + baeg,
(12) N+ X1 = gx (61(¢1)€1 + (e1(v2) — Ak)ea
+owly (MY + taW) — 0G1 TV — o Hy W)

— (w3, — K1)es + Nkabaey + gages + abaeg,
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(13) X2 = gu((e2(¥1) — Ar)er + e2(vha)er
+ owih(tV 4+ W) — 0GoJV — o Ha JW)

— (W3, + Kab2)es + Awtbres — dares — abieg
where 0 = 1/X\ and 1; = t(l)cj _|_t(2)dj7 j=1,2.

Proof. Let ~y(s) = (¢(s),v(s)) be a curve in M™ so that v(0) = (p,v) and
7' (0) € V(p,v), that is, ¢/(0) = 0. We have that

&'(0) = (Dv/ds(0), e5(p)) 9.V (p) + (Dv/ds(0), es(p)) 9 W (p),

or equivalently, that

&' (0) = (F.y'(0), e5(p)) 9=V (p) + (Fi'(0), e6(p)) 9 W (p)-
From this we obtain . Similarly, we have

17 (0) = (F:9/(0), e5(p)) 9:Y (p) + (Fx7'(0), e6(p)) 9 Z (p)
from which we obtain @D

Making use of Lemma [7] and the Gauss and Weingarten formulas for g
we compute equations ([L0f) to . We only argue for since the proof
of the other equations is completely similar. We have from @ and that
&Xi =&Y +GiglV + Hig W, 1<i<2.
In view of @ and since
(€0 Bi)(s) = 11g:V (ci(s)) + 139:W (ci((s)) + es(ci(s))

we obtain

&Y1 = t3(9:Ve, V + agler, V) (p) + t3(9:Ve, W + ag(er, W) ()
— k(p)gse1(p) + Vi es(p),

and the desired formula for £, X7 follows by direct computations. O
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Lemma 9. If g is a 1-isotropic surface, then the shape operators of Fy with
respect to the orthonormal tangent frame

EiZXZ'/Q, ’i=1,2, and F*Ej = €542, 3§j Sn,

vanish along V° and restricted to H ® V' are given by

(14)
K+ hi ho T S1 ho Kk — hi1 9 S92
. h2 —RKR — hl T S92 I h1 —h2 —-Tr1T —S81
AE o T 9 0 0 ’ AT] o 9 —T1 0 0
S1 S9 0 0 59 —S1 0 0
where 1, = —a;, s, = —b;,
1 ) .
hi = _m(tl(ei(al) — a2 B; — biwsg) + ta(ei(b1) — baB; + a1wsg)

+ t3(a1w§,7 + blwé7) + t4(a1w§)8 + b1w§58))
and B; = wiy +wh,, i =1,2.

Proof. Since g is 1-isotropic, then (10]) to hold for 11 = @9 and ¥y =
—1. On the other hand, a straightforward computation shows that the Ricci
equations

(RL(el, e2)eq,eg) =0

for « = 3,4 and 8 = 5,6 are equivalent to

ei(ag) —ez(ay) + a1 By + as By — bgw%(; + blwgﬁ =0,
e1(b2) — ea(by) + b1 By + by By + aswis — ajwis = 0,
ei(a1) + ez(az) — asBy + a1 By — blwéfs — bgwgﬁ =0,
e1(b1) + ea(by) — byBy + b1 By + ajwig + aswis = 0,

and for = 3,4 and 8 = 7,8 are equivalent to

1 2 1 2
A2Ws7 — A1Wx7 + b2w67 — b1w67 = 0,
a2w51)8 — alwgg + bQWéS - b1Wg8 = 0,

1 2 1 2
ajwsy + A2Wsxr + b1w67 + b2w67 = 0,
a1wig + aswis + biwgs + bawds = 0.

We thus have that

(AcEi, Ej) = —(FLEy, & Ej) and (AgEy, Ej) = —(FiBj n.Ej), 1 <i,j <mn,
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and the result follows by a straightforward computation. 0

Proof of Theorem @ We first prove the converse. Let F': M™ — R"*2 n > 4,
be an (n — 2)-ruled minimal immersion with rank p =4 on an open dense
subset. Then the tangent bundle splits as TM = H ® V, where H is orthog-
onal to the rulings and V splits as V = V! @ V° with the fibers of V° being
the relative nullity leaves.

The normal space of the surface g = F o j at any point = € L? is given
by

N,L(z) = F.(j(z))V & Ne M (j(z)).

Let Ay be the subbundle of the normal bundle of g whose fiber at z € L? is
F.(j(x))V. Observe that

F(p)—gon(p) = F(p) — F(j(z)) € F(j(x))V

for any p € M™, where z = m(p), since p and j(z) belong to the same leaf
of V. Since F' maps diffeomorphically the leaves of V onto complete affine
subspaces, it follows that the map T': M™ — A, given by

T(p) = (m(p), F(p) — gom(p))

is a global diffeomorphism. Clearly the immersion F = F o T~ satisfies

F(z,v) = g(z) + v,

ie, F= F, is of the form . Identifying M™ with A, via T', we have that
F = F, and j is the zero section of A,.

It remains to show that g is 1-isotropic. Being 5 totally geodesic, we have
that

(15) ag(X, Y) = ar(j«X, jY)

for all X,Y € T'L. This and our assumptions imply that ¢ is minimal. The
horizontal and the vertical bundles satisfy

Fu(p,v)V = (N{(p))" C NyL(p),
Fiu(p,v)H € g.T,L & (Ag(p)) ™,
NpM(p,v) C g.T,L & (Ag(p))*

and now yields N{ = Agl.
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Let {ei1,...,ent2} be an adapted frame of g. Setting

9ii = (X0, X p, b5 = (6X, X))
and b:]J = <7’/*X1,F*XJ>, Z,] = 172’

and using Lemma [7] and Lemma [§] we find that

g =142+ %03, gia=(1—0)p102, goz =1+ @3+ 0203,

and
B, = e1(p1) — K — whpa + Grar + Hiby — k¢? — opa(wiy + pp2),
b5y = e1(p2) + wiapr + Grag + Hiby — k19 + 091 (why + pps),
b5, = ea(p1) — wirps + Goar + Hoby + kp1pa — opa(wis + ppr),
b5y = e2(pa) + K + whpr + Gaag + Haby + k3 + 001 (w3 + ppr)
and

bnl = e1(11) — wigths + 0Grag + o Hiby 4+ wi,o1 — k(011 + patds),

bly = e1(v2) — p + wigthy — 0Gra1 — o Hiby + wiyp2 + K(p1tba — path),
(1) — p — Wiythe + 0Gaag + o Haby 4 wi,p1 + k(012 — atb),

by = €2(¥2) + wiyts — 0Gaar — o Haby + wiypa + k(111 + paths).

no_

From our assumptions, we have

(16) g11b5y — g12(b3y + b51) + ga2b§y = 0
and
(17) g11bgy — g12(b{y + 03;) + g22b7, = 0.

Viewing and as polynomials were the coefficients of t‘ll, t3, 133 must
vanish gives

(A* = 1)(a] + a3)(af — a3) = 0= (A\* — 1) (b} + b3)(b] — b3)
and
(A2 — Dajag(a? + a2) = 0= (A2 — 1)byby(b? + b3).

Hence A = 1 since otherwise, we have from the above that w35 = ws3g = was =
wye = 0, which is a contradiction.



A class of complete minimal submanifolds 715

We now prove the direct statement. Observe that g = Fj o j, where j
is the zero section of M". Clearly, we have that j is an integral surface of
the distribution orthogonal to the rulings which is also totally geodesic and
a global cross section to the rulings. Up to the uniqueness of the integral
surface and completeness of M™ the proof now follows from Lemma [9 In
fact, it is very easy to see that the metric of M™ is complete if the metric of
L? is complete.

Assume that there exists a second integral surface j: L? — M™. Set
g=1ry ojandlet T: M™ — Aj be the diffeomorphism given by

T(p) = (n(p), F(p) — g(m(p)).
Then T o T 1: Ag — Aj is
ToT Y, v) = (z,v+ g(x) — §(x)).

Hence A4 and Aj can be identified by parallel translation, thus there exists
a section 0 of A4 such that g = g+ ¢. It follows from

(18) 3:X = g.X + V%o

that V)l<5 € Ny for any X € TL. If § is constant, then g lies in an affine
subspace R™*1 of R"*2 perpendicular to § which has been excluded. Thus,
thereis p = V)L(Oé = 0 for some Xg € TL. From we have that V%/,u S
for any Y € TL. This easily implies that N7 is parallel in the normal bundle
and thus ¢ lies in R*, a contradiction. O

Proof of Theorem . For each 6 € S, we define Fy: A, — R"™2 by

Folp,v) = golp) +v.

In the sequel, corresponding quantities of Fy are denoted by the same symbol
used for F,; marked with 6. That Fy is isometric to Fj is immediate. Since
the tangent frame {ej, ea} has been fixed, we have for the adapted frames
of gy that

¢ = Rjes and € = Rjey
where Ré is the rotation of angle § on NY. We complete the adapted frame
choosing

e?zej, 5<j3<n+2
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Clearly, it holds that wg4 = w34 and wfj = w;j for ¢, > 5. Moreover,

wg5 = cosBwss — sinf * w35 and w§6 = cos Bwszg — sin 0 * wsg.

Hence, the dual vector fields of ng and wgﬁ are given, respectively, by
Vo =J_gV and Wy = J_gW.

Thus,

a? = aqcosf + agsin b, ag = ag9cosf — aysinf

and
b? = b1 cosf + bysin b, bg = bycos@ — by sind.

It follows from , @ and @ that
X=X, i=1,2
By Lemmal 7], the normal bundle of Fy is spanned by
o =go0.J_o(t1V + 12W) + Rges, g = —go. Jrjo—o(t1V + t2W) + Ryey.

A straightforward computation yields that the map Wy: Ngp, M — Np, M
given by
Vol =& and Won =1y

is a parallel vector bundle isometry. The shape operators of Fy vanish on V°
and restricted to H @ V! are given with respect to the frame {Ej,..., E,}
by

0 [% 0 0 0 0 0 0
K +9h1 h3 , rb 5é h5 , K — iell 7‘20 529
49 — hy —Kk—hy Ty 5 40 — | hi —hy —r1 —s]
€ rf r§ 0o o | " 4 —rf 0 0
s4 s§ 0 O s§ —sd 0 0
where er = —a?, sz = —bf and

h(f = hycosf + hosinf, hg = —h;1sinf + ho cosf.

Let Ly denote the endomorphism of T'M such that Lg|y = 0 and Lg|y: H —
‘H is the reflection given by

_|—sin(0/2) cos(0/2)
Loln = cos(A/2)  sin(6/2)



A class of complete minimal submanifolds 717

with respect to the tangent frame {FEj, Eq}. It follows easily that
A?Ilsg = ARr,¢ —2rsin(0/2)Ly and A?I/gﬁ = AR,n — 2k5in(6/2)J Ly.
By a direct computation we obtain

2K

OéFS(X, Y) = \119 <R_9aFg(X, Y) — 02

sn(0/2)((LoX. V)€ + (LaT XY )0)).

Define 3 as the symmetric section of Hom(T'M x TM, Ng, M) with nullity
V such that

1 1
(19)  B(Er, Br) = 3¢ = —B(E2, Ez) and  B(Ey, En) = — 551,
and the proof of follows easily.
Finally, that the isometric deformation Fy of F} is genuine is immediate
from since the shape operators of Iy have rank four for any normal

direction along an open dense subset. O

Proof of Theorem @ Being g holomorphic, there exists an isometry 7 of R"+2
such that gg = 7 0 g. The higher fundamental forms satisfy

s+1

age

=T0 ag'H for any s > 1.

It was shown in [4] that the almost complex structure J induces an almost
complex structure Jg on each N¢ defined by

1 1
Jsaf P (X0, Xopr) = ap NI X0, X)),
In the present case each Js: NY — NY is an isometry. Thus, we have
+1 _ +1
af]e - Rz © Qf] ’

where Rj = cos 01 + sinf.J,. Hence R} = 7i|ng. It is now easy to see that
Fy=10F;0S5 g, and this concludes the proof. O

4. The case of holomorphic curves

Let the substantial surface g: L? — R"*2 n > 6, be a holomorphic curve
with respect to some parallel complex structure in R"™2. Let {e1, ez} be an
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orthonormal tangent frame such that

a;+1(

€l,...,€1) = Ks€2541,

1
Oé;+ (617 . .,61,62) = Rs€25+2, 1<s< n/2

Then, set 75 = ks/ks—1, 1 < s < n/2, with kg = 1. It is well-known that g
can be defined as the radius of the st-curvature ellipse (cf. [L3]) and that
the functions 7, are completely determined by the metric of L? in an explicit
form by a result of Calabi (cf. [19]).

We see next that in this case of a holomorphic curve g the second funda-
mental form of the associated minimal ruled submanifold Fy: M™ — R7+2
is substantially simpler than in the general case and completely determined
by the metric of the surface.

Proposition 10. Let g: L? — R""2, n > 6, be holomorphic. Then the shape
operators of Fy: M™ — R™2 with respect to the orthonormal tangent frame

Ei:Xi/Q, i:1,2, and F*Ej = €542, 3§] <n.

vanish along V° and restricted to H ® V' are given by

(20)
1 + hl hg r 0 hg T — h1 0 r
| he  —m—Mh 0 7 |m—h —hy  —r 0
Ae = . 0 0 ol An= 0 ) 0 o
0 r 0 0 r 0 0 O
where
hl = _; (tlel(Tz) — t9eg (TQ) —+ t37'27-3),
L+ (1] + t3)73
1
hy = —— k(¢ t t ,
2 1+(t%+t§)722( 1€2(2) + tae1(72) + taoTs)
T2
r=—

V14 (1 +13)73

Moreover, the second fundamental form of Fy depends only on the metric
of L.

Proof. From the choice of the normal frame and the definition of higher
fundamental forms, we find that the normal connection forms

W= (Vieaes), 1<j<2 3<a,B<n+2,
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satisfy

05 e evrer) = (VEa(er, o ver))n

= ks—1(V eas—1) N7

1 1
Ks—1 (w25—1725+1e28+1 + w2s—1725+2625+2)-

Similarly, we find

s+1 _ 1 1
Qg (617 <. €1, 62) = Rs—1 (W23,25+1625+1 + W23,25+2625+2)7
s+1 _ 2 2
aft (eg, e2,e1. .., €1) = Fs1 (W3, 94112541 + Wi 961 2€2542),
s+1 _ 2 2
ag (e e1 . e1) = K1 (Wit 254162541 + Whe 1 2442€25+2).-

Thus, we obtain

(21) Wos—1,264+1 = W2s 2542 = TsWl, W2s—12s+2 = —W2s 2541 = TsW2.
Moreover, from part (i7) of Lemma 6 in [23] it follows that

(22) Wast1,2s42 = (8 + Dwiz + *dlog ks, 1 <5< n/2.

Then, using , we have from Lemma |§| that the second fundamental
form of Fy is given by . ]

Remark 11. Notice that in order to obtain the expressions of the shape
operators in the above result we only used that the first three ellipses of
curvature are circles. In [16] we will discuss when M" is Kaehler.
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