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3-manifolds and generalized

Baumslag-Solitar groups

Alberto L. Delgado, Derek J. S. Robinson, and Mathew Timm

This article studies the relationship between 3-manifolds and gen-
eralized Baumslag-Solitar groups. We classify the generalized
Baumslag-Solitar groups that are fundamental groups of compact
orientable 3-manifolds. More generally, we show that many general-
ized Baumslag-Solitar groups which are not 3-manifold groups are
special types of quotients of generalized Baumslag-Solitar groups
which are.

A generalized Baumslag-Solitar group, or GBS-group, is the fundamental
group of a graph of groups whose vertex and edge groups are infinite cyclic.
We describe these in greater detail below but one can think of them as
groups built from amalgamated products and HNN-constructions.

It is natural to ask which GBS-groups are the fundamental groups of
compact 3-manifolds. The works of Heil [8] and Shalen [16] give partial
answers in this direction. In this paper we continue this analysis by applying
the standard combinatorial description of GBS-groups in terms of weighted
graphs. This point of view has been quite productive; see, among many other
works [1, 3–6] and [13–15].

To this end, let Z∗ = Z\0. A generalized Baumslag-Solitar graph, or
GBS-graph, (Γ, ω) consists of a finite, connected, directed graph Γ in which
we allow loops and multiple edges, and a weight function ω on the edges of
Γ:

ω(e) = (ω−(e), ω+(e)) ∈ Z∗ × Z∗.
We say the weights ω−(e) and ω+(e) are associated to the initial and termi-
nal vertices e− and e+ of e, respectively.

It is convenient to denote an oriented weighted edge by its incident
vertices: if the edge e has initial vertex x and terminal vertex y with weights
ω(e) = (m,n), write (e, ω) = [xm, yn]; if e is a loop with vertex x, write
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(e, ω) = [xm, xn]. We use addition ⊕ to join weighted edges that share a
vertex. For example, we denote by [xm, yn]⊕ [yr, zs] a GBS-graph whose
underlying graph has exactly two edges each incident with a vertex y.

In Section 1 below we describe in detail how to associate a GBS-group
with the GBS-graph (Γ, ω). The associated group, π1(Γ, ω), is called the
fundamental group of (Γ, ω). In particular,

BS(m,n) = π1([x
m, xn]) = 〈x, t : t−1xmt = xn〉

and

K(m,n) = π1([x
m, yn]) = 〈a, b : am = bn〉

The first of these examples is an HNN-construction while the second is an
amalgamated free product. They form the building blocks for the GBS-
groups. Notice that K(m,n) is a torus knot group whenever m and n are
relatively prime.

A relation of the form t−1xmt = xn, m, n 6= 0, among elements of a group
is called a Baumslag-Solitar relation. These relations play a critical role in
the subsequent analysis. Of course, the Baumslag-Solitar groups BS(m,n)
exhibit such relations, but so also does any GBS-group whose underlying
graph contains a circuit. Except in some trivial cases, GBS-groups described
by graphs with no circuit also contain elements satisfying BS(m,m) rela-
tions while the GBS-groups based on a bouquet of loops have presentations
which exhibit only Baumslag-Solitar relations.

We highlight three results. The first two, due to Heil, strongly restrict
the GBS-groups which can appear as fundamental groups of 3-manifolds.
In the first of our statements, we have adapted Heil’s result to our present
language.

[8, Proposition 1]. Suppose |m|, |n|, |r|, |s| ≥ 2, and x, y, z are distinct ver-
tices. If |n| 6= |r| , then π1([x

m, yn]⊕ [yr, zs]) is not the fundamental group
of a 3-manifold.

[8, Proposition 2]. BS(m,n) is the fundamental group of a 3-manifold if
and only if |m| = |n|.

The third result, due to Shalen [16], characterizes when a Baumslag-
Solitar relation can hold in the fundamental group of a compact orientable
3-manifold. See [9, 10] also.

[16, Theorem 1]. Let g and t be elements in the fundamental group of
a compact 3-manifold group. If g and t satisfy a Baumslag-Solitar relation
t−1gmt = gn for nonzero integers m, n, then g has finite order or |m| = |n|.
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We say that a GBS-graph (Γ, ω) is ±locally weight constant , or ±LWC,
if the weights adjacent to each vertex are equal up to sign, although the
weight may depend on the vertex. (Γ, ω) is reduced if its only edges with at
least one weight on them equal to ±1 are loops. Our first result characterizes
those GBS-groups that are fundamental groups of compact orientable 3-
manifolds in terms of the underlying GBS-graphs.

Theorem 3.1. Let (Γ, ω) be a reduced GBS-graph. The following are equiv-
alent:

1) π1(Γ, ω) is the fundamental group of a compact orientable 3-manifold;

2) π1(Γ, ω) is the fundamental group of an orientable 3-manifold;

3) (Γ, ω) is ±LWC.

If G = π1(Γ, ω) is the fundamental group of a compact 3-manifold we say
that G is a GBS 3-manifold group. It is instructive to compare Theorem 3.1
to [13, 8.1] and the remarks following it. Those results say that any GBS-
group with a ±LWC GBS-graph embeds in some BS(m,±m). This helps
explain why the ±LWC condition appears here.

Many GBS-groups fail to be 3-manifold groups in a manner that can be
very precisely measured. To do so requires a bit more background.

First, the elementary GBS-groups are Z,Z× Z, and the Klein bottle
group. They can be realized as the GBS-groups whose associated GBS-
graphs, respectively, have a single vertex and no edges, as BS(1, 1), and
as BS(1,−1). Note also that BS(1,−1) ' K(2, 2). All other GBS-groups
are non-elementary. Of course, the elementary GBS-groups are topological
fundamental groups of compact orientable 3-manifolds: Z = π1(S1 ×D2),
Z× Z = π1(S

1 × S1 × I), and the Klein bottle group is the fundamental
group of the twisted S1 bundle over the Möbius band.

Kropholler [12] associates to each non-elementary GBS-group G, its
modular homomorphism ∆ into the group of multiplicative rationals. When
∆(G) ⊆ {1,−1}, then G and any GBS-graph having G as its fundamental
group are called unimodular.

Recall that every finitely generated group is the quotient of a finitely
generated free group. Since every finitely generated free group is the fun-
damental group of a compact orientable 3-manifold, it follows that every
finitely generated group is a quotient of the fundamental group of a com-
pact 3-manifold. Thus, interesting results involving quotients of 3-manifold
groups require additional structure. In this paper we require additional struc-
ture on both the 3-manifolds and the quotients.
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To this end, we are mainly interested in pinch maps between GBS-
groups. We call the surjective image of a pinch map a pinch quotient. If
the groups in question are GBS 3-manifold groups and if the manifold is
compact or orientable, we say the same of the pinch quotient. See Section 1
below and [3]. We now state our second main result.

Theorem 3.2 Suppose that (Γ, ω) is a non-elementary GBS-graph. The
following are equivalent:

1) π1(Γ, ω) is a compact orientable pinch quotient of a GBS 3-manifold
group;

2) π1(Γ, ω) is an orientable pinch quotient of a GBS 3-manifold group;

3) (Γ, ω) is unimodular.

It is well known [4, 13], that the unimodularity of a GBS-group, an
a priori algebraic property, is equivalent to the graph properties of tree
dependence and skew tree dependence. (See the definition below.) This yields
an additional equivalence in Theorem 3.2.

By Levitt [13, 2.6], a non-elementary GBS-group is unimodular if and
only if it contains an infinite cyclic normal subgroup. Consequently, by the
Seifert Fibered Space Theorem [2, 7], see also [9, 12.8], [16], the manifolds
delivered by Theorem 3.2 will necessarily be Seifert fibered.

This paper is organized as follows. Section 1 contains background on the
fundamental group of a GBS-graph. Those familiar with the language and
definitions may skip this material or refer to it for notation. Section 2 con-
tains the topological lemma we need for our main results. Section 3 contains
the proofs of our main results.

Acknowledgement. We thank the referee for her/his careful reading of
the manuscript and helpful comments. Both are most appreciated.

1. Preliminaries

Throughout this paper, we let (Γ, ω) be a GBS-graph and choose a maximal
subtree T of Γ.

The fundamental group of a GBS-graph. The fundamental group
π1(Γ, ω) has generators

gx, te, for x ∈ V (Γ), e ∈ E(Γ)\E(T ),
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and defining relationsg
ω+(e)
e+ = g

ω−(e)
e− , e ∈ E(T ),

t−1e g
ω+(e)
e+ te = g

ω−(e)
e− , e ∈ E(Γ)\E(T ).

It is well known that up to isomorphism π1(Γ, ω) is independent of the choice
of maximal subtree.

Choice of signs. By replacing generators of the fundamental group of
a GBS-graph by their inverses we can change the signs of various weights
without affecting the isomorphism class of the corresponding GBS-group.
Consequently, we assume that the weights on the edges of any desired max-
imal subtree are positive and that at most the initial weight of any edge off
the maximal subtree is negative.

Tree and skew tree dependence. Whenever e = [x, y] is an edge of Γ
off T , there exists a unique path in T from x to y. Reading along this path,

we obtain a relation g
p1(e)
x = g

p2(e)
y where p1(e) and p2(e) are the respective

products of the nearest and farthest weight values of the edges in the path
from x to y.

If the vector (ω−(e), ω+(e)) is a rational multiple of (p1(e), p2(e)), then e
is said to be T-dependent. If the vector (ω−(e),−ω+(e)) is a rational multiple
of (p1(e), p2(e)), then e is said to be skew T-dependent. Otherwise e is T-
independent. If e is a loop, then by convention e is T -dependent precisely
when ω−(e) = ω+(e); e is skew T -dependent when ω−(e) = −ω+(e).

If every non-tree edge of Γ is T -dependent, we say that (Γ, ω) is T-
dependent. If every non-tree edge is T - or skew T -dependent and if there
exists at least one skew T -dependent non-tree edge, we say that (Γ, ω) is
skew T -dependent.

If there exists a maximal subtree T such that (Γ, ω) is T -dependent
or skew T -dependent, we say that (Γ, ω) is, respectively, tree or skew tree
dependent. Clearly, a GBS-tree is tree-dependent.

The modular homomorphism. Let ∆ = ∆G be the modular homomor-
phism defined for the non-elementary GBS-group G = π1(Γ, ω). Levitt [13,
2.5, 2.6] shows that (Γ, ω) is tree dependent if and only if ∆(g) = 1 for every
g ∈ G and skew tree dependent if and only if ∆(G) = {1,−1}. Thus the non-
elementary GBS-graph (Γ, ω) is tree or skew tree dependent if and only if
G is unimodular. Since tree and skew tree dependence of a non-elementary
GBS-group can be defined in terms of its modular homomorphism these
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properties are independent of the choice of maximal subtree. For additional
discussion of the modular homomorphism see Heil [8], Kropholler [11], and
Section 4 in [4].

Pinch maps and geometric homomorphisms. The geometric maps
form a class of homomorphisms induced by the underlying graphical struc-
ture of the GBS-graphs; see [3] for a further description of such maps. Here
we consider only two types of geometric maps: the pinch and contraction
maps. We do not need to develop the contraction maps extensively. The
pinch maps, however, we describe in further detail.

Let (Γ, χ) and (Γ, ω) be GBS-graphs and let (e, χ) = [um, vn] be a
weighted edge of (Γ, χ). Let d be a positive common divisor of m and n.
Suppose ω(f) = χ(f) for every edge f 6= e of Γ and that ω(e) = (md ,

n
d ).

The assignment gv 7→ gv induces a map ϕ : π1(Γ, χ)→ π1(Γ, ω). Following
[3, 2.1], this map is a pinch along e of pinch degree pde(ϕ) = d. It is al-
ways an epimorphism and it has a non-trivial kernel if and only if d > 1. A
composition of pinch maps along a sequence of edges is called a pinch map.

Pinch degree. Let (Γ, χ), (Γ, ω) be reduced, unimodular GBS-graphs and
ϕ : π1(Γ, χ)→ π1(Γ, ω) a pinch map. For an ordering Λ : e1, e2, . . . , en of the
edges of Γ, let di = pdei(θ). The pinch degree of θ relative to Λ is the n-tuple
(d1, . . . , dn).

Reduced GBS-graphs. A GBS-graph is reduced if only loops carry a
weight of absolute value 1. Using either elementary collapses [5, 6] or, equiv-
alently, the contraction homomorphisms of [3], any GBS-graph can be con-
verted to a reduced GBS-graph without changing the associated GBS-group.
Note that such a conversion preserves the ±LWC condition.

2. ±LWC graphs and some topology

Suppose (Γ, ω) is tree or skew tree dependent and let N be the set of edges
off T whose weights differ in sign. Then (Γ, ω) is tree dependent exactly
when N is empty and is skew tree dependent otherwise. Recall that when
N is non-empty the convention holds that the initial weight of each edge in
N negative.

Lemma 2.1. If (Γ, ω) is ±LWC, then π1(Γ, ω) is the fundamental group
of a compact orientable Seifert fibered 3-manifold.

We give two proofs of this lemma. Both proofs are highly dependent on
the combinatorial structure of the GBS-graph used to define the group. The
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first makes use of the structural results for GBS-groups from [14]. While
it shows that a manifold of the desired type exists, we learn little about
its structure. The second explicitly describes how to build the desired man-
ifold as a regular 3-dimensional neighborhood of the canonical 2-complex
associated to the GBS-group [1].

Proof 1. By [13, 8.1] and following remarks, π1(Γ, ω) embeds in BS(n,±n)
for some n. By [8, 2], BS(n,±n) is the fundamental group of a compact ori-
entable irreducible 3-manifold. Consequently π1(Γ, ω) is itself the fundamen-
tal group of an orientable irreducible 3-manifold. Replacing this manifold,
if necessary, by its core, we may assume the manifold is compact and ori-
entable. Since (Γ, ω) is ±LWC, π1(Γ, ω) is unimodular and, by [13] and [4],
it contains a cyclic normal subgroup. By the Seifert Fibered Space Theorem
[2], [7] the manifold is Seifert fibered. �

Proof 2. We may assume that (Γ, ω) is reduced. Let (Γ, T,N) be as above.
Embed Γ on a compact orientable surface S. Let N(Γ) be a small closed
regular neighborhood of Γ on S with Γ in its interior. Let S1 = {eiθ : θ ∈
[0, 2π]}. Put M = N(Γ)× S1, and identify the surface N(Γ) with N(Γ)×
1 ⊆M . The Seifert fibration of M given by the product structure has base
space N(Γ). We proceed to modify successively N(Γ) and M to create a
3-manifold with the desired properties.

We first identify each edge e in N (if there are any) with a copy of the
unit inteval e = [0, 1]e and consider a neighborhood [14 ,

3
4 ]e × [ε,−ε] ⊆ N(Γ)

using the convention that e ∩
(
[14 ,

3
4 ]e × [−ε, ε]

)
= [14 ,

3
4 ]e × 0. Cut open M

along 1
2 × [−ε, ε]× S1.

Reattach the copy of 1
2 × [−ε, ε]× 1 contained in [14 ,

1
2 ]e × [−ε, ε]× S1 to

the copy of 1
2 × [−ε, ε]× 1 contained in [12 ,

3
4 ]e × [−ε, ε]× S1 via (12 , t, 1) 7→

(12 ,−t, 1). Observe that this creates a cross-cap in N(Γ) for each edge e in
the set N of edges with one negative and one positive weight.

Then for each edge e ∈ N , in [14 ,
1
2 ]e × [−ε, ε]× S1 glue the fiber 1

2 × t×
S1 to the fiber 1

2 ×−t× S
1 contained in [12 ,

3
4 ]e × [−ε, ε]× S1 via (12 , t, e

iθ)→
(12 ,−t, e

−iθ). We replace the original Seifert fibered 3-manifold M with this
resulting manifold. Then M is again Seifert fibered and has base space N(Γ)
as before.

The space N(Γ) contains a copy of Γ. For each e ∈ N the copy of the
circuit in Γ formed from the union of e and the unique path from e− to
e+ in T is an orientation reversing curve on a non-orientable surface. Hence
M is an orientable Seifert fibered 3-manifold with boundary. Note that it
contains an embedded copy of its base space N(Γ).
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We continue to modify M . For each vertex v of Γ take a small closed disk
Dv contained in the interior of the embedded copy of N(Γ) in such a way
that (i) v ∈ intDv and (ii) whenever v is a vertex of an edge e ∈ N , Dv lies
in the complement of the small rectangle [14 ,

3
4 ]e × [−ε, ε] used to form the

cross-cap in N(Γ) associated to e. The 2-torus ∂Dv × S1 forms the boundary
of the solid torus Dv × S1 in M . For each vertex v of Γ, fix a point pv ∈
∂Dv = ∂Dv × 1. The homotopy classes of λv = pv × S1 and µv = ∂Dv serve
as generators for π1(∂Dv × S1, pv). We remove

⋃
{intDv × S1 : v ∈ V (Γ)}

from M and replace the original M with this resulting space.
Next, for each vertex v, let ωv be the absolute value of (any of the)

weights adjacent to v. Change the Seifert fibration of (Dv × S1)− ((intDv)×
S1) so that S1

v = v × S1 is an exceptional fiber of index ωv with “gluing pa-
rameters” (ωv, ωv − 1); that is, fiber Dv × S1 by (ωv, ωv − 1)-torus knots and
v × S1. Sew this Seifert fibered copy of Dv × S1 back into M via a homeo-
morphism that sends λv to the ordinary fiber λωv

v µ
ωv−1
v in the boundary of

the Seifert fibered copy of Dv × S1, and that sends µv to the crossing curve
λωv−1
v µωv−2

v in the boundary of the Seifert fibered torus. By replacing our
present M with the results of these operations, we may suppose that the
following hold:

• M is a Seifert fibered 3-manifold with boundary;

• the base space of the Seifert fibration of M is N(Γ);

• N(Γ) is a regular neighborhood of Γ;

• each vertex v in Γ is an exceptional point of index ωv on the base
space;

• the corresponding exceptional fiber S1
v has index ωv and gluing pa-

rameters (ωv, ωv − 1).

In [1] we describe how to associate to the GBS-graph (Γ, ω) an aspherical
2-complex K = K(Γ, ω) having the property that π1(K) ' π1(Γ, ω). Recall
that Γ ⊆ N(Γ). If we denote by η : M → N(Γ) the projection of the Seifert
fibration, then η−1(Γ) = K. Since N(Γ) is a regular neighborhood of Γ,
there exists a strong deformation retract from N(Γ) onto Γ which induces
a Seifert fibration preserving strong deformation retract of M onto η−1(Γ).
Consequently π1(Γ, ω) = π(M).

By construction, when N is empty, the base N(Γ) of M is orientable,
there are no orientation reversing curves on N(Γ), and M is orientable. On
the other hand, when N is nonempty, N(Γ) is non-orientable but contains
the needed orientation reversing curves to make M orientable. �
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Each of the choices in the second proof of Lemma 2.1 can influence
the homeomorphism class of the resulting 3-manifold: first, varying the
orientable surface into which Γ is embedded can influence the number of
boundary components of M ; second, instead of choosing the second gluing
parameter for the exceptional fiber to be ωv − 1, we could have used any pos-
itive integer relatively prime to ωv instead. The resulting aspherical Seifert
fibered 3-manifolds, although possibly non-homeomorphic, would still have
K(Γ, ω) as a strong deformation retract and consequently share π1(Γ, ω) as
their fundamental group.

A non-elementary unimodular GBS-group has a unique maximal cyclic
normal subgroup called the cyclic radical of G, see [13] or [4]. The results
there imply that if the GBS-graph (Γ, ω) is reduced and if G = π1(Γ, ω) is
unimodular, then for each vertex v of Γ there exists a unique positive integer
cv with the property that gcvv generates the cyclic radical of G. We call cv
the total weight of v in G and write

cv = ωtot(v).

In Section 5 of [4] we provide an algorithm for computing total weights.
Recall our convention that it is the initial weight which is negative on every
non-tree edge in a skew tree dependent graph carrying a negative weight.

Lemma 2.2. Suppose (Γ, ω) is non-elementary, reduced, and either tree
or skew tree dependent. Define a new weight function ω̄ on Γ by ω̄(e) =
(±ωtot(e−), ωtot(e+)). Then (Γ, ω̄) is ±LWC and there is a pinch map θ :
π1(Γ, ω̄)→ π1(Γ, ω) such that along each edge e of Γ

pde(θ) = ±ω
tot(e−)

ω−(e)
=
ωtot(e+)

ω+(e)
.

The minus signs occur when (Γ, ω) is skew tree dependent and e− is the
initial vertex of a non-tree edge on which ω−(e) is negative.

This result restates [4, Theorem 2] and the remarks on pinch maps that
follow it. By applying this equation along the edges of a path which starts
at a vertex of known total weight, we may easily compute the total weight
at any vertex of the graph.

The GBS-graph (Γ, ω̄) is called the total weight cover of (Γ, ω), the pinch
map θ : π1(Γ, ω̄)→ π1(Γ, ω) is the canonical pinch map for π1(Γ, ω) and
π1(Γ, ω̄) is the canonical pinch pre-image of π1(Γ, ω).
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Proposition 2.3. If (Γ, ω) is tree or skew tree dependent, then π1(Γ, ω) is
a canonical pinch quotient of an orientable 3-manifold GBS-group π1(Γ, ω̄).

Proof. If π1(Γ, ω) is elementary, the result is obvious, so assume this is not
the case. Since reducing the graph does not change the isomorphism class of
the associated GBS-group, we may assume that (Γ, ω) has no weight equal
to 1 on any vertex of degree 1. Let (Γ, ω̄) be the total weight cover of (Γ, ω).
Then by Lemma 2.2, the canonical pinch map from π1(Γ, ω̄) to π1(Γ, ω)
exists. But by Lemma 2.1, π1(Γ, ω̄) is the fundamental group of a compact
orientable 3-manifold group. �

3. Orientable 3-manifold pinch pre-images

We can now prove our main results. Note that the assumption that (Γ, ω)
is reduced is essential. For example, the non-reduced GBS handcuff graph
[um, u±m]⊕ [u1, v1]⊕ [vm, v±m] is the GBS-graph of the fundamental group
of an orientable Seifert fibered 3-manifold and yet it does not satisfy the
±LWC condition.

Theorem 3.1. Let (Γ, ω) be reduced and non-elementary. Then the follow-
ing are equivalent:

1) π1(Γ, ω) is the fundamental group of a compact orientable 3-manifold;

2) π1(Γ, ω) is the fundamental group of an orientable 3-manifold;

3) (Γ, ω) is ±LWC.

Proof. (1) ⇒ (2). This implication is obvious.
(2) ⇒ (3). We begin by noting that both the property of being an

orientable 3-manifold group and that of being a GBS-group are inherited by
at least certain subgroups of each of these types of groups. Specifically,

• a subgroup of the fundamental group of an orientable 3-manifold group
is also an orientable 3-manifold group, and
• if ∆ is a connected subgraph of Γ, then π1(∆, ω) is a subgroup of
π1(Γ, ω).

Let G = π1(Γ, ω). Assume (2) is true and proceed by contradiction.
Among all counterexamples, take one for which Γ has, first, the fewest num-
ber of vertices and, then, the fewest number of edges. As a consequence of
the bulleted items above and [8, 1] and [8, 2] it follows that (Γ, ω) is one of
the following:

(i) [um, vn]1 ⊕ [vr, us]2, with |m|, |n|, |r|, |s| ≥ 2, u 6= v, and m 6= ±s,
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(ii) [u±m, um]1 ⊕ [u±1, u1]2 with m ≥ 2, or

(iii) [u±1, u1]⊕ [um, vn], with m,n ≥ 2, u 6= v

We now proceed to show that the fundamental group of none of these is an
orientable 3-manifold group.

Assume (Γ, ω) is as in (i). Form the cyclic double cover of (Γ, ω) and
lift the weights on Γ to this double cover in the obvious way. This double
cover GBS-graph now contains a path of length 2 with a central vertex
that violates the ±LWC condition and on which all weights have absolute
value at least 2. Applying the hereditary properties above and [8], it follows
that the fundamental group of this double cover graph is not a 3-manifold
group. Since this group is the fundamental group of some double cover of
any 3-manifold with fundamental group G, it follows that G is also not a
3-manifold group. This is a contradiction.

For case (ii), note that one can apply an elementary expansion as in
[6, 2.1] to the weighted loop [u±m, um], then apply the above hereditary
property for GBS-subgraphs and case (ii) reduces to case (iii).

For case (iii), suppose that G is the fundamental group of an orientable 3-
manifold M . Since G is finitely presented, [9, 8.6] implies M has a compact
core with the same fundamental group. We may therefore assume M is
compact and orientable. Furthermore G is not cyclic and not a free product.
Hence [9, 3.3] and [9, 3.13] imply M is irreducible. Since M has infinite first
homology, [9, 6.6] implies M is sufficiently large. Thus, we may assume that
M is compact, orientable, irreducible and sufficiently large.

In the present case, G has an infinite cyclic normal subgroup: specifically
G is unimodular and the unique maximal infinite cyclic normal subgroup in
this group is generated by the power h = gmv of the vertex generator gv.
Because G has an infinite cyclic normal subgroup, the Seifert Fibered Space
Theorem [2], [7] implies M is Seifert fibered.

But F = G/〈h〉 = 〈u, v, t : um = vn = 1, [t, u] = 1〉 ∼= Zn ∗ (Z n Zm) is a
member of the class of groups known as Fuchsian groups. By the Grusko
Decomposition Theorem, this factorization of G as a free product is unique.
Also, Fuchsian groups have the property that their nontrivial finite sub-
groups have finite centralizers. However, this is not true for the factor Zm
in the semi-direct product, this is a contradiction. Therefore, G is not the
fundamental group of a 3-manifold as desired.

(3) ⇒ (1). If (Γ, ω) is ±LWC, it is tree or skew tree dependent. Conse-
quently, π1(Γ, ω) is unimodular and the indicated implication follows from
Lemma 2.1. �
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Theorem 3.2 Suppose that (Γ, ω) is non-elementary. Then the following
are equivalent:

1) π1(Γ, ω) has a compact orientable 3-manifold group pinch preimage;

2) π1(Γ, ω) has an orientable 3-manifold group pinch preimage;

3) (Γ, ω) is tree or skew tree dependent;

4) π1(Γ, ω) is unimodular.

Proof. (3) ⇔ (4). This was noted earlier and follows from [13] or [4].
(1) ⇒ (2). This implication is obvious.
(2) ⇒ (3). Assume there exists an orientable 3-manifold pinch preimage

θ : π1(Γ, ω̄)→ π1(Γ, ω) with a ±LWC weight function ω̄. It follows easily
from the definitions that (Γ, ω̄) is tree or skew tree dependent. But pinch
maps clearly preserve tree and skew tree dependence. Consequently (Γ, ω)
must be tree or skew tree dependent.

(3) ⇒ (1). This follows from Proposition 2.3. �

Corollary 3.3. Suppose (Γ, ω) is reduced, unimodular, with total weight
cover (Γ, ω̄). Let θ : π1(Γ, ω̄)→ π1(Γ, ω) be the orientable 3-manifold group
pinch preimage of π1(Γ, ω). Suppose that π1(Γ, χ) is a GBS 3-manifold group
and that there exists a surjective pinch map ψ : π1(Γ, χ)→ π1(Γ, ω). Then
there exists a pinch map ψ′ : π1(Γ, χ)→ π1(Γ, ω̄) and a positive integer k
such that ψ = θ ◦ ψ′ and pde(ψ

′) = k for every e ∈ E(Γ).

π1(Γ, χ)

ψ
%%

ψ′
// π1(Γ, ω̄)

θ
��

π1(Γ, ω)

Proof. This follows immediately from Theorem 3.2 and [4]. It is simply a
restatement of [4, Theorem 3] in the topological language used in the current
paper. �

Thus we may reasonably argue that θ : π1(Γ, ω̄)→ π1(Γ, ω) is the mini-
mal orientable 3-manifold pinch preimage of π1(Γ, ω). We have noted above
that the orientable 3-manifold pinch preimage of a unimodular GBS-group
is the canonical 3-manifold group associated to a given unimodular GBS-
group.

Two elementary facts about pinch maps provide the background for
our final observation. First, the composition of pinch maps is a pinch map
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whose pinch degree along each edge is the product of the pinch degrees of
the individual pinch maps. It is also clear that a pinch map ϕ : π1(Γ, χ)→
π1(Γ, ω) along e with pde(ϕ) = m exists if and only if m is a common divisor
of χ−(e) and χ+(e).

Choose an ordering Λ of the edges e1, . . . , en of Γ and determine the
pinch degree of the canonical pinch map θ and every other pinch map
ϕ : π1(Γ, χ)→ π1(Γ, ω) from 3-manifold groups onto π1(Γ, ω) relative to Λ.
Order this collection of pinch degrees lexicographically. Then θ has the min-
imal pinch degree relative to Λ among all pinches from 3-manifold groups
onto π1(Γ, ω).
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