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A unified treatment for Lp

Brunn-Minkowski type inequalities

Du Zou and Ge Xiong

A unified approach used to generalize classical Brunn-Minkowski
type inequalities to Lp Brunn-Minkowski type inequalities, called
the Lp transference principle, is refined in this paper. As illustra-
tions of the effectiveness and practicability of this method, several
new Lp Brunn-Minkowski type inequalities concerning the mixed
volume, moment of inertia, quermassintegral, projection body and
capacity are established.

1. Introduction

The classical Brunn-Minkowski inequality is a marvelous result of combining
two basic notions: vector addition and volume, which reads as follows: If K
and L are convex bodies (compact convex sets with nonempty interiors) in
Euclidean n-space Rn and α ∈ (0, 1), then

(1.1) Vn ((1− α)K + αL)
1

n ≥ (1− α)Vn (K)
1

n + αVn (L)
1

n ,

where

(1− α)K + αL = {(1− α)x+ αy : x ∈ K, y ∈ L},

and Vn denotes the n-dimensional volume. Equality holds in (1.1) if and
only if K and L are homothetic (i.e., they coincide up to a translation and
a dilate). In brief, the functional Vn

1/n from Kn, the class of convex bodies
in Rn, to [0,∞) is concave.

As one of the cornerstones of convex geometry (see Gardner [11], Gru-
ber [16], and Schneider [36]), the Brunn-Minkowski inequality is a powerful
tool for solving many extremum problems dealing with important geometric
quantities such as volume and surface area. It is also related closely with
many other fundamental inequalities, such as the classical isoperimetric in-
equality, the Prékopa-Leindler inequality, the Sobolev inequality, and the
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436 D. Zou and G. Xiong

Brascamp-Lieb inequality. See, e.g., Barthe [1] and Bobkov and Ledoux [2].
For a more comprehensive understanding, we refer to the excellent survey
of Gardner [10].

Nearly half a century ago, Firey [9] (see also Gardner, Hug, and Weil
[14, p. 2311], Lutwak, Yang, and Zhang [30], and Schneider [36, Section 9.1])
introduced the Lp addition of convex bodies and established the Lp Brunn-
Minkowski inequality for this new operation: If K and L are convex bodies
in Rn containing the origin in their interiors, p ∈ (1,∞) and α ∈ (0, 1), then

(1.2) Vn ((1− α) ·p K +p α ·p L)
p

n ≥ (1− α)Vn (K)
p

n + αVn (L)
p

n ,

where (1− α) ·p K = (1− α)1/pK, α ·p L = α1/pL, and

(1− α) ·p K +p α ·p L

=
{

(1− β)
p−1

p (1− α)
1

px+ β
p−1

p α
1

p y : x ∈ K, y ∈ L, 0 ≤ β ≤ 1
}
.

Equality holds in (1.2) if and only if K and L are dilates. Write Kno for
the class of convex bodies with the origin in their interiors. In brief, the
functional Vn

p/n from Kno to [0,∞) is concave.
Further developments of the Lp Brunn-Minkowski theory were greatly

impelled by Lutwak [24, 25], who nearly set up a broad framework for the
theory. A series of fundamental notions, geometric objects, and central re-
sults in the classical Brunn-Minkowski theory evolved into their Lp analogs.
See, e.g., [26–30, 32, 34, 37–39].

In retrospect, we observe that to establish new Brunn-Minkowski type
inequalities, we encounter essentially the following two general situations.

First, if a functional F : Kn → [0,∞) is positively homogeneous of order
j, j 6= 0, is it the case that functional F 1/j is concave? Precisely, for K,L ∈
Kn and α ∈ (0, 1), is it the case that

F ((1− α)K + αL)
1

j ≥ (1− α)F (K)
1

j + αF (L)
1

j ?

Incidentally, we can list some beautiful confirmed examples within the clas-
sical Brunn-Minkowski theory, such as the classical mixed volumes (see
Schneider [36, p. 406]), Hadwiger’s harmonic quermassintegrals (see, e.g.,
Hadwiger [17, p. 268] and Schneider [36, p. 514]), and Lutwak’s affine quer-
massintegrals (see, e.g., Gardner [10, p. 393], [13, p. 361] and Schneider [36,
p. 515]). Also, some instances were discovered in other disciplines. For exam-
ple, Brascamp and Lieb [4] established a Brunn-Minkowski type inequality
for the first eigenvalue of the Laplace operator. Borell [3] proved a Brunn-
Minkowski type inequality for the Newtonian capacity. See also Caffarelli,



i
i

“6-Xiong” — 2018/5/2 — 11:55 — page 437 — #3 i
i

i
i

i
i

A unified treatment for Lp Brunn-Minkowski type inequalities 437

Jerison, and Lieb [5], Colesanti and Salani [6], Gardner and Hartenstine [12],
and the references within.

Second, assume that a functional F : Kn → [0,∞) is positively homoge-
neous and concave, for K,L ∈ Kno and α ∈ (0, 1). Is it the case that

F ((1− α) ·p K +p α ·p L)p ≥ (1− α)F (K)p + αF (L)p?

Obviously, if F = Vn
1/n, for p > 1, the Lp Brunn-Minkowski inequality is a

confirmed case.
The prime motivation of this paper is to formulate and prove the follow-

ing Lp transference principle.

Theorem 1.1. Suppose that F : Kn → [0,∞) is positively homogeneous,
increasing and concave, and p ∈ (1,∞). If K,L ∈ Kno , then

F ((1− α) ·p K +p α ·p L)p ≥ (1− α)F (K)p + αF (L)p, for all α ∈ (0, 1).

Furthermore, if F : Kno → (0,∞) is strictly increasing, equality holds if and
only if K and L are dilates.

See Section 2 for the definitions of positive homogeneity and increasing
property of a functional F .

In Section 3, we prove Theorem 1.1 and then dwell on the equality
condition. It is observed that equality holds in the classical Brunn-Minkowski
inequality if and only if the convex bodies are homothetic, while equality
holds in the Lp Brunn-Minkowski inequality if and only if the convex bodies
are dilates. We reveal the reason and characterize this phenomenon. See
Theorem 3.4 and Theorem 3.5.

In Section 4, as illustrations of the effectiveness and practicability of our
Lp transference principle, several new Lp Brunn-Minkowski type inequalities
are established, which are concerned with the classical mixed volume, mo-
ment of inertia, affine quermassintegral, harmonic quermassintegral, projec-
tion body and capacity. For example, by using the Lp transference principle,
we obtain the Lp capacitary Brunn-Minkowski inequality directly.

Theorem 1.2. Suppose that K,L ∈ Kno , 1 ≤ q < n, and 1 < p <∞. Then

Capq(K+pL)
p

n−q ≥ Capq(K)
p

n−q + Capq(L)
p

n−q ,

with equality if and only if K and L are dilates.
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2. Preliminaries

As usual, Sn−1 denotes the unit sphere in n-dimensional Euclidean space
Rn, and Bn denotes the unit ball in Rn. If x, y ∈ Rn, then x · y denotes
the inner product of x and y. If u ∈ Sn−1, then u⊥ denotes the (n− 1)-
dimensional subspace orthogonal to u. Write Vj for j-dimensional volume,
where j = 1, . . . , n. As usual, ωj denotes the volume of j-dimensional unit
Euclidean ball.

Write Gn,j for the Grassmann manifold of all j-dimensional linear sub-
spaces of Rn, which is equipped with Haar probability measure µj . For
K ∈ Kn, let K|ξ be the orthogonal projection of K onto ξ ∈ Gn,j .

Each convex body K in Rn is uniquely determined by its support func-
tion hK : Rn → R, which is defined by

hK(x) = max {x · y : y ∈ K} ,

for x ∈ Rn. For α > 0, the body αK = {αx : x ∈ K} is called a dilate of K.
For K,L ∈ Kn, their Minkowski sum is the convex body

K + L = {x+ y : x ∈ K, y ∈ L}.

Let 1 < p <∞. The Lp sum of K,L ∈ Kno is the convex body K +p L,
defined by

hK+pL(u)p = hK(u)p + hL(u)p,

for u ∈ Sn−1. If p =∞, the convex body K +∞ L is defined by

hK+∞L(u) = max{hK(u), hL(u)},

for u ∈ Sn−1.
For α > 0 and K ∈ Kno , the Lp scalar multiplication α ·p K is the convex

body α
1

pK.
Given a functional F : Kn → [0,∞), we say that F is

(1) positively homogeneous, provided

F (αK) = αF (K),

for K ∈ Kn and α > 0.
(2) increasing, provided

F (K) ≤ F (L),

for K,L ∈ Kn with K ⊆ L. Moreover, if the strict inclusion K ( L implies
F (K) < F (L), then F is strictly increasing.
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(3) p-concave, provided

F ((1− α) ·p K +p α ·p L) ≥ ((1− α)F (K)p + αF (L)p)
1

p ,

forK,L ∈ Kn and α ∈ (0, 1). As usual, 1-concave is called concave for brevity.
Associated with a functional F : Kno → [0,∞), p ∈ [1,∞) and K,L ∈ Kno ,

it is convenient to introduce a function Fp;K,L : [0, 1]→ [0,∞) defined by

Fp;K,L(α) = F ((1− α) ·p K +p α ·p L)p ,

for α ∈ [0, 1].
The next lemma shows that the p-concavity of F and the concavity of

Fp;K,L are actually equivalent.

Lemma 2.1. Suppose that K,L ∈ Kno and 1 ≤ p <∞. Then, F is p-concave,
if and only if Fp;K,L is concave.

Proof. Let λ, α, β ∈ [0, 1]. Assume that Fp;K,L is concave. Then

Fp;K,L((1− λ)α+ λβ) ≥ (1− λ)Fp;K,L(α) + λFp;K,L(β).

Taking α = 0 and β = 1, we obtain

Fp;K,L(λ) ≥ (1− λ)Fp;K,L(0) + λFp;K,L(1),

i.e.,

F ((1− λ)·pK+pλ·pL)p ≥ (1− λ)F (K)p + λF (L)p,

which shows that F is p-concave.
Conversely, assume that F is p-concave. Let

Kα = (1− α)·pK+pα·pL,
Kβ = (1− β)·pK+pβ·pL,
Q = (1− ((1− λ)α+ λβ)) ·pK+p((1− λ)α+ λβ)·pL.

Then

hQ
p = (1− ((1− λ)α+ λβ))hK

p + ((1− λ)α+ λβ)hL
p

= ((1− λ)(1− α) + λ(1− β))hK
p + ((1− λ)α+ λβ)hL

p

= (1− λ) ((1− α)hK
p + αhL

p) + λ ((1− β)hK
p + βhL

p)

= (1− λ)hKα
p + λhKβ

p,

which implies that Q = (1− λ) ·p Kα +p λ ·p Kβ.
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Thus, from the p-concavity of F , it follows that

Fp;K,L ((1− λ)α+ λβ) = F (Q)p

= F ((1− λ)·pKα+pλ·pKβ)p

≥ (1− λ)F (Kα)p + λF (Kβ)p

= (1− λ)Fp;K,L(α) + λFp;K,L(β),

which shows that Fp;K,L is concave. �

The following lemma will be used in Section 3.

Lemma 2.2. Suppose K,L ∈ Kno , 1 < p <∞, and 0 < α < 1. Then

(1− α) ·p K +p α ·p L ⊇ (1− α)K + αL,

with equality if and only if K = L.

Proof. From the definition of (1− α) ·p K +p α ·p L and the strict convexity
of f(t) = tp in t ∈ (0,∞), it follows that for u ∈ Sn−1,

h(1−α)·pK+pα·pL(u) = ((1− α)hK(u)p + αhL(u)p)
1

p

≥ (1− α)hK(u) + αhL(u)

= h(1−α)K+αL(u).

Equality holds in the second line if and only if hK(u) = hL(u), for all u ∈
Sn−1, and therefore if and only if K = L. �

The next lemma will be needed in Section 3 and Section 4.

Lemma 2.3. Suppose K,L ∈ Kn and j ∈ {1, . . . , n− 1}. If K ( L, then
there exists a µj-measurable subset G ⊆ Gn,j such that µj(G) > 0 and

Vj(K|ξ) < Vj(L|ξ), for all ξ ∈ G.

Proof. Recall that hK and hL are continuous on Sn−1. So, the assumption
K ( L implies that there exists an open geodesic ball U in Sn−1 such that
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Hn−1(U) > 0 and hK(u) < hL(u), for all u ∈ U . Let

G = {ξ ∈ Gn,j : ξ ∩ U 6= ∅}.

Next, we aim to show that

µj(G) > 0.

Note that when its points are antipodally identified, the sphere Sn−1 is
identified with an (n− 1)-dimensional elliptic space of constant curvature
one. The measure µj(G) can be represented as

µj(G) =
(n− j)!j!ωj · · ·ω1

n!ωn · · ·ωn−j+1

∫
G∩Lj−1 6=∅

dLj−1,

where dLj−1 denotes the kinematic density of a moving (j − 1)-dimensional
plane Lj−1 in the elliptic space Sn−1. For more details, see Santaló [35,
pp. 299–310]. Let r be the geodesic radius of U . Then equation (17.52) in
[35] shows that

∫
G∩Lj−1 6=∅

dLj−1 =
(n− 1)!ωn−1 · · ·ωn−j

(j − 1)!(n− j − 1)!ωj−1 · · ·ω1

r∫
0

(cos t)j−1(sin t)n−j−1dt.

Thus, µj(G) > 0.
Finally, let ξ ∈ G and u ∈ ξ ∩ U . Since ξ ∩ U 6= ∅, the definition of U

implies that

hK|ξ(u) = hK(u) < hL(u) = hL|ξ(u).

Since hK|ξ and hL|ξ are continuous on Sn−1 ∩ ξ, and hK|ξ ≤ hL|ξ, we have
K|ξ ( L|ξ. This, combined with the convexity of K|ξ and L|ξ, implies
Vj(K|ξ) < Vj(L|ξ). �

3. The Lp transference principle

3.1. Statement

In the following, we prove the Lp transference principle.
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Theorem 3.1. Suppose that F : Kn → [0,∞) is positively homogeneous,
increasing and concave, and p ∈ (1,∞). If K,L ∈ Kno , then

F ((1− α) ·p K +p α ·p L)p(3.1)

≥ (1− α)F (K)p + αF (L)p, for all α ∈ (0, 1).

Furthermore, if F : Kno → [0,∞) is strictly increasing, equality holds in (3.1)
if and only if K and L are dilates.

Proof. If F (K)F (L) = 0, then inequality (3.1) holds. To see this, assume
F (K) = 0. Then the definitions of (1− α) ·p K +p α ·p L and α ·p L directly
imply that

(1− α) ·p K +p α ·p L ⊇ α ·p L = α
1

pL.

From the monotonicity and positive homogeneity of F , we have

F ((1− α) ·p K +p α ·p L)p ≥ F
(
α

1

pL
)p

= αF (L)p.

So, we assume that F (K)F (L) > 0. Then inequality (3.1) is equivalent
to

F ((1− α)·pK+pα·pL)

[(1− α)F (K)p + αF (L)p]
1

p

≥ 1.

By the positive homogeneity of F, this is equivalent to

F

(
(1− α)·pK+pα·pL

[(1− α)F (K)p + αF (L)p]
1

p

)
≥ 1.

From the definition of Lp scalar multiplication, this is equivalent to

F

((
1− α

(1− α)F (K)p + αF (L)p

)
·pK(3.2)

+p

(
α

(1− α)F (K)p + αF (L)p

)
·pL

)
≥ 1.
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Now, again using the definition of Lp scalar multiplication, we have(
1− α

(1− α)F (K)p + αF (L)p

)
·pK+p

(
α

(1− α)F (K)p + αF (L)p

)
·pL

=

(
(1− α)F (K)p

(1− α)F (K)p + αF (L)p

)
·p
(

K

F (K)

)
+p

(
αF (L)p

(1− α)F (K)p + αF (L)p

)
·p
(

L

F (L)

)
= (1− α′)·p

(
K

F (K)

)
+pα

′·p
(

L

F (L)

)
,

where

α′ =
αF (L)p

(1− α)F (K)p + αF (L)p
.

By Lemma 2.2, we have

(1− α′)·p
(

K

F (K)

)
+pα

′·p
(

L

F (L)

)
⊇ (1− α′)

(
K

F (K)

)
+α′

(
L

F (L)

)
.

Hence, from the definition of α′, the above inclusion together with the
monotonicity of F , the concavity of F , and the positive homogeneity of F ,
it follows that

F

((
1− α

(1− α)F (K)p + αF (L)p

)
·pK+p

(
α

(1− α)F (K)p + αF (L)p

)
·pL
)

= F

(
(1− α′)·p

(
K

F (K)

)
+pα

′·p
(

L

F (L)

))
≥ F

(
(1− α′)

(
K

F (K)

)
+ α′

(
L

F (L)

))
≥ (1− α′)F

(
K

F (K)

)
+ α′F

(
L

F (L)

)
= (1− α′) + α′

= 1.

This establishes inequality (3.2). Therefore, inequality (3.1) holds.
Finally, under the additional assumption that F is strictly increasing on

Kno , we aim to prove the equality condition. Note that the strict monotonicity
and positive homogeneity of F imply that F is positive on Kno .
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Assume that equality holds in (3.1). Then

F

(
(1− α′)·p

(
K

F (K)

)
+pα

′·p
(

L

F (L)

))
= F

(
(1− α′)

(
K

F (K)

)
+ α′

(
L

F (L)

))
.

By the strict monotonicity of F , this implies that

(1− α′)·p
(

K

F (K)

)
+pα

′·p
(

L

F (L)

)
= (1− α′)

(
K

F (K)

)
+ α′

(
L

F (L)

)
.

This equation, combined with Lemma 2.2, implies that

K

F (K)
=

L

F (L)
,

which shows that K and L are dilates.
Conversely, assume that K and L are dilates, say K = βL, for some

constant β > 0. From the definition of Lp combination of convex bodies,

(1− α)·pK+pα·pL = (1− α)·p(βL)+pα·pL

= (1− α)
1

pβL+pα
1

pL

= ((1− α)βp + α)
1

pL.

From this and the positive homogeneity of F , it follows that

F ((1− α)·pK+pα·pL)p = F
(

((1− α)βp + α)
1

pL
)p

= (1− α)βpF (L)p + αF (L)p

= (1− α)F (βL)p + αF (L)p

= (1− α)F (K)p + αF (L)p,

which shows that equality holds in (3.1). �

Theorem 3.1 immediately yields the following corollary.

Corollary 3.2. Suppose that F : Kn → [0,∞) is positively homogeneous,
increasing and concave, and p ∈ (1,∞). If K,L ∈ Kno , then

(3.3) F (K +p L)p ≥ F (K)p + F (L)p.

Furthermore, if F : Kno → [0,∞) is strictly increasing, equality holds in (3.3)
if and only if K and L are dilates.
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Proof. Let α ∈ (0, 1). From the definition of Lp scalar multiplication, Theo-
rem 3.1 and the positive homogeneity of F , it follows that

F (K+pL)p = F
(

(1− α)·p((1− α)−
1

pK)+pα·p(α−
1

pL)
)p

≥ (1− α)F
(

(1− α)−
1

pK
)p

+ αF
(
α−

1

pL
)p

= F (K)p + F (L)p,

which is precisely (3.3). If the monotonicity of F is strict, equality holds
in the second line if and only if (1− α)−1/pK and α−1/pL are dilates, and
therefore if and only if K and L are dilates. �

For convex bodies K,L ∈ Kn, their Hausdorff distance is

δH(K,L) = max{|hK(u)− hL(u)| : u ∈ Sn−1}.

From the definition of Lp addition, we have K +p L→ K +∞ L, as p→∞.
Assume functional F in Theorem 3.1 (or Corollary 3.2) is continuous with
respect to δH . Then by the monotonicity of F and the definition of K +∞ L,
letting p→∞, inequality (3.1) (or (3.3)) yields

F (K +∞ L) ≥ max{F (K), F (L)}.

Furthermore, if F is strictly increasing, equality holds if and only if either
K or L is a subset of the other set.

By the Lp transference principle, we can immediately obtain the Lp
Brunn-Minkowski type inequality for quermassintegrals first established by
Firey [9].

Example 3.3. For a convex body K ∈ Kn, its quermassintegrals W0(K),
W1(K), . . ., Wn−1(K) are defined by W0(K) = Vn(K), and

Wn−j(K) =
ωn
ωj

∫
Gn,j

Vj(K|ξ)dµj(ξ), j = 1, . . . , n− 1.

Now, the functional

Wn−j
1

j : Kn → (0,∞), K 7→Wn−j(K)
1

j

is positively homogeneous and increasing. A Brunn-Minkowski inequality for
Wn−j reads as follows: If K,L ∈ Kn and 0 < α < 1, then

Wn−j((1− α)K + αL)
1

j ≥ (1− α)Wn−j(K)
1

j + αWn−j(L)
1

j ,
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with equality if and only if K and L are homothetic. So, Wn−j
1/j is concave.

See, e.g., Gardner [10, p. 393].
Thus, by Corollary 3.2, we directly obtain Firey’s Lp Brunn-Minkowski

inequality for quermassintegrals: If K,L ∈ Kno and 1 < p <∞, then

(3.4) Wn−j(K +p L)
p

j ≥Wn−j(K)
p

j +Wn−j(L)
p

j .

From the definition of Wn−j and Lemma 2.3, we know that Wn−j
1/j is

strictly increasing. Hence, equality holds in (3.4) if and only if K and L are
dilates.

3.2. Characterizations of equality conditions

For many Lp Brunn-Minkowski type inequalities, equality only occurs when
the convex bodies are dilates. This phenomenon can be completely charac-
terized.

Theorem 3.4. Suppose that F : Kn → [0,∞) is positively homogeneous,
increasing and concave, and p ∈ (1,∞). Then the following assertions are
equivalent.
(1) For K,L ∈ Kno , the function Fp;K,L is affine if and only if K and L are
dilates.
(2) When restricted to Kno , the functional F is strictly increasing.

Proof. The implication “(2)⇒ (1)” is shown by Theorem 3.1. Next, we
prove the implication “(1)⇒ (2)” by contradiction. Assume that there exist
K0, L0 ∈ Kno such that K0 ( L0 but F (K0) = F (L0).

For any α ∈ (0, 1), let Kα = (1− α) ·p K0 +p α ·p L0. Then

K0 ⊂ Kα ⊂ L0.

By the monotonicity of F , we have

F (K0) ≤ F (Kα) ≤ F (L0).

This, together with the assumption F (K0) = F (L0), yields

F (Kα)p = (1− α)F (K0)p + αF (L0)p.

Thus, assertion (1) implies that K0 and L0 are dilates, say K0 = βL0,
for some β > 0. From the positive homogeneity of F and the assumption
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F (K0) = F (L0) again, we have

F (K0) = F (βL0) = βF (L0) = F (L0).

Note that F is strictly positive. So, β = 1, and therefore

K0 = L0,

which contradicts the assumption that K0 6= L0. �

We say F is translation invariant if F (K + x) = F (x) for all x ∈ Rn.

Theorem 3.5. Suppose that F : Kn → [0,∞) is translation invariant, pos-
itively homogeneous, increasing and concave, and p ∈ (1,∞). Then the fol-
lowing assertion (1) implies assertion (2).
(1) For K,L ∈ Kn, the function F1;K,L is affine if and only if K and L are
homothetic.
(2) For K,L ∈ Kno , the function Fp;K,L is affine if and only if K and L are
dilates.

Proof. Suppose that (1) holds but (2) does not hold, specifically that there
exists an α0 ∈ (0, 1) and K0, L0 ∈ Kno , which are not dilates, such that

F ((1− α0) ·p K0 +p α0 ·p L0)p = (1− α0)F (K0)p + α0F (L0)p.

Let

α1 =
α0F (L0)p

(1− α0)F (K0)p + α0F (L0)p
,

A0 =
K0

F (K0)
,

A1 =
L0

F (L0)
,

and

A(r) = (1− α1)·rA0+rα1·rA1, for 1 ≤ r ≤ p.

Clearly, F (A0) = F (A1) = 1.
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From Lemma 2.2 and the monotonicity of F , we have

F ((1− α1)·pA0+pα1·pA1) ≥ F ((1− α1)A0 + α1A1)

≥ (1− α1)F (A0) + α1F (A1).

Meanwhile, the assumptions yield

(3.5) F ((1− α1)·pA0+pα1·pA1) = (1− α1)F (A0) + α1F (A1).

Hence,

(3.6) F ((1− α1)A0 + α1A1) = (1− α1)F (A0) + α1F (A1).

Thus, from assertion (1), there exist λ0 > 0 and x0 ∈ Rn such that

A0 = λ0A1 + x0.

But then, from the positive homogeneity, translation invariance and
strict positivity of F , we have

F (A1) = F (A0)

= F (λ0A1 + x0)

= λ0F (A1).

Thus, λ0 = 1.
With A0 = A1 + x0 in hand, for u ∈ Sn−1 and 1 ≤ r ≤ p, we have

hA(r)(u) = [(1− α1)(hA1
(u) + x0 · u)r + α1hA1

(u)r]
1

r

and

hA1
(u) + x0 · u > 0.

Thus, for u ∈ Sn−1, two observations are in order.
First, if u · x0 = 0, then for 1 ≤ r1 ≤ r2 ≤ p,

hA(1)(u) = hA(r1)(u) = hA(r2)(u) = hA(p)(u).

Second, if u · x0 6= 0, then the strict convexity of power functions implies
that for 1 < r1 < r2 < p,

hA(1)(u) < hA(r1)(u) < hA(r2)(u) < hA(p)(u).

Consequently, for 1 ≤ r1 < r2 ≤ p, we conclude that
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(a) A(1) ⊆ A(r1) ⊆ A(r2) ⊆ A(p) and
(b) A(r1) and A(r2) are not homothetic.

Now, from (a) it follows that for β ∈ (0, 1),

A(1) ⊆ (1− β)A(1) + βA(p) ⊆ A(p).

Meanwhile, by (3.5) and (3.6), we have

F ((1− α1)A0 + α1A1) = F ((1− α1) ·p A0 +p α1 ·p A1) ,

i.e.,

F
(
A(1)

)
= F

(
A(p)

)
.

Thus, by the monotonicity of F , we obtain

F
(

(1− β)A(1) + βA(p)
)

= F
(
A(1)

)
= F

(
A(p)

)
= (1− β)F

(
A(1)

)
+ βF

(
A(p)

)
.

Hence, from assertion (1), A(1) and A(p) are homothetic. However, this con-
tradicts (b). �

Example 3.6. The implication “(2)⇒ (1)” stated in Theorem 3.5 does
not always hold. This is demonstrated by the following example, which deals
with mean width of convex bodies.

Let n ≥ 2 and r < 1, r 6= 0. Define F : Kn → [0,∞) by

F (K) =

(∫
Sn−1

wK(u)rdHn−1(u)

) 1

r

,

where wK(u) = hK(u) + hK(−u), for u ∈ Sn−1, is the width function of K.
It is obvious that F is translation invariant and positively homogeneous.

Minkowski’s integral inequality (see [19, Theorem 198]) directly yields

F ((1− α)K + αL) ≥ (1− α)F (K) + αF (L), for α ∈ (0, 1),

with equality if and only if wK = λwL for some constant λ > 0. Note that
this may hold without K and L being homothetic, for example if K = Bn

and L is a non-spherical convex body of the same constant width.
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Thus, by the Lp transference principle, we obtain

(3.7) F ((1− α)·pK+pα·pL)p ≥ (1− α)F (K)p + αF (L)p,

for any K,L ∈ Kno , α ∈ (0, 1), and p ∈ (1,∞).
Finally, we prove that equality holds in (3.7) if and only if K and L are

dilates. By Theorem 3.4, it suffices to prove that F is strictly increasing.
Note that wK = hK−K , for K ∈ Kno , and (K −K) ⊂ (L− L), for any

L ∈ Kno containing K. Hence, if K ( L, then from continuity of support
functions, there is a nonempty open subset U ⊆ Sn−1, such that wK(u) <
wL(u), for all u ∈ U . Thus, F (K) < F (L), for K,L ∈ Kno with K ( L. That
is, the functional F is strictly increasing on Kno .

Hence, the functional F has the required properties.

4. Applications of the Lp transference principle

In this section, we aim to demonstrate the effectiveness and practicability
of the Lp transference principle. As illustrations, several new Lp Brunn-
Minkowski type inequalities are established.

4.1. An application to mixed volumes

The mixed volume V : Kn → [0,∞) is a nonnegative and symmetric func-
tional such that

Vn (λ1K1 + · · ·+ λmKm) =

m∑
i1,··· ,in=1

V (Ki1 , . . . ,Kim)λi1 · · ·λim ,

for K1, . . . ,Km ∈ Kn and λ1, . . . , λm > 0. See, e.g., Schneider [36, Chapter
5].

Write V (K, j;Kj+1, . . . ,K) for mixed volume V (K, . . . ,K,Kj+1, . . . ,Kn)
with j copies of K. If j = n, then V (K, j;Kj+1, . . . ,Kn) is Vn(K). The clas-
sical Brunn-Minkowski inequality has a natural extension to mixed volumes
as follows (see, e.g., Schneider [36, Theorems 7.4.5, 7.4.6 and 7.6.9]).

Proposition 4.1. Suppose K,L,Kj , . . . ,Kn ∈ Kn, and j ∈ {2, . . . , n}. Then

V (K + L, j;Kj+1, . . . ,Kn)
1

j ≥ V (K, j;Kj+1, . . . ,Kn)
1

j

+ V (L, j;Kj+1, . . . ,Kn)
1

j .
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If j = n, or if 2 ≤ j ≤ n− 1 and Kj+1, . . . ,Kn are smooth, then equality
holds if and only if K and L are homothetic.

From Proposition 4.1 and the Lp transference principle, we obtain the
following result.

Theorem 4.2. Suppose K,L ∈ Kno , Kj , . . . ,Kn ∈ Kn, p ∈ (1,∞), and j ∈
{2, . . . , n}. Then

V (K+pL, j;Kj+1, . . . ,Kn)
p

j ≥ V (K, j;Kj+1, . . . ,Kn)
p

j

+ V (L, j;Kj+1, . . . ,Kn)
p

j .

If j = n, or if 2 ≤ j ≤ n− 1 and Kj+1, . . . ,Kn are smooth, then equality
holds if and only if K and L are dilates.

If j = n, then the previous inequality reduces to (1.2). If 1 ≤ j ≤ n− 1
and Kj+1 = · · · = Kn = Bn, then the previous inequality becomes (3.4).

Proof. We only need consider the case 1 ≤ j ≤ n− 1. For K ∈ Kn, define

F (K) = V (K, j;Kj+1, . . . ,Kn)
1

j .

Then F is positively homogeneous and increasing (see, e.g., Schneider [36,
(5.25), p. 282]). Since convex bodies are n-dimensional, from Theorem 5.1.8
of Schneider [36, p. 283], F is strictly positive. Meanwhile, Proposition 4.1
implies that F is concave.

Hence, from the Lp transference principle, it follows that

(4.1) F ((1− α) ·p K +p α ·p L)p ≥ (1− α)F (K)p + αF (L)p,

for K,L ∈ Kno and 0 < α < 1.
Assume 2 ≤ j ≤ n− 1, and the bodies Kj+1, . . . ,Kn are smooth. Note

that F is translation invariant. Thus, by Proposition 4.1 and Theorem 3.5,
equality holds in (4.1) if and only if K and L are dilates. �

4.2. An application to moments of inertia

From classic mechanics, we know that for each convex body K in Rn, its
moment of inertia, I(K), is defined by

I(K) =

∫
K
|x− cK |2dx,
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where cK denotes the centroid of K.
Proposition 4.3 was originally established by Hadwiger [17].

Proposition 4.3. Suppose K,L ∈ Kn. Then

I(K + L)
1

n+2 ≥ I(K)
1

n+2 + I(L)
1

n+2 .

From Proposition 4.3 and the Lp transference principle, we obtain the
following result.

Theorem 4.4. Suppose that K,L ∈ Kno are origin-symmetric and 1 < p <
∞. Then

(4.2) I(K +p L)
p

n+2 ≥ I(K)
p

n+2 + I(L)
p

n+2 ,

with equality if and only if K and L are dilates.

Proof. For K ∈ Kn, define

F (K) = I(K)
1

n+2 .

Obviously, F is positively homogeneous. From Proposition 4.3, F is concave.
Moreover, ifK is origin-symmetric, then the centroid cK ofK is at the origin,
and then

F (K) =

(∫
K
|x|2dx

) 1

n+2

.

When the domain of F is restricted to the subset Kno,s ⊆ Kno , the class of
origin-symmetric convex bodies, then F : Kno,s → (0,∞) is strictly increas-
ing.

Hence, from the Lp transference principle, we obtain the theorem. �

For an origin-symmetric convex body K, its isotropic constant LK is
defined by

(4.3) LK
2 =

1

n
min

{
I(TK)

Vn(K)
n+2

n

: T ∈ SL(n)

}
.

For more information on isotropic constants, we refer to Milman and Pajor
[31].

From (4.2) and (4.3), we obtain the following result.
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Corollary 4.5. Suppose that K0,K1 ∈ Kno are origin-symmetric, and 1 ≤
p <∞. Then

Vn(K0+pK1)
p

nLK0+pK1

2p

n+2 ≥ Vn(K0)
p

nLK0

2p

n+2 + Vn(K1)
p

nLK1

2p

n+2 .

4.3. An application to affine quermassintegrals

For a convex body K ∈ Kn, Hadwiger [18, p. 267] introduced the harmonic
quermassintegrals Ŵ0(K), Ŵ1(K), . . ., Ŵn−1(K), defined by Ŵ0(K) =
Vn(K), and

Ŵj(K) =
ωn
ωn−j

(∫
Gn,n−j

Vn−j(K|ξ)−1dµn−j(ξ)

)−1

, j = 1, . . . , n− 1.

See also Gardner [11, p. 382], Schneider [36, p. 514], and Lutwak [20, 22].
Nearly thirty years later, Lutwak [20, 22] introduced the affine quermassin-
tegrals Φ0(K), Φ1(K), . . ., Φn−1(K), defined by Φ0(K) = Vn(K), and

Φj(K) =
ωn
ωn−j

(∫
Gn,n−j

Vn−j(K|ξ)−ndµn−j(ξ)

)− 1

n

, j = 1, . . . , n− 1.

Note that all the Φj(K) are affine invariant, i.e., Φj(TK) = Φj(K), for all
T ∈ SL(n). See Grinberg [15]. For more information, we refer to Gardner
[13] and Dafnis and Paouris [7].

Hadwiger [18, p. 268] and Lutwak [20] established the following Brunn-
Minkowski type inequalities for harmonic quermassintegrals and affine quer-
massintegrals, respectively.

Proposition 4.6. Suppose K,L ∈ Kn and j ∈ {1, . . . , n− 1}. Then

Ŵj(K + L)
1

n−j ≥ Ŵj(K)
1

n−j + Ŵj(L)
1

n−j

and

Φj(K + L)
1

n−j ≥ Φj(K)
1

n−j + Φj(L)
1

n−j .

If j = n− 1, equality holds in each inequality if and only if wK = λwL for
some constant λ > 0. If 1 ≤ j < n− 1, equality holds in each inequality if
and only if K and L are homothetic.

From Proposition 4.6 and the Lp transference principle, we obtain the
following result.
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Theorem 4.7. Suppose K,L ∈ Kno and 1 < p <∞. Then

Ŵj(K +p L)
p

n−j ≥ Ŵj(K)
p

n−j + Ŵj(L)
p

n−j

and

Φj(K +p L)
p

n−j ≥ Φj(K)
p

n−j + Φj(L)
p

n−j .

Equality holds in each inequality if and only if K and L are dilates.

Proof. We prove this theorem for affine quermassintegrals. The proof for
harmonic quermassintegrals is similar. For K ∈ Kn, define

F (K) = Φj(K)
1

n−j .

Then F is positively homogeneous. From the definition of Φj and Lemma
2.3, F is strictly increasing. From Proposition 4.6, F is concave. Hence, from
the Lp transference principle and Theorem 3.4, we obtain the theorem . �

4.4. An application to projection bodies

For a convex body K ∈ Kn, its mixed projection bodies Π0K, Π1K, . . .,
Πn−1K are defined by

hΠiK(u) = W
(n−1)
i (K|u⊥),

for u ∈ Sn−1 and i ∈ {0, 1, . . . , n− 1}, where W
(n−1)
i (K|u⊥) denotes the ith

quermassintegral of K|u⊥ defined in the subspace u⊥. For more information
about mixed projection bodies, we refer to Gardner [11, p. 185], Lutwak
[21, 23], Parapatits and Schuster [33], and Schneider [36, p. 578].

In [23], Lutwak established the following Brunn-Minkowski type inequal-
ity for projection bodies.

Proposition 4.8. Suppose K,L ∈ Kn, j ∈ {1, . . . , n}, and k ∈ {1, . . . , n−
1}. Then

Wn−j(Πn−1−k(K + L))
1

jk ≥Wn−j(Πn−1−kK)
1

jk +Wn−j(Πn−1−kL)
1

jk ,

with equality if and only if K and L are homothetic.

From Proposition 4.8 and the Lp transference principle, we obtain the
following result.
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Theorem 4.9. Suppose K,L ∈ Kno , j ∈ {1, . . . , n}, k ∈ {1, . . . , n− 1}, and
p ∈ (1,∞). Then

(4.4) Wn−j(Πn−1−k(K +p L))
p

jk ≥Wn−j(Πn−1−kK)
p

jk +Wn−j(Πn−1−kL)
p

jk ,

with equality if and only if K and L are dilates.

Proof. Some facts about mixed projection bodies are in order.
First, for each K ∈ Kn, the compact convex set Πn−1−kK is a convex

body. Indeed, for all u ∈ Sn−1, since K|u⊥ is (n− 1)-dimensional, it follows

that W
(n−1)
n−1−k(K|u

⊥) > 0, i.e., hΠn−1−kK(u) > 0.

Second, Πn−1−k(λK) = λkΠn−1−kK, for all λ > 0. Indeed, for all u ∈
Sn−1,

hΠn−1−k(λK)(u) = W
(n−1)
n−1−k

(
(λK)|u⊥

)
= λkW

(n−1)
n−1−k

(
K|u⊥

)
= λkhΠn−1−k(λK)(u).

Third, if K,L ∈ Kn and K ⊆ L, then Πn−1−kK ⊆ Πn−1−kL. Indeed, for

all u ∈ Sn−1, since K|u⊥ ⊆ L|u⊥, it follows that W
(n−1)
n−1−k(K|u

⊥) ≤
W

(n−1)
n−1−k(L|u

⊥), i.e., hΠn−1−kK(u) ≤ hΠn−1−kL(u).
Fourth, Πn−1−k(K + x) = Πn−1−kK, for all x ∈ Rn. Indeed, for all u ∈

Sn−1,

hΠn−1−k(K+x)(u) = W
(n−1)
n−1−k

(
(K + x)|u⊥

)
= W

(n−1)
n−1−k

(
K|u⊥ + x|u⊥

)
= W

(n−1)
n−1−k

(
K|u⊥

)
= hΠn−1−kK(u).

Hence, the functional F = Wn−j(Πn−1−k(·))1/jk over Kn is strictly pos-
itive, positively homogeneous, increasing, and translation invariant. Mean-
while, Proposition 4.8 implies that F is concave.

Hence, from the Lp transference principle and Proposition 4.8 together
with Theorem 3.5, we obtain the theorem. �
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4.5. An application to capacities

The q-capacity of a convex body K in Rn, for 1 ≤ q < n, is

Capq(K) = inf

{∫
Rn
|∇f |qdx

}
,

where the infimum is taken over all nonnegative functions f such that
f ∈ L

nq

n−q (Rn), ∇f ∈ Lq(Rn;Rn), and K is contained in the interior of {x :
f(x) ≥ 1}.

The following is the remarkable capacitary Brunn-Minkowski inequality.

Proposition 4.10. Suppose K,L ∈ Kn, and 1 ≤ q < n. Then

(4.5) Capq(K + L)
1

n−q ≥ Capq(K)
1

n−q + Capq(L)
1

n−q ,

with equality if and only if K and L are homothetic.

Borell [3] first established (4.5) for the case q = 2 (the Newtonian capac-
ity), and the equality condition was proved by Caffarelli, Jerison, and Lieb
[5]. When 1 < q < n, the inequality was proved by Colesanti and Salani [6].
The case q = 1 is just the Brunn-Minkowski inequality for surface area of
convex bodies:

W1(K + L)
1

n−1 ≥W1(K)
1

n−1 +W1(L)
1

n−1 , K, L ∈ Kn,

due to the fact Cap1(K) = Hn−1(∂K) = nW1(K), for K ∈ Kn.
For more information on the role of capacity in the Brunn-Minkowski

theory and its dual, we refer to Gardner and Hartenstine [12] and the refer-
ences within.

From Proposition 4.10 and the Lp transference principle, we obtain the
following result.

Theorem 4.11. Suppose K,L ∈ Kno , 1 ≤ q < n, and 1 < p <∞. Then

Capq(K+pL)
p

n−q ≥ Capq(K)
p

n−q + Capq(L)
p

n−q ,

with equality if and only if K and L are dilates.
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Proof. From Evans and Gariepy [8, pp. 150–151], the functional

F = Capq(·)
1

n−q : Kn → (0,∞)

is positively homogeneous, increasing, and translation invariant. Meanwhile,
Proposition 4.10 implies that F is concave.

Hence, from the Lp transference principle and Proposition 4.10 together
with Theorem 3.5, Theorem 4.11 is obtained. �
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