
i
i

“1-Kleene” — 2018/7/5 — 18:15 — page 461 — #1 i
i

i
i

i
i

Communications in
Analysis and Geometry
Volume 26, Number 3, 461–504, 2018

Logarithmically spiraling helicoids

Christine Breiner and Stephen J. Kleene

We construct helicoid-like embedded minimal disks with axes along
self-similar curves modeled on logarithmic spirals using PDE meth-
ods. The surfaces have a self-similarity inherited from the curves
and the nature of the construction. Moreover, inside of a “logarith-
mic cone”, the surfaces are embedded.

1. Introduction

In this article we construct helicoid-like embedded minimal disks with axes
modeled on a class of embedded self-similar curves called logarithmic spirals.
Logarithmic spirals are solutions γ(z) to the initial value problem

κ(z) = κ0e
−ξz, τ(z) = τ0e

−ξz

where τ and κ denote the torsion and curvature of the unknown curve,
respectively, and where the constant ξ controls the rate of exponential prop-
agation. We emphasize that such surfaces can be constructed using the an-
alytic methods of Meeks-Weber [13]. The purpose of our article is to apply
the PDE based methods pioneered by Kapouleas in his work on singular
perturbation to the construction of minimal laminations on curves in R3.

Our main theorem can be roughly stated as:

Theorem 1.1. For each δ > 0 sufficiently small, there exist minimal disks
Sδ such that

1) Up to rigid motion, the surfaces Sδ exhibit a discrete dilation invari-
ance (see (1.7)).
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462 C. Breiner and S. J. Kleene

Figure 1: Two examples of logarithmic spirals with the boundaries of the
corresponding surfaces Sδ.

2) The surfaces Sδ are embedded inside an open set T̂ containing γ(z)
independent of δ. As δ → 0 the surfaces Sδ converge smoothly away
from γ(z) to a foliation of T̂ by planes orthogonal to γ(z).

This result will follow from a more precise statement of the theorem which
we record below.

A motivation for applying PDE methods in this context is the following
more general question: Given a singly periodic minimal surface Σ, a smooth
curve γ, and a non-negative function λ : γ → R+, can one obtain a minimal
surface in a tubular neighborhood of γ by bending Σ along γ and scaling
by λ? If so, what are the restrictions on the scale function λ? This and
related problems arise in several contexts, including gluing constructions for
minimal surfaces and the theory of Colding-Minicozzi type laminations, and
in certain special cases is well understood. One of the simplest non-trivial
cases is that of a constant scale function λ ≡ c and a periodic curve γ, which
arises naturally in highly symmetric gluing constructions such as [9], where
Kapouleas has developed the theory extensively. In this case, the candidate
surface can be constructed with the same periodicity as the underlying curve
and the problem descends to a compact quotient of the periodic minimal
surface Σ which simplifies the analysis considerably.

There are several constructions in the literature which are not com-
pact in any quotient. Meeks and Weber in [13] use the Björling theorem to
construct helicoidal minimal surfaces in tubes along embedded C1,1 curves
where λ scales like the curvature of the curve. In [6], Hoffman and White em-
ploy variational techniques to construct minimal laminations in tubes with
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Logarithmically spiraling helicoids 463

singularities on prescribed compact subsets of curves. The second author,
in [12], uses the Weierstrass representation to prove the same result as in
[6]. For additional constructions in the same spirit, see also [3, 4, 11]. All of
the above constructions fall short of answering the general question posed
above.

In this paper, we consider only curves γ that satisfy a self-similarity
condition which allows us to descend to compact quotients. Therefore, the
PDE methods employed in this article do not shed light on the more general
question. However, our expectation is that PDE methods may have the
potential to do so, and this is our primary motivation for using them here.

1.1. Precise statement of the main theorem

We perform the gluing construction on initial surfaces that are self-similar
bendings and rescaling of the helicoid. The axes of the surfaces are spiraling
curves that lie in a three parameter family of logarithmic spirals. We give a
complete description of this family, denoted by L, in Subsection 3.1 and note
here that the parameters for the space L are given by (κ0, τ0, ξ) ∈ R+ × R2.
Because we are interested in a lamination, the curves will also depend upon
δ > 0 where δ is the parameter used to describe the family Sδ. Every γ ∈
L has a self-similar property that implies that curvature and torsion are
completely determined by the equations κ(z) = δκ0e

−δξz, τ(z) = δτ0e
−δξz.

Notice that z ∈ R is the parameter for the curve γ.
It will be convenient to denote the matrix of transformation of the Frenet

frame {T,N,B} for the unscaled (δ = 1) curves by T (see (3.3)) and to
denote its norm by

(1.1) |T| :=
√
κ2

0 + τ2
0 .

Note that for δ 6= 1, the matrix of transformation simply has the form δT.
The global isometry group of the curve γ is generated by the action

eδξθ̃Rδ|T|θ̃ where Rt corresponds to a rotation in the xy-plane by angle t.
The isometry of γ thus implies a periodicity of the form

(1.2) γ(θ + 2π/(δ|T|)) = e2πξ/|T|γ(θ) or γ(θ + 2π) = e2πδξR2πδ|T|γ(θ).

We use γ ∈ L to define a map M : R3 → R3 given by

M(x, y, z) := γ(z) + eδξz {xN(z) + yB(z)}(1.3)
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464 C. Breiner and S. J. Kleene

where here N(z), B(z) are the normal and binormal vectors along γ. We then
construct helicoid-like minimal surfaces as graphs over a surface obtained
by composing M with the conformal parameterization of the helicoid

F (s, θ) = sinh(s) sin(θ)ex + sinh(s) cos(θ)ey + θez.(1.4)

When δ > 0 is sufficiently small, the map M is a diffeomorphism of a tube
along the z-axis, with radius comparable to 1/δ, onto its image. Proper-
ties of γ and the diffeomorphism imply that as κ0 → 0, τ0 → 0, δ → 0, the
embedded component of M ◦ F about γ converges to a rigid motion of the
helicoid.

The geometry of the immersion M ◦ F possesses a periodicity inherited
from properties of the curve γ and by (1.2),

(1.5) M ◦ F (s, θ + 2π) = e2πδξR2πδ|T|M ◦ F (s, θ).

Since we solve the problem on periodic function spaces, the normal graphs
over surfaces satisfying the previous property will exhibit the symmetry
we denoted discrete dilation invariance in Theorem 1.1. A more precise
statement of the theorem is the following:

Theorem 1.2. Given κ0, τ0, ξ ∈ R with κ0 > 0, there exist ε1 > 0 and δ0 >
0 so that: For any 0 < δ < δ0/|ξ| and ` > 16 satisfying δ(1 + |T|+ |ξ|)` ≤
ε1, there exists a curve γ ∈ L and a periodic function u(s, θ) : Λ ⊂ R2 → R
where Λ := {(s, θ) : cosh(s) ≤ `/4} such that for M given by γ ∈ L and

G(s, θ) := M ◦ F (s, θ),(1.6)

the normal graph over G by w(s, θ) := eδξθu(s, θ) is an immersed minimal
disk with boundary.

The surface Gw satisfies a discrete dilation invariance of the form

(1.7) Gw(s, θ + 2π) = e2πδξR2πδ|T|Gw(s, θ).

Moreover, the surface is embedded if

` ≤ 1

δξ

(
eπξ/|T| − 1

eπξ/|T| + 1

)√
τ2

0 + ξ2

|T|2 + ξ2
.
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1.2. Structure of the article

In Section 2, we introduce various preliminary notions that will be needed
throughout the article. In Subsection 2.1, we introduce notation for norms
and function spaces, and in Subsection 2.2 we formalize the process of ob-
taining weighted Ck,α estimate for a broad class of homogeneous quantities.
This formalization is extremely useful and helps streamline the presentation
since almost every geometric quantity we estimate–the mean curvature, e.g.–
is such a quantity. The discussion generalizes a similar one in [2].

In Section 3 we estimate local perturbations of geometric quantities onG,
where here we heavily exploit the group action on γ. We completely describe
the three parameter family of curves L by giving an explicit parameterization
for each curve in Subsection 3.1. The curves are determined by an initial
curvature κ0 > 0, torsion τ0, and rate of exponential parameterization ξ.
We demonstrate the self-similarity properties for these curves by explicit
computation. In the case of vanishing torsion, the traces of these curves
constitute the family of logarithmic spirals, and in accordance with this
terminology we refer to the whole family as logarithmic spirals. The maps
M in (1.3) are locally, after modding out by dilations and rigid motions,
the identity map plus an exponentially growing perturbation term. In this
normalization the perturbation term is periodic, which allows us to consider
the problem on one fundamental domain of the helicoid. Roughly speaking,
if u is 2π periodic in θ and H[u] is the mean curvature of a normal graph over
G by the function u, then the function Q[u] := eδξθ cosh2(s)H[eδξθu] is also
a 2π periodic function in θ. In this way, the analysis descends to cylinders
of finite (but not uniformly bounded) length.

We solve the linear problem in Section 4, where the main result appears
in Proposition 4.16. This result proves the invertibility of the stability oper-
ator LF on flat cylinders, Λ, of length arccosh (`), for appropriately modified
inhomogeneous terms. The strategy is motivated by the work of Kapouleas
in various gluing problems [7–9]. A novel feature of this work is the de-
composition of the inhomogeneous term E into a θ-independent function
and a function E̊, which has “zero average on meridian circles” (see Defini-
tion 4.6). The θ-independent function can be inverted via direct integration,
so the main work is to invert E̊. We first prove, in Proposition 4.5, that the
operator has a bounded inverse in exponentially weighted Hölder spaces X k
supported on Λ, as long as E̊ is “orthogonal” to a three dimensional kernel
which is spanned by the translational Killing fields. The weighting allows for
a rate of exponential growth of power 3/4 though, in fact, any growth rate
less than 1 also works. Here orthogonal means L2-orthogonal with respect
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to the pull-back of F to the sphere under the Gauss map. The Gauss map
for minimal surfaces is conformal with conformal factor |A|

2

2 and in the case
of the helicoid descends to the quotient as a conformal diffeomorphism onto
the sphere minus the north and south pole (corresponding to the asymp-
totic normal along both ends of the helicoid). In this way, the study of the
stability operator LF on the helicoid in θ-periodic function spaces can be
understood as the study of ∆S2 + 2 on the sphere.

To modify E̊, we define functions ux and uy, which we can control ge-
ometrically, and whose graphs over F can be used to prescribe the kernel
content of the mean curvature. In this way, we orthogonalize the error terms
for which we are solving and are able to apply Proposition 4.5 to the gen-
eral setting. In articles by Kapouleas and his many coauthors (see [1, 5, 10]
among others), the functions LFux,LFuy are referred to as the “substi-
tute kernel”. Notice that while the space of translational Killing fields is
three dimensional, the space of modifications is only two dimensional. The
θ-independence of the third translation function and the averaging prop-
erty of E̊ immediately guarantee the projection of E̊ in this direction is
always zero. The functions ux, uy grow exponentially at a rate proportional
to cosh (s), which is faster than the allowable growth rate in the space X k
(cosh3/4(s)), so that a bounded inverse does not extend to the full Hölder
space X k.

In Section 5, we define a map from an appropriate Banach space and
show the estimates are sufficient to invoke Schauder’s fixed point theorem.
Every point in the Banach space corresponds to a triple (v, bx, by) where
v ∈ X 2 and bx, by ∈ R. For a fixed point, setting f = eδξθ (v + bxux + byuy),
in Section 6 we demonstrate that Gf is an embedded minimal disk. We
define the Banach space so that

|bx|+ |by| ≤ ζδ|T|`1/4, v ≈ ζδ|T|`1/4 cosh3/4(s)

where ζ is a fixed constant which we must choose sufficiently large. Since
|s| ≤ arccosh (`/4) on Λ, v is then bounded by a constant uniformly propor-
tional to ζδ|T|`, which we can keep arbitrarily small by taking δ small. As
ux, uy grow exponentially, the estimates for these functions are of a weaker
form:

sup
Λ
|bxux| ≈ ζδ|T|`1/4 cosh(s) ≤ ζδ|T|`5/4.

This bound and the previous give some indication of the constraints that fix
an upper bound δ.
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With these estimates in hand, we use properties of the map M and the
helicoid embedding F to prove embeddedness in Section 6. We first prove
that the map M in (1.3) is a diffeomorphism from a tubular neighborhood
of the z axis, with radius proportional to δ−1, onto its image, which we call a
logarithmic cone. The symmetry recorded in (1.5) gives an indication of the
symmetry possessed by these logarithmic cones, which is inherited from the
curves γ. We next prove that graphs over F by (v + bxux + byuy) νF + x are
small on Λ, if the norms on v, bx, by are sufficiently small and x has small C1

norm. The smallness depends only on properties of the helicoid. We then use
properties of M to prove that Gf can be locally described as such a graph
over F . The diffeomorphism property for M then implies embeddedness.

2. Preliminaries

2.1. Notation and conventions

Throughout this paper we make extensive use of cut-off functions, and we
adopt the following notation: Let ψ0 : R→ [0, 1] be a smooth function such
that

1) ψ0 is non-decreasing

2) ψ0 ≡ 1 on [1,∞) and ψ0 ≡ 0 on (−∞,−1]

3) ψ0 − 1/2 is an odd function.

For a, b ∈ R with a 6= b, let ψ[a, b] : R→ [0, 1] be defined by ψ[a, b] = ψ0 ◦
La,b where La,b : R→ R is a linear function with L(a) = −3, L(b) = 3. Then
ψ[a, b] has the following properties:

1) ψ[a, b] is weakly monotone.

2) ψ[a, b] = 1 on a neighborhood of b and ψ[a, b] = 0 on a neighborhood
of a.

3) ψ[a, b] + ψ[b, a] = 1 on R.

Definition 2.1. Given a function u ∈ Cj,α(D), where D ⊂ Rm, the (j, α)
localized Hölder norm is given by

‖u‖j,α(p) := ‖u : Cj,α(D ∩B1(p))‖.

We let Cj,αloc (D) denote the space of functions for which ‖ − ‖j,α is pointwise
finite.
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Definition 2.2. Given a positive function f : D → R, we let the space
Cj,α(D, f) be the space of functions for which the weighted norm ‖− :
Cj,α(D, f)‖ is finite, where we take

‖u : Cj,α(D, f)‖ := sup
p∈D

f(p)−1‖u‖j,α(p)

Definition 2.3. Let X and Y be two Banach spaces with norms ‖− : X‖
and ‖− : Y‖, respectively. Then X ∩ Y is naturally a Banach space with
norm ‖− : X ∩ Y‖ given by

‖f : X ∩ Y‖ = ‖f : X‖+ ‖f : Y‖.

Let X be a Banach space with norm ‖− : X‖ and suppose S ⊂ X . For
convenience, throughout the paper we will sometimes write ‖− : S‖, where
for any f ∈ S we simply let

‖f : S‖ := ‖f : X‖.

2.2. Estimating homogeneous quantitites

Let E be the Euclidean space E := E(1) × E(2) = R3×2 × R3×4. We denote
points of E by ∇ = (∇,∇2), where

∇ = (∇1,∇2), ∇2 = (∇2
11,∇2

22,∇2
12,∇2

21).

We then consider functions Φ(∇) on E with the property

Φ(c∇) = cdΦ(∇)

for real numbers c and d. We call such a function a homogeneous function of
degree d. It is straightforward to verify that a homogeneous degree d function
has the property that its jth derivative D(j)Φ is homogeneous degree d− j.

Remark 2.4. We will assume throughout this section that all functions
Φ : E → R refer to smooth functions which are homogeneous of degree d.
We also presume such Φ are uniformly bounded in any Ck on compact
subsets of the space

E0 := {∇ ∈ E : a(∇) 6= 0}.
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Notice E is just a Euclidean space so for any V ∈ E, we make the
identification TVE = E. We extend this for each k ∈ Z+ and observe that
D(k)Φ(V ) : Ek → R. For clarity we provide the following definition.

Definition 2.5. Let k ∈ Z+, V,W1, . . . ,Wk ∈ E. Then

D(k)Φ
∣∣∣
V

(W1 ⊗ · · · ⊗Wk) := D(k)Φ(V )(W1 ⊗ · · · ⊗Wk).

For brevity, we denote the k-th tensor product of W with itself by

⊗(k)W := W ⊗ · · · ⊗W.

Definition 2.6. Given an immersion φ : D ⊂ R2 → R3, we set ∇[φ] :=
(∇φ,∇2φ). A homogeneous quantity of degree d on φ is then a function
of the form Φ[φ] := Φ(∇[φ]) for some homogeneous function Φ on E.

Examples of such functions are the mean curvature, unit normal, compo-
nents of the metric and its dual, the Christoffel symbols and the coefficients
of the Laplace operator for φ in the domain D.

We want to estimate the linear and higher order changes of homogenous
quantities along φ due to addition of small vector fields. To do this concisely,
we refer to a map ∇(s, θ) : D ⊂ R2 → E as an immersion if the quantity

a(∇) = a(∇) := 2
√

det∇T∇/|∇|2(2.1)

is everywhere non-zero, and otherwise we refer to it simply as a vector field.

Lemma 2.7. For a map ∇ : D → E, |a(∇)| ≤ 1 with equality if and only
if |∇1| = |∇2| and ∇1 · ∇2 = 0. In particular, a(∇φ) = 1 if and only if φ is
a conformal immersion.

Proof. Since a is homogeneous degree 0 it suffices to consider the case that
|∇1| = 1, |∇2| := r for r ∈ [0, 1]. We can then write

a2(∇) = 4
|∇1|2|∇2|2 − (∇1 · ∇2)2

(|∇1|2 + |∇2|2)2

= 4
r2 − cos2(θ)r2

(1 + r2)2
= 4(1− cos2(θ))

r2

(1 + r2)2

For each θ, the right hand side achieves a unique maximum at r = 1 with
value (1− cos2(θ)), which gives the claim. �
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Definition 2.8. Given an immersion ∇ and a vector field E , we set

R
(k)
Φ,E(∇) :=

∫ 1

0

(1− σ)k

k!
DΦ(k+1)

∣∣∣
∇(σ)

(⊗(k+1)E)dσ(2.2)

where ⊗(k)E denotes the k-fold tensor product of E with itself and where
∇(σ) := ∇+ σE .

When ∇ and E are of the form ∇ = ∇φ and E = ∇V we write

R
(k)
Φ,V (φ) := R

(k)
Φ,E(∇).

Note that RΦ,E(∇) is simply the order k Taylor remainder so that:

Proposition 2.9. We have

Φ(∇+ E)− Φ(∇)− DΦ|∇ (E)− · · · − 1

k!
D(k)Φ

∣∣∣
∇

(
⊗(k)E

)
(2.3)

= R
(k)
Φ,E(∇)

Proof. Set f(σ) := Φ(∇(σ)). Recall the integral form of the Taylor remainder
theorem implies

f(1)− f(0)− · · · − 1

k!
f (k)(0) =

∫ 1

0

(1− σ)k

k!
f (k+1)(σ)dσ.

The claim then follows by computing explicitly the derivatives of f in terms
of Φ. �

Since we are interested in immersions, we provide a quantitative statement
that well controlled variations of immersions remain immersions.

Proposition 2.10. Let ∇ and E be points in E, with ∇ ∈ E0, satisfying

|E| < ε|a(∇)||∇|.

Then for ε sufficiently small, independent of ∇ and E,

|a(∇+ E)− a(∇)| < C|E|/|∇|.
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Proof. The definition of a implies there exists C > 0 independent of ∇ such
that

Ca(∇) ≤ |∇1|
|∇2|

≤ Ca−1(∇).

This then gives

(1 + Ca2)|∇2|2 ≤ |∇|2 ≤ (1 + Ca−2)|∇2|2

(1 + Ca2)|∇1|2 ≤ |∇|2 ≤ (1 + Ca−2)|∇1|2,

so that for 0 < ε < (4a2 + 4C)−1/2,

|E1|2 < ε2a2(1 + Ca−2)|∇1|2 <
1

4
|∇1|2

|E2|2 <
1

4
|∇2|2.

Set ∇(σ) := ∇+ σE . Then

1

2
|∇2| ≤ |∇2(σ)| ≤ 3

2
|∇2|

1

2
|∇1| ≤ |∇1(σ)| ≤ 3

2
|∇1|.

It is then straightforward to check that |∇| Da|∇(σ) is uniformly bounded
for σ ∈ [0, 1], so that using (2.2), (2.3)

|a(∇+ E)− a(∇)| =
∣∣∣R(0)

a,E(∇)
∣∣∣ < C|E|/|∇|.

�

Using the previous estimates and the scaling properties of homogeneous
functions, we record here an estimate we use with great frequency. In par-
ticular, this estimate allows us to control appropriately weighted Hölder
estimates on the remainder terms of a homogeneous function by Hölder es-
timates on the variation field E .

Proposition 2.11. There exists ε̃ > 0 such that if ∇ : D → E is an im-
mersion and E : D → E is a vector field satisfying

‖E : Cj,α(D, a(∇)|∇|)‖ ≤ C(j, α)ε̃, and

`j,α(∇) := ‖∇ : Cj,α(D, |∇|)‖ <∞,
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then∥∥∥R(k)
Φ,E(∇) : Cj,α(D, |∇|d)

∥∥∥ ≤ C(Φ, `j,α, a, k)
∥∥E : Cj,α(D, |∇|)

∥∥k+1
.

Proof. Since D(k+1)Φ is homogeneous degree d− (k + 1) we can write

R
(k)
Φ,E(∇) = |∇|d−(k+1)

∫ 1

0

(1− σ)k

k!
DΦ(k+1)

∣∣∣
∇(σ)/|∇|

(⊗(k+1)E)dσ,

where as before we have set ∇(σ) := ∇+ σE . We then have∥∥∥R(k)
Φ,E(∇)

∥∥∥
j,α
≤ C ‖|∇|‖d−(k+1)

j,α

∥∥∥∥D(k+1)Φ
∣∣∣
∇(σ)/|∇|

∥∥∥∥
j,α

‖E‖k+1
j,α .(2.4)

With C(j, α)ε̃ ≤ ε from Proposition 2.10, the hypotheses imply ∇(σ)/|∇|
remains in a fixed compact subset of E0 and∥∥∥∥D(k+1)Φ

∣∣∣
∇(σ)/|∇|

∥∥∥∥
j,α

≤ C(`j,α, a, k).

Additionally,

‖|∇|‖j,α /|∇|(s, θ) ≤ C`j,α.

Dividing both sides of (2.4) by |∇|d then gives the claim. �

3. Geometric quantities on G

In this section we record estimates of the relevant geometric data for the
immersion G. In the first subsection, we give an explicit parameteriza-
tion for each curve in L. To get good estimates, throughout this section
we presume that for a given κ0, τ0, ξ, we choose 0 < δ < δ0/|ξ| such that
δ(1 + |T|+ |ξ|) < ε̃. We then define G by using any curve γ ∈ L defined by
the parameterization (3.1) for γ[δκ0, δτ0, δξ].

3.1. A family of logarithmic spirals

We give an explicit parameterization for any γ ∈ L. For any triple (κ0, τ0, ξ) ∈
R+ × R2 we define the following two quantities

b(κ0, τ0, ξ) :=
τ0

κ0

√
κ2

0 + τ2
0 + ξ2; c(κ0, τ0, ξ) :=

√
κ2

0 + τ2
0 .
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Given constants κ0>0, ξ, τ0∈R, let γ[κ0, τ0, ξ](z) : R→R3 be a smooth
curve determined by

(3.1) γ[κ0, τ0, ξ](t) =
eξt√

ξ2 + b2 + c2

(
er(c t) +

b

ξ
ez

)

where we have abbreviated er(t) := (cos(t), sin(t), 0) and ez = (0, 0, 1).
We demonstrate that such a curve satisfies the properties that

(1) ds = eξtdt where s is the arclength parameter.

(2) curvature κ(t) and torsion τ(t) are described by

κ(t) = e−ξtκ0, τ(t) = e−ξtτ0.

We first calculate derivatives and note that

γ′(t) =
eξt√

ξ2 + b2 + c2

(
ξer(c t) + bez + ce⊥r (c t)

)
(3.2)

where of course e⊥r (t) := (− sin t, cos t, 0).
The arclength calculation follows immediately from (3.2) and thus the

unit tangent has the form

T =
γ′

|γ′|
=
ξer(c t) + bez + ce⊥r (c t)√

ξ2 + b2 + c2
.

It follows that

dT

ds
= e−ξt

ξce⊥r (c t)− c2er(c t)√
ξ2 + b2 + c2

and

κ =

∣∣∣∣dTds
∣∣∣∣ = e−ξt

c
√
ξ2 + c2√

ξ2 + b2 + c2
.

Since one can directly verify that c
√
ξ2+c2√

ξ2+b2+c2
=κ0, we have demonstrated the

appropriate formula for κ.
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To find τ , note first that

N =
T ′

|T ′|
=
ξce⊥r (c t)− c2er(c t)

c
√
ξ2 + c2

and thus

B = T ∧N =
−ξbcer(c t)− bc2e⊥r (c t) + (ξ2c+ c3)ez

c
√
ξ2 + c2

√
ξ2 + b2 + c2

.

Since

dB

dt
=
−ξbc2e⊥r (c t) + bc3er

c
√
ξ2 + c2

√
ξ2 + b2 + c2

we observe that

dB

ds
= e−ξt

−ξbc2e⊥r (c t) + bc3er

c
√
ξ2 + c2

√
ξ2 + b2 + c2

= −e−ξt bc√
ξ2 + b2 + c2

N.

The result for τ now follows by observing that τ0 = bc√
ξ2+b2+c2

.

We point out the Frenet-Serret equations may be written

d

dt

 T
N
B

 =

 0 κ0 0
−κ0 0 τ0

0 −τ0 0

 T
N
B


and we let

(3.3) T :=

 0 κ0 0
−κ0 0 τ0

0 −τ0 0

 .

3.2. The normalized derivatives ∇̃G(k)

In order to conveniently estimate geometric quantities on G such as the
mean curvature, we want to normalize G and its derivatives in a way that
controls for rotations and dilations, whose effect on quantities such as the
mean curvature and unit normal are easily extracted.
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Definition 3.1. We let R(θ) be the rotation given below:

R(θ) := N(θ)⊗ e∗x +B(θ)⊗ e∗y + T (θ)⊗ e∗z

where {e∗x, e∗y, e∗z} is the dual basis in R3 to the standard basis. We then
define the normalized derivatives of G as:

∇̃(k)G(s, θ) := e−δξθR(θ)∇(k)G(s, θ),

and we set

∇̃[G] :=
(
∇̃G, ∇̃2G

)
.

Proposition 3.2. The following statements hold:

1) The normalized derivatives ∇̃G(s, θ) are 2π-periodic in θ.

2) Letting ν̃G := ν(∇̃[G]),

νG = ν(∇G) = R−1(θ) (ν̃G) .

3) For HG := H(∇G),

HG = e−δξθH(∇̃[G]).

Proof. Item (1) follows directly from the definition of F in (1.4). Items (2)
and (3) follow from the fact that ν and H are homogeneous degree 0 and −1
quantities, respectively, and their behavior under rotations and dilations. �

3.3. Comparing immersions on spirals with straight lines

In [2], we considered immersions of the form:

G0δ(s, θ) =

(
eδθ sin(θ) sinh(s), eδθ cos(θ) sinh(s),

1

δ
eδθ
)
.(3.4)

Theorem 3.3 (Theorem 1 from [2]). There are constants ε0, δ0 > 0
sufficiently small so that for any 0 < δ < δ0, there is a function u0δ(s) :
[−ε0δ−1/4, ε0δ

−1/4]→ R such that:

1) The normal graph over G0δ by the function w0δ(s, θ) := eδξθu0δ(s) is
an embedded minimal surface with boundary.

2) u0δ(s) is an odd function.
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3) There is a constant C > 0 sufficiently large so that u0δ satisfies the
estimate

‖u0δ : Cj,α([0, ε0δ
−1/4], s2)‖ ≤ Cδ.

Notice that for any ξ 6= 0, we can apply this theorem to immersions G0 δξ

as long as 0 < δ|ξ| < δ0 and all domain bounds and estimates then have δ
replaced by δ|ξ|. Moreover, as ξ → 0, an appropriate translation of G0 δξ

converges to the helicoidal embedding by F . Thus, when ξ = 0, it will be
natural to replace estimates for G0 0 by estimates for F .

Throughout, we will take the liberty of suppressing the dependence of
these immersions and maps on δ, ξ from the notation and instead write

G0 := G0 δξ, u0 := u0 δξ, w0 := w0 δξ.

As a first approximation to our solution we wish to compare the geometry
of G with that of G0. To do this we normalize the derivatives of G0 by taking

(3.5) ∇̃G(k)
0 (s, θ) := e−δξθ∇G0(s, θ).

Lemma 3.4. For all k ∈ Z+ there exists C independent of k so that∣∣∣∇̃(k)G(s, θ)− ∇̃(k)G0(s, θ)
∣∣∣ < Cδ|T| cosh(s).

Proof. Notice first that δ|T| < 1. By definition,

R(θ)
∂k

∂sk
G =

∂k

∂sk
G0

so any differentiation only in s will vanish in the difference. Let er :=
sin θN + cos θB and e⊥r := cos θN − sin θB. Then

(G0)θ = eδξθR(θ)e3 + eδξθ sinh(s)R(θ)e⊥r + δξeδξθ sinh(s)R(θ)er

Gθ = eδξθe3 + eδξθ sinh(s)e⊥r + δξeδξθ sinh(s)er + δeδξθ sinh(s)Ter

and thus

e−δξθ (R(θ)Gθ − (G0)θ) = δ sinh(s)R(θ)(Ter).

This immediately proves the estimates for k = 1. The higher order estimates
follow inductively since 0 < δ|T| < 1. �
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From Lemma 3.4, we can obtain a good estimate for the mean curvature of
Gw0

, the normal graph over G by the function w0. Since (G0)w0
is a minimal

surface, we expect that the failure of Gw0
to be minimal is controlled by

the geometry of the modeling curve for G and the scale δ. We first need to
compare the unit normal field along along the immersions.

To demonstrate that we may use Proposition 2.11 to estimate geometric
quantities of small graphs over G we record the following lemma.

Lemma 3.5. The following statements hold:

(1) There exists C > 0 independent of G such that

C−1 cosh(s) ≤ |∇̃[G]| ≤ C cosh(s)

(2) Recalling the definition of `j,α from Proposition 2.11,

`j,α(∇̃[G]) ≤ C(j, α)

(3) There exists C > 0 independent of G such that

1− [a(∇̃[G])] ≤ Cδ (|T|+ |ξ|)

Proof. Items (1) and (2) are direct consequences of Lemma 3.4 and the
corresponding estimates for F . To prove item (3), first note that

|∇̃(k)G0 −∇(k)F | ≤ Cδ|ξ| cosh(s).

The result now follows from the triangle inequality, Lemma 3.4, Proposi-
tion 2.10 and the fact that a[F ] = 1. �

Lemma 3.6. For any j ∈ Z+

∥∥ν̃G(s, θ)− νG0
(s, θ) : Cj,α(R2)

∥∥ < C(j, α)|T|δ.

Proof. First note that δ(1 + |T|+ ξ) < ε̃ of Proposition 2.11. Thus for ν, we
can apply Proposition 2.11 with k = 0 and d = 0. The result then follows by
Lemma 3.4 and Proposition 2.11 with ∇ = ∇̃G and E = ∇̃G− ∇̃G0. �

We will exploit the periodicity of the helicoid and consider graphs over
G = M ◦ F that are periodic in θ. To that end, we define the appropriate
quotient space of R2.
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Definition 3.7. Let Ω be the quotient of R2 by the translation (s, θ) 7→
(s, θ + 2π).

Given an immersion G, we look for functions u : Ω→ R such that G+
uνG is minimal. Because of the homogeneity of H and its invariance under
rotations, we consider variation fields of the following form.

Definition 3.8. Given a function u : Ω→ R, we set

Eδ[u] := e−δξθR(θ)∇(eδξθuνG).(3.6)

The self-similarity of γ allows us to consider the mean curvature up to
the natural localized rotation and dilation of G by e−δξθR(θ). To that end,
we define the map Q.

Definition 3.9. The map Q[u] : C2(D)→ C0(D) is given as follows:

Q[u] := eδξθ cosh2(s)H(∇[G] +∇[eδξθ(u+ u0)νG])(3.7)

= cosh2(s)H(∇̃[G] + Eδ[u+ u0]).

An important consequence of the definition is that Q preserves the pe-
riodicity property.

Lemma 3.10. Q maps the space C2(Ω) into C0(Ω).

Proof. Since we have already verified in Proposition 3.2, item (1), that ∇̃G
is periodic, the preservation of periodicity follows once we verify that Eδ(u)
maps periodic functions to periodic functions. Item (1) of Proposition 3.2
also implies ν̃G is 2π periodic in θ and thus, all derivatives of ν̃G are 2π
periodic in θ. By direct calculation, it is enough to show that R(θ)∂ανG is
2π periodic for α = s, θ, ss, sθ, θθ.

First, note that the vector R(θ)ei is independent of θ. Since T is fixed,
and

(3.8) R′(θ)ei = (R(θ)ei)
′ −R(θ)δTei = −R(θ)δTei,

we note that R′(θ)ei is independent of θ. A similar calculation with second
derivatives immediately implies R′′(θ)ei is also θ independent. Since we will
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need an estimate on |R′′(θ)| later, we record here

0 = (R(θ)ei)
′′ = R′′(θ)ei + 2R′(θ)e′i +R(θ)e′′i(3.9)

=
(
R′′(θ) + 2R′(θ)δT +R(θ)δ2T2

)
ei

Now, suppose νG =
∑

i αiei. Then since ν̃G = R(θ)νG, the αi are all 2π
periodic in θ. Moreover, one quickly calculates

(ν̃G)s −R(θ) (νG)s = (ν̃G)ss −R(θ) (νG)ss = 0

(ν̃G)θ −R(θ) (νG)θ =
∑
i

αiR
′(θ)ei

(ν̃G)sθ −R(θ) (νG)sθ =
∑
i

(αi)sR
′(θ)ei

(ν̃G)θθ −R(θ) (νG)θθ =
∑
i

(
2(αi)θR

′(θ)ei + 2αiR
′(θ)δTei + αiR

′′(θ)δTei
)
.

Since all terms on the right are 2π periodic in θ and all derivatives of ν̃G are
2π periodic in θ, Q preserves periodicity. �

We use the estimates of Lemmas 3.5, 3.6 , and 3.10 to determine es-
timates for the mean curvature of Gw0

which by definition correspond to
estimates on Q[0]. This bound will appear again in the fixed point argument
of Section 5.

Proposition 3.11. For Ω∗ := Ω ∩ {s : |s| ≤ ε(δξ)−1/4},∥∥Q[0] : Cj,α(Ω∗, cosh(s))
∥∥ < C(j, α)δ|T|.(3.10)

Proof. Define E0δ[u] := e−δξθ∇(eδξθuνG0
). To prove the norm bound, we first

write

Q[0] = cosh2(s)H(∇̃[G] + Eδ[u0])

= cosh2(s)
(
H(∇̃[G] + Eδ[u0])−H(∇̃G0 + E0δ[u0])

)
= − cosh2(s)R

(0)
H,∇(E),

where ∇ := ∇̃[G] + Eδ[u0] and E = ∇̃[G0 −G] + (E0δ[u0]− Eδ[u0]) := T1 +
T2. Recall that T1 has been estimated in Lemma 3.4:

‖T1‖j,α ≤ C(j, α)δ|T| cosh(s)(3.11)
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so we focus on the term

T2 := E0δ[u0]− Eδ[u0] = e−δξθ∇(eδξθu0νG0
)− e−δξθR(θ)∇(eδξθu0νG).

By direct computation, we determine the components of T2. Projected
onto E(1),(

(u0)s (R(θ)νG − νG0
) +u0 (R(θ)(νG)s − (νG0

)s) ,

δξu0 (R(θ)νG − νG0
) + u0 (R(θ)(νG)θ − (νG0

)θ)
)

and onto E(2)(
(u0)ss (R(θ)νG − νG0

) + 2(u0)s (R(θ)(νG)s − (νG0
)s)

+ u0 (R(θ)(νG)ss − (νG0
)ss) ,

δξ(u0)s (R(θ)νG − νG0
) + δξu0 (R(θ)(νG)s − (νG0

)s)

+ (u0)s (R(θ)(νG)θ − (νG0
)θ) + u0 (R(θ)(νG)sθ − (νG0

)sθ) ,

(δξ)2u0 (R(θ)νG − νG0
) + 2δξu0 (R(θ)(νG)θ − (νG0

)θ)

+ u0 (R(θ)(νG)θθ − (νG0
)θθ)

)
.

From Lemma 3.6, since ν̃G = R(θ)νG

‖R(θ)νG − νG0
: C0‖ ≤ Cδ|T|.

For the projection onto E(1), we use Lemma 3.6, the triangle inequality,
and (3.8) to get, for i ∈ {s, θ},

(3.12) |R(θ)(νG)i − (νG0
)i| ≤ Cδ|T|.

For the projection onto E(2), we observe first that for i, j ∈ {s, θ},

(ν̃G)ij −R(θ) (νG)ij = (R(θ))ij νG + (R(θ))i (νG)j + (R(θ))j (νG)i .

Appealing to Lemma 3.6, the triangle inequality, (3.8) again coupled
with (3.9), we observe that, since δ|T| < 1,

(3.13) |R(θ)(νG)ij − (νG0
)ij | ≤ Cδ|T|.

Combining (3.11), (3.12) and (3.13), and noting further that 0≤δ|ξ|<1,

‖E‖j,α ≤ C(j, α)δ|T| (cosh(s) + ‖u0‖j+2,α)

≤ C(j, α)δ|T|
(
cosh(s) + sj+2

)
.
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Using the estimates from Lemma 3.5, we apply Proposition 2.11 with H = Φ
and d = −1. �

4. The linear problem

The goal of this section is to prove Proposition 4.16 which shows that, mod-
ulo a two dimensional space of exponentially growing functions, the linear
operator cosh2(s)LF is invertible in appropriately weighted Hölder spaces.
These weighted spaces will be defined on subsets of Ω.

Definition 4.1. Set

Λ := Ω ∩ {|s| ≤ arccosh (`)}(4.1)

where ` ∈ (2, cosh(ε0(δ|ξ|)−1/4)) is a constant to be determined and where ε0
is as in the statement of Theorem 3.3. The upper bound for ` is the maximum
scale on which the functions u0 of [2] are defined. The main theorem does not
allow such a generous upper bound for `, though ` should be considered as
a large constant. The weighted spaces on which we solve the linear problem
now take the following form.

Definition 4.2. Let X k, k=0, 2 be the space of functions f(s, θ) in C
k,3/4
loc (Λ)

such that

‖f : X k‖ := ‖f : Ck,3/4(Λ, cosh3/4(s))‖ <∞.(4.2)

Note that the spaces X k are Banach spaces with norm ‖− : X k‖. Our
main result will follow from the fact that linearized problem on the surface
F is invertible in the spaces X k, and the fact that we can treat the linearized
problem on G as a perturbation of the linearized problem on F .

For a locally class C2 immersion Φ(s, θ) : D → R3, we recall the stability
operator of the immersion:

LΦ := ∆Φ + |AΦ|2.(4.3)

Here ∆Φ and |AΦ|2 respectively denote the Laplace operator and the squared
norm of the second fundamental form of the immersion.

4.1. Obstructions to the linear problem

In the spirit of Kapouleas, we will solve the linear problem on F by modifying
an inhomogeneous E ∈ X 0 so that the modified function is L2 orthogonal to
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the obstructions to invertibility. We first record some relevant properties and
then discuss the obstructions. The modifying functions will be determined
and understood in Subsection

Let gF , νF and AF be the metric, the unit normal, and the second
fundamental for F , respectively. Then

gF (s, θ) = cosh2(s)(ds2 + dθ2)

νF (s, θ) = − cosh−1(s) cos(θ)ex + cosh−1(s) sin(θ)ey + tanh(s)ez(4.4)

AF (s, θ) = −2dsdθ

cosh2(s)LF = ∆Ω + 2 cosh−2(s).

Note that if u : Ω→ R then the periodicity of F and νF imply that u can
be extended to a graph over the full helicoid. Moreover, to understand the
behavior of LFu, it is enough to understand its behavior on a fundamental
domain of the helicoid. That is, we can consider the problem only on Ω
rather than on all of R2. In the same spirit, we can analyze the Gauss map
νF : F → S2 on Ω. On this subdomain, νF is a conformal diffeomorphism
with conformal factor |AF |2/2 onto the punctured sphere S2 \ {(0, 0,±1)}.

Definition 4.3. Let K be the space of bounded functions κ : Ω→ R such
that LFκ = 0. Then standard theory implies that K is spanned by the func-
tions

κx = cos(θ) cosh−1(s), κy = sin(θ) cosh−1(s), κz = tanh(s).

The functions κx, κy and κz are (up to sign) the x, y, and z components
of the unit normal for F . Indeed, if we lift κx, κy and κz to the sphere via
the Gauss map of F , then the lifts correspond respectively to the restriction
to S2 of the ambient coordinate functions x, y and z.

4.2. Inverting the stability operator in the spaces X k modulo K

We first demonstrate that we can invert the operator cosh2(s)LF over the
space of functions orthogonal to K.

Definition 4.4. Let

(X k)⊥ :=

{
f ∈ X k :

∫
Λ
fκ dµΩ = 0 for all κ ∈ K

}
.

We find it convenient to solve the linear problem for inhomogeneous E
with E|∂Λ = 0 as a few technical arguments are made easier. As a trade-off,



i
i

“1-Kleene” — 2018/7/5 — 18:15 — page 483 — #23 i
i

i
i

i
i

Logarithmically spiraling helicoids 483

we have to be a bit more careful in applying the linear theory to the fixed
point argument in Section 5.

Proposition 4.5. Let (X 0
0 )⊥ ⊂ (X 0)⊥ be the subspace of functions that

vanish on ∂Λ. Then there is a bounded linear map

R⊥F : (X 0
0 )⊥ → X 2

such that for E ∈ (X 0
0 )⊥,

cosh2(s)LFR⊥F [E] = E on Λ.

The proof of Proposition 4.5 follows in three steps which will take up
the entirety of this subsection. We first show that ∆Ω can be inverted over
the space of Hölder functions that satisfy a convenient averaging property.
In the second step, we show that there is a sufficiently large constant s0 so
that on Λ ∩ {s > s0} the operator cosh2(s)LF can be solved in the spaces
X k as a perturbation of ∆Ω. In this way, we reduce to the case that the
error term has large but fixed compact support. In the third step, we solve
for the error term by lifting the problem to the sphere using the Gauss map
of νF , where the problem reduces to an eigenvalue problem for the stability
operator on the sphere.

Step 1: Inverting over the space of inhomogeneous terms with
“zero average”.

Definition 4.6. Let

(4.5) C̊k,αloc (X) :=

{
E∈Ck,α(X) :

∫ π

−π
E(s, θ)dθ=0 for all (s, θ)∈X⊂Ω

}
.

We say that any function in the space (4.5) has zero average along merid-
ians. Given a positive weight function f , we then denote

C̊k,α(X, f) := Ck,α(X, f) ∩ C̊k,αloc (X).

We will prove the invertibility of ∆Ω over C̊0,α(Λ) by first considering
the invertibility of the local problem.

Lemma 4.7. Let A0 ⊂ Λ be the annulus

A0 := Ω ∩ {|s| ≤ 5/8}

and let C̊0,α
0 (A0) be the space of C̊0,α functions on Ω with support on A0.
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Given a compact set K containing A0 and k ≥ 0, there is a bounded
linear map

R̊0[−] : C̊0,α
0 (A0)→ C̊2,α(Ω) ∩ C̊k(Ω \K, cosh−1(s))

such that

∆ΩR̊0[E] = E.

Proof. Lemma 4.7 can be established several ways. We choose the following
approach. Let ΩL be the domain

ΩL := Ω ∩ {|s| ≤ L}.(4.6)

In other words ΩL is just the flat cylinder of length 2L centered at the
meridian {s = 0}. Standard elliptic theory gives the existence of functions
uL ∈ C2,α

loc (ΩL) satisfying:

∆uL = E, uL(±L, θ) = 0.(4.7)

We now integrate both sides of the first equality in (4.7) in θ to obtain the
equality (∫ π

−π
uL(s, θ)dθ

)
ss

= 0.

The boundary conditions in (4.7) then imply that∫ π

−π
uL(s, θ)dθ = 0.

That is, uL ∈ C̊2,α
loc (ΩL).

Using the zero averaging property and the Poincare inequality for K we
determine that

sup
K
|uL| ≤ C(K)‖E : C̊0,α(K)‖ ≤ C(K)‖E : C̊0,α(A0)‖.(4.8)

We then define the map

R̊0[E] = u∞(s, θ) := lim
L→∞

uL(s, θ).(4.9)
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From (4.8), the limit in (4.9) exists in C2,α(Ω) and by continuity u∞ solves

∆Ωu∞ = E,

∫ π

−π
u∞(s, θ)dθ = 0.

The exponential decay of u∞ in both the positive and negative s directions
then follows directly. �

We are now ready to prove the invertibility of ∆Ω over C̊0,α
0 (Λ). Follow-

ing standard arguments, we will sum up the solutions to the local problem
found by Lemma 4.7 and show that the estimates are sufficient to establish
convergence.

Proposition 4.8. Given ρ ∈ (−1, 1) \ {0}, k ≥ 0, α ∈ (0, 1) and a compact
set K containing Λ, there is a bounded linear map

Rρα[−] : C̊0,α
0 (Λ, coshρ(s))→ C̊2,α(Ω, coshρ(s)) ∩ C̊k(Ω \K, `ρ cosh−1(s))

such that

∆ΩRρα[E] = E.

Proof. Fix E̊ ∈ C̊0,α
0 (Λ, coshρ(s)) and set β := ‖E̊ : C̊0,α

0 (Λ, coshρ(s))‖. For
each integer i, let Ai be the annulus Ai := A0 + i. Note that the set {Ai}i∈Z
is a locally finite covering of Ω such that Ai ∩Aj = ∅ if |i− j| > 1. Let {ψi}
be a partition of unity subordinate to {Ai} such that ψi(s+ 1) = ψi+1(s).
Setting E̊i(s, θ) := ψi(s)E̊(s− i, θ), it is straightforward to verify that E̊i ∈
C̊0,α

0 (A0). The decay assumption on E̊ further implies that

‖E̊i : C̊0,α
0 (A0)‖ ≤ Cβ coshρ(i).

We now define the functions

ůi(s, θ) := R̊0[Ei](s+ i, θ).

From Lemma 4.7, we determine the estimates

‖ůi : C2,α(Aj)‖ ≤ Cβ coshρ(i) cosh−1(j − i)

≤ Cβ

{
eje(ρ−1)i, i > j

e−je(1+ρ)i, i ≤ j.
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Taking finite sums, we determine that∥∥∥∥∥
n∑
i=0

ůi : C2,α(Aj)

∥∥∥∥∥ ≤ Cβ

1− |ρ|
coshρ(j).

Thus, the partial sums converge to a limiting function ů with zero average
along meridians satisfying

∆Ωů = E̊, ‖ů : C2,α(Aj)‖ ≤
Cβ

1− |ρ|
coshρ(j).

In other words ů satisfies the estimate

‖ů : C2,α(Ω, coshρ(s))‖ ≤ C

1− |ρ|
‖E̊ : C0,α(Ω, coshρ(s))‖.

By setting Rρα[E̊] := ů we prove the proposition. �

Step 2: Solving cosh−2(s)LF as a perturbation of ∆Ω. We now
proceed with the second step in the proof of Proposition 4.5. Notice that
the following technical lemma is stated much more generally than we will
need. The reader may find it helpful to reduce the statement to when ρ = 3/4
and k = 3.

Lemma 4.9. Let L := ∆Ω + P (s) be a second order linear operator defined
on Ω, and assume that

(4.10) ‖P (s) : C0,α(Ω, 1)‖ ≤ ε.

Given ρ ∈ (−1, 1) \ {0}, k ≥ 0, α ∈ (0, 1) and a compact set K containing
Λ, there exists ε∗ > 0 such that for all 0 < ε < ε∗, there exists a bounded
linear map

Rρα[L,−] : C̊0,α
0 (Λ, coshρ(s))→ C̊2,α(Ω, coshρ(s)) ∩ C̊k(Ω \K, `ρ cosh−1(s))

such that

LRρα[L, E] = E on Λ.

Proof. Let E ∈ C̊0,α
0 (Λ, coshρ(s)). We proceed by iteration. Set u0 := Rρα[E]

so that Lu0 = E + P (s)u0. In order to apply Proposition 4.8, we introduce
the cutoff function ψ̃(s) := ψ[arccosh (`) + 3, arccosh `+ 2](|s|). Set E1 :=
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−ψ̃Pu0. Then ψE1 is supported in a fixed neighborhood of Λ and we can
apply the previous proposition on that neighborhood and get corresponding
estimates. It follows that E1 ∈ C0,α(Λ) and satisfies the estimate

‖E1 : C̊0,α(Λ, coshρ(s))‖ ≤ C(α, ρ)ε‖E : C̊0,α
0 (Λ, coshρ(s))‖.

For simplicity, let Λ1 := {(s, θ) ∈ Ω : |s| ≤ arccosh (`) + 3} denote the
neighborhood of interest in this proof. Taking ε∗ sufficiently small we can
achieve the estimate,

‖E1 : C̊0,α
0 (Λ1, coshρ(s))‖ ≤ 1

2
‖E : C̊0,α

0 (Λ, coshρ(s))‖.

Inductively define the sequence (Ek, uk) by

uk = Rρα[Ek], Ek+1 = Ek − ψ̃Luk.

We continue to use the cutoffs so that Ek ∈ C̊0,α
0 (Λ1, coshρ(s)) for each k.

Appealing to the modified version of Proposition 4.8, we get the estimates

‖ui : C̊2,α(Ω, coshρ(s)) ∩ C̊k(Ω \K, `ρ cosh−1(s))‖
≤ C‖Ei : C̊0,α

0 (Λ1, coshρ(s))‖ ≤ C2−i.

The partial sums vn :=
∑n

i=0 ui satisfy ψ̃Lvn = E − En+1 on Λ and

‖vn : C̊2,α(Ω, coshρ(s)) ∩ C̊k(Ω \K, `ρ cosh−1(s))‖
≤ C0‖E : C̊0,α

0 (Λ, coshρ(s))‖

where C0 is a uniform constant independent of n. The limit u := limn→∞ vn
then exists in C2,α

loc and by continuity satisfies

ψ̃Lu := E,

∫ π

−π
ψ̃u(s, θ)dθ = 0 on Λ.

Moreover, u satisfies the appropriate weighted Hölder estimates. Since
L(ψ̃u)− ψ̃Lu on Λ, the conclusion therefore follows by setting ψ̃u :=
Rρα[L, E]. �

As the operator cosh2(s)LF does not satisfy the condition (4.10), to use
a perturbation technique we must modify this operator by cutting off the
curvature term for s near zero.
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Definition 4.10. Given a ∈ R, we define the operator L̂F a as follows:

L̂F a := ∆Ω + 2ψ[a− 1, a](|s|) cosh−2(s).

From the definition and the properties of LF , it immediately follows that

Lemma 4.11. 1) L̂F a = cosh2(s)LF on Ω ∩ {|s| ≥ a}.

2) For any ε > 0 there exists an a sufficiently large so that

‖L̂F a −∆Ω, C
0,α(Ω, cosh−1(s))‖ ≤ ε.

3) The operator L̂F a preserves the class of functions with zero average
over meridian circles on Ω. In other words, given f ∈ C̊k,α(Ω), L̂F af ∈
C̊k−2,α(Ω).

We are now ready to quantify the error induced by inverting L̂F a rather
than cosh2(s)LF . We describe the error via the following map. Note that
throughout what follows, in all applications we will use ρ = 3/4, α = 3/4.

Definition 4.12. The map T[−] : X̊ k0 → Ck,3/4(Ω, cosh3/4(s)) is given as
follows:

T[E](s, θ) := E − ψ̂(s) cosh2(s)LF (s)Rρα[L̂F a, E](s, θ).

Here the function ψ̂(s) := ψ[arccosh (`) + 2, arccosh `+ 1](|s|) is a fixed
cutoff function. We choose ψ̂(s) so that ψ̂ ≡ 1 on Λ and supp(ψ̂) ⊂ {(s, θ) ∈
Λ1 : ψ̃ ≡ 1}. Such a choice of ψ̂ removes from T the small error induced in
Lemma 4.9 that comes from the cutoff ψ̃. In fact ψ̂ cuts off the second term
in a neighborhood where that term is identically zero. Thus, derivatives of
ψ̂ will not contribute to the estimates below in any way.

Proposition 4.13. The following statements hold:

(1) For a sufficiently large, T[−] is well-defined.

(2) T[E] is compactly supported on the set Λ ∩ {|s| ≤ a}.

(3) There is a constant C(ρ) depending only on ρ = 3/4 so that

‖T[E] : C0,3/4(Λ ∩ {|s| ≤ a}, 1)‖ ≤ C‖E : X 0‖.

(4) T maps (X̊ 0
0 )⊥ into (X̊ 0

0 )⊥ where E ∈ (X̊ 0
0 )⊥ if E ∈ (X 0

0 )⊥ and E has
zero radial average along meridian circles.
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Proof. Statements (1) and (2) are obvious from Definition 4.12. Statement
(3) follows directly from Lemma 4.9 and the definition of the mapsRρα[L,−].
To see (4), note first that the zero average condition on meridians is pre-
served by the definition of T[−], Lemma 4.9 and the definition of L̂F a. We
then immediately get that ∫

Λ
T[E]κzdµΩ = 0,

since κz = κz(s) is θ-independent. Additionally, we have that∫
Λ
T[E]κxdµΩ =

∫
Λ
EκxdµΩ −

∫
Λ
LFRρα[L̂F a, E]κxdµF

Note that by assumption the first term above is zero when E is in (X k)⊥.
Considering the support of E and the definition of Λ, for L ≥ arccosh (`),
Λ ⊂ ΩL. (Recall the definition of ΩL in (4.6).) By our choice of ψ̂ and the
properties of the function Rρα[L̂F a, E], we note that∫

Λ
LFRρα[L̂F a, E]κxdµF = lim

L→∞

∫
ΩL

ψ̂LFRρα[L̂F a, E]κxdµF

= lim
L→∞

∫
ΩL

LFRρα[L̂F a, E]κxdµF

= lim
L→∞

∫ π

−π

(
κx(L, θ)∇sRρα[L̂F a, E](L, θ)

−Rρα[L̂F a, E](L, θ)∇sκx(L, θ)
)
dθ,

where we have used that LFκx = 0. Considering the growth rates of
Rρα[L̂F a, E] and κx, we see the right hand side above is equal to zero.
The claim then follows immediately. �

Step 3: Solving for the error term by lifting to the sphere. We
are now ready to finish the proof of Proposition 4.5. Let E be a function in
(X 0

0 )⊥ and set β := ‖E : (X 0)⊥‖. Set

Ē(s) :=
1

2π

∫ π

−π
E(s, θ)dθ, E̊(s, θ) := E(s, θ)− Ē(s).

It is then straightforward to verify that E̊ is in (X̊ 0
0 )⊥ and

‖E̊ : (X̊ 0
0 )⊥‖ ≤ Cβ.



i
i

“1-Kleene” — 2018/7/5 — 18:15 — page 490 — #30 i
i

i
i

i
i

490 C. Breiner and S. J. Kleene

The equation

cosh2(s)LFu = T[E̊]

on Λ is equivalent to

(∆S2 + 2)u = 2T[E̊]/(|AF |2 cosh2(s))(4.11)

on the sphere, where we have abused notation slightly and identified func-
tions with their lifts to the sphere under the Gauss map of F . Since T[E̊] is
supported on the set Ω ∩ {|s| ≤ a},

‖T[E̊]/(|AF |2 cosh2(s)) : L2(S2)‖ ≤ C‖T[E̊]/|AF |2 : (X̊ 0)⊥‖ ≤ Cβ.

Moreover, by Proposition 4.13 (4), T[E̊]/(|AF |2 cosh2(s)) is orthogonal to
the kernel of ∆S2 + 2. (Recall that the kernel is spanned by the coordinate
functions restricted to S2.) Thus, there is a solution u to (4.11) satisfying

‖u : W 2,2(S2)‖ ≤ Cβ.

Standard elliptic theory then implies that

‖u‖2,α ≤ C‖E̊‖0,α.

Define the function

v̊ := u+Rρα[L̂F a, E̊].

Then v̊ satisfies cosh2(s)LF v̊ = E̊ on Λ and the estimate

‖̊v : X̊ 2‖ ≤ C‖E̊ : (X̊ 0)⊥‖.

We then solve for the function Ē by direct integration. In particular, in [2]
we proved that the expression

v̄(s) :=

(∫ s

0
tanh−2(s)

∫ s′

0
tanh(s′′) cosh−2(s)Ē(s′′)ds′′ds′

)
tanh(s)

(4.12)

satisfies cosh2(s)LF v̄ = Ē. Moreover, by Lemma 8 of [2], making the appro-
priate modifications for the norms of interest here, we establish there exists
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a uniform C > 0 such that

‖v̄ : X 2‖ ≤ C‖Ē : X 0‖.

We conclude the proof of Proposition 4.5 by setting

v := v̄ + v̊ and R⊥F [E] := v.

4.3. Solving the linear problem on X 0
0

We now solve the more general linear problem by decomposing any E ∈ X 0
0

into a θ independent function and a function E̊, with zero average along
meridian circles. We invert the θ independent function directly using (4.12).
To invert E̊, we modify the function by its projection onto the space K.
The resulting function is orthogonal to K and thus can be inverted via
Proposition 4.5.

To begin, we define functions that, as graphs over the helicoid, will induce
linear error that can be used to modify the inhomogeneous term.

Definition 4.14. Let ψ(s) be the cutoff function ψ(s) := ψ[1, 2](|s|) and
set

ux(s, θ) =
1

4π
ψ(s) cos(θ) cosh(s),

uy(s, θ) =
1

4π
ψ(s) sin(θ) cosh(s), uz(s, θ) =

1

4π
ψ(s) |s|.

We denote the linear error in the mean curvature due to adding the graphs
of ux, uy and uz by

wx := cosh2(s)LFux, wy := cosh2(s)LFuy, wz := cosh2(s)LFuz.

Note that we chose the functions wx, wy, wz so that the projection of E
onto K can be captured by linear combinations of the functions w.

Proposition 4.15. For i, j ∈ {x, y, z},∫
Ω
κiwj dµΩ = δij .
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Proof. Let N be a large constant and set D := DN = Ω ∩ {|s| ≤ N} and
∂ = ∂D := F (|s| = N). Then∫

D
κiwj dµΩ =

∫
D
κiLFuj dµF =

∫
∂D

κi∇Fη uj dµ∂ − uj∇Fη κi dµ∂(4.13)

where ∇F denotes the surface gradient on F and where η is the outward
pointing conormal at ∂D. We do not write in the cosh2(s) term in the
second integral since cosh2(s) dµΩ = dµF . Notice that ∂D consists of four
components. From (4.4), on the components (±N, θ), ∇Fη := ± cosh−1(N)∂s
for ±s > 0 and dµ∂ = cosh(N)dθ. On the components (s,±π), ∇Fη :=

± cosh−1(s)∂θ for ±θ > 0 and dµ∂ = cosh(s)ds.
We first consider the case i = j. Observe that for θ = ±π, ui∂θκi =

κi∂θui = 0 for i ∈ {x, y, z}. Thus, we are only concerned with the bound-
ary components s = ±N . Thus

4π

∫
D
κxwx dµΩ =

∫ π

−π
cos2(θ) tanh(N)dθ −

∫ π

−π
− cos2(θ) tanh(N)dθ

+

∫ π

−π
cos2(θ)(− tanh(−N))dθ −

∫ π

−π
cos2(θ) tanh(−N)dθ

= 4 tanh(N)

∫ π

−π
cos2(θ)dθ → 4π.

The same estimate follows for
∫

Ω κywy dµF . For w = wz and κ = κz, on
s = ±N we have that

∇Fη κz = cosh−3(N).

In this case, the second term on the right hand side of (4.13) converges to
zero as N goes to infinity, and we note that

4π

∫
D
κzwz dµΩ =

∫ π

−π
tanh(N)dθ −

∫ π

−π
tanh(−N)dθ → 4π.

For the case i 6= j, one can easily show that the boundary curves de-
fined by s = ±N will not contribute to the integral. Indeed

∫ π
−π ui∂sκj dθ =∫ π

−π κj∂sui dθ = 0 for all instances of i 6= j since the integrand will contain
either sin θ cos θ, sin θ, or cos θ. We demonstrate why the other integrals
vanish for the case i = x, j = y and leave further cases to the reader.
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Using again (4.4), the formulas imply that

4π

∫
D
κywx dµΩ =

∫ N

−N

(
− sin2 θ − cos2 θ

)
ψ(s) ds

+

∫ N

−N
−
(
− sin2 θ − cos2 θ

)
ψ(s) ds = 0

�

Now that we understand the modifying functions, we can solve the linear
problem for inhomogeneous E with non-trivial projection onto K.

Proposition 4.16. There is a bounded linear map

RF [−] : X 0
0 → X 2 × R2

such that for E ∈ X 0
0 and (v, bx, by) := RF [E],

cosh2(s)LF v = E − bxwx − bywy on Λ.

Proof. Given E ∈ X 0
0 , we set

Ē(s) :=

∫ π

−π
E(s, θ)dθ, E̊(s, θ) = E(s, θ)− Ē(s).

Then E̊ is in X̊ 0
0 . Since κz is θ-independent and E̊ has zero average along

meridians, ∫
Λ
E̊ κz dµΩ = 0.

Moreover, the definition of the function space X 0 and the definition of Λ
together imply ∣∣∣∣∫

Λ
E̊ κx dµΩ

∣∣∣∣+

∣∣∣∣∫
Λ
E̊ κy dµΩ

∣∣∣∣ ≤ C‖E̊ : X 0‖.

Thus, there exist constants bx and by with

|bx|, |by| ≤ C‖E : X 0‖

so that E⊥ := E̊ − bxwx − bywy lies in (X 0
0 )⊥. Using Proposition 4.5 we de-

fine the function

v⊥ := R⊥F [E⊥].
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We then use (4.12) to determine a function v̄. We now define v := v⊥ + v̄.
By definition, v satisfies

cosh2(s)LF v = E − bxwx − bywy on Λ

and the estimates imply that

‖v : X 2‖+ |bx|+ |by| ≤ C‖E : X0‖. �

5. Finding exact solutions

Recall that finding a graph over G so that the resulting surface has H = 0
is equivalent to finding a function u ∈ C2,α with Q[u] = 0. We will solve this
problem via standard gluing methods, invoking a fixed point theorem for a
given map Ψ from some Banach space we designate. Estimates for the map
will require a strong understanding of Q[u] and to that end we first consider
a natural decomposition of Q.

Definition 5.1. Let LQ[u] denote the linearization of the operator Q at 0,
and set

RQ[u] := Q[u]−Q[0]− LQ[u].

We first record linear estimates, which are controlled by properties of
the immersions F and G.

Lemma 5.2. Given τ0, ξ ∈ R and κ0 > 0, choose δ > 0 such that C(1 +
|T|+ ξ)δ < ε̃ where ε̃ is from Proposition 2.11 and C is a universal constant
arising from the norm bounds in the linear problem. Then for any G defined
according to a curve γ[δκ0, δτ0, δξ] ∈ L,

‖Q[0] : X 0‖ ≤ Cδ`1/4|T|(5.1)

and for u ∈ X 2,

(5.2) ‖LQ[u]− cosh2(s)LFu : X 0‖ ≤ Cδ(1 + |T|+ |ξ|)‖u : X 2‖.
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Proof. Proposition 3.11 implies

‖Q[0]‖j,3/4(s, θ) < Cδ|T| cosh(s)

and thus

cosh−3/4(s)‖Q[0]‖j,3/4(s, θ) ≤ Cδ|T| cosh1−3/4(s) ≤ Cδ`1/4|T|.

For the second estimate, recall that

Q[u] = cosh2(s)H(∇̃[G] + Eδ[u0 + u])

Then for ∇0 := ∇̃[G] + Eδ[u0],

LQ[u] = Q̇[u] = cosh2(s) DH|∇0
(Eδ[u])

LFu = DH|∇F (∇[u νF ]).

We then write

LQ[u]− cosh2(s)LFu = cosh2(s)
{
DH|∇0

(Eδ[u])− DH|∇F (Eδ[u])
}

− cosh2(s) DH|∇F (∇[u νF ]− Eδ[u])

:= I + II.

Lemma 3.4, (3.4) and (3.5), and the triangle inequality imply

‖∇̃[G]−∇F : Ck(Λ, cosh(s))‖ ≤ Cδ + Cδ|T|.(5.3)

Moreover, the estimate for u0 in Theorem 3.3 (with δξ replacing δ) and
Definition 3.8 imply

‖Eδ[u0] : C0,α(Λ, cosh(s))‖ ≤ Cδ|ξ|.(5.4)

Combining (5.3) and (5.4), we note that

‖∇0 −∇F : C0,α(Λ, cosh(s))‖ ≤ Cδ(1 + |T|+ |ξ|) < ε̃.

Thus we may apply Proposition 2.11 with ∇ = ∇F and E = ∇0 −∇F . No-
tice here that a(∇) = 1, |∇| = cosh(s), and d = −2. Thus

‖I‖0,α ≤ C cosh−1(s)‖E‖0,α‖u‖2,α ≤ Cδ cosh−1(s)(1 + |T|+ |ξ|)‖u‖2,α.
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Again using Definition 3.8 and estimates on the derivatives of νG, we observe
that

‖∇[u νF ]− Eδ[u]‖0,α ≤ Cδ(1 + |T|)‖u‖2,α

and it follows that ‖II‖0,α ≤ Cδ(1 + |T|)‖u‖2,α. �

We now define the Banach space on which we will solve the fixed point
theorem.

Definition 5.3. For ζ � 1, set

Ξ := {(u, bx, by) ∈ X 2 × R2 : ‖u : X 2‖ ≤ ζδ`1/4|T|, |bx|, |by| ≤ ζδ`1/4|T|}.

Notice that by definition, Ξ is a compact, convex subset of X 2 × R2. Thus, we
are in a setting where it is natural to apply Schauder’s fixed point theorem.

Now we control the higher order terms ofQ[u] where u = v + bxux + byuy
with (v, bx, by) ∈ Ξ.

Proposition 5.4. Given ζ � 1, τ0, ξ ∈ R and κ0 > 0, choose any 0 < δ|ξ| <
δ0 and ` > 16 such that Cδ(1 + |T|+ |ξ|)`5/4 < min{1/(4ζ), ε̃/ζ}. Here C is
a universal constant arising from the norm bounds in the linear problem and
δ0 comes from Theorem 3.3. Consider any G defined according to a curve
γ[δκ0, δτ0, δξ] ∈ L. Given (v, bx, by) ∈ Ξ, and f := v + bxux + byuy

‖RQ[f ] : X 0‖ ≤ Cζ2δ2|T|2`3/4.

Proof. The definition of RQ[f ] implies that

RQ[f ] = cosh2(s)R
(1)
H,Eδ[f ](∇0).

From Definition 3.8,

‖Eδ[f ]‖0,α ≤ C‖f‖2,α ≤ C‖v‖2,α + (|bx|+ |by|) cosh(s)

≤ Cζδ|T|`1/4
(

cosh3/4(s) + cosh(s)
)

≤ Cζδ|T|`1/4 cosh(s).

Applying Proposition 2.11 with ∇ = ∇0 and E = Eδ[f ], Φ = H and d = −1
implies that

cosh(s)‖RQ[f ]‖0,α ≤ Cζ2δ2|T|2`1/2 cosh2(s).

As |s| ≤ arccosh (`) on Λ, the estimate immediately follows. �
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Using all of the previous estimates, we define a map Ψ that takes Ξ into
Ξ. As previously mentioned, because we chose to simplify the linear problem
by considering only inhomogeneous terms with zero boundary data on Λ,
we now have a small amount of technical work to do. In particular, to invert
Q[u], we need to first cut it off by a function ψ′.

Proposition 5.5. For ψ(s) :=ψ[arccosh (`/2), arccosh (`/4)](|s|), and ψ′(s)
:= ψ[arccosh (`), arccosh (`/2)](|s|), set

Ψ[v, b1, b2] = (ψv, b1, b2)−RF [ψ′Q[ψv + b1ux + b2uy]]

Given ζ � 1, τ0, ξ ∈ R and κ0 > 0, for any 0 < δ|ξ| < δ0 and ` > 16 such
that Cδ(1 + |T|+ |ξ|)`1/2 < min{1/(4ζ), ε̃/ζ}, Ψ(Ξ) ⊂ Ξ. (Again, we con-
sider any G defined according to a curve γ[δκ0, δτ0, δξ] ∈ L.)

Proof. We begin by noting that

Q[ψv + b1ux + b1uy] = Q[0] + LQ[ψv + b1ux + b2uy]

+RQ[ψv + b1ux + b2uy]

= Q[0] + cosh2(s)LF (ψv + b1ux + b2uy)

+RQ[ψv + b1ux + b2uy]

+
(
LQ − cosh2(s)LF

)
(ψv + b1ux + b2uy).

First define (u0, b0x, b
0
y) := RF [ψ′Q[0]]. Proposition 4.16, the estimate

(5.1), and the uniform bounds on ψ′ imply that

‖u0 : X 2‖+ |b0x|+ |b0y| ≤ C‖ψ′Q[0] : X 0
0 ‖ ≤ Cδ|T|`1/4.(5.5)

Set (u′, b′x, b
′
y) := RF [ψ′RQ[ψv + b1ux + b2uy]]. Then, Propositions 4.16

and 5.4 imply that

‖u′ : X 2‖+ |b′x|+ |b′y|(5.6)

≤ C‖ψ′RQ[ψv + b1ux + b2uy] : X 0
0 ‖ ≤ Cζ2δ2|T|2`3/4.

Finally, set

R′′ :=
(
LQ − cosh2(s)LF

)
(ψv + b1ux + b2uy)
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and (u′′, b′′x, b
′′
y) := RF [ψ′R′′]. By Proposition 4.16, (5.2), the estimates for

v, b1, b2, and the decay control on ψ,

‖u′′ : X 2‖+ |b′′x|+ |b′′y| ≤ C‖R′′ : X 0
0 ‖(5.7)

≤ Cδ2(1 + |T|+ |ξ|)ζ|T|`1/2 ≤ Cδζ|T|`1/2.

The definitions of ux, uy imply that LF (b1ux + b2uy) = 0 for all |s| ≥ 2.
Moreover, as ψv ≡ 0 for all s with cosh(s) > `/2, ψ′LF (ψv + b1ux + b2uy) =
LF (ψv + b1ux + b2uy). In other words,

RF [ψ′LF (ψv + b1ux + b2uy)] = (ψv, b1, b2).

Therefore

Ψ(v, b1, b2) = (−u0 − u′ − u′′,−b0x − b′x − b′′x,−b0y − b′y − b′′y).

Combining (5.5), (5.6) and (5.7), as long as ζ > 4C, the hypothesis on δ
allows us to conclude that

‖ − u0 − u′ − u′′ : X 2‖ ≤ Cδ|T|`1/4 + Cζ2δ2|T|2`3/4 + Cζδ|T|`1/2(5.8)

≤ 3ζδ`1/4|T|/4

Similar estimates hold for the coefficients of ux, uy:

|b0x − b′x − b′′x| ≤ 3ζδ`1/4|T|/4, |b0y − b′y − b′′y| ≤ 3ζδ`1/4|T|/4.(5.9)

�

6. The Main Theorem

We prove the main theorem via a fixed point argument and all of the nec-
essary estimates have now been recorded. We require two further technical
propositions which allows us to prove embeddedness in the main theorem.
The first proposition demonstrates the size of the neighborhood of γ on
which M acts as a diffeomorphism. The second proposition demonstrates
that we may consider graphs over G as coming from graphs over F .
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Proposition 6.1. Given δ > 0 and γ ∈ L given by γ[δκ0, δτ0, δξ] as in
(3.1), for any α satisfying

0 ≤ α < eπξ/|T| − 1

eπξ/|T| + 1
,

recalling |T|2 = κ2
0 + τ2

0 , the map M defined in (1.3) is a diffeomorphism of
the tubular neighborhood

T (α) :=

{
(x, y, z) : x2 + y2 ≤ α2

δ2ξ2

τ2
0 + ξ2

|T|2 + ξ2

}

onto its image.

Proof. Note that

DM |(x,y,z) = eδξz
(
e∗x ⊗N + e∗y ⊗B(6.1)

+ e∗z ⊗ T + δ xe∗z ⊗N + δ ye∗z ⊗B
)
.

Thus, det DM |(x,y,z) = e3δξz and M is a local diffeomorphism at each point.
We now show M is a global diffeomorphism. First note that for each

z = c, M(x, y, c) is a disk contained in a plane through the origin with
normal direction T (c). Now suppose that M(x1, y1, z1) = M(x2, y2, z2) = p.
Then p · T (z1) = p · T (z2) = 0. The definition of γ implies that T (z) · ez is
constant and thus p · (T (z1)− T (z2)) = 0 is a condition on radial values
(i.e., the values in the directions ex, ey). We immediately conclude that
T (z1) = ±T (z2). Thus, the periodicity for γ′ coming from (3.2) implies that
up to reordering z1 and z2,

z1 − z2 = πn/(δ|T|) for n ∈ Z+.

Using the properties of the embedding γ described in (3.1), we observe that

|M(0, 0, z)| = |γ(z)| = eδξz

δξ

√
τ2

0 + ξ2

|T|2 + ξ2
.
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Therefore

|M(0, 0, z + nπ/(δ|T|))−M(0, 0, z)| ≥
(
enπξ/|T| − 1

)
|M(0, 0, z)|

≥
(
enπξ/|T| − 1

) eδξz
δξ

√
τ2

0 + ξ2

|T|2 + ξ2

|M(x, y, z)−M(0, 0, z)| = eδξz
√
x2 + y2.

Presuming that
√
x2 + y2 ≤ α

δξ

√
τ2
0 +ξ2

|T|2+ξ2 for some α to be determined, we

note that

|M(x1, y1, z + nπ/(δ|T|))−M(x0, y0, z)|
≥ −|M(x1, y1, z + nπ/(δ|T|))−M(0, 0, z + nπ/(δ|T|))|
− |M(x0, y0, z)−M(0, 0, z)|
+ |M(0, 0, z + nπ/(δ|T|))−M(0, 0, z)|

≥ eδξz

δξ

√
τ2

0 + ξ2

|T|2 + ξ2

[(
enπξ/|T| − 1

)
− α(1 + enπξ/|T|)

]
.

Thus, requiring that(
enπξ/|T| − 1

)
− α(1 + enπξ/|T|) > 0

gives that the points M(x1, y1, z + nπ/(δ|T|)) and M(x0, y0, z) do not inter-
sect. This completes the proof. �

Proposition 6.2. There is a constant εF > 0 so that: Given constants bx
and by and a vector field v : R2 → R3, satisfying

|bx|, |by| ≤ εF , ‖v : C1(R2)‖ ≤ εF ,

the surface F + v + (bxux + byuy)νF is an embedded surface in R3.

Proof. In the following, we refer to the angle that the projection of a vector
onto the plane {z = 0} makes with the vector ex as the argument, and for
a vector v we denote it by Arg(v). Recall that

F (s, θ) = sinh(s)er(θ) + θez(6.2)

νF (s, θ) = − cosh−1(s)e⊥r (θ) + tanh(s)ez
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where we have denoted er(θ) := sin(θ)ex + cos(θ)ey and e⊥r (θ) = cos(θ)ex −
sin(θ)ey. Set F̃ := F + v + (bxux + byuy)νF . Then it follows from (6.2) that

|Arg(F̃ (s, θ))−Arg(F (s, θ))| ≤ Cε.(6.3)

Let xi = (si, θi), i = 1, 2 be two points such that F̃ (x1) = F̃ (x2) and assume
first that s1 > 0, s2 < 0. Then it follows from (6.3) that |θ1 − θ2 − (2k +
1)π| ≤ Cε. We can write

uxνF (s, θ) = − 1

4π
ψ0(s) cos(θ)e⊥r (θ) +

1

4π
ψ0(s) cos(θ) sinh(s)ez,

uyνF (s, θ) = − 1

4π
ψ0(s) sin(θ)e⊥r (θ) +

1

4π
ψ0(s) sin(θ) sinh(s)ez.

This then gives that∣∣∣(bxux + byuy) νF |x2

x1

∣∣∣2 ≤ Cε2 (1 + (sinh(s1) + sinh(s2))2
)

(6.4)

Moreover, from (6.2), we have

|F (x2)− F (x1)|2 ≥ (1− Cε)(sinh(s2) + sinh(s1))2 + (π − 2ε)2(6.5)

Combining (6.4) and (6.5) implies

|F̃ (x2)− v(x2)− F̃ (x1) + v(x1)| ≥ π − Cε.

Here C is just a universal constant depending on F . Now suppose |s1 − s2| ≤
10. Then the uniform C1 bounds on v imply

|F̃ (x2)− F̃ (x1)| ≥ |F̃ (x2)− v(x2)− F̃ (x1) + v(x1)| − |v(x2)− v(x1)|
≥ π − Cε.

On the other hand, if |s1 − s2| > 10, then the C0 estimate on v is enough
as in this case,

|F̃ (x2)− F̃ (x1)| ≥ |F̃ (x2)− v(x2)− F̃ (x1) + v(x1)| − |v(x2)− v(x1)|
≥ π − Cε− |v(x1)| − |v(x2)| ≥ π − Cε.

Since C depends only on F , we can choose 0 < ε < εF so that π − Cε > 0
and thus no self-intersections exist. A similar argument gives the same result
when both s1 and s2 are positive. The result then follows immediately. �
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We now gather all of the estimates from the previous section in combi-
nation with the previous proposition to prove the main theorem.

Theorem 6.3. Given τ0, ξ ∈ R, κ0 > 0, and ζ � 1, choose any 0 < δ <
δ0/|ξ| and ` > 16 such that Cδ(1 + |T|+ |ξ|)` < min{1/(4ζ), ε̃/ζ, εF /(4ζ)}.
Here C is a universal constant arising from the norm bounds in the linear
problem and δ0 comes from Theorem 3.3. Consider any G defined according
to a curve γ[δκ0, δτ0, δξ] ∈ L. Then there exists (v, bx, by) ∈ Ξ such that the
surface G+ eδξθ (v + bxux + byuy + u0) νG

1) is an immersed smooth surface with boundary.

2) is minimal on the domain {(s, θ)| cosh(s) ≤ `/4}.

3) is embedded when

` ≤ 1

δξ

(
eπξ/|T| − 1

eπξ/|T| + 1

)√
τ2

0 + ξ2

|T|2 + ξ2
.

To conclude the theorem found in the introduction, simply set ε1 ≤
min{1/(4Cζ), ε̃/(Cζ), εF /(4Cζ)}.

Proof. To prove embeddedness, note that for |z| ≤ 1
δ , extending the calcu-

lation of (6.1) to consider also D2M implies

‖M(x, y, z)− (x, y, z) : C1({|z| ≤ 1/δ})‖ = O(δ(z2 + xz + yz)(1 + |T|)).

Thus for |θ| ≤ 4π and Λ4π := {(s, θ)|(s, θ) ∈ Λ, |θ| ≤ 4π},

‖G(s, θ)− F (s, θ) : C1(Λ4π)‖ ≤ δO(1 + cosh(s)(1 + |T|)).

Let v := eδξθfνG and w = eδξθf (νG − νF ). Then

‖G+ eδξθfνG −
(
F + eδξθfνF

)
: C1(Λ4π)‖

= ‖G+ v − (F − v) + w : C1(Λ4π)‖
≤ δO(1 + cosh(s)(1 + |T|)) + ‖w : C1(Λ4π)‖.

Taking f of the form f = v + uxbx + uyby + u0 for (v, bx, by) ∈ Ξ, and using
the estimate of (5.3),

‖w : C1(Λ4π)‖ ≤ ‖f : C1(Λ4π)‖‖νG − νF : C1(Λ4π)‖
≤ Cδ2ζ(|T|+ |T|2)`5/4.
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Thus, the graph over G can be viewed as a graph over F by (bxux +
byuy)νF + w̃ where w̃ = (v + u0)νF + w + (G− F ). The definition of Ξ im-
plies

|bx|+ |by| ≤ εF /2.

As δ` < 1, the perturbation vector field has the bound

‖w̃ : C1(Λ4π)‖ ≤ ‖G− F + w : C1(Λ4π)‖+ ‖(v + u0)νF : C1(Λ4π)‖

≤ C
(
δ`(1 + |T|) + δζ(1 + |T|)`+ δζ|T|`1/4

)
≤ εF .

The self-similarity of the curve implies that, up to some translation, the
same argument can be done for any domain of Λ with θ ∈ [θ̃ − 2π, θ̃ + 2π].
Applying Proposition 6.2, we conclude the surface is locally an embedding.
We appeal to Proposition 6.1 to get global embeddedness.

The minimality will follow from a fixed point argument. Namely, since
Φ(Ξ) ⊂ Ξ and Ξ is a compact, convex subset of a Banach space, there exists
(v, bx, by) ∈ Ξ such that

(v, bx, by) = (ψv, bx, by)−RF [ψ′Q[ψv + bxux + byuy]].

This implies RF [ψ′Q[ψv + bxux + byuy]] = ((1− ψ)v, 0, 0) and thus on the
region where ψ = 1,

Q[v + bxux + byuy] = 0.

The definition of Q, see (3.7), implies

H(∇̃G+ Eδ[v + bxux + byuy + u0]) = 0

and thus G+ eδξθ (v + bxux + byuy + u0) νG has H = 0. �
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