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Infinitesimal rigidity of collapsed gradient

steady Ricci solitons in dimension three

Huai-Dong Cao and Chenxu He

The only known example of collapsed three-dimensional complete
gradient steady Ricci solitons so far is the 3D cigar soliton N2 × R,
the product of Hamilton’s cigar soliton N2 and the real line R with
the product metric. R. Hamilton has conjectured that there should
exist a family of collapsed positively curved three-dimensional com-
plete gradient steady solitons, with S1-symmetry, connecting the
3D cigar soliton. In this paper, we make the first initial progress
and prove that the infinitesimal deformation at the 3D cigar soliton
is non-essential. Moreover, in Appendix A, we show that the 3D
cigar soliton is the unique complete nonflat gradient steady Ricci
soliton in dimension three that admits two commuting Killing vec-
tor fields.

1. Introduction

A complete Riemannian manifold (Mn, g) is called a gradient steady Ricci
soliton if there is a smooth function f ∈ C∞(M) such that the Ricci curva-
ture of g is equal to the Hessian of f :

(1.1) Ric = ∇2f.

The function f is called a potential function of (M, g). Gradient steady
Ricci solitons play an important role in the study of Hamilton’s Ricci flow
and they often arise as Type II singularity models. They are also natural
generalization of Ricci flat manifolds where f is a constant function. It is
well-known that any compact gradient steady Ricci soliton is necessarily
Ricci flat (with a constant potential function). In the non-compact case,
there exist examples of non Ricci-flat gradient steady Ricci solitons. In [Ha1]
R. Hamilton discovered the first example of a complete steady soliton N2 =
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(R2, ds2
N ), called the cigar soliton, that is diffeomorphic to R2 and has the

length element

(1.2) ds2
N =

4(dx2 + dy2)

1 + x2 + y2
,

with potential function

f = log(1 + x2 + y2).

The cigar soliton has positive curvature R = e−f , which achieves its maxi-
mum at the origin, and is asymptotic to a cylinder of finite circumference at
infinity. Furthermore, in [Ha1] Hamilton showed the uniqueness result that a
complete steady soliton on a two-dimensional manifold with bounded Gauss
curvature that assumes its maximum at an origin is, up to scaling, isometric
to the cigar soliton (see also [CC]).

For n ≥ 3, in [Br] R. Bryant proved that there exists, up to scaling,
a unique complete rotationally symmetric gradient steady Ricci soliton on
Rn. In dimension n ≥ 4, there are other examples of steady Ricci solitons,
see for example [Ca] and [DW]. In dimension three, S. Brendle proved a
remarkable result that, as conjectured by Perelman in 2003, a complete
non-flat κ-noncollapsed steady gradient Ricci soliton must be rotationally
symmetric and therefore isometric to the Bryant soliton up to scaling, see
[Bre]. Thus, in dimension n = 3, it remains to understand κ-collapsed ones
for all κ > 0.

So far, the only example of a collapsed three-dimensional steady gradient
Ricci soliton is N2 × R, the product of cigar soliton N2 and R with the
product metric, referred as 3D cigar soliton in our paper. It admits two non-
trivial commuting Killing vector fields: one generates the S1-symmetry on
the N2-factor, and the other for the translation on the R-factor. On the other
hand, R. Hamilton [Ha2] has conjectured that there should exist a family
of three-dimensional complete collapsed positively curved gradient steady
Ricci solitons with S1-symmetry connecting the 3D cigar soliton. However,
very little is known so far and this conjecture of Hamilton remains wide
open.

In this paper we consider deformations of the 3D cigar soliton. Note that
deformation theory of Einstein metrics on compact manifolds was developed
by N. Koiso in [Koi] and has been extended more recently to compact Ricci
solitons by F. Podestà and A. Spiro in [PS]. In this paper we allow the
underlying manifold to be non-compact.
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Let (Mn, g, f) be a gradient steady Ricci soliton. A deformation of
(Mn, g, f) is a one-parameter family of complete gradient steady Ricci soli-
tons (Mn(t), g(t), f(t)) (0≤ t<ε) such that (Mn(0), g(0), f(0))=(Mn, g, f).
The infinitesimal deformation associated with the family g(t) is defined by

h =
d

dt

∣∣∣
t=0

g(t) ∈ C∞(S2(T ∗M))

which is the first variation of the metric g and defines a symmetric 2-tensor
on M . The infinitesimal deformation h associated with deformation g(t) of g
is called non-essential if there exists a deformation ḡ(t) of g, not necessarily
the same as g(t), given by diffeomorphisms and scalings such that h = ḡ′(0).
Otherwise it is called essential, see Definition 2.3.

In this paper we consider an important class of deformations of the 3D
cigar soliton such that the following two conditions hold:

• the metric g(t) admits a non-trivial Killing vector field for all t ∈ [0, ε),

• the scalar curvature R(t) of g(t) attains its maximum at some point
on M(t) for each t ∈ [0, ε).

These two conditions are referred as circle symmetry conditions. We believe
the second one is a technical condition, possibly could be removed. Our main
result is

Theorem 1.1. Let (M(t), g(t), f(t)) (0 ≤ t < ε) be a deformation of the
3D cigar soliton N2 × R satisfying the circle symmetry conditions for all
t ∈ [0, ε). Then the associated infinitesimal deformation h = g′(0) is non-
essential.

Remark 1.2. Our result indicates that, from the first variation point of
view, it seems quite non-trivial to prove the existence of the collapsed family
of positively curved gradient steady Ricci solitons conjectured by Hamilton.

Remark 1.3. Since the 3D cigar soliton is non-compact, the support of h,
i.e., the set where h does not vanish, may not be compact. The variation h
is not assumed a prior to have any decay condition at infinity either.

The system of differential equations of the first variation h on a gradi-
ent Ricci soliton is well-known, see for example, [CHI] and [CZ]. The circle
symmetry conditions allow us to reduce the system to a single differential
equation of the variation of the potential function. One of the main steps in
the proof of Theorem 1.1 is to show the uniqueness of positive solutions W
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to an elliptic partial differential equation LW = 0 on the upper-half plane
with certain growth estimate, see Proposition 4.2. The equation LW = 0 can
be viewed as ∆W = W , the Laplace eigenfunction equation with eigenvalue
one, on a certain Cartan-Hadamard surface Σ2 conformal to the upper-half
plane. In [CH] we determined the Martin compactification of Σ2 with respect
to the operator L = ∆− 1 and, using the theory of Martin integral repre-
sentation, we proved the uniqueness of positive solution with such growth
estimate, see Theorem 2.5.

The paper is organized as follows. In Section 2, we collect basics of gra-
dient steady Ricci solitons and recall the uniqueness result Theorem 2.5
proved in [CH]. The differential equations of the first variation at the 3D
cigar soliton are derived in Section 3. In Section 4, we prove Theorem 1.1. Fi-
nally, in Appendix A, we show the uniqueness of the 3D cigar soliton among
three-dimensional complete non-flat gradient steady solitons admitting two
commuting Killing vector fields.

Acknowledgments. We would like to thank Wolfgang Ziller for help-
ful discussions. Part of the work was carried out while the first author
was visiting the University of Macau, where he was partially supported by
Science and Technology Development Fund (Macao S.A.R.) Grant FDCT/
016/2013/A1, as well as the Grant RDG010 of University of Macau.

2. Preliminaries

In this section we collect some basics of gradient steady Ricci solitons and
the system of differential equations for the first variations of both metrics
and potential functions. The detailed calculation of the first variation can
be found, for example, in [CHI] and [CZ]. Then we recall a uniqueness result
in [CH] for positive eigenfunctions on a negatively curved complete surface
which is used in the proof of Theorem 1.1.

The following result of three dimensional gradient steady Ricci solitons
is well-known.

Theorem 2.1. Let (M3, g) be a complete nonflat gradient steady Ricci soli-
ton. Then either

1) M has positive sectional curvature, or

2) the universal cover (M̃, g̃) splits as N2 × R, i.e., M̃ is isometric to the
3D cigar soliton.
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Proof. From the work of Binglong Chen [Ch, Corollary 2.4], M3 has non-
negative sectional curvature. Since R+ |∇f |2 is a constant, M also has
bounded curvature. If M does not have positive sectional curvature, then it
follows from [Sh, Section 3], or see [Cetc, Theorem A.54], that the universal
cover of M splits isometrically as M̃ = (N2, h)× R, where (N2, h) is also
a nonflat gradient steady Ricci soliton and hence isometric to Hamilton’s
cigar soliton. �

Next, let us express the metric of the cigar soliton N2 in coordinates
adapted to the circle action. In polar coordinates (ρ, θ) on R2, the cigar
soliton metric (1.2) can be expressed as

ds2
N =

4

1 + ρ2
dρ2 +

4ρ2

1 + ρ2
dθ2.

Set

r =
2ρ√

1 + ρ2
,

then, in terms of (r, θ), the metric ds2
N can be further written as

ds2
N =

16

(4− r2)2
dr2 + r2dθ2.

We now recall the geometry of the 3D cigar soliton N2 × R.

Example 2.2. The 3D cigar soliton N2 × R has length element of the form

(2.1) ds2 =
16

(4− r2)2
dr2 + dx2 + r2dθ2

and its potential function is given by

(2.2) f = − log(4− r2),

with (x1, x2, x3) = (r, x, θ) ∈ [0, 2)× R× [0, 2π]. Here we choose the coordi-
nate θ such that X = ∂θ is the non-trivial Killing vector field which gener-
ates the rotation, and r is the length of X, i.e., r2 = g(X,X). The metric is
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normalized so that

(2.3) ∆f + |∇f |2 = 1.

The non-vanishing Christoffel symbols are given by

Γ1
11 =

2r

4− r2
, Γ1

33 = −r(4− r
2)2

16
, Γ3

13 = Γ3
31 =

1

r
,

and the nonzero components of the Riemann curvature tensor are given by

R1313 = −R1331 = R3131 = −R3113 =
2r2

4− r2
.

Next we consider deformations of gradient steady Ricci solitons. Suppose
(Mn, g, f) is a complete gradient steady Ricci soliton. A deformation of
(M, g, f) is a family of complete gradient steady Ricci solitons (Mn(t), g(t),
f(t))(0 ≤ t < ε), satisfying

Ricg(t) = ∇2f(t),

such that (Mn(0), g(0), f(0)) = (Mn, g, f).

Definition 2.3. A steady Ricci soliton metric g is called non-deformable
if each deformation g(t) of g is given by diffeomorphisms and scalings, i.e.,
g(t) = c(t)ϕ(t)∗(g) with c(t) > 0, c(0) = 1 and ϕ(t) diffeomorphisms of M
with ϕ(0) the identity map. A symmetric 2-tensor h ∈ C∞(S2(T ∗M)) is
called a non-essential infinitesimal deformation of g if there exists a de-
formation ḡ(t) given by diffeomorphisms and scalings such that h = ḡ′(0).
Otherwise h is called an essential infinitesimal deformation.

We normalize each deformation so that

(2.4) ∆tf(t) + |∇f(t)|2t = 1

where ∆t and | · |t are the Laplacian and norm with respect to the metric
g(t) respectively. Let

(2.5) F (t) = ef(t).

Then the normalization condition (2.4) is equivalent to

(2.6) ∆tF (t) = F (t).
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Denote the first variations

h =
d

dt

∣∣∣
t=0

g(t), δf =
d

dt

∣∣∣
t=0

f(t),

δRic =
d

dt

∣∣∣
t=0

Ric (g(t)) , δ∇2f =
d

dt

∣∣∣
t=0
∇2f(t).

We have the following

Proposition 2.4. The first variations h and δf satisfy the following equa-
tions,

∆h+∇∇fh+ 2Rm(h, ·)(2.7)

+ 2div∗ (divh+ h(∇f, ·)) +∇2 (trh+ 2δf) = 0,

and

∆(δf) +
1

2
g (∇trh,∇f)− 〈h,∇2f〉 − divh(∇f)(2.8)

− h(∇f,∇f) + 2g (∇f,∇δf) = 0.

Proof. Equation (2.7) follows from the equation δRic = δ∇2f and the first
variation formulas of Ric and ∇2f . Equation (2.8) follows from the identity
δ∆f + δ |∇f |2 = 0 and the first variation formulas of δ∆f and δ |∇f |2. See
[CHI] and [CZ], for example, for more details. �

In [CH] we considered the non-negative eigenfunctions of the Laplace
operator with eigenvalue one on the complete surface Σ2 =

(
R× (0,∞), ds2

)
with

(2.9) ds2 =
e4y + 10e2y + 1

4 (e2y − 1)2

(
dx2 + dy2

)
,

where (x, y) ∈ R× (0,∞). The length element above defines a complete met-
ric on the upper-half plane R× (0,∞). The Gauss curvature K = K(y) is
negative, bounded below by −5

3 with

lim
y→0

K(y) = −4

3
and lim

y→∞
K(y) = 0.
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An eigenfunction W of the Laplace operator ∆Σ on Σ2 with eigenvalue one
solves the equation

(2.10) Wxx +Wyy −
e4y + 10e2y + 1

4 (e2y − 1)2 W = 0.

In [CH] we proved the following uniqueness result.

Theorem 2.5. Let W =W (x, y) be a non-negative eigenfunction with eigen-
value one on Σ2. Suppose that W vanishes on the boundary {y = 0} and
satisfies the following inequality on Σ2:

(2.11) ∂yW −
1

2
coth(y)W ≥ 0.

Then, either W = 0 or it is a positive constant multiple of

W0(x, y) =
(ey − 1)2

e
1

2
y
√
e2y − 1

.

Remark 2.6. In [CH] we determined the Martin compactification of Σ2

with respect to the operator L = ∆Σ − 1 and the Martin kernel function at
each boundary point. The function W0 is the unique kernel function that
satisfies the vanishing condition and the inequality in (2.11). The uniqueness
of W follows from the Martin integral representation of positive eigenfunc-
tions; see [CH] for more details.

3. First variation of the 3D cigar soliton

In this section we show that a three-dimensional gradient steady Ricci soliton
satisfying the circle symmetry conditions admits a special coordinate system
on an open dense subset such that the metric has the diagonal form. Then,
using these coordinates, we reduce the system of differential equations of the
first variation of 3D cigar soliton N2 × R to a single differential equation.

Proposition 3.1. Let (M3, g, f) be a simply connected complete three-
dimensional gradient steady Ricci soliton. Suppose that the scalar curvature
R attains its maximum at O ∈M and the metric g admits a non-trivial
Killing vector field X. Then on an open dense subset M0 ⊂M , the length
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element can be written as

(3.1) ds2 = e2αdr2 + e2βdx2 + r2dθ2.

Here r2 = g(X,X) with X = ∂θ, x is another coordinate with g(∂x, ∂θ) = 0,
and α, β are functions in r and x.

Proof. First note that the statement holds for the 3D cigar soliton, see equa-
tion (2.1), and the Bryant soliton. In both cases, we can take M0 = M .

If the metric g is reducible, then it is isometric to the 3D cigar soliton.
So we may assume that (M, g) has positive sectional curvature KM > 0
everywhere for the rest of the proof. Since R attains its maximum at O ∈M ,
we have

0 = g (∇R,∇f) (O) = −2Ric (∇f,∇f) (O)

and it follows that O is a critical point of f . Since ∇2f = Ric is positive
definite, f is strictly convex and it follows that O is the unique critical point
of f and f(O) is the absolute minimum of f on M . This also shows that O
is the unique critical point of R.

The Killing vector field X generates a local isometric S1-action and

r2 = g(X,X) ≥ 0.

Let Z = {p ∈M : X(p) = 0}. It follows that Z is the disjoint union of com-
plete geodesics, see for example, [Ko, Theorem 5.1]. Since the scalar curva-
ture R is invariant under the S1-action, the origin O is a fixed point, i.e.,
O ∈ Z. Let γ(t)(t ∈ R), with γ ⊂ Z, be the normal geodesic passing through
the point O with γ(0) = O.

Claim. Z = {γ(t) : t ∈ R}.

Since ∇2f = Ric > 0, the set M c = {p ∈M : f(p) ≤ c} is compact and
strictly convex, see [BO, Proposition 2.1 and 2.5] or [CC, Proposition 2.1].
It follows that neither γ([0,∞)) nor γ((−∞, 0]) can stay in any M c for
c <∞ and thus γ(R) intersects each ∂M c with c > min f at least on two
points. Since g is irreducible, we have DXf = 0, see for example [PW], i.e.,
f is invariant under the S1-action and it induces an isometric action on
the compact level surface ∂M c = {p ∈M : f(p) = c}. The fixed point set
of this induced action is Z ∩ ∂M c that consists of isolated points. Since
∂M c is diffeomorphic to the sphere S2, the Euler characteristic is χ(∂M c) =
2. On the other hand, χ(∂M c) = number of points in Z ∩ ∂M c so γ(t)
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intersects ∂M c at exactly 2 points. Since {M ci}∞i=1 with limi→∞ ci =∞ is
an exhaustion of M , there is no more geodesic in Z. So we have proved the
claim.

Let

S = {p ∈M : ∇R and ∇f are parallel} .

It follows that S is a closed subset in M . Note that S 6= ∅ as for every
c > min f , the set S contains the points on the level set ∂M c where R
restricted to ∂M c achieves its extreme values. If S = M , then R and f
share the same level sets and (M, g) is isometric to the Bryant soliton, see
[Gu]. So we assume that S (M and M0 = M\ (S ∪ Z) is open and dense. It
follows that the orthogonal distribution D of X on M0 is integrable. Denote
by θ ∈ [0, 2π) the coordinate on the S1-orbit with X = ∂θ. Choose a system
of local isothermal coordinates {u, v} and then the metric g restricted to D
is conformal to the Euclidean metric du2 + dv2. So the length element of g
on M0 can be written as

(3.2) ds2 = e2w
(
du2 + dv2

)
+ r2dθ2

for some w, with w and r being functions in u, v. In terms of the coordinates
{u, v, θ}, we have the following vanishing Christoffel symbols:

Γ3
11 = Γ3

12 = Γ3
21 = Γ3

22 = 0.

It follows that the distribution D is totally geodesic and X = ∂θ is an eigen-
vector field of Ric. Note that

Γ1
33 = −re−2wru and Γ2

33 = −re−2wrv.

So we have

∇3∇3f = re−2w (rufu + rvfv) = rg(∇f,∇r).

Since ∇3∇3f = R33 > 0 on M , we have ∇r 6= 0 on M0 so that we can choose
r as a coordinate function and x be another coordinate with g(∂r, ∂x) = 0.
The metric g then has the desired form in these coordinates {r, x, θ}. �

In the following we consider deformations of the 3D cigar soliton
(M3, g, f) = N2 × R, where the metric g has the length element in equa-
tion (2.1). Denote ∂r = ∂

∂r , ∂x = ∂
∂x and ∂θ = ∂

∂θ . For a covariant 2-tensor
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h, the covariant derivative is denoted by

∇ihjk = ∇h
(
∂

∂xi
,
∂

∂xj
,
∂

∂xk

)
,

with
{
x1, x2, x3

}
= {r, x, θ}, and other covariant derivatives are denoted

similarly. The partial derivatives of smooth functions are denoted by, for
example,

vr = ∂rv, vrr = ∂2
rv, vrx = ∂2

rxv = ∂r∂xv

and so on for v ∈ C∞(M).

Let (M3(t), g(t), f(t))(0 ≤ t < ε) be a deformation of the 3D cigar soli-
ton (M3, g, f) satisfying the circle symmetry conditions. We normalize the
metrics g(t) by rescaling if necessary such that

(3.3) ∆tf(t) + |∇f(t)|2t = 1.

Proposition 3.2. Let V = δF be the first variation of F = ef on the 3D
cigar soliton. Then, the nonzero components of the first variation hij = δgij
are given by

h11 =
32r

4 + r2
Vr −

64r2

16− r4
V,(3.4)

h22 =
2r(4− r2)2

4 + r2
Vr −

2(4− r2)(4 + 3r2)

4 + r2
V.(3.5)

Moreover, V (r, x) satisfies the equation E(V ) = 0 with

E(V ) = (r2 + 4)
[
(4− r2)2Vrr + 16Vxx

]
(3.6)

−
(
5r4 + 48r2 − 16

) (
4− r2

) Vr
r

+ 4
(
r4 + 16r2 − 16

)
V.

Remark 3.3. From the S1-symmetry, V (r, x) is an even function in r and
Vr(0, x) = 0 for any x ∈ R.

Proof. Let v = δf , then we have

v = e−fV = (4− r2)V.

From Proposition 3.1 the first variation hij has two nonzero components

h1(r, x) = h11 and h2(r, x) = h22.
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For fixed x, the following length element

ds2 = e2αdr2 + r2dθ2

gives a smooth metric on the surface with {r, θ}-coordinate. In particular,
we have e2α(0,x) = 1, i.e., g11(t) = 1 at r = 0. It follows that h1(0, x) = 0.
Let Y = b(x)∂x be a smooth vector field. Since the Lie derivative LY g has
the only nonzero component(

Lb(x)∂xg
)

22
= 2b′(x),

we may assume that h2 does not contain the summand a single variable
function in x.

The covariant derivatives ∇jhkl have the following nonzero components

∇1h11 = ∂rh1 −
4r

4− r2
h1 ∇1h22 = ∂rh2

∇2h11 = ∂xh1 ∇2h22 = ∂xh2

and

∇3h13 = ∇3h31 =
r(4− r2)2

16
h1.

Since the metric g is in the diagonal form, we only need the terms ∇k∇lhij
with k = l to compute ∆hij . The nonzero components of ∇k∇khij ’s are
given by

∇1∇1h11 = ∂2
rh1 −

10r

4− r2
∂rh1 −

4(4− 5r2)

(4− r2)2
h1

∇1∇1h22 = ∂2
rh2 −

2r

4− r2
∂rh2

∇2∇2h11 = ∂2
xh1

∇2∇2h22 = ∂2
xh2

∇3∇3h11 =
r(4− r2)2

16
∂rh1 −

16− r4

8
h1

∇3∇3h22 =
r(4− r2)2

16
∂rh2

∇3∇3h33 =
r2(4− r2)4

128
h1.
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It follows that ∆hij has the following nonzero components:

∆h11 =
(4− r2)2

16
∂2
rh1 + ∂2

xh1 +
(4− r2)(4− 11r2)

16r
∂rh1

+
11r4 − 8r2 − 16

8r2
h1

∆h22 =
(4− r2)2

16
∂2
rh2 + ∂2

xh2 +
(4− r2)(4− 3r3)

16r
∂rh2

∆h33 =
(4− r2)4

128
h1.

In the following we sketch the calculation of the nonzero components of
other relevant tensors. Since

∇f =
r(4− r2)

8
∂r,

the nonzero components of ∇∇fh are given by

∇∇fh11 =
r(4− r2)

8
∂rh1 −

r2

2
h1

∇∇fh22 =
r(4− r2)

8
∂rh2.

The tensor Rm(h, ·) has only one nonzero component,

Rm(h, ·)33 =
r2(4− r2)3

128
h1.

The nonzero components of div−fh = divh+ h(∇f, ·) are

(div−fh)1 =
(4− r2)2

16
∂rh1 +

(4− r2)(4− 3r2)

16r
h1

(div−fh)2 = ∂xh2

so the nonzero components of ω = div∗(divh+ h(∇f, ·)) are

ω11 = −(4− r2)2

16
∂2
rh1 −

(4− r2)(4− 9r2)

16r
∂rh1 +

−15r4 + 24r2 + 16

16r2
h1

ω12 = ω21 = −(4− r2)2

32
∂2
rxh1 −

(4− r2)(4− 3r2)

32r
∂xh1 −

1

2
∂2
rxh2

ω22 = −∂2
xh2

ω33 = −r(4− r
2)4

256
∂rh1 −

(4− r2)3(4− 3r2)

256
h1.
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Let

u(r, x) = trh+ 2v =
(4− r2)2

16
h1 + h2 + v.

The nonzero components of ∇2 (trh+ v) are given by

∇1∇1u = ∂2
ru−

2r

4− r2
∂ru

∇1∇2u = ∇2∇1u = ∂2
rxu

∇2∇2u = ∂2
xu

∇3∇3u =
r(4− r2)2

16
∂ru.

Let Eij be the components of the left hand side in equation (2.7). We
have

E13 = E23 = 0.

The component E12 is given by

(3.7) E12 = E21 = 2∂2
rxv +

r4 − 16

16r
∂xh1.

So equation E12 = 0 yields

(3.8) h1 =
32r

16− r4
∂rv +A(r),

where A(r) is an arbitrary function. The component E33 is given by
(3.9)

E33 =
r(4− r2)2

8
∂rv +

r(4− r2)2

16
∂rh2 −

r(4− r2)4

256
∂rh1 +

r2(4− r2)3

64
h1.

Equation E33 = 0 with the solution of h1 in (3.8) yields

(3.10) h2 =
2r(4− r2)

4 + r2
∂rv − 2v +

(4− r2)2

16
A(r).

For the other two nonzero components we have

E11 =
2r(4− r2)

4 + r2
vrrr +

32r

16− r4
vrxx −

2(5r4 + 48r2 − 16)

(4 + r2)2
vrr(3.11)

+
2(3r8 + 48r6 + 480r4 − 768r2 − 256)

r(4− r2)(4 + r2)3
vr

+
(4− r2)2

16
A′′(r)− (4− r2)(4 + 11r2)

16r
A′(r) +

3r2

2
A(r),
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and

E22 =
r(4− r2)3

8(4 + r2)
vrrr +

2r(4− r2)

4 + r2
vrxx(3.12)

− (4− r2)2(r4 + 10r2 − 8)

2(4 + r2)2
vrr + 2vxx

− r(4− r2)2(r2 + 4r + 12)(r2 − 4r + 12)

4(4 + r2)3
vr

+
(4− r2)4

256
A′′(r) +

(4− r2)3(4− 9r2)

256r
A′(r)

+
(4− r2)2(r2 − 2)

16
A(r).

So equation (2.7) is equivalent to E11 = E22 = 0.
A direct computation shows that the left hand side in equation (2.8) is

given by

B =
(4− r2)2

16
vrr + vxx +

16− r4

16r
vr

− r(4− r2)3

256
∂rh1 +

r(4− r2)

16
∂rh2 −

(4− r2)3

64
h1.

Using the solutions of h1 and h2 in (3.8) and (3.10) it can be rewritten as
(3.13)

B =
(4− r2)2

16
vrr + vxx −

(4− r2)(r4 + 32r2 − 16)

16r(4 + r2)
vr −

(4− r2)2

16
A(r).

One can solve vrr from the equation B = 0 and then substitute it into equa-
tions E11 = 0 and E22 = 0. It follows that

A′′(r)− 11r4 + 16r2 + 16

r(16− r4)
A′(r)− 8r2(4− 3r2)

(4− r2)2(4 + r2)
A(r) = 0

A′′(r) +
16− 9r4

r(16− r4)
A′(r)− 16r2

16− r4
A(r) = 0.

Subtracting the two equations above yields

(16− r4)A′(r)− 4r3A(r) = 0,

which has the solution

A(r) =
16A(0)

16− r4
.
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Since A(0) = h1(0, x) = 0, we have A(r) = 0. The formulas of h11 and h22

follows from equations (3.8) and (3.10) of h1 and h2 using the function V .
Equation E(V ) = 0 follows from equation B = 0 in (3.13). This finishes the
proof of Proposition 3.2. �

Proposition 3.4. Let Kij be the sectional curvature of the plane spanned
by ∂i and ∂j. Then the first variations are given by

δK12 =
(4− r2)3

16(4 + r2)

(
2V − (4− r2)

Vr
r

)
δK23 =

(4− r2)2

16(4 + r2)

(
− (4− r2)2Vrr +

2r2(4− r2)(3r2 + 20)

4 + r2

Vr
r

− 2(3r4 + 24r2 − 16)

4 + r2
V

)
δK13 =

(4− r2)2

16(4 + r2)

(
(4− r2)2Vrr −

(4− r2)(9r4 + 48r2 − 16)

4 + r2

Vr
r

+
4(3r4 + 16r2 − 16)

4 + r2
V

)
.

Proof. These identities follow from the first variation formula of Riemann
tensors (see for example [Be, Theorem 1.174]). We only compute δK12 here,
as the other two formulas follow by a similar computation.

Since R1212 = 0, we have

δK12 = g11g22δR1212 =
(4− r2)2

16
δR1212.

On the other hand,

δR1212 = −1

2
(∇2∇2h11 +∇1∇1h22) = −1

2

(
∂2
rh2 −

2r

4− r2
∂rh2 + ∂2

xh1

)
= −1

2

{
32r

4 + r2
Vrxx −

64r2

16− r4
Vxx +

2r(4− r2)2

4 + r2
Vrrr

− 2(4− r2)(11r4 + 72r2 − 16)

(4 + r2)2
Vrr

+
4r(15r6 + 172r4 + 528r2 − 704)

(4 + r2)3
Vr

−4(9r8 + 96r6 + 352r4 − 1536r2 + 256)

(4− r2)(4 + r2)3
V

}
.
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Using the equation E(V ) = 0, it can be simplified as

δR1212 = − (4− r2)2

r(4 + r2)
Vr +

2(4− r2)

4 + r2
V.

Thus, we have

δK12 =
(4− r2)3

16(4 + r2)

(
2V − (4− r2)

Vr
r

)
,

which gives the desired formula. �

4. Proof of Theorem 1.1

In this section we derive the differential equation of the first variation of
K12, see Proposition 4.2, and then we prove our main result Theorem 1.1.

First we rewrite equation E(V ) = 0 in Proposition 3.2 and the first vari-
ations δKij in Proposition 3.4 by using different variables. A useful method,
called the Liouville transformation, in the second order differential equation
eliminates the first order terms, see [Li]. For our equation E(V ) = 0 the
transformation is given by

ξ = log(2 + r)− log(2− r),(4.1)

Y (ξ, x) =
2(4− r2)

√
r(4− r2)

4 + r2
V (r, x)(4.2)

=
16
√

2e
3

2
ξ(eξ − 1)

1

2

(eξ + 1)
3

2 (e2ξ + 1)
V (r, x).

Note that ξ is the distance function in r-direction.

Proposition 4.1. The function Y satisfies the following differential equa-
tion, which is equivalent to E(V ) = 0,

(4.3) Yξξ + Yxx −Q(ξ)Y = 0,

with

(4.4) Q(ξ) =
e8ξ − 36e6ξ + 54e4ξ − 36e2ξ + 1

4(e4ξ − 1)2
.
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In addition, the first variations δKij’s in Proposition 3.4 are given by

δK12 =
2
√

2e
3

2
ξ

(e2ξ − 1)
3

2

(
−Yξ −

e4ξ − 6e2ξ + 1

2(e4ξ − 1)
Y

)
δK23 =

√
2e

1

2
ξ

(e2ξ − 1)
1

2

(
−Yξξ +

4e2ξ

e4ξ − 1
Yξ +

e8ξ − 28e6ξ + 6e4ξ − 28e2ξ + 1

4(e4ξ − 1)2
Y

)
,

and

δK13 =

√
2e

1

2
ξ

(e2ξ − 1)
1

2

(
−Yξξ +

(eξ − 1)3

(eξ + 1)(e2ξ + 1)
Yξ

+
3e8ξ − 8e7ξ − 36e6ξ + 40e5ξ − 14e4ξ + 40e3ξ − 36e2ξ − 8eξ + 3

4(e4ξ − 1)2
Y

)
.

Next, we consider the function

(4.5) W (ξ, x) = −Yξ −
e4ξ − 6e2ξ + 1

2(e4ξ − 1)
Y.

In terms of the variables r and V , it is given by

(4.6) W =

√
r(4− r2)

3

2

2(4 + r2)

(
2rV (r, x)− (4− r2)Vr

)
.

Proposition 4.2. W (ξ, x) is non-negative and satisfies the following equa-
tion,

(4.7)

{
Wξξ +Wxx − P (ξ)W = 0

W (0, x) = 0,

where the function P is given by

(4.8) P (ξ) =
e4ξ + 10e2ξ + 1

4(e2ξ − 1)2
.

Moreover, W (ξ, x) is monotone increasing in ξ and satisfies the inequality

(4.9) Wξ −
e2ξ + 1

2 (e2ξ − 1)
W ≥ 0.
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Remark 4.3. On the surface Σ2 = R× (0,∞) with the complete metric
ds2 given by (2.9), the Laplace operator has the form

∆Σw =
1

P (ξ)
(wxx + wξξ) .

Note that here we use ξ instead of y for the second coordinate. Proposi-
tion 4.2 shows that ∆ΣW = W , i.e., W is a non-negative eigenfunction with
eigenvalue one.

Proof. Since r = 0 when ξ = 0, W (0, x) = 0 follows from the defining equa-
tion (4.6) of W in terms of V and r. The differential equation of W (ξ, x) fol-
lows from the equation (4.3). On the 3D cigar soliton we have K12 = K23 = 0
and the deformed metric g(t) with t > 0 has positive sectional curvatures,
it follows that

δK12 ≥ 0 and δK23 ≥ 0.

Hence W is a non-negative function. Note that from Proposition 4.1 we have

Wξ −
e2ξ + 1

2(e2ξ − 1)
W = 2

√
2e−

1

2
ξ(e2ξ − 1)

1

2 δK23 ≥ 0.

It gives us the inequality (4.9), and it also follows that W (ξ, x) is monotone
increasing in ξ. �

Remark 4.4. Let L(W ) = Wξξ +Wxx − P (ξ)W . In terms of variables r
and V , L(W ) contains 3rd order partial derivatives Vrrr and Vrxx. A direct
computation shows that

− 32(4 + r2)2

√
r(4− r2)

5

2

L(W ) = ∂rE(V )− 16r

16− r4
E(V )

where E(V ) is given in equation (3.6). However, vanishing of L(W ) does not
necessarily implies E(V ) = 0.

We now show that Theorem 2.5 implies Theorem 1.1.

Proof of Theorem 1.1. If W = 0, then from equation (4.6) we have

2rV − (4− r2)Vr = 0.

It then follows that ∂r
(
(4− r2)V

)
= 0, i.e., (4− r2)V = A(x), a function in

x. From the first variation hij = δgij in Proposition 2.4, we have

h11 = 0
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and

h22 = −2(4− r2)V = −2A(x).

It follows that hij ∈ Imdiv∗ which generates diffeomorphisms of the 3D cigar
soliton.

If W 6= 0, we may assume that W = W0 as given in Theorem 2.5. In
terms of coordinates {r, x}, we have

W (r, x) =

√
2r

3

2

√
4− r2

.

Solving equation (4.6) for V yields

(4.10) V (r, x) = − 8
√

2

(4− r2)2
−
√

2 log(4− r2)

4− r2
+

A(x)

4− r2

for some function A(x). However, the solution above does not solve equation
E(V ) = 0 in Proposition 3.2 as

E (V (r, x)) = −16
√

2(4 + r2)

4− r2
.

This shows that the second case cannot occur and thus we have finished the
proof. �

Appendix A. Three-dimensional gradient steady Ricci
solitons with two Killing vector fields

Suppose that (M3, g) is a gradient steady Ricci soliton with two non-trivial
Killing vector fields X1 and X2. If X1 does not commute with X2, then the
Lie algebra of the symmetry group contains so(3), i.e., the orthogonal group
SO(3) acts on M3 isometrically. It follows that M3 is rotationally symmetric
and hence isometric to the Bryant soliton.

Theorem A.1. Suppose that (M3, g) is a complete nonflat gradient steady
Ricci soliton. If M admits two non-trivial commuting Killing vector fields,
then its universal cover is isometric to the 3D cigar soliton N2 × R.

We first show that there is an adapted coordinate system from the com-
muting Killing vector fields such that the metric has a simple form.
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Lemma A.2. If in addition (M3, g) has positive sectional curvature, then
on an open dense subset M0 ⊂M the metric has the following length element

(A.1) ds2 = y2 [dt+ (q(y)− ξ(x))dx]2 + p2(y)dx2 + Ω2(y)dy2,

where p(y) ≥ 0,Ω(y) ≥ 0, q(y) are function in y and ξ(x) is a function in x.
Moreover the Killing vector fields are given by

X1 = ∂t and X2 = ξ(x)∂t + ∂x.

Proof. First we claim that any non-trivial Killing vector field cannot have
constant length. Suppose not and y2 = |X|2 is a positive constant on M and
X is a Killing vector field. From the gradient steady Ricci soliton we have

Ric(X,X) = ∇2f(X,X)

= g (∇X∇f,X)

= DXg(∇f,X)− g(∇f,∇XX).

Since M3 is irreducible, we have g(∇f,X) = 0. On the other hand we have
∇XX = −1

2∇
(
y2
)

= 0. It follows that Ric(X,X) = 0 that contradicts the
assumption that M has positive sectional curvature.

Denote D the integrable distribution spanned by two commuting Killing
vector fields X1 and X2. Let {t, x} be the local coordinates of the inte-
gral submanifold of D with X1 = ∂t. Denote y2 = g(X1, X1). Then we have
DX1

y = 0 and

2yDX2
y = DX2

g(X1, X1) = 2g (∇X2
X1, X1) = 2g (∇X1

X2, X1)

= 0.

Here we used ∇X1
X2 = ∇X2

X1 as they commute. Since y is not a constant
function, the length element of the metric g has the following form

ds2 = y2 (dt+A(x, y)dx)2 +
B2(x, y)

y2
dx2 + Ω2(x, y)dy2.

Note that B(x, y)dtdx is the area element of in {t, x}-coordinates. Let

X2 = ξ(t, x, y)∂t + η(t, x, y)∂x

be the second Killing vector field. If η is the trivial function, then equation
LX2

g = 0 implies that ξ is a constant. So we assume that η(t, x, y) 6= 0.
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Since the Lie bracket is given by

[X1, X2] = ∂tξ∂t + ∂tη∂x = 0

we have ξ = ξ(x, y) and η = η(x, y). The Lie derivative of the metric tensor
has the following component

LX2
g33 = 2ηΩ∂xΩ

that yields Ω = Ω(y). We have ∂yξ = −A(x, y)∂yη from

LX2
g13 = y2 (∂yξ +A(x, y)∂yη) = 0

Then LX2
g23 can be simplified as

LX2
g23 =

B2

y2
∂yη = 0

that yields ∂yη = 0 and ∂yξ = 0, i.e., ξ = ξ(x) and η = η(x). It follows that
the nonzero components are given by

LX2
g12 = LX2

g21 = y2 ∂

∂x
(ξ(x) +A(x, y)η(x))

LX2
g22 − 2A(x, y)LX2

g12 =
2B

y2

∂

∂x
(B(x, y)η(x)) .

The vanishing of the two terms above implies that there exist function p =
p(y) and q = q(y) such that

A(x, y) =
q(y)− ξ(x)

η(x)

B(x, y) =
p(y)

η(x)
.

It follows that the length element can be written as

ds2 = y2

(
dt+

q(y)− ξ(x)

η(x)
dx

)2

+
p2(y)

η2(x)
dx2 + Ω2(y)dy2.

So we can reparametrize the x-coordinate such that η = 1 and then the
metric has the length element as in the statement. �

Proof of Theorem A.1. By Theorem 2.1, it suffices to show that (M, g) can-
not have positive sectional curvature. Suppose otherwise, then M has the
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length element in (A.1) on an open dense subset by Lemma A.2. Since
DXi

f = 0 (i = 1, 2) we have the potential function f = f(y). Denote fij =
∇i∇jf the hessian of f and then the non-vanishing components of fij are
given by

f11 =
y

Ω2
f ′(y)

f12 = f21 =
yf ′(y)

2Ω2

(
2q − 2ξ + yq′(y)

)
f22 =

f ′(y)

Ω2

[
yξ2 −

(
y2q′(y) + 2yq

)
ξ + yq2 + y2qq′(y) + pp′(y)

]
f33 = f ′′(y)− f ′(y)Ω′(y)

Ω
.

It follows that

f11f22 − f2
12 = −f

′(y)2

4Ω4

(
y4q′(y)2 − 4ypp′(y)

)
.

The sectional curvature K12 of the plane spanned by {∂t, ∂x} is given by

K12 =
R1212

|∂t ∧ ∂x|2
=

1

4Ω2 |∂t ∧ ∂x|2
(
y4q′(y)2 − 4ypp′(y)

)
.

Since ∇2f = Ric and M has positive Ricci curvature, the hessian ∇2f is
positive definite and thus f11f22 − f2

12 > 0. However, this contradicts the
assumption that K12 > 0. �
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variable, J. Math. Pures Appl., 2 (1837), 16–35.

[PW] P. Petersen and W. Wylie, On gradient Ricci solitons with symmetry,
Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085–2092.



i
i

“2-He” — 2018/7/11 — 23:14 — page 529 — #25 i
i

i
i

i
i

Rigidity of gradient steady Ricci soliton in dimension three 529
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