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The Gauss-Bonnet formula for

harmonic surfaces

Peter Connor, Kevin Li, and Matthias Weber

We consider harmonic immersions in Rd of compact Riemann sur-
faces with finitely many punctures where the harmonic coordinate
functions are given as real parts of meromorphic functions. We
prove that such surfaces have finite total Gauss curvature. The
contribution of each end is a multiple of 2π, determined by the max-
imal pole order of the meromorphic functions. This generalizes the
well known Gackstatter-Jorge-Meeks formula for minimal surfaces.
The situation is complicated as the ends with their induced met-
rics are generally not conformally equivalent to punctured disks,
nor do the surfaces generally have limit tangent planes at the ends.

1. Introduction

The study of harmonic surfaces is largely motivated by the desire to under-
stand to what extent this theory differs from the more special and better
studied class of minimal surfaces. Several papers by Klotz [6–8, 10] from
the sixties through eighties deal with the normal map of a harmonic surface
and its quasiconformal properties. In a recent paper, Alarcón and López [1]
prove that a complete harmonic immersion has finite L2 norm of the shape
operator (

∫
|S|2 dA <∞) if and only if it satisfies Osserman’s theorem in the

sense that the domain of the surface is conformally a compact Riemann sur-
face with finitely many punctures and the normal map extends continuously
into the punctures.

In this paper, we will study harmonically parametrized surfaces in Rd,
d ≥ 3, where the domain is a punctured compact Riemann surface, and the
coordinate functions are real parts of integrals of meromorphic 1-forms. This
is a larger class than that of those parametrized surfaces where merely the
coordinate functions are assumed to be real parts of meromorphic functions.
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It contains complete minimal surfaces of finite total curvature, where in ad-
dition the sum of the squares of the meromorphic coordinate 1-forms needs
to vanish to make the parametrization conformal. This relationship to mini-
mal surfaces was our initial motivation to study this larger class of surfaces.
But, generally, in our case the parametrization is not even quasiconformal,
nor does the Gauss map extend continuously into the punctures.

However, these surfaces have finite total Gauss curvature and surpris-
ingly satisfy a Gauss-Bonnet formula in the spirit of the Gackstatter-Jorge-
Meeks formula [3, 5] for minimal surfaces. The proof of this formula is our
main objective.

Extensions of the Gauss-Bonnet theorem to more general open surfaces
have been investigated in the past: In [9], Shiohama derives a general Gauss-
Bonnet formula where the contribution of the ends to the total curvature is
given by a limit of circumferences of geodesic circles, provided the total cur-
vature is finite. In [11], White assumes finite L2-norm of the shape operator
to show that the contribution of the ends is a multiple of 2π. This appears
to be the first indication that this contribution is quantized under certain
conditions.

We will now introduce some notations and discuss examples to explain
or main theorem. Let ωk, k = 1, . . . , d be meromorphic 1-forms in the unit
disk D that are holomorphic in the punctured disk D∗ = D− {0}. We assume
that the residues res0 ωk are all real. Then

(1.1) f(z) = Re

∫ z

(ω1, . . . , ωd)

defines a harmonic map f : D∗ → Rd. We say that D∗ represents an end.
Note that a regular affine transformation can change the order of the

forms ωk while not affecting the appearance of the end by much. To obtain
a rough classification of ends that is independent of affine modifications, we
define:

Definition 1.1. We say that two ends f and f̃ given as above are affinely
equivalent if there is a regular real affine transformation A : Rd → Rd such
that f̃ = A ◦ f .

We say that an end is in reduced form if the pole orders nk of ωk at
0 satisfy n1 ≤ n2 · · · ≤ nd and if (n1, n2, . . . , nd) is minimal in lexicographic
ordering among all affinely equivalent ends. In this case, we call the d-tuple
(n1, . . . , nd) the type of the end.
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Example 1.2. The end given by

f(z) = Re

∫ z (1

z
+

1

z3
,

1

z2
+

i

z3
,

1

z2
+

1

z3

)
dz

has type (2, 3, 3) since it can be affinely transformed into

f̃(z) = Re

∫ z (1

z
− 1

z2
,

1

z
+

i

z3
,

1

z2
+

1

z3

)
dz.

Observe that while in the domain the end looks like a punctured disk,
the Riemannian metric of the surface induced from R3 does not need to be
conformally equivalent to a punctured disk:

Example 1.3. Using an extremal length argument, we will show that with

ω1 = 1 dz

ω2 =
1

z
dz

ω3 =
i

z2
dz

the induced metric on D∗ is not conformally equivalent to any punctured
domain. Recall that the extremal length of a curve family Γ on a Riemann
surface is defined as

ext(Γ) = sup
ρ

inf
γ∈Γ

lengthρ(γ)2

area(ρ)
,

where the supremum is taken over all finite area and non-zero conformal
metrics ρ and lengthρ(γ) is the length of γ with respect to ρ. It is well known
that the extremal length of the family of curves Γ encircling a puncture is 0
for any Riemann surface. We will bound the extremal length of Γ from below
for the conformal class of metrics induced by the harmonic parametrization
above.

To this end, we compute in polar coordinates z = reit

f(r, t) =

(
r cos(t), log(r),−1

r
sin(t)

)
.

The first fundamental form becomes g = 1
r2 g0 with

g0 =

(
1 + r2 cos(t)2 + 1

r2 sin(t)2 −(r3 + 1
r ) cos(t) sin(t)

−(r3 + 1
r ) cos(t) sin(t) r2 sin(t)2 + 1

r2 cos(t)2

)
.
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Note that g0 is just g conformally scaled, and has finite and non-zero
area. We use this metric as a test metric to estimate the extremal length of
the curves Γ from below:

The length of the tangent vectors to these curves us bounded from below
by the lengths of their components in the t-direction. Because of

g0

(
d

d t
,
d

d t

)
= cos(t)2 + r4 sin(t)2 ≥ cos(t)2,

the g0-length of all curves enclosing 0 is bounded below by 4. This shows that
the punctured disk with metric g0 (or g) cannot be conformally equivalent
to any punctured Riemann surface.

Figure 1.1: A sphere with two ends of type (0, 1, 2).

We will now introduce a quantity that measures the contribution of an
end to the total Gauss curvature of a surface.

The total curvature of an open surface of non-positve curvature is defined
as the infimum of the total curvatures of compact subsets of the surface.
This infimum can be computed as limit over any compact exhaustion of the
surface; we choose complements of coordinate disks of shrinking radii about
the punctures.

Let X be a compact Riemann surface with finitely many points pi ∈ X,
and denote by X ′ = X − {p1, . . . , pn} the punctured surface. Also denote by
X̂ the surface X with disjoint disks Di around each pi removed; this is a



i
i

“3-Weber” — 2018/7/11 — 23:21 — page 535 — #5 i
i

i
i

i
i

The Gauss-Bonnet formula for harmonic surfaces 535

surface with boundary. By the Gauss-Bonnet formula,∫
X̂
K dA+

∫
∂X̂

κgds = 2πχ(X̂) = 2πχ(X ′).

Consequently,∫
X′
K dA =

∫
X̂
K dA+

n∑
i=1

∫
D′i

K dA

= 2πχ(X ′) +

n∑
i=1

∫
D′i

K dA−
∫
∂X̂

κgds

= 2πχ(X ′) +

n∑
i=1

∫
D′i

K dA+

n∑
i=1

∫
∂Di

κgds.

Note that we switch the sign in the integrals over the geodesic curvature,
since the boundaries of the disks Di are the boundary components of X̂ with
opposite orientation. This motivates the following definition:

Definition 1.4. The Gauss curvature Ki of the puncture pi is the generally
improper integral

Ki =

∫
D′i

K dA+

∫
∂Di

κg ds.

Finally, we rewrite this definition as a limit of geodesic curvature inte-
grals. Identify the disks Di with the unit disk |z| < 1 and denote by Ai(r)
the annulus r < |z| < 1 ⊂ Di. By the Gauss-Bonnet formula again,∫

D′i

K dA = lim
r→0

∫
Ai(r)

K dA

= − lim
r→0

∫
∂Ai(r)

κg ds

= lim
r→0

∫
|z|=r

κg ds−
∫
∂Di

κg ds.

Thus we can rewrite the definition above as

Ki = lim
r→0

∫
|z|=r

κg ds.

Observe again that this limit is independent of the chosen coordinate of
X about the puncture pi.
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The main goal of this paper is to evaluate this limit for harmonic sur-
faces.

Provided we can evaluate the Gauss curvatures at the punctures, we
immediately obtain a global Gauss-Bonnet theorem:

Theorem 1.5. Suppose X is a compact Riemann surface with finitely many
points pi ∈ X. Let X ′ = X − {p1, . . . , pn} and f : X ′ → Rd be an immersion
with finite Gauss curvatures Ki at pi. Then we have∫

X′
K dA−

n∑
i=1

Ki = 2πχ(X ′).

Our main result then is

Theorem 1.6. For k ∈ {1, . . . , d}, let ωk be a meromorphic 1-form in D
with pole of order nk at 0 and holomorphic elsewhere. Assume that the
parametrization

f(z) = Re

∫ z

(ω1, . . . , ωd)

is an immersion. Then the Gauss curvature of this punctured end is given
by

K0 = −2π(max(nk)− 1).

In case the parametrization is conformal, i.e. when the surface is minimal,
this theorem is well known [3, 5] and has a simple proof: It is easy to see
that the surface has a limit tangent plane at the end so that the curves reit

become large circles in this tangent plane with multiplicity given by the pole
order minus one.

However, not all harmonic surfaces have limit tangent planes at their
ends. The question, then, is, why would we expect the Gauss curvature to
be quantized? We have a conjectural picture that does give an explanation,
which we illustrate with an end of type (2, 3, 6), see Figure 1.2.

Numerical experiments indicate that the normal map of the surface,
restricted to a curve t 7→ reit, traces out a curve in S2 that approaches the
union of great circles in a single plane in S2, with corners just at a pair of
antipodal points. This suggests that the normal map maps the disk of radius
r about 0 to a region that converges with r → 0 to a union of hemispheres.

The Gauss curvature of an end will then be the area of this limit region,
which is an integral multiple of the area of a hemisphere, see Figure 1.3.
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Figure 1.2: An embedded end of type (2, 3, 6).

x

y

z

Figure 1.3: Image of the Gauss map along t 7→ reit for the end of type
(2, 3, 6).

Our estimates are currently not strong enough to prove a precise ver-
sion of this statement. Instead we will evaluate the total curvature integral
directly. This is quite delicate due to the singular nature of the integrand,
shown in Figure 1.4 for the same end. On the other hand, our proof is es-
sentially intrinsic, indicating that there should be a Gauss-Bonnet theorem
for complete Riemannian surfaces whose ends have the same asymptotic be-
havior as the ones induced by harmonic immersions of the type we consider.

In the example at hand, the geodesic curvature integrand ηr(t) =
κg(t)|c′r(t)| approaches 0 in open intervals while it blows up at t =
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1 2 3 4 5 6

-15

-10

-5

Figure 1.4: Graph of ηr(t) for an end of type (2, 3, 6).

kπ/(max(nk)− 1), where max(nk) = 6. It will turn out that this behav-
ior is quite typical, and that each singularity will contribute the amount −π
to the total geodesic curvature when r → 0.

The computations will be carried out in the subsequent sections, which
we have organized as follows:

To prove the theorem, we will distinguish two cases. By permuting the
coordinates, we can assume that the pole orders are monotone: n1 ≤ n2 ≤
· · · ≤ nd.

In Section 2, we deal with the simplest case that nd−1 = nd where we do
have a limit tangent plane at the end.

In Section 3, we derive a formula for the geodesic curvature of surfaces
in Rd adapted to our situation and give an estimate from above.

In Section 4, we prove that we normalize the 1-form with the top pole
order by a suitable holomorphic change of the coordinate.

Then, in Section 5, we introduce notation for the second case of differ-
ent top two exponents nd−1 < nd and nd 6= 1. We provide a formula for the
geodesic curvature in this case, expanding by powers of r in polar coordi-
nates. This computation will reveal the singularities that the total curvature
integrand develops for r → 0.

We deal with these singularities using a blow-up argument in Section 6.
This requires to show that the geodesic curvature integrand is bounded
uniformly by an integrable function, which is done in Sections 7 and 8.

Finally, in Section 9 we deal with the case nd = 1 which requires some
special treatment.

In a logically independent companion paper [2], we construct many
highly complicated examples of harmonic embedded ends and complete,
properly embedded harmonic surfaces to which our theorem applies.
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2. Case I: Equal top exponents

In this section, we will show that our main theorem holds in the case that
the two top exponents are equal. We first treat the case that the coefficients
of two top exponents are independent over R. This is the simplest case as
here the Gauss map does still extend into the puncture.

Suppose f : D∗ → Rd is given as

f(z) = Re

∫ z

(ω1, . . . , ωd)

where ωi are holomorphic in D∗ and meromorphic in D. Let nj be the order
of the pole of ωj at 0.

Lemma 2.1. Assume that n1 ≤ n2 ≤ · · · ≤ nd−1 = nd. Write

ωj = (ajz
−nj + · · · ) dz,

and assume that ad−1 and ad are linearly independent over R. Then K0 =
−2π(nd − 1).

Proof. For z ∈ D∗, denote by Tz the 2-dimensional tangent plane in Rd of the
surface f(D∗) at f(z). We orient Tz so that the linear maps df |z : R2 → Tz
are orientation preserving. The map z 7→ Tz is the generalized Gauss map
of f . We first claim that the generalized Gauss map extends continuously to
0.

To see this note that by our assumptions we can find a regular real
linear transformation L of Rd such that L−1 ◦ f is given by meromorphic
1-forms with poles of order nd only for the last two indices, and the coeffi-
cients of their leading terms are 1 and i, respectively. Observe also that our
assumptions force nd 6= 1.

Then there is a continuous map g : D→ Rd with g(r, t)→ 0 for r → 0
such that

f(r, t) =
1

rnd−1
L (g(r, t) + cis((nd − 1)t))

where

cis(t) = (0, . . . , 0, cos(t), sin(t)) ∈ Rd.

Thus the limit tangent plane T0 is the image of the xd−1xd-plane under L.
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Let Πz : Rd → Rd the orthogonal projection onto Tz. Let cr(t) be the
curve t 7→ f(r, t) for fixed r, and let γr = Π0 ◦ cr be the projection onto the
limit tangent plane.

By the expansion above, for small r the planar curve γr has winding
number nd − 1 around 0, hence its total curvature is −2π(nd − 1), where the
minus sign is dictated by our choice of orientations (it is in fact sufficient to
check this in an example).

We will now show that for r → 0, the total geodesic curvature integrand
of cr converges pointwise on [0, 2π] to the total curvature integrand of γr.

Recall that the total geodesic curvature integrand of cr is given by

ηr(t) = κg|c′r(t)| =
c′′r ·R90

z c
′
r

|c′r|2

where R90
z denotes the 90◦ rotation in the tangent plane Tz of f(z), and the

total curvature integrand of γr is given by

κ0|γ′r(t)| =
γ′′r ·R90

0 γ
′
r

|γ′r|2

where R90
0 denotes the 90◦ rotation in the limit tangent plane T0.

For succinctness, denote Qz = R90
z ◦Πz the projection onto the tangent

plane Tz followed by the rotation in that tangent plane. Observe that z 7→ Qz
is continuous in all of D, and in particular at z = 0.

Using this notation, we can write

κ0|γ′r(t)| =
γ′′r ·R90

0 γ
′
r

|γ′r|2
=

(Π0cr)
′′ ·Q0c

′
r

|γ′r|2
=
c′′r ·Q0c

′
r

|γ′r|2
.

Thus

∣∣κg|c′r(t)| − κ0|γ′r(t)|
∣∣ =

∣∣∣∣c′′r ·R90
z c
′
r

|c′r|2
− c′′r ·Q0c

′
r

|γ′r|2

∣∣∣∣
=

∣∣∣∣c′′r · Qzc′r|c′r|2
− Q0c

′
r

|γ′r|2

∣∣∣∣
≤ |c

′′
r |
|c′r|

∣∣∣∣Qz c′r|c′r| − |c
′
r|2

|γ′r|2
Q0

c′r
|c′r|

∣∣∣∣
≤ |c

′′
r |
|c′r|

∣∣∣∣Qz − |c′r|2|γ′r|2
Q0

∣∣∣∣ .
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As |c′′r |/|c′r| is bounded for r → 0 and Qz → Q0, it suffices to show that
|c′r|/|γ′r| → 1 for r → 0. This follows since

|c′r|
|γ′r|

=
|Πzc

′
r|

|Π0c′r|
,

again using that Πz → Π0. �

We now turn to the case where still at least the two top exponents are
equal but all their coefficients are linearly dependent over R.

Write

ωj = (ajz
−nd + lower order terms) dz,

where aj ∈ C. Then by assumption all of the (nonzero) aj are real multiples
of each other. By making a coordinate change of the form z 7→ λz for suitable
λ ∈ C, we can assume that ad = 1. This even holds when nd = 1 as then ad
has to be real anyway to make the parametrization well-defined.

Thus all of the aj are real, and

f(z) =

a1
...
ad

Re

∫
z−nd dz + lower order terms

= aRe

∫
z−nd dz + w

where a ∈ Rd and w is the vector of lower order terms.
Let L ∈ O

(
Rd
)

be an orthogonal transformation that maps a to (0, . . . ,
0, b) for some b ∈ R− {0}. Then

L(f(z)) =


0
...
0
b

Re

∫
z−nd dz + Lw

where Lw consists of strictly lower order terms (being a linear combination
of lower order terms). Clearly, the surfaces given by f and f̃ = L ◦ f have
the same total curvature. The forms ω̃k for the surface given by f̃ will satisfy
ñd−1 < ñd so that we have reduced this special case to the generic case that
we will discuss in Section 5.
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3. Total Geodesic Curvature for Surfaces in Rd

In this section, we recall the formula for the geodesic curvature of surfaces
in Rd, adapt it to our situation, and give an elementary estimate.

Definition 3.1. For vectors X and Y in Rd, denote by X ∧ Y the element
in the exterior product Rd ∧ Rd, equipped with the norm

|X ∧ Y |2 = |X|2|Y |2 − (X · Y )2 .

Then we have

Lemma 3.2. Let V be the 2-dimensional subspace of Rd spanned by the
oriented basis X, Y . Then the (oriented) 90 degree rotation in V is given by

R90U =
− (U · Y )X + (U ·X)Y

|X ∧ Y |
.

Proof. To see that R90 is a 90 degree rotation, it suffices to check that
R90X ·X = 0 and R90X ·R90X = X ·X. This is straightforward. To verify
that R90 respects the orientation, it suffices to verify this for X and Y being
orthonormal and appealing to continuity. �

Lemma 3.3. The geodesic curvature integrand of the curve cr(t) = f(r, t)
is given by

ηr(t) = κg|c′r(t)| =
(fr · ft)(ftt · ft)− (ft · ft)(fr · ftt)

|fr ∧ ft|(ft · ft)
.

Proof. Use Lemma 3.2 in the expression for the geodesic curvature integrand

ηr(t) =

(
c′′r ·R90

z c
′
r

)
|c′r|2

with X = fr and U = Y = ft.
�

This leads to the following upper bound for ηr(t):

Lemma 3.4. The geodesic curvature integrand of the curve cr(t) = f(r, t)
has the upper bound

|ηr(t)| ≤
|ft ∧ ftt|
|ft|2

.
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Proof. By the Binet-Cauchy identity,

|ηr(t)| =
|(fr · ft)(ftt · ft)− (ft · ft)(fr · ftt)|

|fr ∧ ft|(ft · ft)

=
|(ft ∧ fr) · (ft ∧ ftt)|
|ft ∧ fr|(ft · ft)

≤ |ft ∧ fr||ft ∧ ftt|
|ft ∧ fr|(ft · ft)

=
|ft ∧ ftt|
|ft|2

.

�

4. Holomorphic change of coordinates

In this section, we will normalize ωd using a holomorphic change of coordi-
nates in D∗.

For a meromorphic 1-form, the order of its pole and its residue are
invariant under conformal diffeomorphisms. It is probably well known that
these are in fact the only invariants, but due to a lack of a reference, we
supply a proof below. Here is the precise statement:

Proposition 4.1. Let α and β be meromorphic 1-forms in the unit disk,
with a poles (if any) only at the origin. Assume that the orders of α and β
are the same, as well as their residues. Then there is a holomorphic diffeo-
morphism φ defined in a neighborhood of the origin with φ(0) = 0 such that
φ∗α = β.

The proposition follows from the next three lemmas, each of which treats
a special case. The first two provide explicit descriptions of φ, while the third
uses the implicit function theorem.

Lemma 4.2. Let α be a holomorphic 1-form with zero of order n ≥ 0 at 0.
Then there is a holomorphic diffeomorphism φ near 0 such that

α = φ∗ (zn dz) .

Proof. The function

a(z) =

∫ z

0
α
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is well-defined near 0 and has a zero of order n+ 1 at 0. Thus we can solve

1

n+ 1
φ(z)n+1 = a(z)

for φ(z) as a single valued function with a simple zero near the origin. The
claim follows, as

φ∗ (zn dz) = d
1

n+ 1
φ(z)n+1.

�

Lemma 4.3. Let α be a meromorphic 1-form with simple pole of residue
1 at the origin. Then there is a holomorphic diffeomorphism φ near 0 such
that

α = φ∗
(

1

z
dz

)
.

Proof. Write

α =

(
1

z
+ a(z)

)
dz

with a holomorphic function a(z) defined near 0, and define

f(z) = e
∫ z a(z) dz.

Then f is holomorphic and non-vanishing near the origin, so

φ(z) = z · f(z)

is a holomorphic diffeomorphism near the origin. Then

φ∗
(

1

z
dz

)
=

(
1

z
+
f ′(z)

f(z)

)
dz =

(
1

z
+ a(z)

)
dz

as claimed. �

Lemma 4.4. Let α be a meromorphic 1-form with pole of order n > 1 and
residue 1 at 0. Then there is a holomorphic diffeomorphism φ near 0 such
that

α = φ∗
(

1

zn
+

1

z

)
dz.
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Proof. Write

α =

(
1

z
+
h(z)

zn

)
dz

with a holomorphic function h such that h(0) 6= 0. Note that the meromor-

phic form h(z)
zn dz has no residue at 0, by assumption.

To find φ, write φ(z) = z · f(z) with a function f to be determined that
satisfies f(0) 6= 0. It suffices to prove that(

1

z
+
h(z)

zn

)
dz = φ∗

(
1

zn
+

1

z

)
dz

= φ′(z)

(
1

φ(z)n
+

1

φ(z)

)
dz

=

(
f + zf ′

znfn
+

1

z
+
f ′

f

)
dz.

This is equivalent to

h(z)

zn
=
f + zf ′

znfn
+
f ′

f
.

Let H(z) a primitive of h(z)
zn . This is a meromorphic function of pole

order n− 1, since, as we noted, h(z)
zn dz has no residue at 0.

Observe that the right hand side of the previous equation has an explicit
primitive, it thus suffices to solve

H =
1

1− n

(
1

zf

)n−1

+ log f.

Write f = eF for some holomorphic function F do be determined. This is
possible as we require f(0) 6= 0. Then we get to solve

1

1− n

(
1

zeF

)n−1

+ F = H

or,

1

1− n
e(1−n)F + Fzn−1 = H̃
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where H̃ is holomorphic and does not vanish near 0. To solve this equation
using the implicit function theorem write

T (w, z) =
1

1− n
e(1−n)w + wzn−1 − H̃(z).

Then T (w, 0) = 0 is equivalent to

1

1− n
e(1−n)w = H̃(0)

which has a solution w0, as H̃(0) 6= 0. Furthermore,

Tw(w, z) = e(1−n)w + zn−1

which is non-zero for any w and z = 0. Thus there is a unique function
w = F (z), holomorphic at 0, with w0 = F (0) that solves our problem. �

5. Case II: Different Top Exponents, nd 6= 1 — Notation

To evaluate the geodesic curvature integral in Lemma 3.3, we will proceed
in several steps.

We first use the normalized 1-forms to compute the integrand in polar
coordinates z = reit, sorted by powers of r so that the coefficients of the
highest powers of r are not identically vanishing in t.

We will see that away from certain explicit values of t, this integrand
converges uniformly to 0 for r → 0. At the remaining special values of t
where the integrand becomes singular, we use a blow-up argument f(r, rnt)
with a suitable power n to evaluate the limit of the total curvature integral.

As noted in Section 2, we will assume that nd−1 < nd. Before analyzing
the geodesic curvature for this case, we illustrate the procedure with an end
of type (0, 1, 3).

Example 5.1. Consider the end of type (0, 1, 3) with

(ω1, ω2, ω3) =

(
i,

1

z
,

1

z3
+

1

z2

)
dz.

Analyzing the geodesic curvature is easier after normalizing the one-forms.
Applying the holomorphic diffeomorphism

φ(z) = z2 − z
√

1 + z2
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to the above one-forms, we obtain the normalized one-forms

ψ1 = φ∗(ω1) =

(
−i+ 2iz − 3iz2

2
+

5iz4

8
+O(z)5

)
dz

ψ2 = φ∗(ω2) =

(
1

z
− 1 +

z2

2
− 3z4

8
+O(z)5

)
dz

ψ3 = φ∗(ω3) =
1

z3
dz.

Figure 5.1: Normalized end of type (0, 1, 3).

The geodesic curvature integrand is given by

ηr(t) = κg(t)|c′r(t)|

=
−r3

(
4 cos t sin4 t+ 1

2(1 + 3 cos(4t))r +O(r2)
)√

sin2(2t) + (− cos t+ cos(5t))r + r2 +O(r3)
(
sin2(2t) + r6 +O(r7)

)
This is bounded for r → 0 unless sin(2t) = 0. Away from open neighbor-

hoods of sin(2t) = 0, the geodesic curvature integrand converges uniformly
to 0 for r → 0. We use a blowup to evaluate the improper integral of the
geodesic curvature at each singularity.

If α ∈ {0, π/2, π, 3π/2} then

r3ηr(r
3s+ α) =

−2 +O(r)√
1 +O(r)(4t2 + 1 +O(r))
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π
2

π 3π
2

2 π

Figure 5.2: Graph of ηr(t) for small r.

and

lim
r→0+

∫ 2π

0
ηr(t)dt =

∑
α

lim
r→0+

∫ α+ε

α−ε
ηr(t)dt

=
∑
α

lim
r→0+

∫ ε

−ε
r3ηr(r

3s+ α)ds

=
∑
α

lim
r→0+

∫ ∞
−∞

r3ηr(r
3s+ α)χ(−ε/r3,ε/r3)(s)ds

=
∑
α

∫ ∞
−∞

−2

4s2 + 1
ds

= −4π

where χ(a,b) is the characteristic function on (a, b).

Now, consider general examples with nd−1 < nd and nd 6= 1. Using Propo-
sition 4.1, we can normalize the last coordinate 1-form ωd. Thus, we will
assume that the d coordinate 1-forms are given by

ωk(z) =

∞∑
j=1

rk,je
itk,jzj−1−nkdz, 1 ≤ k ≤ d− 1

ωd(z) =
(
z−nd +

rd,nd

z

)
dz

where nk ≤ nk+1 for k = 1, 2, . . . , d− 2, nd−1 < nd.
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Additionally, we can assume that

hk(z) = znkωk(z)/dz =

∞∑
j=1

rk,je
itk,jzj−1

is a convergent power series in the unit disk for 1 ≤ k ≤ d− 1. Thus, there
is a constant M > 0 such that rk,j ≤M for j ≥ 1 and 1 ≤ k ≤ d− 1.

We also assume that sin(tk,nk
) = 0 for k = 1, 2, . . . , d− 1 so that the

residues of ωk are real as required for a well-defined harmonic map in D∗.
Then we have power series expansions

f(r, t) =



∞∑
j=1,j 6=n1

rj−n1α1,j(t) + α1,n1
log r

.

.

.
∞∑

j=1,j 6=nd−1

rj−nd−1αd−1,j(t) + αd−1,nd−1
log r

r1−ndβ(t) + rd,nd
log r


where for k = 1, . . . , d− 1,

αk,j(t) =

{
rk,j cos ((j−nk)t+tk,j)

j−nk
, j 6= nk

rk,nk
cos (tk,nk

), j = nk

and

β(t) =
cos((1− nd)t)

1− nd
.

Observe that α′′k,j(t) = −(j − nk)2αk,j(t) and β′′(t) = −(1− nd)2β(t). Also
note that |αk,j(t)| ≤M .

Our next goal is to derive similar expansions for the relevant terms in
ηr(t) from Lemma 3.3. To simplify the notation, we abbreviate a few sums
as follows:
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Definition 5.2. For k = 1, . . . , d− 1, let

Sk(r, t) =

∞∑
j=1,j 6=nk

rj−1α′k,j(t)

Tk(r, t) = −S′k(r, t) =

∞∑
j=1

rj−1(j − nk)2αk,j(t)

Rk(r, t) =

∞∑
j=1

rj−1(j − nk)αk,j(t) + rnk−1αk,nk
.

Then we have by straightforward computation:

Lemma 5.3.

ft =
1

rnd−1

(
rnd−n1S1(r, t), . . . , rnd−nd−1Sd−1(r, t), β′(t)

)
ftt = − 1

rnd−1

(
rnd−n1T1(r, t), . . . , rnd−nd−1Td−1(r, t), (1− nd)2β(t)

)
fr =

1

rnd

(
rnd−n1R1(r, t), . . . , rnd−nd−1Rd−1(r, t), (1− nd)β(t) + rnd−1rd,nd

)
.

6. The Blow-Up Argument

Recall from Lemma 3.4 that the geodesic curvature integrand is bounded
above by

|ηr(t)| ≤
|ft ∧ ftt|
|ft|2

.

By Lemma 5.3, this is bounded for r → 0 unless β′(t) = 0. Moreover, the
formula for ηr(t) in Lemma 3.3 together with Lemma 5.3 shows that away
from open neighborhoods of β′(t) = 0, the integrand converges uniformly to
0 for r → 0.

We will now analyze the singular behavior of the geodesic curvature in-
tegrand. Suppose β′(t0)2 = 0. Then β(t0)2 = 1

(1−n3)2 6= 0, and again Lemma
3.3 and Lemma 5.3 imply that our integrand does indeed have a singular-
ity at t0 when r → 0. We will cope with these singularities using a blow-up
argument.

Since β′(t) = − sin((1− nd)t), these singularities are explicit. It will turn
out that in our choice of coordinate they all will contribute the same amount
to the total curvature integral. We will consider the case t0 = 0. The other
cases are notationally more complicated but are treated the same way.
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The idea is to make a substitution of the form (r, t) 7→ (r, rnt) for a
suitable exponent n. Our next goal is to determine that exponent by the
power of r by which the Sk terms possibly converge to 0 when r → 0.

Definition 6.1. Let 1 ≤ k ≤ d− 1. Define mk as the first integer such that
rk,mk

sin(tk,mk
) 6= 0. That is, mk − 1 is the order of the zero of Sk(r, 0)

at r = 0.

Then we expand

Sk(r, t) =−
mk−1∑

j=1,j 6=nk

rj−1rk,j sin ((j − nk)t) cos(tk,j)(6.1)

− rmk−1
∞∑

j=mk,j 6=nk

rj−mkrk,j

× [sin (j − nk)t) cos (tk,j) + cos ((j − nk)t) sin (tk,j)] .

If mk =∞ then

(6.2) Sk(r, t) = −
∞∑

j=1,j 6=nk

rj−1rk,j sin ((j − nk)t) cos(tk,j).

This allows us to determine the critical exponent n as well as to introduce
abbreviations which will be used in our estimate of the geodesic curvature
integrand:

n = min
k
{nd − nk +mk − 1}

k∗ = {k ∈ {1, . . . , d− 1} : nd − nk +mk − 1 = n}

a =
nd − 1√

b

with

b =
∑
k∈k∗

r2
k,mk

sin2(tk,mk
).

Note that as f is assumed to be an immersion, not all of the mk can be
infinite, so that n is finite.

Proposition 6.2. With the notation introduced above,

lim
r→0

rnηr(r
nt) = − a

1 + a2t2
.
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Proof. The terms from Lemma 5.3 can be estimated using

Sk(r, r
nt) =

{
−rmk−1rk,mk

sin (tk,mk
) +O(rmk), mk <∞

rk,1(nk − 1) cos(tk,1)rnt+O(rn+1), mk =∞
β′(rnt) = rnt(nd − 1) +O(rn+1)

Tk(r, r
nt) = (1− nk)rk,1 cos(tk,1) +O(r)

Rk(r, r
nt) = rk,1 cos(tk,1) +O(r)

β(rnt) =
1

1− nd
+O(r).

Then, by straightforward computation,

ft · ft =
r2n

r2(nd−1)

[
b+ (1− nd)2t2 +O(r)

]
fr · ftt = − 1

r2nd−1
[1− nd +O(r)]

fr · ft = − rn

r2nd−1
[(1− nd)t+O(r)]

ftt · ft =
rn

r2(nd−1)

[
(1− nd)2t+O(r)

]
fr · fr =

1

r2nd
[1 +O(r)] .

Combining everything gives

(fr · ft)(ftt · ft)− (ft · ft)(fr · ftt) =
r2n

r4nd−3
[(1− nd)b+O(r)]

(fr · fr)(ft · ft)− (fr · ft)2 =
r2n

r4nd−2
[b+O(r)]

and so

rnηr(r
nt) =

rn r2n

r4nd−3 [(1− nd)b+O(r)]√
r2n

r4nd−2 [b+O(r)] r2n

r2(nd−1) [b+ (1− nd)2t2 +O(r)]

=
(1− nd)b+O(r)√

b+O(r) [b+ (1− nd)2t2 +O(r)]

=
(−a+O(r))√

1 +O(r) [1 + a2t2 +O(r)]
.
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Hence,

lim
r→0

rnηr(r
nt) = − a

1 + a2t2

as claimed. �

To finish the proof of Theorem 1.6, we will need to use that that total
curvature integrand of an end is bounded by an integrable function. This is
accomplished below.

Lemma 6.3. Let ε < min

{
1,

π

2(nd − 1)

}
and small enough such that

Lemma 8.1 can be applied. Then there is a constant M depending only on
the forms ωk such that with

g(s) =
M

1 + s2

(
|s|

n−nd+nd−1

n + 1
)

we have

rn |ηr(rns)|χ(−ε/rn,ε/rn)(s) < g(s)

for all r < 1 and s ∈ R. Here χ(a,b) denotes the characteristic function of
the interval [a, b].

Proof. We combine Lemma 7.2 and Lemma 8.1, which are proven in Sec-
tions 7 and 8, where we deal with the numerator and denominator of the
geodesic curvature integrand separately. They yield that there is a constant
M such that for small r,

|ηr(t)| ≤
M(|t|rnd−nd−1 + rn)

r2n + t2
.

If nd−1 < nd and |t| < ε < 1 then

|t| < |t|
n−nd+nd−1

n

and so

|ηr(t)| ≤
M(|t|

n−nd+nd−1

n rnd−nd−1 + rn)

r2n + t2
.
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Substituting rns < ε for t,

rn |ηr(rns)| ≤
rnM

(
|rns|

n−nd+nd−1

n rnd−nd−1 + rn
)

r2n + (rns)2

≤
r2nM

(
|s|

n−nd+nd−1

n + 1
)

r2n (1 + s2)

≤
M
(
|s|

n−nd+nd−1

n + 1
)

1 + s2

which is integrable on R. With

g(s) =
M
(
|s|

n−nd+nd−1

n + 1
)

1 + s2

we have

rn |ηr(rns)|χ(−ε/rn,ε/rn)(s) < g(s)

for all r < 1 and s ∈ R, as claimed. �

This given, we can now prove:

Proposition 6.4. Let ε be as in Lemma 6.3. Then

lim
r→0+

∫ ε

−ε
ηr(t) dt = −π.

Proof. Using the blow-up substitution t = rns, we obtain

∫ ε

−ε
ηr(t) dt =

∫ ε/rn

−ε/rn
rnηr(r

ns) ds

=

∫ ∞
−∞

rnηr(r
ns)χ(−ε/rn,ε/rn)(s) ds.

By Lemma 6.3, the estimate

rn |ηr(rns)|χ(−ε/rn,ε/rn)(s) < g(s)



i
i

“3-Weber” — 2018/7/11 — 23:21 — page 555 — #25 i
i

i
i

i
i

The Gauss-Bonnet formula for harmonic surfaces 555

holds for all r < 1 and s ∈ R. Hence, by Proposition 6.2 and the dominated
convergence theorem,

lim
r→0+

∫ ε

−ε
ηr(t) dt =

∫ ∞
−∞

lim
r→0+

rnηr(r
ns)χ(−ε/rn,ε/rn)(s) ds

= −
∫ ∞
−∞

a

1 + (as)2
ds

= −π.
�

7. Numerator estimate

The purpose of this and the following section is to prove the integrability
Lemma 6.3. In this section, we will estimate the numerator of the geodesic
curvature from above.

We begin by providing estimates for the individual terms in the numer-
ator:

Lemma 7.1. There is a constant M such that for r < 1 we have

|Sk(r, t)| ≤M(| sin t|+ rmk−1)

|Tk(r, t)| ≤M

|β(t)| ≤ 1

nd − 1

|β′(t)| ≤ (nd − 1)| sin t|.

Proof. We choose M > rk,j as before and will absorb any constant terms
into M as well.

Using equation (6.1), we obtain

|Sk(r, t)| ≤
mk−1∑
j=1

Mrj−1| sin(t(nk − j))|+ rmk−1
∞∑

j=m1

Mrj−mk

≤ M(1− rmk−1)| sin t|
1− r

+
Mrmk−1

1− r
≤M(| sin t|+ rmk−1).
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From Definition 5.2 we get

|Tk(r, t)| ≤
∞∑
j=1

M |j − nk|rj−1

≤
∞∑
j=1

Mnkr
j−1 +

∞∑
j=1

Mjrj−1

≤ Mnk
1− r

+
M

(1− r)2

≤M.

The bounds for |β(t)| and |β′(t)| are immediate. �

The main estimate of this section is contained in

Lemma 7.2. If r < 1 then

r2(nd−1)|ft ∧ ftt| ≤M(|t|rnd−nd−1 + rn)

where M is a constant depending only on the ωk.

Proof. Using Lemma 5.3, a simple calculation produces the following ex-
pression for the left hand side in the claim of Lemma 7.2:

r4(nd−1)
(
|ft|2|ftt|2 − (ft · ftt)2

)
=

(
d−1∑
k=1

r2(nd−nk)S2
k + β′(t)2

)(
d−1∑
k=1

r2(nd−nk)T 2
k + (1− nd)4β(t)2

)

−

(
d−1∑
k=1

r2(nd−nk)SkTk + (1− nd)2β(t)β′(t)

)2

=
∑
k<j

r2(2nd−nk−nj)
(
S2
kT

2
j − 2SkTkSjTj + S2

j T
2
k

)
+

d−1∑
k=1

r2(nd−nk)
(
(1− nd)4β(t)2S2

k + β′(t)2T 2
k − 2SkTk(1− nd)2β(t)β′(t)

)
=
∑
k<j

r2(2nd−nk−nj)(SkTj − SjTk)2 +

d−1∑
k=1

r2(nd−nk)
(
(1− nd)2β(t)Sk − β′(t)Tk

)2
.
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Thus we obtain the following upper bound:

r2(nd−1)
√
|ft|2|ftt|2 − (ft · ftt)2

≤
∑
k<j

r2nd−nk−nj (|Sk||Tj |+ |Sj ||Tk|)

+

d−1∑
k=1

rnd−nk
(
(1− nd)2|β(t)||Sk|+ |β′(t)||Tk|

)
.

Then, by Lemma 7.1,

r2nd−nk−nj (|Sk||Tj |+ |Sj ||Tk|)
≤M

(
r2nd−nk−nj | sin t|+ r2nd−nk−nj+mk−1 + r2nd−nk−nj+mj−1

)
≤M

(
rnd−nd−1rnd+nd−1−nk−nj | sin t|+ rn(rnd−nj + rnd−nk)

)
≤M

(
rnd−nd−1 |t|+ rn

)
and

rnd−nk
(
(1− nd)2|β(t)||Sk|+ |β′(t)||Tk|

)
≤ rnd−nk

(
(nd − 1)M(| sin t|+ rmk−1) +M(nd − 1)| sin t|

)
≤M

(
rnd−nk | sin t|+ rnd−nk+mk−1

)
≤M(rnd−nd−1 |t|+ rn).

Thus,

r2(nd−1)
√
|ft|2|ftt|2 − (ft · ftt)2

≤
∑
k<j

M
(
rnd−nd−1 |t|+ rn

)
+

d−1∑
k=1

M
(
rnd−nd−1 |t|+ rn

)
≤M

(
|t|rnd−nd−1 + rn

)
which proves the claim. �

8. Denominator estimate

In this section, we will prove the following lower bound for the denominator
term |ft| of the geodesic curvature:

Lemma 8.1. There is a constant µ > 0 such that for |t| and r small enough
we have

r2(nd−1)|ft|2 ≥ µ
(
r2n + t2

)
.
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We begin the proof by setting up the terms that need to be estimated.
Recall from Lemma 5.3 that

ft =
1

rnd−1

(
rnd−n1S1(r, t), . . . , rnd−nd−1Sd−1(r, t), β′(t)

)
where

Sk(r, t) = −
mk−1∑

j=1,j 6=nk

rj−1rk,j sin((j − nk)t) cos(tk,j)

−
∞∑

j=mk,j 6=nk

rj−1rk,j (sin((j − nk)t) cos(tk,j) + cos((j − nk)t) sin(tk,j))

and

β(t) =
cos((1− nd)t)

1− nd
.

Abbreviate

Ak =

∞∑
j=2,j 6=nk

−rk,j sin((j − nk)t) cos(tk,j)r
j−1

=

mk∑
j=2,j 6=nk

−rk,j sin((j − nk)t) cos(tk,j)r
j−1

+

∞∑
j=mk+1,j 6=nk

−rk,j sin((j − nk)t) cos(tk,j)r
j−1

Bk =

∞∑
j=mk+1,j 6=nk

−rk,j cos((j − nk)t) sin(tk,j)r
j−1.

Notice that by Definition 6.1 of the numbers mk,

Ak +Bk = rnk−1 (ft)k −
(
− rk,1 sin((1− nk)t) cos(tk,1)

− rk,mk
cos((mk − nk)t) sin(tk,mk

)rmk−1
)
.

Generically, we expect rk,1 sin(tk,1) = 0, which is what we will assume
for the rest of the proof. If rk,1 sin(tk,1) 6= 0, then mk = 1, and the first sum
in Ak is empty. This will mean that there is no |t| term in the estimates
below, simplifying the argument.

Our first goal is to estimate the components of ft from above and below:
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Lemma 8.2. There are nonzero constants Ck, Dk, C
′
k, D

′
k that depend on

rk,1 and rk,mk
sin(tk,mk

) such that Ck > 0,C ′k < 0 and Dk and D′k have the
same sign and so that

C ′k|t|+D′kr
mk−1 ≤ rnk−1 (ft)k ≤ Ck|t|+Dkr

mk−1.

Proof. We begin by showing that Ak and Bk are relatively small:

|Ak| ≤
mk∑

j=2,j 6=nk

M |j − nk||t|rj−1 +

∞∑
j=mk+1,j 6=nk

Mrj−1

≤MC
r

1− r
|t|+M

rmk

1− r
< δ′

(
|t|+ rmk−1

)
for r small enough. Secondly,

|Bk| ≤
∞∑

j=mk+1,j 6=nk

Mrj−1

= M
rmk

1− r
< δ′rmk−1.

Thus,

rnk−1 (ft)k ≤ −rk,1 sin((1− nk)t) cos(tk,1)

− rk,mk
cos((mk − nk)t) sin(tk,mk

)rmk−1

+ δ′|t|+ 2δ′rmk−1

≤ Ck|t|+Dkr
mk−1

and

rnk−1 (ft)k ≥ −rk,1 sin((1− nk)t) cos(tk,1)

− rk,mk
cos((mk − nk)t) sin(tk,mk

)rmk−1

− δ′|t| − 2δ′rmk−1

≥ C ′k|t|+D′kr
mk−1.

�

Since we really want to estimate | (ft)k |2, we will need the following
simple consequence of Young’s inequality (see [4]) which we state without
proof.
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Lemma 8.3. For any nonzero constants C,D,N, ξ, the following inequality
holds for all t and all r > 0:

|Ct+DrN |2 ≥
(

1− 1

ξ2

)
C2t2 +

(
1− ξ2

)
D2r2N .

Now we apply this lemma to obtain the desired bound for all indices
except k = d.

Lemma 8.4. For any 0 < |ξ| < 1, there exists nonzero constants C ′′ and
D′′ such that

r2(nk−1) |(ft)k|
2 ≥

(
1− 1

ξ2

)
C ′′2t2 +

(
1− ξ2

)
D′′2r2(mk−1)

for k = 1, 2, . . . , d− 1

Proof. We first consider the case when Dk, D
′
k > 0. Let

Ω = {(r, t) : C ′k|t|+D′kr
mk−1 < 0},

and denote by Ωc the complement.
By Lemma 8.2 we have on Ωc

rnk−1 (ft)k ≥ C
′
k|t|+D′kr

mk−1 ≥ 0.

Thus Lemma 8.3 implies

r2(nk−1) |(ft)k|
2 ≥

(
1− 1

ξ2

)
C ′2k t

2 +
(
1− ξ2

)
D′2k r

2(mk−1).

Now, on Ω, we have 0 ≤ D′krmk−1 < −C ′k|t| which implies that

D′2k r
2(mk−1) < C ′2k |t|2.

As

0 ≤ 1− ξ2 <
1

ξ2
− 1

for all nonzero ξ 6= ±1 we obtain

(
1− ξ2

)
D′2k r

2(mk−1) <

(
1

ξ2
− 1

)
C ′2k t

2
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which is equivalent to our claim(
1− 1

ξ2

)
C ′2k t

2 +
(
1− ξ2

)
D′2k r

2(mk−1) < 0.

Therefore,

r2(nk−1) |(ft)k|
2 ≥ 0 >

(
1− 1

ξ2

)
C ′2k t

2 +
(
1− ξ2

)
D′2k r

2(mk−1).

This proves the result when Dk, D
′
k > 0.

Next we consider the case when Dk, D
′
k < 0. Let

Ω = {(r, t) : Ck|t|+Dkr
mk−1 > 0}.

By Lemma 8.2 we have on Ωc

rnk−1 (ft)k ≤ Ck|t|+Dkr
mk−1 ≤ 0,

which gives the trivial lower bound

r2(nk−1) |(ft)k|
2 ≥

(
1− 1

ξ2

)
C2
kt

2 +
(
1− ξ2

)
D2
kr

2(mk−1).

Now, on Ω, we have 0 ≤ −Dkr
mk−1 < Ck|t| and so

D2
kr

2(mk−1) < C2
k |t|2.

As above, this implies(
1− 1

ξ2

)
C2
kt

2 +
(
1− ξ2

)
D2
kr

2(mk−1) < 0

as long as 0 < |ξ| < 1. Therefore,

r2(nk−1) |(ft)k|
2 ≥ 0 >

(
1− 1

ξ2

)
C2
kt

2 +
(
1− ξ2

)
D2
kr

2(mk−1).

�

We finish the proof by considering the last coordinate. Here,

r2(nd−1) |(ft)d|
2 = sin2((nd − 1)t)

≥ 4

π2
(nd − 1)2t2

for t small enough.



i
i

“3-Weber” — 2018/7/11 — 23:21 — page 562 — #32 i
i

i
i

i
i

562 P. Connor, K. Li, and M. Weber

Now, choose ξ so that 0 < |ξ| < 1 and(
1− 1

ξ2

)
C ′′2 ≥ − 1

(d− 1)π2
(nd − 1)2.

Then for small r,

r2(nd−1)|ft|2 ≥
d−1∑
k=1

r2(nd−nk)

[(
1− 1

ξ2

)
C ′′2t2 +

(
1− ξ2

)
D2r2(mk−1)

]
+

4

π2
(nd − 1)2t2

≥ (1− ξ2)D2r2n +
3

π2
(nd − 1)2t2

which is a good enough lower bound since the coeffficients are positive. This
concludes the proof of Lemma 8.1.

9. Case III: Different Top Exponents, nd = 1

This last section deals with the case that the end is given by coordinate 1-
forms that are all holomorphic except for the last, which has a simple pole.
The simplest case is the graph given by

(ω1, ω2, ω3) =

(
1, i,

1

z

)
dz

which has a horn end of type (0, 0, 1) at 0. We will show that the Gauss
curvature of a horn end is always 0. When nd−1 < nd and nd 6= 1, each
singularity of the geodesic curvature integrand contributed −π to the Gauss
curvature. The Gauss curvature behaves differently when nd = 1. Either the
geodesic curvature integrand has no singularities and converges uniformly
to 0 as r → 0 or the contributions from the singularities cancel.

Example 9.1. Before analyzing the total curvature when nd = 1, consider
the an example of a horn end of type (−1, 0, 1) with figure eight cross sec-
tions, given by

(ω1, ω2, ω3) =

(
iz, i,

1

z

)
dz.
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Applying the holomorphic diffeomorphism φ(z) = izez and an affine trans-
formation to the above one-forms, we get the normalized one-forms

ψ1 =
(
−iz − 3iz2 − 4iz3 +O(r4)

)
dz

ψ2 =

(
1

z
− 2z − 3z2

2
+

2z3

3
+O(r4)

)
dz

ψ3 =

(
1

z
+ 1

)
dz.

Figure 9.1: Normalized end of type (−1, 0, 1).

The geodesic curvature integrand ηr(t) is given by

r(4 sin4 t+ r

2
(8 cos t−9 cos(3t)+3 cos(5t))+O(r2))√

sin2 t(1+8r cos t)+r2(5− 1

2
cos(2t)− 5

2
cos(4t))+O(r3)(sin2(t)+ r2

2
(5−3 cos(4t))+O(r3))

.

This is bounded for r → 0 unless sin t = 0. Away from open neighborhoods
of sin t = 0, the geodesic curvature integrand converges uniformly to 0 for
r → 0.

If α ∈ {0, π} then

rηr(rt+ α) =


1+O(r)√

2+t2+O(r)(1+t2+O(r))
, α = 0

− 1+O(r)√
2+t2+O(r)(1+t2+O(r))

, α = π
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1 2 3 4 5 6

-0.05

0.05

-0.10

0.10

Figure 9.2: Graph of ηr(t) for small r.

and

lim
r→0+

∫ 2π

0
ηr(t)dt =

∑
α

lim
r→0+

∫ α+ε

α−ε
ηr(t)dt

=
∑
α

lim
r→0+

∫ ε

−ε
rηr(rs+ α)ds

=
∑
α

lim
r→0+

∫ ∞
−∞

rηr(rs+ α)χ(−ε/r,ε/r)(s)ds

=

∫ ∞
−∞

1√
2 + s2(1 + s2)

ds+

∫ ∞
−∞

−1√
2 + s2(1 + s2)

ds

=
π

2
− π

2
= 0.

The curvature contributions from the singularities are π/2 and −π/2, yield-
ing the desired curvature of 0.

We now return to the general discussion of the case that nd = 1. As in
case II, after applying an orthogonal transformation, we can assume that
nk < 1 for 1 ≤ k ≤ d− 1. Then we can apply Proposition 4.1 to normalize

the last coordinate 1-form ωd(z) =
1

z
dz. Now, we use an additional orthogo-

nal transformation on the first d− 1 forms to further simplify the expression.
Consider the two vectors v and w that consist of the real and imaginary parts
of the coefficients of terms of order nd−1. If v and w span a plane (over R)
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then we can rotate the surface so that the plane is parallel to the xd−2xd−1-
plane, i.e. nd−3 < nd−2 = nd−1 with td−2,1 /∈ {0, π}, and td−1,1 ∈ {0, π}. Oth-
erwise v and w are linearly dependent and we can rotate these vectors to be
parallel to the xd−1-axis, i.e. nd−2 < nd−1 with td−1,1 ∈ {0, π}. Note that to
ensure td−1,1 ∈ {0, π} in either case, we may need to apply a rotation in the
domain but this will not affect ωd.

In this case, we will assume that the d coordinate 1-forms are given by

ωk(z) =

∞∑
j=1

rk,je
itk,jzj−1−nk dz, 1 ≤ k ≤ d− 1

ωd(z) =
1

z
dz

with nk−1 ≤ nk for 2 ≤ k ≤ d− 2, where either

nd−2 = nd−1 < 1, td−2,1 /∈ {0, π}, td−1,1 ∈ {0, π}

or

nd−2 < nd−1 < 1, td−1,1 ∈ {0, π}.

As in case II, there is a constant M > 0 such that rk,j ≤M for j ≥ 1 and
1 ≤ k ≤ d− 2.

We have power series expansions

f(r, t) =



∞∑
j=1

rj−n1α1,j(t)

.

.

.
∞∑
j=1

rj−nd−1αd−1,j(t)

log r


where for k = 1, . . . , d− 1,

αk,j(t) =
rk,j cos ((j − nk)t+ tk,j)

j − nk
.



i
i

“3-Weber” — 2018/7/11 — 23:21 — page 566 — #36 i
i

i
i

i
i

566 P. Connor, K. Li, and M. Weber

Here, we use the same definitions for Sk and Tk, see Definition 5.2. The
definition of Rk is almost the same:

Sk(r, t) =

∞∑
j=1,j 6=nk

rj−1α′k,j(t)

Tk(r, t) = −S′k(r, t) =

∞∑
j=1

rj−1(j − nk)2αk,j(t)

Rk(r, t) =

∞∑
j=1

rj−1(j − nk)αk,j(t)

(9.1)

Then we have by straightforward computation:

Lemma 9.2.

ft = r1−nd−1
(
rnd−1−n1S1(r, t), . . . , rnd−1−nd−2Sd−2(r, t), Sd−1(r, t), 0

)
ftt = −r1−nd−1

(
rnd−1−n1T1(r, t), . . . , rnd−1−nd−2Td−2(r, t), Td−1(r, t), 0

)
fr =

1

r

(
r1−n1R1(r, t), . . . , r1−nd−2Rd−2(r, t), r1−nd−1Rd−1(r, t), 1

)
ηr(t) = r

(
∑
r−2nkS2

k)(
∑
r−2nkRkTk)−(

∑
r−2nkSkRk)(

∑
r−2nkSkTk)√

(
∑
r2(1−nk)R2

k+1)
∑
r−2nkS2

k−r
2(1+nd−1)(

∑
r−2nkSkRk)2

∑
r−2nkS2

k

If nd−2 = nd−1 < 1, td−2,1 /∈ {0, π}, and td−1,1 ∈ {0, π} then there are
no singularities for ηr when r = 0 since they would occur when

r2
d−2,1 sin2((1− nd−1)t+ td−2,1) + r2

d−1,1 sin2((1− nd−1)t) = 0

which would force td−2,1 ∈ {0, π}. Hence, ηr(t) converges uniformly to 0 as
r → 0, and

lim
r→0+

∫ 2π

0
ηr(t) dt = 0.

If nd−2 < nd−1 < 1 it is useful to apply another normalization, utilizing
the holomorphic diffeomorphism φ(z) = zez. If nd−1 = 0 then it will be nec-
essary to do an orthogonal transformation to ensure that nd−1 < 0. We can
do this since in this case, ωd−1(z) = (±1 + h.o.t)dz and ωd(z) =

(
1
z + 1

)
dz.

This gives us the one-forms
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ωk(z) =

∞∑
j=1

rk,je
itk,jzj−1−nkdz, 1 ≤ k ≤ d− 1

ωd−1(z) =

1

z
+

∞∑
j=1

rd−1,je
itd−1,jzj−1−nd−1

 dz

ωd(z) =

(
1

z
+ 1

)
dz

where nk ≤ nk+1 for k = 1, 2, . . . , d− 2 and nd−1 < 0.
Then we have power series expansions

f(r, t) =



∞∑
j=1

rj−n1α1,j(t)

.

.

.
∞∑
j=1

rj−nd−2αd−2,j(t)

log r +

∞∑
j=1

rj−nd−1αd−1,j(t)

log r + r cos t



.

Again, using Rk, Sk, and Tk as defined in 9.1, we have by straightforward
computation:

Lemma 9.3.

ft = r
(
r−n1S1(r, t), . . . , r−nd−1Sd−1(r, t),− sin t

)
ftt = −r

(
r−n1T1(r, t), . . . , r−nd−1Td−1(r, t), cos t

)
fr =

1

r

(
r1−n1R1(r, t), . . . , r1−nd−2Rd−2(r, t), 1+r1−nd−1Rd−1(r, t), 1+r cos t

)
.

Recall from Lemma 3.4 that the geodesic curvature integrand is bounded
above by

|ηr(t)| ≤
|ft ∧ ftt|
|ft|2

.
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By Lemma 9.3, this is bounded for r → 0 unless sin t = 0. Moreover, the
formula for ηr(t) in Lemma 3.3 together with Lemma 9.3 shows that away
from open neighborhoods of sin t = 0, the integrand converges uniformly to
0 for r → 0.

We will now analyze the singular behavior of the geodesic curvature inte-
grand. Suppose sin t = 0. Then cos t 6= 0, and again Lemma 3.3 and Lemma
9.3 imply that our integrand does indeed have singularities at 0 and π when
r → 0. We use the same blow-up argument from Section 6 to deal with the
singularities in this case. With this normalization, the curvature contribu-
tion from the singularities at t = 0 and t = π will have opposite signs and
thus cancel. They can be computed as π/2 and −π/2, respectively, instead
of a contribution of −π from each singularity.

First, we deal with the blow-up near the singularity at t = 0. Using the
slightly adjusted terms

n = min
k
{−nk +mk − 1}

k∗ = {k ∈ {1, . . . , d− 1} : −nk +mk − 1 = n}
b =

∑
k∈k∗

r2
k,mk

sin2(tk,mk
), c = rd−1,md−1

sin(td−1,md−1
)

for the blow-up near the singularity at t = 0, the terms from Lemma 9.3 can
be estimated as

Sk(r, r
nt) =

{
−rmk−1rk,mk

sin (tk,mk
) +O(rmk), mk <∞

rk,1(nk − 1)rnt+O(rn+1), mk =∞
Tk(r, r

nt) = (1− nk)rk,1 cos(tk,1) +O(r)

Rk(r, r
nt) = rk,1 cos(tk,1) +O(r)

cos rnt = 1 +O(r2n)

sin rnt = rnt+O(rn+1).

Then

ft · ft = r2(n+1)
[
b+ t2 +O(r)

]
fr · ftt = −1 +O(r)

fr · ft = −rn
[
r−nd−1+md−1−1−nc+ t+O(r)

]
ftt · ft = r2+n [t+O(r)]

fr · fr =
1

r2
[2 +O(r)] .
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Combining everything gives

(fr · ft)(ftt · ft)− (ft · ft)(fr · ftt)
= r2(n+1)

[
b− r−nd−1+md−1−1−nct+O(r)

]
,

(fr · fr)(ft · ft)− (fr · ft)2

= r2n
[
2b− 2r−nd−1+md−1−1−nct− r2(−nd−1+md−1−1−nc2 + t2 +O(r)

]
and so

rnη(rnt) =
b−r−nd−1+md−1−1−nct+O(r)√

2b−2r−nd−1+md−1−1−nct−r2(−nd−1+md−1−1−nc2+t2+O(r)(b+t2+O(r))
.

Hence,

lim
r→0

rnη(rnt) =


b−ct√

2b−2ct−c2+t2(b+t2)
, −nd−1 +md−1 − 1 = n

b√
2b+t2(b+t2)

, −nd−1 +md−1 − 1 > n
.

When we do the blowup centered at t = π instead of at t = 0, after
employing the substitution t→ (−1)nt+ π, we get

lim
r→0

rnη(rnt) =

−
b−ct√

2b−2ct−c2+t2(b+t2)
, −nd−1 +md−1 − 1 = n

− b√
2b+t2(b+t2)

, −nd−1 +md−1 − 1 > n
.

We are in a setting in which we can directly apply the arguments in
Sections 6,7, and 8 to show ηr is uniformly bounded by a L1 function. So,
the curvature contributions from the two singularities at t = 0 and t = π
will cancel, giving zero curvature.

This concludes the proof in case III of Theorem 1.6.
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