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In this paper, aimed at exploring the fundamental properties of
isoperimetric region in 3-manifold (M3, g) which is asymptotic to
Anti-de Sitter-Schwarzschild manifold with scalar curvature R ≥
−6, we prove that a connected isoperimetric region {Di} with
H3

g(Di) ≥ δ0 > 0 cannot slide off to the infinity of (M3, g) provided
that (M3, g) is not isometric to the hyperbolic space. Furthermore,
we prove that isoperimetric region {Di} with topological sphere
{∂Di} as its boundary is exhausting regions of M if the Hawk-
ing mass mH(∂Di) has uniform bound. In the case of exhausting
isoperimetric region, we obtain a formula on expansion of isoperi-
metric profile in terms of the renormalized volume.
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1. introduction

We first introduce the concept of the asymptotically hyperbolic manifold.

Definition 1.1. A complete, orientated and noncompact Riemannian 3-
manifold (M3, g) is called to be asymptotically hyperbolic (AH) manifold if
the following condition is true:

1) There exists a compact set K ⊂M such that M\K is a union of finite
components, and each component, which is called end, is diffeomorphic
to R3\Br0(o);

2) With respect to the spherical coordinates induced by the diffeomor-
phism above, the metric can be written as

g = dr2 + (sinh2 r) · σ +
1

3 sinh r
h+O(e−3r).

where σ is the standard metric on S2 and h is a symmetric 2-tensor
on S2. Moreover, the asymptotical expansion can be differentiated any
times.

In many contexts, it is desirable to analyze the geometric quantities
of isoperimetric surface (see Definition 3.2 for its definition below) at the
infinity of AH manifold. For instance, to investigate Penrose inequality for
AH manifold (see [2], [22]), to study the uniqueness and classification of
isoperimetric surfaces near the infinity of AH manifold (see [5], [8], [17]). To
do that, we need to analyze the behavior of a family of isoperimetric regions
{Di} (see Definition 3.2 for its definition below) in AH manifold, we are
usually faced with the following three situations: one part of the region drifts
off to the infinity, i.e. eventually it disjoints with any fixed compact domain;
always passes through a fixed compact domain; is an exhaustion of the whole
mainfold, i.e. for any compact domain K ⊂M , it will be contained in Di

for i large enough. Since the each connected components of isoperimetric
region is still isoperimetric region, we always assume that the isoperimetric
regions are connected and its corresponding boundary isoperimetric surfaces
are also connected. In this paper, we give a delicate analysis of the behavior
of isoperimetric regions in AH manifold with the scalar curvature R ≥ −6.
Namely, we have

Theorem 1.2. Let (M3, g) be an AH manifold with the scalar curvature
R(g) ≥ −6 and h = mσ, m ∈ R in Definition 1.1. Suppose that m > 0 and
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Exhaustion of isoperimetric regions 629

{Di} is a family of isoperimetric regions with H3
g(Di)→∞, we have the

following classification:

1) {Di} is an exhuastion of (M, g); or

2) there exists a subsequence of {Σi = ∂Di} converging to properly,
strongly stable(for definition see Corollary 2.9), noncompactly com-
plete hypersurface, each connected component S of which is a constant
mean curvature surface of H = 2. Furthermore, S is conformally dif-
feomorphic to complex plane C.

Here, H3
g(·) denotes the Hausdroff measure in (M, g) with respect to the

metric g.

Our arguments in Theorem 1.2 above is similar to that developed in
asymptotically flat manifold in the paper [15] and [16]. Correspondingly, in
the Appendix C of [15], they obtained the result that the limiting suface
in the second case (2) in Theorem 1.2 is area minimizing in asymptoti-
cally flat manifold. Furthermore, For the case of nontrivial asymptotically
Schwarzschilds manifold, it has been proved that such a limiting surface
which is a properly stable minimal surface in that case, cannot exist(see
Theorem 1 in [4]). With this fact in mind, we wonder whether the second
case in Theorem 1.2 can really happen or not in asymptotically hyperbolic
space. Under the additional condition, we can show the following result.

Theorem 1.3. Let S be a connected component of the limiting surface of
a family of isoperimetric surfaces {Σi} in an AH manifold of (M3, g) with
R(g) ≥ −6 and h = mσ, m ∈ R in Definition 1.1 , if S is a noncompact,
completely connected surface with

∫
SK ≤ 0, then (M3, g) is isometric to H3.

It is interesting to see that in asymptotically flat case, the limit sur-
face of isoperimetric surfaces is area minimizing which is a much stronger
property than stability (see Appendix C in [16]).With this in mind, it is
natural to conjecture that a similar property holds for asymptotically hy-
perbolic manifolds, namely that the limit of large isoperimetric regions in an
asymptotically hyperbolic manifold (which one expects to have mean curva-
ture H = 2) minimizes the brane action functional area(·)− 2vol(·) among
compactly supported deformations of the surface. In [6], the possibility that
large isoperimetric regions always pass through fixed region in asymptoti-
cally flat manifold was ruled out by using this property. One might guess
that a similar result was true for asymptotically hyperbolic manifolds (not
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just asymptotically Schwarzschild-anti-de Sitter manifolds, as considered in
Theorem 1.3).

As an application of Theorem 1.3, we obtain a criterion for a family of
isoperimetric regions being an exhaustion of (M, g):

Theorem 1.4. Let (M3, g) be an AH manifold with R(g) ≥ −6 and h = mσ
in Definition 1.1 with m > 0. Suppose that {Di} is a family of isoperimetric
regions with H3

g(Di)→∞ and Σi = ∂Di is topological sphere. If in addition,

mH(Σi) ≤ C, for all i.

Then {Di} is an exhaustion of (M, g). Here, mH(Σ) is the Hawking mass of
Σ, for its definition see Definition 3.5, C is a positive constant independent
of i.

Remark 1.5. It was proved in [8] that in the case of compact perturbation
of Schwarzschild-ADS of positive mass the Hawking mass of an isoperimetric
sphere is uniformly bounded. Also, according to Theorem 1.4, the problem to
classify the isoperimetric surfaces with type of topological sphere is reduced
to the one that classification of exhausting isoperimetric spheres.

An interesting notion called renormalized volume V (M, g) was intro-
duced in [8]. Namely, let Ωi be exhausted domains of (M, g), we define
V (M, g) = lim

i→∞

(
H3
g(Ωi)−H3

H(Ωi)
)
. Here,H3

H(Ωi) denotes the volume of do-

main enclosed by ∂Ωi in H3(see Definition 5.1 in [8]). By the same arguments
wherein, we have V (M, g) ≥ 0 provided that the scalar curvature of (M3, g)
is at least −6 and equality holds iff (M3, g) is isometric to H3. It should be
interesting to understand the renormalized volume V (M, g) in more details.
For an exhausting isoperimetric domain {Di}, we have

Theorem 1.6. Let (M3, g) be a completely and asymptotically hyperbolic
manifold with R(g) ≥ −6. For any exhausting isoperimetric domain {Di},
we have

lim
i→∞

(Ag(vi)−AH(vi)) = −2V (M, g).

Here, Ag(·) and AH(·) denote the isoperimetric profiles in (M3, g) and H3

respectively (see Definition 3.2 for the definition).

Remark 1.7. More explicit expansion of Ag(v) was obtained in [8] if
(M3, g) is a compact perturbation of AdS-Schwarzschild manifold (See equal-
ity in P.3 in [8]).
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Our paper was inspired by [1] and [8] and some of these ideas and argu-
ments are from these two interesting papers. One of key steps in the proof
of Theorem 1.2 is to prove no drift of a family of isoperimetric regions with
positive uniformly lower bound volume, we achieve this by using the area
comparison of isoperimetric surface (see Theorem 3.3 below) and the renor-
malized volume (see Theorem 1.6 above and Lemma 3.11 below). Another
key step in the proof is the strong stability of the limiting surface S (See
Corollary 2.9 below) by which we are able to deduce the conformal type of
S is complex plane, and actually S is flat if its total curvature is nonposi-
tive. Combining with Lemma 2.4, we see the total mass of ambient manifold
(M3, g) vanishes. Hence, we get Theorem 1.3 by the positive mass theorem
proved in [22]. The main idea of the proof of Theorem 1.4 is to analyze the
geometry properties of the limiting surface. Under the assumption of uni-
form bound of the Hawking mass of sequence of isoperimetric surface, we
deduce that the limiting surface S is umbilical and total curvature is zero.
In addition, by Theorem 1.3, we see such case can only appear when the
ambient manifold (M3, g) is isometric to H3. In fact, nonexistence of such
limiting surface was proved in [8] when (M3, g) is compact perturbation
of Ads-Schwarzchild manifold, and arguments there rely heavily on the fact
that the ambient manifold is AdS-Schwarzschild manifold outside a compact
set (see Lemma 8.1 in [8]). Finally, we would point out that some arguments
in this paper are from [17].

The remaining part of the paper goes follows. In Section 2 we prove some
basic facts of isoperimetric surfaces used later; in Section 3 we prove an area
comparison theorem for isoperimetric surfaces by which we can show that
all isoperimetric regions with positive uniformly lower bound can not slide
off to the infinity provided that the ambient manifold is not isometric to H3;
in Section 4, we prove our main results. Here, we make appointment that
the constant C in this paper might be different line by line.

Acknowledgments. we are grateful to Dr. Otis Chodosh and Prof. Xiang
Ma for giving some helpful suggestions, Besides, the third author would
thank Dr. Zhichao Wang for his discussions in BICMR. Finally, we would
like to thank the referees very much for pointing out many inaccuracies. His
or her valuable suggestions make the paper clearer and much more readable.

2. Preliminary

One of basic facts for AH manifold is the existence of essential set on each
end,
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Definition 2.1. A compact subset D of (M3, g) is called an essential set if

1) D is a compact domain of M with smooth and convex boundary B
:= ∂D, i.e. its second fundamental form with respect to the outward
unit normal vector field is positive definite. Any geodesic half line
emitting from B orthogonally to the outside of D can be extended to
the infinity of (M, g);

2) The distant function ρ to D is a smooth function;

We should notice that if D is an essential set, then ρ is a smooth function
and has no critical point which implies that the region in M which lies in the
outside of the essential set D is diffeomorphic to [0,∞)× B. Furthermore,
we denote Dρ := {x ∈M : d(x,D) ≤ ρ} where d( , ) is the distantce function
with respect to metric g. Then Area(Dρ) increases along ρ and the surface
∂D has positive mean curvature with respect to the outward unit normal
vector.

In this section, we will prove that some basic properties of isoperimetric
surfaces in AH manifold (M3, g) with the scalar curvature R ≥ −6. The first
one is on the area growth of isoperimetric surfaces , more specifically, we
have

Lemma 2.2. Let (M3, g) be an AH manifold and Σ be an isoperimetric sur-
face in (M3, g). Then, there exists a constant Λ depending only on (M3, g)
with

(1) Area(Σ ∩ Dρ) ≤ Λe2ρ.

Proof. Let D be an isoperimetric region with boundary Σ and D be the
essential set of (M3, g). It is obvious that we can choose ρ′ ≤ ρ such that
V ol(D \ Dρ) + V ol(Dρ′) = V ol(D). Then, By the definition of isoperimetric
surface, we have

Area(∂(D \ Dρ)) +Area(∂Dρ′) ≥ Area(Σ).

Note that,

∂(D \ Dρ) ⊂ (Σ \ Dρ) ∪ ∂Dρ, Area(∂Dρ′) ≤ Area(∂Dρ).
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Furthermore, we have for any ρ > 0

Area(Σ ∩ Dρ) +Area((Σ \ Dρ)) = Area(Σ)

≤ Area(∂(D \ Dρ)) +Area(∂Dρ′) ≤ Area((Σ \ Dρ) ∪ ∂Dρ) +Area(∂Dρ)
≤ Area((Σ \ Dρ)) +Area(∂Dρ) +Area(∂Dρ)
≤ Area((Σ \ Dρ)) + 2Area(∂Dρ).

Hence, combining the inequality above, we have

Area(Σ ∩ Dρ) ≤ 2Area(∂Dρ) ≤ Λe2ρ.

It implies the conclusion, we finish the lemma. �

Let Σ be a connected isoperimetric surface in (M3, g), A, H denote its
second fundamental form and mean curvature with respect to the outward
unit normal vector respectively and Å , A− H

2 gΣ be the trace free part of
A. Here and in the sequel, gΣ denotes the induced metric on Σ from g. Then,
we have

Lemma 2.3. Let Σi be a family of connected isoperimetric surfaces in AH
manifold (M3, g) with H ≥ 2 and Area(Σi)→∞. Then, there exist univer-
sal constant Λk, k = 1, 2 depending only on (M, g) such that

g(Σi) ≤ Λ1,

∫
Σi

(‖Å‖2 + (H2 − 4)) dσi ≤ Λ2.

Here and in the sequel, g(Σi) denotes the genus of Σi,

Proof. We will adopt Hersch’s technique to prove the lemma, It was proved
in [17] when the topology of Σi is S2. Let

Ψi = (Ψ1
i ,Ψ

2
i ,Ψ

3
i ) : Σi 7→ S2 ↪→ R3

be a conformal map with degree of dΣi
and∫

Σi

Ψj
i = 0, j = 1, 2, 3.

Noting that Σi is volume preserving stable, we have∫
Σi

(Ric(v) + ‖A‖2)|Ψj
i |

2 ≤
∫

Σi

‖∇Ψj
i‖

2, j = 1, 2, 3.
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Here and in the sequel, v is the outward unit normal vector of Σi. Hence∫
Σi

(Ric(v) + ‖A‖2) ≤
∫

Σi

‖∇Ψi‖2 = 8πdΣi
.

Due to Brill-Noether Theorem(see [12]), we can choose Ψi with

dΣi
≤
(

1 +

[
g(Σi) + 1

2

])
.

Therefore, we get∫
Σi

(Ric(v) + ‖A‖2) ≤ 8π

(
1 +

(
g(Σi) + 1

2

))
= 4πg(Σi) + 12π.

Let e1, e2 be the unit tangent vector of Σi and K be its Gauss curvature,
then we have∫

Σi

(
Ric(v) + ‖A‖2

)
=

∫
Σi

(
Ric(e1) +Ric(e2) +H2

)
− 2

∫
Σi

K(2)

≤ 4πg(Σi) + 12π,

By Gauss-Bonnet formula, we obtain

(3)

∫
Σi

K = 4π (1− g(Σi)) ,

On the other hand, we have∫
Σi

(Ric(e1) +Ric(e2) +H2) =

∫
Σi

(H2 − 4) +

∫
Σi

O(e−3ρ)(4)

≥
∫

Σi

O(e−3ρ)

Here, we have used the assumption of H ≥ 2 in the inequality above.

Next, we will show that there exists a universal constant Λ3 depending
only on (M, g) and D such that

(5)

∫
Σi

e−3ρ ≤ Λ3.
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In fact, for any integer k ≥ 0, let Σi,k , Σi ∩ (Dk \ Dk−1) and D−1 = ∅. Then

Σi =
⋃
k

Σi,k.

Due to Lemma 2.2, we see that there exists a constant C independent
of k. Then for each k, we have∫

Σi,k

e−3ρ ≤ Ce−k.

Thus, we see that inequality (5) is true.
Combining with (2), (3), (4), (5), we have

g(Σi) ≤ 5 + C

∫
Σi

e−3ρ ≤ Λ.

By a direct computation and noting that H ≥ 2, we obtain

Ric(v) + ‖A‖2 ≥ (Ric(v) + 2) + ‖Å‖2 = O(e−3ρ) + ‖Å‖2.

Then together with (2) and (4), we obtain∫
Σi

(
‖Å‖2 + (H2 − 4)

)
dσi ≤ Λ2.

Thus, we finish the proof of Lemma 2.3. �

In order to get more delicate estimate of isoperimetric surfaces, we need
the following lemma proved in [17]:

Lemma 2.4. Let {Σi} be a family of connected isoperimetric surfaces in
AH manifold (M3, g) with the scalar curvature R ≥ −6 and v be its outward
unit normal vector and ρ be the distant function to the essential set D. Then,
we have ∫

Σi

(
1− 〈v, ∂

∂ρ
〉
)2

dσi ≤ C.

Here, C is a universal constant depending only on (M3, g).
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Proof. Due to Proposition 3.4 in [17], we have

∆Σρ =

(
4− 2

∥∥∥∥∥
(
∂

∂ρ

)T∥∥∥∥∥
)
e−2ρ + (2−H) + (H − 2)

(
1−

〈
∂

∂ρ
, v

〉)
(6)

+

(
1−

〈
∂

∂ρ
, v

〉)2

+O(e−3ρ).

where ( ∂∂ρ)T denotes the tangential projection of ∂
∂ρ on TΣ. Integrating (6)

on Σ and together with Lemma 2.3 and formulae (5), we get the conclusion.
�

Lemma 2.5. Let (M3, g) be an AH manifold with and Σ be a connected
isoperimetric surface in (M3, g). Then its mean curvature H > 2 provided
that Area(Σ) is large enough.

Proof. As Σ is a compact surface, Hence, there exists a Dr such that

Σ ⊂ Dr, p ∈ Σ ∩ ∂Dr.

By a direct computation, we have

H(Σ) ≥ HDr
(p).

By a direct calculation, we have

HDr
(p) = 2 + 2e−2r − trσh

sinh3 r
+O(e−4r).

As Area(Σ) is large enough, it is obvious that as r is large enough, we obtain

H(Σ) ≥ HDr
(p) > 2.

�

Proposition 2.6 asserts that a sequence of connected isoperimetric sur-
faces satisfying some natural assumptions in an AH manifold (M3, g) with
the scalar curvature R ≥ −6 have uniformly bounded second fundamental
forms. Moreover, if we assume that they pass through a fixed compact set
K in M and their areas approach to infinity, then, by the compactness the-
orem, we obtain that there exists a subsequence of {Σi} converging with
multiplicity one to a properly embedded, noncompact and complete surface
in (M3, g) in Ck-local topology for any k ≥ 1 (for details, see the arguments
in the proof of Theorem 18 in [18]). It is possible that the limiting surface
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may have more than one connected component. We denote S be any com-
plete and noncompact connected components of the limit surface. Our next
goal is to investigate some basic facts of S.

The following proposition is on the curvature estimate of isoperimetric
surfaces in AH manifold (M3, g). Namely,

Proposition 2.6. Let Σ be an isoperimetric surface in an AH manifold
(M3, g) with mean curvature 0 < H ≤ Λ. Then, there exists a constant C
depending only on Λ and (M3, g) ( more specifically, C1− bound of curvature
and lower bound of injective radius of (M3, g)) such that

‖A‖ ≤ C.

Proof. we prove this proposition by contradiction, we assume that the propo-
sition is false. Then, we can find a family of isoperimetric surface Σi ⊂M3

with 0 < H|Σi
≤ Λ, and pi ∈ Σi such that C2

i = ‖A‖(pi) = max ‖A‖ → ∞.
Then we consider {(M3, C2

i g, pi)} converges to (R3, geuc, o) in C2,α- pointed
Gromov-Hausdorff topology. Here, geuc, o are the standard Euclidean metric
of R3 and a fixed point respectively. Note that Σi is still an isoperimetric sur-
face in {(M3, C2

i g, pi)} with constant mean curvature C−1
i H|Σi

→ 0. By the
same arguments in the proof of Proposition 2.8, we get a complete and sta-
ble minimal surface Σ∞ in R3 with its second fundamental form ‖A‖(o) = 1
which contradicts with the well-known result of [10](see also [11]). Hence,
Proposition 2.6 is true. �

Lemma 2.7. The limiting surface S is a properly embedded, noncompact
and complete surface with constant mean curvature of H = 2, Area(Dρ ∩
S) ≤ Ce2ρ and ∫

S
|K| < C.

Here, K denotes the Gauss curvature of S and C is a universal constant
depending only (M, g).

Proof. Combining Lemma 2.3 and Lemma 2.5, we see that the limiting sur-
face S is a properly embedded and complete surface with mean curvature
H = 2 and ∫

S
|Å|2 < C.
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Combining with Gauss equation and (5), we get∫
S
|K| < C.

Furthermore, by Lemma 2.2, we see that

Area(Dρ ∩ S) ≤ Ce2ρ.

Therefore, we finish proving the lemma. �

Our next lemma is to assert that the limit surface S is stable in the
following sense, the similar result in asymptotically flat case was obtained
in [16].

Proposition 2.8. For any φ ∈ C∞0 (S), we have∫
S
(Ric(v) + ‖A‖2)φ2 ≤

∫
S
|∇φ|2.

Proof. By a natural extension, we assume that φ is defined in the neigh-
bourhood of S. Then, by a restriction, we get φi ∈ C∞(Σi) with φi = φ|S for
i large enough. And we notice that ci = 1

Area(Σi)

∫
S φi → 0 as i approaches

to infinity and φ̄i = φi − ci such that∫
Σi

φ̄i = 0.

Then, noticing that Σi has least area among all surfaces enclosing the same
volume as Σi does, we have∫

Σi

(Ric(v) + ‖A‖2)φ̄2
i ≤

∫
Σi

|∇φ̄i|2.

It implies ∫
Σi

(Ric(v) + ‖A‖2)φ2
i + c2

i

∫
Σi

(Ric(v) + ‖A‖2)(7)

− 2ci

∫
Σi

(Ric(v) + ‖A‖2)φi

≤
∫

Σi

|∇φi|2.
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Due to Lemma 2.3 and (5), we see that∣∣∣∣∫
Σi

(Ric(v) + ‖A‖2)

∣∣∣∣ ≤ Λ.

Here, Λ is a constant independent of i. Then, Taking i tend to infinity, we
get ∫

S
(Ric(v) + ‖A‖2)φ2 ≤

∫
S
|∇φ|2.

Thus, we finish proving the lemma. �

In particular, Proposition 2.8 has the following interesting application.
The similar result on the stability has been obtained in the asymptotically
flat version in [16]

Corollary 2.9. The limiting surface S is strongly stable, i.e.∫
S
(Ric(v) + ‖A‖2)φ2 ≤

∫
S
|∇φ|2.

for any φ− C ∈ C∞0 (S). Here, C is any constant.

Proof. We will use “logarithmic cut-off trick” (see P.121 in [19]) to prove this
corollary. In fact, by Lemma 2.7 and Huber’s theorem (see [13]), we know
that S is conformally equivalent to a surface S obtained through deleting
finite points from compact Riemann surface S̄. Without loss of generality,
we can assume that we take S̄ \ {p} = S. For simplicity, we assume φ− 1 ∈
C∞0 (S) (which is denoted by C∞0 (S̄ \ {p}) in the following). Let Bri(p), i = 1,
2 be two geodesic balls with centered at p and radius ri in S̄. Define

ξ(r) =


0 r ≤ r2
log r−log r2
log r1−log r2

r ∈ [r2, r1]

φ r ≥ r1

Choosing a suitable Lipschtiz function ξ with compact support set and
together with Lemma 2.8, we obtain∫

S
(Ric(v) + ‖A‖2)ξ2dσ ≤

∫
S
|∇ξ|2dσ
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Here, dσ is volume element with respect to metric g|S. Hence, we have∫
S̄\Br1 (p)

(Ric(v) + ‖A‖2)ξ2dσ +

∫
Br1\Br2 (p)

(Ric(v) + ‖A‖2)ξ2dσ(8)

≤
∫
S̄\Br1 (p)

|∇ξ|2dσ +

∫
Br1\Br2 (p)

|∇ξ|2dσ

=

∫
S̄\Br1 (p)

|∇φ|2dσ +

∫
Br1\Br2 (p)

|∇ξ|2dσ̄.

Here, dσ̄ denotes the volume element in Riemannian surface S̄. Note that ξ
is bounded, and ∫

Br1
\Br2

(p)
|∇ξ|2dσ̄ ≤ C

log r1
r2

.

Here, we have used the conformal invariance of Dirichlet integral. Take r1,
and r2 sufficiently small and its ratio sufficiently large, we see that the above
integration approaches to zero. Together with Lemma 2.3, we obtain∫

S

(
Ric(v) + ‖A‖2

)
φ2 ≤

∫
S
|∇φ|2.

�

3. No drift off to the infinity

In this section, we will show that a connected isoperimetric region with
uniformly positive lower bound of volume in AH manifold (M3, g) with scalar
curvature R ≥ −6 cannot drift off to the infinity provided that (M3, g) is
not isometric to H3. More precisely, we have

Proposition 3.1. Let(M3, g) be an AH with R(g) ≥ −6 which is not iso-
metric to H3. Let {Di} be a family of connected isoperimetric regions with
H3
g(Di) ≥ δ0. Here, H3

g( · ) is the Lebesgue measure on (M3, g) with respect
to metric g and δ0 is a positive fixed constant. Then, {Di} cannot drift off
to the infinity of (M3, g) i.e. there is a fixed compact domain E so that each
Di intersects E.

In order to prove Proposition 3.1, we need to introduce the following
notions.
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Definition 3.2. The isoperimetric profile of (M3, g) with volume v is de-
fined as

A(v) = inf{H2(∂∗Ω) : Ω ⊂M is a Borel set with

finite perimeter and H3
g(Ω) = v}.

Here, H2( · ) is a 2-dim Hausdorff measure for the reduced boundary of Ω
denoted by ∂∗Ω. A Borel set Ω ⊂M of finite perimeter such that H3

g(Ω) = v
and A(v) = H2(∂∗Ω) is called an isoperimetric region of (M, g) of volume v.
The surface ∂Ω is called isoperimetric surface.

The main argument of the proof of Proposition 3.1 comes from [1] and
[8]. The following proposition is crucial to us and also has its own interest.

Proposition 3.3. Suppose that (M3, g) is an AH manifold with R ≥ −6.
Then, Ag(v) ≤ AH(v) for every v > 0. Moreover, if there exists a v0 > 0
satisfying Ag(v0) = AH(v0), then (M3, g) is isometric to H3.

Remark 3.4. In fact, similar result is still true as v approaches to infin-
ity(For details, see Theorem 1 in [1]); For the case of asymptotically flat, we
still have a similar result(see Theorem 1.2 and Theorem 1.3 in [20]).

As in [1] and [8], we will make use of the inverse mean curvature flow
to investigate Proposition 3.3 (see also [20] for asymptotically flat mani-
folds case). In fact, the idea and argument are from [1]. However, for the
convenience of application in our context, we proceed it as the second au-
thor did in [20]. A classical solution of the inverse mean curvature flow is a
smooth family F : N × [0, T ]→M of embedded hypersurfaces Nt = F (N, t)
satisfying the following evolution equation

(9)
∂F

∂t
=

ν

H
, 0 ≤ t ≤ T,

where H is the mean curvature of Nt at F (x, t) with respect to the out-
ward unit vector ν for any x ∈ N . Specifically, the Hawking mass plays an
important role in the theory of inverse mean curvature flow.

Definition 3.5. The Hawking mass is of a surface Σ is defined as

(10) mH(Σ) =
H2(Σ)

1

2

(16π)
3

2

(
16π −

∫
Σ

(H2 − 4)dµ

)
.
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Generally, the evolution equation (9) has no classical solution. In order
to overcome this difficulty, Huisken and Ilmanen introduced a level-set for-
mulation of (9) in the setting of asymptotically flat manifolds ([14])where
the evolving surfaces are given as level-sets of a scalar function u via Nt =
∂{x : u(x) < t} and u satisfies the following elliptic equation in weak sense

(11) div

(
∇u
|∇u|

)
= |∇u|.

We note that the similar argument works well in AH case. More precisely,
by Theorem 4.1 in [8], let Bµ(x) be geodesic ball with any small radius µ > 0
and center x in (M, g) and Σ = ∂Bµ(x). Then there exists weak solution
of inverse mean curvature flow u with initial condition {u = 0} = Σ and
satisfying all other properties listed in Theorem 4.1 in [8], as proof in Lemma
8.1 in [14], we get (Gt)−∞<t<∞ which is the weak solution of (9) with single
point {x} as its initial condition.

Lemma 3.6. For any v > 0 either there exists t such that V ol(Gt) = v or
v is a jump volume for (9), i.e. there exits t1 > −∞ such that

V ol(Gt1) < v ≤ V ol(G+
t1).

Here, G+
t1 is the strictly minimizing hull for Gt1.

and

Lemma 3.7. For any v > 0, let

t(v) = inf{τ : V ol(Gτ ) ≥ v}.

Then, t(v) is a Lipschitz function and

dt

dv
≤
(∫

Σt

H2

) 1

2

· (Area(Σt))
− 3

2 .

Here, Σt = ∂Gt.

For the proof of two lemmas above (see Lemma 3.3 and Lemma 3.4 in
[20] respectively). For each t, we let B(t) = Area(Σt). Then, by Lemma 3.7,
we regard B denoted by B(v) as the function of v and m(v) as the Hawking
mass of Σt(v). Then, by the same arguments in the proof of Theorem 1.2
and Theorem 1.3 in [20], we see that
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Proposition 3.8. For each v ≥ 0, we have

(12)
d

dv
B(v) ≤ B−

1

2 (v)

(
16π + 4B(v)− (16π)

3

2

B
1

2 (v)
m(v)

) 1

2

.

As in [20], we consider the region Me ,M \ D of M . By the definition of
AH manifold, without loss of generality, we assume that Me is diffeomorphic
to R3 \B1(o). Let Ωe = Ω ∩Me and

Ae(v) = inf{H2(∂∗Ωe) : Ω ⊂ M is a Borel set with

finite perimeter and H3(Ωe) = v}.

Clearly, we have A(v) ≤ Ae(v). In the following, we mainly focus on Ae(v).

Lemma 3.9. Let (M3, g) be an AH manifold, then Ae(v) is nondecreasing.

Remark 3.10. Similar result was proved in [8], see Lemma 3.3 therein,
but in current case the mean curvature of the ∂Me may not equal to 2, so
we have to handle this carefully.

Proof of Lemma 3.9. For D large enough. By the definition of AH man-
ifold and direct computation, we have

(13)

∫
Me

|√g −√gH|dvg ≤ 1.

Here, dvg denotes the volume element with respect to metric g. We show
the lemma by contradiction.

We assume that Ae(v) is not nondecreasing, it means that there exists

v1 < v2,

but

Ae(v1) > Ae(v2).

Furthermore, we define

µ = inf {H2(∂∗Ωe) : H3
g(Ωe) ≥ v1}.

It is obvious that µ ≤ A(v2). We claim that µ can be achieved by certain
Ω′e ⊂Me and a hyperbolic ball in B(S) ⊂ H3 (see Proposition 3.2 in [8]).
i.e. there exists a v ≥ v1, Ω′e ⊂Me and S ≥ 0 such that
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• H3
g(Ω

′
e) +H3

H(B(S)) = v,

• H2
g(∂
∗Ω′e) + S = µ.

Here, B(S) is the geodesic ball in H3 with its area equals to S, H3
H( · ) is the

Lebesgue measure in H3. Then we choose {Ωi
e} as corresponding minimizing

sequence. Note that H3
g(Ω

i
e) is uniform bound. Otherwise, Through direct

computation and (13), we have

H3
H(Ωi

e) ≥ H3
g(Ω

i
e)− 1.

Hence. we obtain thatH3
H(Ωi

e) would be unbounded and its area with respect
to gH is also unbounded, and then implies H2(∂Ωi

e) would be unbounded
which reach the contradiction. Once we know H3

g(Ω
i
e) is uniformly bounded,

then by the arguments in [3] we see claim is true.
Next, we claim that v > v1. Indeed if our claim is false, then we have

v = v1. We firstly prove that S = 0. If not, we have S > 0. Then we can put
B(S) in Me which is far away from D where g is very close to gH. Hence,
H3
g(B(S)) andH2(∂B(S)) can be very close toH3

H(B(S)) and S respectively,
then for ε > 0 small enough and by a small perturbation on Ω′e ∪B(S) in
Me if necessary, we can construct a domain Ω̄ ⊂Me with

H3
g(Ω̄) = v = v1

and

H2(∂∗Ω̄) ≤ µ+ ε ≤ Ae(v2) + ε < Ae(v1).

It contradicts with the definition of isoperimetric profile Ae(v). Hence, we
have

S = 0.

However, as S = 0, we have

H2
g(∂
∗Ω′e) = µ ≤ Ae(v2) < Ae(v1).

It still contradicts with the definition of isoperimetric profile Ae(v). Hence,
we finally have

v > v1.

Then ∂Ω′e \ D is a stable minimal surface if it’s nonempety. However,
this is impossible as the level set of distant function to D has positive mean
curvature. Thus, we conclude that H3

g(Ω
′
e) = 0 and H2

g(∂
∗Ω′e) ≥ 0. Then we

have
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• H3
H(B(S)) = v > v1,

• H2
H(∂∗B(S)) = S ≤ µ ≤ Ae(v2) < Ae(v1).

Henceforth, there exists S′ < S such that

H3
H(B(S′)) = v1, H2

H(∂∗B(S′)) = S′ < S ≤ µ ≤ Ae(v2) < Ae(v1).

Then, By making a small perturbation, we can construct a region D ⊂Me

far away from D (this trick being used above) such that

H3
g(D) = v1, H2

g(∂
∗D) < Ae(v1).

It contradicts with the definition of isoperimetric profile of volume v1. Thus,
we finish the proof of Lemma 3.9. �

Now, we are in the position to prove Proposition 3.3:

Proof of Proposition 3.3. We firstly set

f(v) = B
3

2 (v), fH(v) = A
3

2

H(v)

where AH(·) denotes the isoperimetric profile of H3. We want to prove that

∀ε > 0, ∀v ≥ 0, f(v) ≤ (1 + ε)fH(v).

we prove it by contradiction, we suppose that the results is false, then
there exists v1 > 0 such that

f(v1) > (1 + ε)fH(v1).

On the other hand, we know that there exists some δ > 0 (may depend
on ε) such that f(v) ≤ (1 + ε)fH(v), ∀v ≤ δ. Then, we set

v0 = inf{v : f(v) > (1 + ε)fH(v)},

Then, we have v0 ≥ δ > 0 and f(v0) = (1 + ε)fH(v0). Setting ω(v) = f(v)−
(1 + ε)fH(v), we have

d

dv
ω(v) ≤ 3(4π + f

2

3 (v))
1

2(14)

− 3

(
4π +

(
1

1 + ε

) 2

3

((1 + ε)fH(v))
2

3

) 1

2

(1 + ε)
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Here, we have used Proposition 3.8,m(v) ≥ 0 and d
dvfH(v) = 3

(
4π+f

2

3

H (v)
) 1

2 ,
In the formula (14). Noticing that ω is Lipschtiz, we can choose a se-

quence of {αi > 0} and lim
i→∞

αi = 0. Then, As i becomes large enough, we

have

0 ≤ ω(v0)− ω(v0 − αi)
αi

(15)

≤ 3

αi

∫ v0

v0−αi

(4π+f
2

3 (v))
1

2−

[
4π+

(
1

1+ε

) 2

3

((1+ε)fH(v))
2

3

] 1

2

(1+ε)

dv
< 0.

we reach a contradiction. Hence, we have that f(v) ≤ (1 + ε)fH(v) as ε is
arbitrary. It means that f(v) ≤ fH(v) or B(v) ≤ AH(v) for ∀v ≤ δ.

Now we begin to prove A(v) ≤ AH(v) as follows. For ∀v > 0, we choose
sufficiently large ρ0 = ρ0(v) > 0 and for any x ∈Me, we consider the inverse
mean curvature flow with initial data {x}. By choosing ρ0 sufficiently large
if necessary, we assume Gt ⊂Me with H3(Ωt) > v, here Gt is the compact
region bounded by Σt and Σt is the weak solution of the inverse mean cur-
vature flow with {x} as the initial condition. Due to discussion above, It’s
obvious that B(v) ≤ AH(v). If v is not a jump volume, then there exists t
such that Gt with V ol(Gt) = v. Hence, we have

A(v) ≤ Ae(v) ≤ Area(Σt) = B(v) ≤ AH(v).

Otherwise, v is a jump volume. At this time, there exists Gτ such that

v1 = V ol(Gτ ) < v ≤ V ol(G+
τ ) = v2.

Hence, t(v) = τ and B(v) = B(v1),

A(v) ≤ Ae(v) ≤ Ae(v2) ≤ Area(Σ+
τ ) = Area(Στ ) = B(v1) = B(v).

Here, we have used Lemma 3.9 in the second inequality above and Σ+
τ =

∂G+
τ .

Next, we claim that if for some v0 > 0, A(v0) = AH(v0), then (M3, g) is
isometric to H3. Suppose not, then there exists x ∈M , Ric(x) 6= −2g. Con-
sidering the weak solution of inverse mean curvature flow with initial con-
dition {x}, we have m(v) > 0 for ∀v > 0. Hence, A(v0) ≤ Ae(v0) ≤ B(v0) <
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AH(v0) which is a contradiction. Therefore, we have proved that (M3, g) is
isometric to H3. �

As in [8], the following lemma is used to prevent an isoperimetric region
with large volume from drifting off to the infinity of (M, g).

Lemma 3.11. Let (M3, g) be an AH with R(g) ≥ −6, we have

A(v) ≤ AH(v)− 2V (M, g) + 2
√

2π
3

2

(∫
S2

(trσh)

)
v−

1

2 + o(v−
1

2 ), v →∞.

Here, V (M, g) is the renormalized volume.

Proof. we firstly choose sufficiently large ρ0. Let v1 = H3
g(Γρ0

) and v2 =
H3

H(Γρ0
), here Γρ0

= {ρ ≤ ρ0}. According to the definition of asymptotically
hyperbolic manifold, we know on M\K, here K ⊂M is some compact set

‖g − gH‖gH = O(e−3ρ).

It is not hard to check that

H2
H(∂Γρ) = 4π sinh2 ρ,

H2
g(∂Γρ) = 4π sinh2 ρ

(
1 +

1

6 sinh3 ρ

(∫
S2

(trσh)

))
+ o(e−ρ).

By the definition of the renormalized volume, we have

lim
ρ→∞

(H3
g(Γρ)−H3

H(Γρ)) = V (M, g),

i.e. ∫ ∞
ρ0

[H2
g(∂Γρ)−H2

H(∂Γρ)]dρ+ v1 − v2 = V (M, g).

Thus

H3
g(Γρ)−H3

H(Γρ)− V (M, g)(16)

= −
∫ ∞
ρ

[H2
g(∂Γρ)−H2

H(∂Γρ)]dρ

= −
∫ ∞
ρ

2π

3 sinh ρ
dρ ·

(∫
S2

(trσh)

)
+ o(e−ρ)

= − 2π

3 sinh ρ
·
(∫

S2

(trσh)

)
+ o(e−ρ).
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For simplicity, we also denote Γv = {ρ ≤ ρv} where ρv is chosen so that
H3
g(Γv) = v. It is well-known that the coordinate sphere in hyperbolic space

is the unique isoperimetric surface. Choose ρ′v such that

AH(v) = 4π sinh2 ρ′v, and v =

∫ ρ′v

0
4π sinh2 ρdρ.

On the other hand, by (16), we have

(H3
g(Γv)−H3

H(Γv))− V (M, g) = − 2π

3 sinh ρv

(∫
S2

(trσh)

)
+ o(e−ρv),

i.e.(
v −

∫ ρv

0
4π sinh2 ρdρ

)
− V (M, g) = − 2π

3 sinh ρv

(∫
S2

(trσh)

)
+ o(e−ρv).

By direct computation,∫ ρ′

0
sinh2 ρdρ =

1

2
sinh2 ρ′ +

1

4
− ρ′

2
− 1

4
e−2ρ′ .

Thus

4π sinh2 ρ′v − 4π sinh2 ρv

= 2V (M, g)− 4π

3 sinh ρv

(∫
S2

(trσh)

)
+ o(e−ρ

′
v) + o(e−ρv) + 4π(ρ′v − ρv),

we let v →∞, so we have

ρ′v →∞, ρv →∞, π(e2ρ′

v − e2ρv)− 4π(ρ′v − ρv)→ 2V (M, g).

It means that

πe2ρv(e2(ρ′v−ρv) − 1)− 4π(ρ′v − ρv)→ 2V (M, g).

so

e2(ρ′v−ρv) − 1 = O(e−2ρv),

and

ρ′v − ρv = O(e−2ρv).
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Thus

Ag(v)−AH(v) ≤ H2
g(∂Γv)− 4π sinh2 ρ′v

≤ 4π sinh2 ρv

(
1 +

π(
∫
S2(trσh))

6 sinh3 ρv

)
− 4π sinh2 ρ′v + o(e−ρv)

≤ −2V (M, g) + 2
√

2π
3

2

(∫
S2

(trσh)

)
v−

1

2 + o(v−
1

2 ),

Thus, we conclude to prove the Lemma. �

Now we are in position to Proposition 3.1.

Proof of Proposition 3.1. Suppose that {Di} is a family of connected isoperi-
metric regions in an AH manifold (M3, g) with R ≥ −6 and H3

g(Di) ≥ δ0 >
0, δ0 ∈ R, we want to show that for a fixed point o ∈M , there exists a
constant Λ > 0 such that d(o,Di) ≤ Λ, for all i. Otherwise, we can find a
subsequence, which is still denoted by {Di} with d(o,Di)→∞. Noticing
that (M3, g) is not isometric to H3, we have V (M, g) > 0. We can use the
exact the same arguments in [1] to prove this fact. The only difference be-
tween our current case and paper [1] is that a single point rather than a
horizon in M is taken as the initial data for the inverse mean curvature flow
which played an important role in [1]. Indeed, our case can be regarded as
the limiting case of m = 0 therein. We consider the following two cases.

Case 1: vi = H3
g(Di)→∞. Then due to Lemma 3.11, we have

(17) 0 < V (M, g) ≤ AH(vi)−A(vi), i→∞,

On the other hand, by the definition of AH metric, we have

‖g − gH‖g ≤ Ce−3ρ.

Hence, by the similar arguments in the proof of (5),

AH(vi)−A(vi)→ 0, i→∞.

which contradicts with inequality(17).
Case 2: δ0 ≤ vi = H3

g(Di) ≤ C <∞. Again, by the similar arguments
in the proof of (5), we have

AH(vi)−A(vi)→ 0, i→∞,
By taking a subsequence if necessary, we assume vi → v0 > 0, we have
AH(v0) = A(v0). Then, we see that (M3, g) = H3 by Proposition 3.3. It
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contradicts with our assumption. Hence, we finish the proof of Proposi-
tion 3.1. �

As a corollary of Proposition 3.1, we have

Corollary 3.12. Let (M3, g) be an AH manifold with R(g) ≥ −6 and be
not isometric to H3. If {Di} is a family of connected isoperimetric regions
with δ0 ≤ H3

g(Di) ≤ δ1 where δ0, δ1 are fixed positive constant and connected
boundary. Then, there exists a compact and smoothly embedded surface Σ
with constant mean curvature such that ∂Di converges to Σ in topology of
Ck, for any k ≥ 1.

4. Exhaustion of isoperimetric regions

In the section, we are aimed at exploring some properties of isoperimetic
regions in (M3, g). we always assume that Di are connected isoperimet-
ric region with H3

g(Di) ≥ δ0 > 0 and Σi = ∂Di are topologically spherical
isoperimetric surface in M .

Obviously, there are three cases for a family of isoperimetric regions in
(M, g) i.e.

1) {Di} drift off to the infinity of (M, g);

2) {Di} are an exhaustion of (M, g);

3) {Di} always pass through some fixed compact domain.

In the Proposition 3.1, we proved that the case (1) cannot occur if M is
not isometric to H3. Hence, we just deal with the case (2) and the case (3)
in our rest part of this section.

Theorem 4.1. Let S be the limiting surface of a family of isopermetric
surfaces {Σi} in an AH manifold (M3, g) with R(g) ≥ −6 and h = mσ in
Definition 1.1 , if S is a noncompactly, completely connected surface with∫
SK ≤ 0, then (M3, g) is isometric to H3.

Proof. By taking ϕ = 1 in Corollary 2.9, we obtain

0 ≤
∫
S
(R+ 6 + ‖Å‖2)dσg ≤

∫
S
Kdσg ≤ 0,

so

(18) R = −6, Å = 0 on S,
∫
S
Kdσg = 0.
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In the following, we prove K = 0 by the same argument in [11]. For the
convenience of reader, we sketch the main argument in [11]. By (18), stable
operator is reduced to

L = ∆S −K.

Therefore, stable condition of L implies that there exists a positive solution
f to the equation ∆Sf −Kf = 0 on S. Setting w = log f , we have

∆Sw = K − |∇w|2.

For any function φ ∈ C∞0 (S), we have∫
S
|∇w|2φ2dσg =

∫
S
Kφ2dσg + 2

∫
S
〈∇φ,∇w〉φdσg.

By Schwarz inequality, we get

3

4

∫
S
|∇w|2φ2dσg ≤

∫
S
Kφ2dσg + 4

∫
S
|∇φ|2dσg.

Note that S is conformally equivalent to a compact Riemannian surface
deleted finite points, by using “logarithmic cut-off trick” as in proof of Corol-
lary 2.9, and by choosing suitable φ ∈ C∞0 (S), we get

3

4

∫
S
|∇w|2 ≤

∫
S
K.

It implies w = constant. Hence, K = 0.

By Gauss equation

0 = K =
R

2
−Rνν +

H2

4
− |Å|

2

2

=
m

sinh3 ρ
−

3m · |∂>ρ |2

2 sinh3 ρ
+O(exp(−4ρ))

=
m

sinh3 ρ

(
1−

3|∂>ρ |2

2

)
+O(exp(−4ρ)).

Here, ρ is the distant function to the essential set D. If m 6= 0, we have for
ρ large enough

(19) 1−
3|∂>ρ |2

2
= O(e−ρ), on S.
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Then, by Proposition 2.4, we have∫
S

(
1−

〈
ν,
∂

∂ρ

〉)2

<∞.

Hence, there exists pi ∈ S, pi →∞ such that (1− 〈ν, ∂∂ρ〉)(pi)→ 0. It means

that |∂>ρ |2(pi)→ 0 which contradicts with (19). Hence, m = 0. By positive
mass theorem in [22], (M3, g) is isometric to H3. �

Next, we begin to prove the following main result.

Theorem 4.2. Let (M3, g) be an AH manifold with the scalar curvature
R(g) ≥ −6 and h = mσ, m ∈ R in Definition 1.1. Suppose that m > 0 and
{Di} is a family of isoperimetric regions with H3

g(Di)→∞, we have the
following classification:

1) {Di} is an exhuastion of (M, g); or

2) there exists a subsequence of {Σi = ∂Di} converging to a properly,
strongly stable, noncompactly complete hypersurface, each connected
component S of which is a constant mean curvature surface of H = 2.
Furthermore, S is conformally diffeomorphic to complex plane C.

Here, H3
g( , ) denotes the Hausdroff measure in (M, g) with respect to met-

ric g.

Proof. If Di is not an exhaustion, and due to Proposition 3.1, we have for a
fixed compact E,

E ∩Di 6= ∅, E * Di, for any i.

Due to H3
g(Di)→∞, we have

(20) Area(Σi)→∞ and dg(o,Σi) ≤ L0

Here, L0 is a fixed constant. Hence, by Lemma 2.3, Lemma 2.5, Corollary 2.9
and Proposition 2.6, we obtain the first part in (2). In the meantime, setting
φ = 1 in Corollary 2.9, we get∫

S
(Ric(v) + ‖A‖2)dσ ≤ 0,
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Due to the Gauss equation, we see that

Ric(v) + ‖A‖2 =
R

2
−K +

1

2
‖Å‖2 +

3H2

4
≥ −K.

Hence, we obtain ∫
S
K ≥ 0.

Together with Lemma 2.7 and Huber’s theorem ([13]), we see that the
conformal type is complex plane C or cylinder. If S is conformally equivalent
to a cylinder, we have ∫

S
K = 0.

Due to Theorem 4.1, we see that (M3, g) is isometric to H3 which contra-
dicts with the assumption in this theorem. Thus we have proved that S is
conformally equivalent to complex plane C. �

Now, we prove the following result.

Theorem 4.3. Let (M3, g) be an AH with R(g) ≥ −6, h = mσ and m > 0.
If H3

g(Di)→∞ and Σi = ∂Di is topological sphere. If in addition,

mH(Σi) ≤ C, for all i.

then {Di} is an exhaustion of (M, g).

Proof. We prove the theorem in following two steps.

Step1: Show that for all ε > 0,exists N , for all i ≥ N ,
∫

Σi
|Å|2 ≤ ε. In

fact, by Proposition 3.6 in [8]∫
Σi

(Rg + 6 + |Å|2)dµi ≤
3

2
A(Σ)−

1

2 (16π)
3

2mH(Σi).

Hence, for all ε > 0,exists N , for all i ≥ N∫
Σi

|Å|2 ≤ ε.

Step2: Suppose Di is not exhaustion, then by Proposition 3.1, all Di

passes through a fixed compact set, and hence it converges to a limit surface
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S. Note that on Σi,

Ki =
H2
i − 4

4
− |Åi|2

2
+O(e−3ρ).

we integrate Ki on region Σi \B(ρ), and get∫
Σi\B(ρ)

Ki =

∫
Σi\B(ρ)

H2
i − 4

4
−
∫

Σi\B(ρ)

|Åi|2

2
+

∫
Σi\B(ρ)

O(exp(−3ρ)).

Then, we have the following estimate∫
Σi\B(ρ)

H2
i − 4

4
= 4π −

∫
Σi∩B(ρ)

H2
i − 4

4
+O

(
1

|Σi|
1

2

)
.∫

Σi\B(ρ)

|Åi|2

2
≤ ε

3
.∫

Σi\B(ρ)
O(exp(−3ρ)) ≤ ε

3
.

Then, ∫
Σi\B(ρ)

K = 4π +O(ε).

implies ∫
S∩B(ρ)

K = O(ε).

Thus, ∫
S
K = 0.

By Theorem 4.1, we have that (M3, g) is isometric to H3 which contradicts
with the assumption of m > 0. Hence, Di is an exhaustion. �

In the following, we begin to prove the last theorem in the article,

Theorem 4.4. Let (M3, g) be an AH with R(g) ≥ −6. For any exhausting
isoperimetric domains {Di} , we have

lim
i→∞

(Ag(vi)−AH(vi)) = −2V (M, g).
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Proof. Combining with lemma 3.11, we just need to prove:

lim
v→∞

Ag(v)−AH(v) ≥ −2V (M, g).

Because Di is an exhaustion of M and (M, g) is asymptotically hyperbolic,
we can easily get

lim
i→∞

(H3
g(Di)−H3

gH(Di)) = V (M, g), H2
g(Σi)−H2

H(Σi) = o(1), i→∞

Choosing ρv satisfying with AH(v) = 4π sinh2 ρv, we obtain

v =

∫ ρv

0
4π sinh2 ρ dρ = 2π sinh2 ρv + π − 2πρv − πe−2ρv .

Set v̄i = volgH(Di). Then,

AH(v̄i) ≤ H2
H(Σi) and lim

i→∞
(vi − v̄i) = V (M, g).

Hence,

lim
i→∞

(2π sinh2 ρvi − 2πρvi − πe−2ρvi − 2π sinh2 ρv̄i + 2πρv̄i + πe−2ρv̄i )

= V (M, g).

Notice that i→∞ implies

vi →∞, v̄i →∞, ρvi →∞, ρv̄i →∞.

So,

lim
i→∞

(2π sinh2 ρvi − 2πρvi − 2π sinh2 ρv̄i + 2πρv̄i) = V (M, g);

i.e.,

2πe2ρv̄i (e2(ρvi−ρv̄i ) − 1)− 2π(ρvi − ρv̄i)→ V (M, g),

so

e2(ρvi−ρv̄i ) − 1 = O(e−2ρv̄i ),

and

ρvi − ρv̄i = O(e−2ρv̄i ).

Therefore,

lim
i→∞

(2π sinh2 ρvi − 2π sinh2 ρv̄i) = V (M, g).
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and

Ag(vi)−AH(vi)

= Ag(vi)−AH(v̄i) +AH(v̄i)−AH(vi)

≥ H2
g(Σi)−H2

H(Σi) + 4π sinh2 ρv̄i − 4π sinh2 ρvi

= −2V (M, g) + o(1).

Thus, we finish the proof of the theorem. �
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