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A heat flow problem from Ericksen’s

model for nematic liquid crystals with

variable degree of orientation

Chi-Cheung Poon

We study a heat flow problem for nematic liquid crystals with
variable degree of orientation which is basically the harmonic heat
flow into the round cone with a lower order term.

1. Introduction

In Ericksen’s model for liquid crystal, the local molecular orientation is de-
scribed by a pair (s, n), where n is a unit vector in R3, called the director,
and s is a scalar, called the order parameter. The value of the order param-
eter s is usually restricted to the interval (−1

2 , 1). After a choice of material
constants, the Helmholtz free energy is given by

(1.1) W1 =
1

2
k1|∇s|2 +

1

2
k2s

2|∇n|2 +W (s),

where W (s) is a smooth double-well potential function satisfying

lim
s→− 1

2

+
W (s) =∞, and lim

s→1−
W (s) =∞.

In this paper, we assume that 0 < k2 < k1. An important observation is that,
if we let

u =

√
k1 − k2

k2
sn,

then (s, u) is a point on the cone

C(K) = {(s, u) ∈ R×R3 : Ks2 = |u|2}, with K =
k1 − k2

k2
.

Moreover, the energy function can be written as

W1 =
k1 − k2

2

(
|∇s|2 + |∇u|2

)
+W (s).
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It has been shown that for any K > 0, any energy minimizer, (s, u), of the
functional ∫

Ω

(
1

2
(|∇s|2 + |∇u|2) +W (s)

)
dx

among maps into C(K) with Dirichlet boundary data is of Cα and the dimen-
sion of the singular set {x : s(x) = 0} is at most m− 2, see [4]. The purpose
of the present paper is to study the corresponding heat flow problem. In the
absence of a flow for the liquid crystal molecules, the evolution equations
for s and n are

(1.2)

β(s)st = div

{
∂W1

∂∇s

}
− ∂W1

∂s
−W ′(s),

γ(s)nt × n =

(
div

{
∂W1

∂∇n

}
− ∂W1

∂n

)
× n,

see [1] p 1035. As in [1], we set

β(s) = 2 and γ(s) =
k2

k3
s2.

Using (1.1), we may rewrite the system (1.2) as

(1.3)
2st = k1∆s− k2|∇n|2s−W ′(s)
s2nt = k3div(s2∇n) + k3s

2|∇n|2n.

In [1], it was proved that large time solutions for (1.3) exist, if the di-
rector n is planar, i.e., n always takes the form n = (cos θ, sin θ, 0). Here, we
would like to prove the existence of large time solutions without the planar
assumption. In order to simplify the computations, we let

(1.4) k1 − k2 = k2.

After a scaling in time, we may assume that k1 = 2. Also, we let

(1.5) k1 = 2k3

so that the system (1.3) is more or less the harmonic map equations into
the cone C, where

C = C(1) = {(s, u) ∈ R×R3 : s2 = |u|2}.

This implies that k2 = 1, by (1.4). As in the above, let u = sn. We note
that s2|∇n|2 = |∇u|2 − |∇s|2. From (1.3), the equations for s and u can be
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A heat flow problem from Ericksen’s model 413

written as

(1.6)
st = ∆s− |∇u|

2 − |∇s|2

2s2
s−W ′(s)

ut = ∆u+
|∇u|2 − |∇s|2

2s2
u− W ′(s)

s
u.

We wish to find a solution of the system (1.6) with initial-boundary condi-
tions

(s(x, t), u(x, t)) = (g(x), h(x)), x ∈ ∂Ω, t > 0,(1.7)

(s(x, 0), u(x, 0)) = (g(x), h(x)), x ∈ Ω,(1.8)

where (g, h) is a Lipschitz map from Ω to C, i.e., g2(x) = |h(x)|2 for all
x ∈ Ω. Due to technical reasons, we need to assume that W (s) = F (s2) for
s ∈ (−1, 1), and

lim
τ→1−

F (τ) =∞.

For detailed assumptions, see section 2 below. Our existence result is:

Theorem 1.1. Let Ω be a bounded domain in Rm with smooth boundary.
Let (g, h) be a Lipschitz map from Ω into the cone C and maxx |g(x)| <
1 for x ∈ Ω̄. There is a continuous map (s, u) : Ω× [0,∞)→ C such that
at any point (x0, t0) where t0 > 0 and s(x0, t0) 6= 0, (s, u) is a solution of
(1.6) in a neighborhood of (x0, t0). Also, (s, u) satisfies the initial-boundary
conditions, (1.7) and (1.8), in the sense of trace. Furthermore, there is a
sequence tj such that tj →∞ as j →∞ and (s(x, tj), u(x, tj)) converges a
map (s0(x), u0(x)) uniformly on compact subsets in Ω. For each point x0 ∈ Ω
where s0(x0) 6= 0, in a neighborhood of x0, (s0, u0) is a stationary solution
of the system (1.6), and (s0, u0) satisfies the boundary condition(1.7) in the
sense of trace.

We employ the penalization scheme in [2]. Let (sK , uK) be solutions of
the system

∂tsK = ∆sK − 2K(s2
K − |uK |2)s− 2F ′KsK ,

∂tuK = ∆uK + 2K(s2
K − |uK |2)uK − 2F ′KuK ,

with initial-boundary data same as (1.7) and (1.8). We will prove that the
maps (sK , uK) are equicontinuous on each compact subsets in Ω× (0,∞).
Thus, a suitable sequence will converge to a map (s, u) with properties men-
tioned in the theorem. However, we do not obtain boundary regularity for
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(sK , uK). Theorem 1.1 is also true when assuming (1.5) but without the
assumption (1.4). In that case, we need to consider maps into the cone C(K)
with K 6= 1. The method is the same. In [1], assumption (1.5) is not needed
and the assumption on the potential function W is less restricted.

We will also prove the following:

Theorem 1.2. Let t0 > 0. Either s(x, t0) = 0 for all x ∈ Ω, or s(x, t0) can-
not vanish of infinite order at any point in Ω.

The proof is a refinement of the arguments in [5]. We cannot eliminate
the possibility that s(x, t) may vanish identically on a time slice, even though
we assume that the function g(x) is not identically zero on ∂Ω. It is due to
the fact that we do not have the proper boundary regularity theory.

For the comparison between Ericksen’s model and Oseen-Frank model
for nematic liquid crystal, one may read [3]. The reader can also find the
introduction section in [1] very helpful.

2. Approximating solutions and monotonicity formulas

Our assumptions on the potential function W are:

(2.1) W (s) = F (s2)

for some non-negative, C2 function F defined on [0, 1), F (0) = 0, F ′(τ) and
F ′′(τ) are bounded when τ → 0+ and

lim
τ→1−

F (τ) =∞, lim
τ→1−

F ′(τ) =∞.

Also we assume that there is s∗ ∈ (0, 1) such that

F ′(τ) ≥ 0 and F ′′(τ) ≥ 0 for τ ∈ (s∗, 1).

Let Ω be a bounded domain in Rm with smooth boundary. Let (g, h) be
a Lipschitz map from Ω to the cone C. We assume that there are constants
g∗ such that

|g(x)| ≤ g∗ < 1 for x ∈ Ω.

For each K > 0, we consider the heat flow problem

(2.2)
∂tsK = ∆sK − 2K(s2

K − |uK |2)s− 2F ′KsK ,

∂tuK = ∆uK + 2K(s2
K − |uK |2)uK − 2F ′KuK ,
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with initial-boundary data same as (1.7) and (1.8). Here, we write

F ′K = F ′
(
s2
K + |uK |2

2

)
.

Let (sK , uK) be a solution of the problem on Ω× (0, TK). It is easy to
compute that

∂t(s
2
K + |uK |2) = ∆(s2

K + |uK |2)− 2
(
|∇sK |2 + |∇uK |2

)
(2.3)

− 4K(s2
K − |uK |2)2 − 4F ′K(s2

K + |uK |2).

If s2
K + |uK |2 attains an interior maximum at (x̄K , t̄K) ∈ Ω× (0, TK), then

by (2.3), we must have F ′
(

(s2K+|uK |2)(x̄K ,t̄K)
2

)
≤ 0 and it implies that (s2

K +

|uK |2)(x̄K , t̄K) ≤ 2s∗. Thus, we obtain

sup{(s2
K + |uK |2)(x, t) : (x, t) ∈ Ω× (0, TK)}(2.4)

≤ max
{

2s∗, 2g
2
∗
}

= M0.

It is easy to see that M0 < 2 and is independent of K. Hence, the solution
(sK , uK) can be extended to a solution in Ω× (0,∞). Furthermore, it is easy
to check that

d

dt

∫
Ω

(
|∇sK |2 + |∇uK |2 +K(s2

k − |uK |2)2 + 2FK
)
dx(2.5)

= −2

∫
Ω

(|∂tsK |2 + |∂tuK |2)dx,

where

FK = F

(
s2
K + |uK |2

2

)
.

It follows from (2.5) that for t > 0,∫
Ω

(
|∇sK |2 + |∇uK |2 +K(s2

k − |uK |2)2 + 2FK
)

(x, t)dx(2.6)

≤
∫

Ω

(
|∇g(x)|2 + |∇h(x)|2 + 2F (g2(x))

)
dx = E0.

Fix x0 ∈ Ω and t0 > 0. Choose R > 0 such that B(x0; 2R) ⊂ Ω, where
B(x0;R) = {x : |x− x0| < R}. Let ξ(x) be a cutoff function such that ξ = 0
outside B(x0; 2R), and ξ = 1 inside B(x0;R), and |∇ξ| ≤ C/R, and |∇2ξ| ≤
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C/R2. For 0 < t < t0, we define

eK(x, t) = |∇sK(x, t)|2 + |∇uK(x, t)|2 +K(s2
K(x, t)− |uK(x, t)|2)2,(2.7)

EK(t;x0, t0) = |t− t0|
∫

Ω
eK(x, t)ξ2(x)G(x, t;x0, t0)dx,(2.8)

IK(t;x0, t0) =

∫
Ω

(s2
K(x, t) + |uK(x, t)|2)ξ2(x)G(x, t;x0, t0)dx.(2.9)

Here, G(x, t;x0, t0) is the backward heat kernel on Rm: for t < t0,

G(x, t;x0, t0) =
1

|t− t0|m/2
exp

(
|x− x0|2

4(t− t0)

)
.

We write

P (x0, t0;R) = {(x, t) : |x− x0| < R, t0 −R2 < t < t0}.

Proposition 2.1. Suppose that P (x0, t0; 2R) ⊂ Ω× (0,∞). When t ∈ (t0 −
R2, t0),

− |t− t0|
d

dt
IK(t;x0, t0)(2.10)

≥ 2EK(t;x0, t0)− C|t− t0|IK(t)− C exp

(
1

6(t− t0)

)
,

− |t− t0|
d

dt
IK(t;x0, t0)(2.11)

≤ 4EK(t;x0, t0) + C|t− t0|IK(t) + C exp

(
1

6(t− t0)

)
,

d

dt
EK(t;x0, t0)(2.12)

≤ −1

2
|t− t0|

∫
Ω

(
∂tsK +∇sK

x− x0

2(t− t0)

)2

ξ2(x)G(x, t : x0, t0)dx

− 1

2
|t− t0|

∫
Ω

(
∂tuK +∇uK

x− x0

2(t− t0)

)2

ξ2(x)G(x, t : x0, t0)dx

+ C|t− t0|IK(t) + C exp

(
1

6(t− t0)

)
,

and C is a positive constant depending on R and m, M0 and E0.

Inequality (2.12) is a variation of the monotonicity formula in [2] and [7].
An important consequence of Proposition 2.1 is Corollary 2.2 below. Similar
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arguments can be found in [4] p458 and [6] p177 when considering elliptic
problems.

Corollary 2.2. Let (x0, t0) be a point in Ω× (0,∞). Let R > 0 be a con-
stant such that B(x0; 2R)× (t0 − (2R)2, t0) ⊂ Ω× (0,∞). Then there is a
positive constant C > 0 such that for 0 < r < R/2, we have

r2−m
∫
B(x0;r)

eK(x, t0)dx ≤ C

ln(R2/r2)
,(2.13)

r2−m
∫∫

P (x0,t0;r)

(
|∂tsK |2 + |∂tuK |2

)
dxdt ≤ C

ln(R2/r2)
.(2.14)

where eK is the function in (2.7). The constant C depends only on m, R,
M0 and E0 only.

We first prove Corollary 2.2.

Proof. We first note that by (2.4), IK(t;x0, t0) ≤M0. By (2.12), for t0 −
R2 ≤ t < t1 < t0, we have

EK(t1;x0, t0) ≤ EK(t;x0, t0) + C|t0 − t|,

where C is a constant depending on m, R, M0 and E0. Hence, we see that∫ t1

t0−R2

EK(t;x0, t0)

t0 − t
dt ≥ ln(R2/(t0 − t1))EK(t1;x0, t0)− C.

Also, by (2.10),∫ t1

t0−R2

EK(t;x0, t0)

t0 − t
dt ≤ 1

2
(IK(t0 −R2;x0, t0)− IK(t1;x0, t0)) + C

≤ M0

2
+ C.

Thus, we see that

(2.15) EK(t1;x0, t0) ≤ C

ln(R2/(t0 − t1))
.

Let t0 be fixed and R > 0 be a number as in the above. For any 0 < r < R,
by (2.15), we have

EK(t0;x0, t0 + r2) ≤ C

ln(R2/r2)
.
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Again, C is a constant depending on m, R, M0 and E0 only. We note that

(2.16) G(x, t0;x0, t0 + r2) ≥ C

rm
for |x| < r.

This implies that

r2−m
∫
B(x0;r)

eK(x, t0)dx ≤ CEK(t0;x0, t0 + r2) ≤ C

ln(R2/r2)
.

By (2.12) and (2.15), we see that for 0 < r < 1
2R,

∫ t0−r2

t0−3r2
|t− t0|

∫
Ω

(
∂tsK +∇sK

x− x0

2(t− t0)

)2

ξ2(x)G(x, t : x0, t0)dxdt

+

∫ t0−r2

t0−3r2
|t− t0|

∫
Ω

(
∂tuK +∇uK

x− x0

2(t− t0)

)2

ξ2(x)G(x, t : x0, t0)dxdt

≤CE(t0 − 3r2;x0, t0) + Cr2 ≤ C

ln(R2/r2)

Using (2.16) again, we have

r2−m
∫ t0−r2

t0−3r2

∫
B(x0;r)

(
∂tsK +∇sK

x− x0

2(t− t0)

)2

dxdt(2.17)

+ r2−m
∫ t0−r2

t0−3r2

∫
B(x0;r)

(
∂tuK +∇uK

x− x0

2(t− t0)

)2

dxdt

≤ C

ln(R2/r2)
.

On the other hand, by (2.13),

r2−m
∫ t0−r2

t0−3r2

∫
B(x0;r)

(∣∣∣∣∇sK x− x0

(t− t0)

∣∣∣∣2 +

∣∣∣∣∇uK x− x0

(t− t0)

∣∣∣∣2
)
dxdt ≤ C

ln(R2/r2)
.

Using this estimate in (2.17), we obtain

r2−m
∫ t0−r2

t0−3r2

∫
B(x0;r)

(
|∂tsK |2 + |∂tuK |2

)
dxdt ≤ C

ln(R2/r2)
.

Now, replace t0 by t0 − r2, we conclude that (2.14) holds. �
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Now, we begin the proof of Proposition 2.1. After a translation, we
assume that x0 = 0 and t0 = 0 and we write EK(t), IK(t), andG(x, t) instead
of EK(t; 0, 0), IK(t; 0, 0) and G(x, t; 0, 0). We observe that

Gt + ∆G = 0, and ∇G =
x

2t
G.

We first compute I ′K :

I ′K(t) =

∫
Ω

(
(2sK∂tsK + 2uK∂tuK)ξ2G− (s2

K + |uK |2)ξ2∆G
)
dx(2.18)

= 2

∫
Ω

(
sK

(
∂tsK +

x

2t
∇sK

)
+ uK

(
∂tuK +

x

2t
∇uK

))
ξ2Gdx

+ 2

∫
Ω

(s2
K + |uK |2)ξ

( x
2t
∇ξ
)
Gdx.

By equations (2.2), we have

I ′K(t) = 2

∫
Ω

(sK∆sK + uK∆uK − 2K(s2
K − |uK |2)2)ξ2Gdx

+ 2

∫
Ω

(
sK

( x
2t
∇sK

)
+ uK

( x
2t
∇uK

))
ξ2Gdx

− 4

∫
Ω
F ′K(s2

K + |uK |2)ξ2Gdx+ 2

∫
Ω

(s2
K + |uK |2)ξ

( x
2t
∇ξ
)
Gdx.

After integrating by parts, we obtain

I ′K(t) = −2

∫
Ω

(|∇sK |2 + |∇uK |2 + 2K(s2
K − |uK |2)2)ξ2Gdx(2.19)

− 4

∫
Ω
F ′K(s2

K + |uK |2)ξ2Gdx

+ 2

∫
Ω

(s2
K + |uK |2)ξ

( x
2t
∇ξ
)
Gdx

− 4

∫
Ω

(sK∇sK + uK∇uK)ξ∇ξGdx.

By (2.4), the term |F ′K | is bounded independent of K. Thus,∣∣∣∣∫
Ω
F ′K(s2

K + |uK |2)ξ2Gdx

∣∣∣∣ ≤ CI(t).
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Furthermore, since

(2.20)

∇ξ(x) = 0 when |x| ≤ R,

G(x, t) ≤ exp

(
R2

4t

)
when |x| ≥ R, t < 0,

we have ∣∣∣∣∫
Ω

(s2
K + |uK |2)ξ

( x
2t
∇ξ
)
Gdx

∣∣∣∣ ≤ C exp

(
1

6t

)
.

The last integral in (2.19) can be written as∫
Ω

4(sK∇sK + uK∇uK)ξ∇ξGdx

=

∫
Ω
∇(s2

K + |uK |2)∇ξ2Gdx

=−
∫

Ω
(s2
K + |uK |2)

(
∆ξ2 + 2ξ

x

2t
∇ξ
)
Gdx.

Thus, using similar arguments as in the above, we also have∣∣∣∣∫
Ω

4(sK∇sK + uK∇uK)ξ∇ξGdx
∣∣∣∣ ≤ C exp

(
1

6t

)
.

From (2.19), we obtain inequalities (2.10) and (2.11) easily.
Next, we compute E′K .

E′K(t) =−
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ2Gdx

+ 2|t|
∫

Ω
(∇sK∇∂tsK +∇uK∇∂tuK) ξ2Gdx

+ 4|t|
∫

Ω
K(s2

K − |uK |2)(sK∂tsK − uK∂tuK)ξ2Gdx

− |t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ2∆Gdx

Using integration by parts, the last integral in the above can be expressed
as
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− |t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ2∆Gdx

= 2|t|
∫

Ω

(
∇sK∇2sK

x

2t
+∇uK∇2uK

x

2t

)
ξ2Gdx

+ 4|t|
∫

Ω
K(s2

K − |uK |2)
(
sK∇sK

x

2t
− uK∇uK

x

2t

)
ξ2Gdx

+ 4|t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ∇ξ x

2t
Gdx

= 2|t|
∫

Ω

(
∇sK∇

(
∇sK

x

2t

)
+∇uK∇

(
∇uK

x

2t

))
ξ2Gdx

+

∫
Ω

(
|∇sK |2 + |∇uK |2

)
ξ2Gdx

+ 4|t|
∫

Ω
K(s2

K − |uK |2)
(
sK∇sK

x

2t
− uK∇uK

x

2t

)
ξ2Gdx

+ 4|t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ∇ξ x

2t
Gdx.

Thus, we see that

E′K(t) = −
∫

Ω
K(s2

K − |uK |2)2ξ2Gdx

+ 2|t|
∫

Ω

(
∇sK∇

(
∂tsK +∇sK

x

2t

)
+∇uK∇

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

+ 4|t|
∫

Ω
K(s2

K − |uK |2)
(
sK

(
∂tsK +∇sK

x

2t

)
−uK

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

+ 4|t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ∇ξ x

2t
Gdx.

We then do integration by parts for the second integral in the above,

2|t|
∫

Ω

(
∇sK∇

(
∂tsK +∇sK

x

2t

)
+∇uK∇

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

=− 2|t|
∫

Ω

(
∆sK +∇sK

x

2t

)(
∂tsK +∇sK

x

2t

)
ξ2Gdx

− 2|t|
∫

Ω

(
∆uK +∇uK

x

2t

)(
∂tuK +∇uK

x

2t

)
ξ2Gdx

− 4|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)
∇sK +

(
∂tuK +∇uK

x

2t

)
∇uK

)
∇ξξGdx



i
i

“5-Poon” — 2018/5/1 — 18:00 — page 422 — #12 i
i

i
i

i
i

422 Chi-Cheung Poon

Next, we apply equation (2.2) to have

2|t|
∫

Ω

(
∇sK∇

(
∂tsK +∇sK

x

2t

)
+∇uK∇

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

=− 2|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)2
+
(
∂tuK +∇uK

x

2t

)2
)
ξ2Gdx

− 4|t|
∫

Ω
K(s2

K − |uK |2)
(
sK

(
∂tsK +∇sK

x

2t

)
−uK

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

− 4|t|
∫

Ω
F ′K

(
sK

(
∂tsK +∇sK

x

2t

)
+ uK

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

− 4|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)
∇sK +

(
∂tuK +∇uK

x

2t

)
∇uK

)
∇ξξGdx

Now, we may write
(2.21)

E′K(t) =−
∫

Ω
K(s2

K − |uK |2)2ξ2Gdx

− 2|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)2
+
(
∂tuK +∇uK

x

2t

)2
)
ξ2Gdx

− 4|t|
∫

Ω
F ′K

(
sK

(
∂tsK +∇sK

x

2t

)
+ uK

(
∂tuK +∇uK

x

2t

))
ξ2Gdx

− 4|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)
∇sK +

(
∂tuK +∇uK

x

2t

)
∇uK

)
∇ξξGdx

+ 4|t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ∇ξ x

2t
Gdx.

Using triangle inequality, we arrive at

E′K(t) ≤− 1

2
|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)2
+
(
∂tuK +∇uK

x

2t

)2
)
ξ2Gdx

+ C|t|
∫

Ω
|F ′K |2

(
s2
K + |uK |2

)
ξ2Gdx

+ C|t|
∫

Ω

(
|∇sK |2 + |∇uK |2

)
|∇ξ|ξGdx

+ 4|t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ|∇ξ| |x|

2|t|
Gdx.
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As before, since |F ′K | is bounded independent of K,∫
Ω
|F ′K |2

(
s2
K + |uK |2

)
ξ2Gdx ≤ CI(t).

By (2.6) and (2.20), for −R2 < t < 0, we have

∫
Ω

(
|∇sK |2 + |∇uK |2

)
|∇ξ|ξGdx ≤ 1

|t|m/2
exp

(
R2

4t

)
E0 ≤ C exp

(
1

6t

)
.

Similarly,∫
Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ|∇ξ| |x|

2|t|
Gdx ≤ C exp

(
1

6t

)
.

The constant C depends only on R, m, M0 and E0 only. This proves (2.12).

3. Convergence of approximating solutions

We need the following proposition to prove the convergence of approximating
solutions.

Proposition 3.1. The maps {(sK , uK) : K > 0} are equicontinuous on each
compact subset of Ω× (0,∞). In fact, if P (x0, t0; 2R) ⊂ Ω× (0,∞), then for
(x1, t1) and (x2, t2) in P (x0, t0;R/4), we have

|sK(x1, t1)− sK(x2, t2)|+ |uK(x1, t1)− uK(x2, t2)| ≤
(

C

ln(R2/ρ2)

)1/2

,

where ρ =
√
|x1 − x2|2 + |t1 − t2|. The constant C depends only on m, R,

M0 and E0.

Proof. The proof is basically the same as the proof for Morrey’s Lemma. Let
(x0, t0) and R > 0 be fixed such that P (x0, t0; 2R) ⊂ Ω× (0,∞). Let (x1, t1)
and (x2, t2) be points in P (x0, t0;R/4) and t2 ≤ t1. Let

x̄ = (x1 + x2)/2, and ρ =
√
|x1 − x2|2 + |t1 − t2|.
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We note that ρ < R. For each x ∈ B(x̄; r), we observe that

|sK(x1, t1)− sK(x, t1)| =
∣∣∣∣∫ 1

0
(x1 − x) · ∇sK(x1 + τ(x− x1), t1)dτ

∣∣∣∣
≤ 4r

∫ 1

0
|∇sK(x1 + τ(x− x1))|dτ.

Let ξ(x) be a non-negative smooth function such that ξ(x) = 1 when x ∈
B(x̄; ρ/2) and ξ(x) = 0 when x lies outside B(x̄; r), and |∇ξ| ≤ C/ρ. After
interchanging the order of integration, we obtain

1

ρn

∫
B(x̄;ρ)

|sK(x1, t1)− sK(x, t1)|ξ(x)dx

≤ 1

ρn

∫
B(x̄;ρ)

|sK(x1, t1)− sK(x, t1)|dx

≤ 4

ρn−1

∫
B(x̄;ρ)

∫ 1

0
|∇sK(x1 + τ(x− x1), t1)|dτdx.

Let y = x1 + τ(x− x1) and x̄τ = x1 + τ(x̄− x1). We note that if x ∈ B(x̄; ρ),
then |y − x̄τ | ≤ τρ, and x̄τ ∈ B(x0;R) for all 0 < τ < 1. Thus, from (2.13),
we have

4

ρn−1

∫
B(x̄;ρ)

∫ 1

0
|∇sK(x1 + τ(x− x1), t1)|dτdx

≤ Cρ1−n
∫ 1

0

∫
B(x̄τ ;τρ)

|∇sK(y, t1)|dydτ

≤ Cρ1−n
∫ 1

0
(τρ)n/2

(∫
B(x̄τ ;τρ)

|∇sK(y, t1)|2dy

)1/2

dτ

≤ Cρ1−n
∫ 1

0
(τρ)n−1

(
1

ln(R2/(τρ)2)

)1/2

dτ

≤ C
(

1

ln(R2/ρ)2

)1/2

.

Let

s̄K(x̄, t) =

∫
B(x̄;ρ) sK(x, t)ξ(x)dx∫

B(x̄;ρ) ξ(x)dx
.
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The computations in the above implies that

|sK(x1, t1)− s̄K(x̄, t1)| ≤ C
(

1

ln(R2/ρ2)

)1/2

.

Similarly, we also have

|sK(x2, t2)− s̄K(x̄, t2)| ≤ C
(

1

ln(R2/ρ2)

)1/2

.

Since |t1 − t2| ≤ ρ2, by (2.14),

|s̄K(x̄, t1)− s̄K(x̄, t2)| ≤ Cρ−m
∫ t1

t2

∫
B(x̄;ρ)

|∂tsK |ξdxdt

≤ Cρ−m/2
∫ t1

t2

(∫
B(x̄;ρ)

|∂tsK |2dx

)1/2

dt

≤ C
(

1

ln(R2/ρ2)

)1/2

This implies that

|sK(x1, t1)− sK(x2, t2)| ≤ C
(

1

ln(R2/ρ2)

)1/2

.

Similarly, we can prove that

|uK(x1, t1)− uK(x2, t2)| ≤ C
(

1

ln(R2/ρ2)

)1/2

.

This completes the proof. �

By Proposition 3.1 and Arzela-Ascoli’s theorem, there is a sequence Ki

such that Ki →∞ as i→∞, and (si, ui) = (sKi , uKi) converges to a contin-
uous map (s, u) uniformly on each compact subset in Ω× (0,∞). Moreover,
if P (x0, t0; 2R) ⊂ Ω× (0,∞), and (x1, t1), (x2, t2) ∈ P (x0, t0;R/4), then

(3.1) |s(x1, t1)− s(x2, t2)|+ |u(x1, t1)− u(x2, t2)| ≤
(

C

ln(R2/ρ2)

)1/2

,

where ρ =
√
|x1 − x2|2 + |t1 − t2|. Let 0 < t2 < t1. By (2.5), we may assume

that (∇si,∇ui) and (∂tsi, ∂tui) converge to (∇s,∇u) and (st, ut) respectively
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weakly in L2(Ω× (t2, t1)). By (2.4), the maps (si, ui) are bounded, we may
assume that (si, ui) converges to (s, u) in L4(Ω× (t1, t2)). By inequality
(2.6), we have

∫ t1

t2

∫
Ω

(s2
i − |ui|2)2dxdt ≤ E0(t1 − t2)/Ki.

When i→∞, we see that

∫ t1

t2

∫
Ω

(s2 − |u|2)2dxdt = 0.

Since the map (s, u) is continuous, for any (x, t) ∈ Ω× (t2, t1), we have
s2(x, t) = |u(x, t)|2, i.e., (s(x, t), u(x, t)) lies on the cone C. Moreover, by
the lower-semi-continuity theory and (2.5), for each t > 0,

(3.2)

∫
Ω

(
|∇s(x, t)|2 + |∇u(x, t)|2 + 2W (s(x, t))

)
dx

+

∫ t

0

∫
Ω

(
s2
t (x, τ) + |ut(x, τ)|2

)
dxdτ ≤ E0.

Let (x0, t0) be a point such that |s(x0, t0)| ≥ 4γ for some γ > 0. We
choose R > 0 such that P (x0, t0; 2R) ⊂ Ω× (0,∞), and for (x, t) ∈
P (x0, t0;R), we have |s(x, t)| ≥ 2γ. It then implies that s2

i (x, t) + |ui(x, t)|2 ≥
γ2 when (x, t) ∈ P (x0, t0;R) and when i is large enough. By straight-forward
computations, we see that

(−∂t + ∆)
(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)

= 2|∇2sK |2 + 2|∇2uK |2 + 2K|∇(s2
K − |uK |2)|2

+ 8K(s2
K − |uK |2)(|∇sK |2 − |∇uK |2)

+ 8K2(s2
K − |uK |2)2(s2

K + |uK |2) + 8K(s2
K − |uK |2)2F ′K

+ 8(|∇sK |2 + |∇uK |2)F ′K + 8(s2
K |∇sK |2 + |uK |2|∇uK |2)F ′′K ,

where F ′K = F ′(s2
K + |uK |2) and F ′′K = F ′′(s2

K + |uK |2). We recalled that
by (2.4), (sK , uK) is bounded independent of K. This makes F ′K and F ′′K
bounded, independent of K. If |s2

K(x, t) + |uK(x, t)|2 ≥ γ2, then there is a
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constant D, which may depend on γ but independent of K, such that

(−∂t + ∆)
(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)

≥ 8γ2K2(s2
K − |uK |2)2 + 8K(s2

K − |uK |2)(|∇sK |2 − |∇uK |2)

− C
(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)

≥ −D
(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)2

− C
(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
,

i.e., (−∂t + ∆)eK ≥ −CeK −De2
K . The constants C and D may depend on

γ but do not depend on K. By the small-energy-regularity theory, see [2]
Lemma 2.4, if

(3.3)

∫ t0−R2

t0−4R2

∫
Ω

(
|∇sK |2+|∇uK |2+K(s2

K−|uK |2)2
)
G(x, t;x0, t0)dxdt<ε0

and ε0 is small enough, then for certain δ ∈ (0, 1/8),

(3.4) sup
P (x0,t0;δR)

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
≤ C(δR)−2.

The constants ε0, δ and C depend on γ, m, R, M0 and E0 but do not depend
on K. By (2.15), if we choose R small enough, then (3.3) holds. Thus, by
choosing a subsequence if necessary, we may assume that (∇si,∇ui) con-
verges to (∇s,∇u) strongly in L2(P (x0, t0; δR)). Due to the estimate (2.15),
the small energy assumption is always true by choosing R small. By repeat-
ing the arguments in [2] p94-95, one can check that, inside P (x0, t0; δR), the
map (s, u) is a weak solution of the system

st = ∆s− |∇u|
2 − |∇s|2

2s2
s− 2F ′

(
s2 + |u|2

2

)
s

ut = ∆u+
|∇u|2 − |∇s|2

2s2
u− 2F ′

(
s2 + |u|2

2

)
u.

Since s2 = |u|2 and our assumption (2.1), we have W ′(s) = 2F ′(s2)s. We
then see that (s, u) is a weak solution of (1.6) in P (x0, t0; δR). Moreover,
from (3.4), we see that

(3.5) sup
P (x0,t0;δR/2)

(
|∇s|2 + |∇u|2

)
≤ C.
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The constant C may depend on m, R, M0, E0, γ and δ. By standard argu-
ments, (s, u) satisfies the initial-boundary conditions (1.7) and (1.8) in the
sense of trace.

By (3.1) and (3.2), we may choose a sequence tj such that tj →∞ as
j →∞ and ∫

Ω

(
s2
t (x, tj) + |ut(x, tj)|2

)
dx→ 0 as j →∞,

and (s(x, tj), u(x, tj)) converges to a map (s0(x), u0(x)) uniformly on com-
pact subsets in Ω. By choosing subsequence if necessary, by (3.2), we may
assume that (∇s(x, tj),∇u(x, tj)) converges weakly to (∇s0,∇u0) in L2(Ω).
This implies that (s0, u0) = (g, h) on ∂Ω in the sense of trace. Suppose
that for some x0 ∈ Ω, we have s0(x0) > 2γ > 0. When j is large enough,
we have s(x0, tj) > γ. We choose R > 0 such that B(x0; 2R) ⊂ Ω. By (3.5),
we may assume that (∇s(x, tj),∇u(x, tj)) converges strongly to (∇s0,∇u0)
in L2(B(x0; δR/2)), for some δ > 0. Thus, we see that (s0, u0) is a weak
solution of the system

∆s− |∇u|
2 − |∇s|2

2s2
s−W ′(s) = 0

∆u+
|∇u|2 − |∇s|2

2s2
u− W ′(s)

s
u = 0

inside B(x0; δR/2). This proves Theorem 1.1.

4. The vanishing order of the solution

In this section, we prove Theorem 1.2 stated in the Introduction. To do this,
we need to further refine the monotonicity formulas obtained in section 2. Let
(x0, t0) ∈ Ω× (0,∞), such that P (x0, t0; 2R) ⊂ Ω, and EK(t) = EK(t;x0, t0)
and IK(t) = IK(t;x0, t0) be the functions defined in (2.8) and (2.9). Again,
after a translation, we let (x0, t0) = (0, 0). From (2.21), we have

E′K(t) = −
∫

Ω
K(s2

K − |uK |2)2ξGdx

− 2|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)
ξ + 2F ′KsKξ +∇sK∇ξ

)2
ξGdx

− 2|t|
∫

Ω

((
∂tuK +∇uK

x

2t

)
ξ + 2F ′KuKξ +∇uK∇ξ

)2
ξGdx
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+
1

2
|t|
∫

Ω

((
2F ′KsKξ +∇sK∇ξ

)2
+
(
2F ′KuKξ +∇uK∇ξ

)2)
ξGdx

+ 4|t|
∫

Ω

(
|∇sK |2 + |∇uK |2 +K(s2

K − |uK |2)2
)
ξ∇ξ x

2t
Gdx.

By (2.4) and (2.20), we see that

E′K(t) ≤ −2|t|
∫

Ω

((
∂tsK +∇sK

x

2t

)
ξ + 2F ′KsKξ +∇sK∇ξ

)2
ξGdx(4.1)

− 2|t|
∫

Ω

((
∂tuK +∇uK

x

2t

)
ξ + 2F ′KuKξ +∇uK∇ξ

)2
ξGdx

+ CI(t) + C exp

(
1

6t

)
,

where C is a constant depending on m, R, M0 and E0 only. By (2.10),

−I ′K(t) ≥ −CIK(t)− C

|t|
exp

(
1

6t

)
for t < 0.

Therefore,

−I ′K(t)EK(t) =

(
−I ′K(t) + CIK(t) +

C

|t|
exp

(
1

6t

))
EK(t)

−
(
CIK(t) +

C

|t|
exp

(
1

6t

))
EK(t)

≤
(
−I ′K(t) + CIK(t) +

C

|t|
exp

(
1

6t

))
EK(t).

Using (2.10) again, we have

−I ′K(t)EK(t) ≤ |t|
2

(
−I ′K(t) + CIK(t) +

C

|t|
exp

(
1

6t

))2

=
|t|
2

(I ′K(t))2 − |t|I ′K(t)

(
CIK(t) +

C

|t|
exp

(
1

6t

))
+
|t|
2

(
CIK(t) +

C

|t|
exp

(
1

6t

))2

.
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Then we apply (2.11) to obtain

−I ′K(t)EK(t) ≤ |t|
2

(I ′K(t))2 + CEK(t)IK(t) + CEK(t) exp

(
1

8t

)
(4.2)

+ C (IK(t))2 + C exp

(
1

8t

)
.

Also, from (2.18), we have

I ′K(t) = 2

∫
Ω
sK

((
∂tsK +∇sK

x

2t

)
ξ + 2F ′KsKξ +∇sK∇ξ

)
ξGdx

(4.3)

+ 2

∫
Ω
uK

((
∂tuK +∇uK

x

2t

)
ξ + 2F ′KuKξ +∇uK∇ξ

)
ξGdx

− 2|t|
∫

Ω

(
sK
(
2F ′KsKξ +∇sK∇ξ

)
+ uK

(
2F ′KuKξ +∇uK∇ξ

))
ξGdx

+ 2

∫
Ω

(s2
K + |uK |2)ξ∇ξ x

2t
Gdx.

Again by (2.4) and (2.20), we see that∣∣∣∣∫
Ω

(
sK
(
2F ′KsKξ +∇sK∇ξ

)
+ uK

(
2F ′KuKξ +∇uK∇ξ

))
ξGdx

∣∣∣∣
≤ CIK(t) + C exp

(
1

6t

)
,∣∣∣∣∫

Ω
(s2
K + |uK |2)ξ∇ξ x

2t
Gdx

∣∣∣∣ ≤ C exp

(
1

6t

)
.

Combining (4.2) and (4.3) and estimates in the above, we obtain

− I ′K(t)EK(t)(4.4)

≤ 2|t|
[ ∫

Ω
sK

((
∂tsK +∇sK

x

2t

)
ξ + 2F ′KsKξ +∇sK∇ξ

)
ξGdx

+

∫
Ω
uK

((
∂tuK +∇uK

x

2t

)
ξ + 2F ′KuKξ +∇uK∇ξ

)
ξGdx

]2

+ CEK(t)IK(t) + CEK(t) exp

(
1

8t

)
+ C(IK(t))2 + C exp

(
1

8t

)
.
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By (4.1), (4.4) and Cauchy’s inequality, we see that
(4.5)
d

dt

(
EK(t)

IK(t)

)
≤ C + C

EK(t)

IK(t)
+ C

EK(t)

(IK(t))2
exp

(
1

8t

)
+

C

(IK(t))2
exp

(
1

8t

)
.

Now, we are ready to prove Theorem 1.2.
Let t0 > 0 and s(x, t0) is not identically zero on Ω. We claim that s(x, t0)

cannot vanish in an open subset in Ω.
If it is not true, there is x0 such that for some R > 0, B(x0; 2R) ⊂ Ω,

s(x, t0) = 0 when x ∈ B(x0;R/8) and∫
B(x0,R/4)−B(x0,R/8)

(s2 + |u|2)(x, t0)dx = 4c0 > 0.

After a translation, we assume that (x0, t0) = (0, 0). By continuity, there is
r1 such that for |t− t0| < (2r1)2, we have∫

B(x0,R/4)−B(x0,R/8)
(s2 + |u|2)(x, t)dx ≥ 2c0 > 0.

Since (si, ui) converges uniformly to (s, u) on compact subsets, we may as-
sume that for each i = 1, 2, 3..., for |t− t0| < (2r1)2,∫

B(x0,R/4)−B(x0,R/8)
(s2
i + |ui|2)(x, t)dx ≥ c0 > 0.

It is easy to compute that

(4.6) IK(t) ≥ c0C exp

(
1

20t

)
for − (2r1)2 ≤ t < 0,

and C is a constant depending on m and R only. Then by (4.5) and (4.6),
we have

d

dt

(
EK(t)

IK(t)

)
≤ C

(
1 +

EK(t)

IK(t)

)
for − r2

1 < t < 0,

where C is a constant depending on c0, r1, m, R, M0 and E0 only. This
implies that

EK(t)

IK(t)
≤ eCr21

(
1 +

EK(−r2
1)

IK(−r2
1)

)
for − r2

1 < t < 0.
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By (2.15) and (4.6),

EK(−r2
1)

IK(−r2
1)
≤ C

ln(R2/r2
1)

exp

(
1

20r2
1

)
.

Thus,

EK(t)

IK(t)
≤ N0 for − r2

1 < t < 0,

where N0 is a constant depending on c0, r1, m, R, M0 and E0 only. By (2.11)
and (4.6), we have

−
I ′K(t)

IK(t)
≤ 4N0 + C

|t|
for − r2

1 < t < 0.

After integrating from −r2
1 to t, we obtain

IK(t) ≥ IK(−r2
1)|t|2N0+C for − r2

1 < t < 0.

Thus, using (4.6) again, we see that

IK(t0 − r2;x0, t0) ≥ Dr2N1 for 0 < r < r1.

Moreover, the constants N1 and D depend on c0, r1, m, R, M0 and E0 only.
We may replace t0 by t0 + r2 in the above arguments to have

IK(t0;x0, t0 + r2) ≥ Dr2N1 for 0 < r <
r1

4
.

Since (si, ui) converges uniformly to (s, u) on compact subsets, the same is
true for (s, u), i.e.,

(4.7)

∫
Ω

(s2 + |u|2)ξ2G(x, t0;x0, t0 + r2)dx ≥ Dr2N1 for 0 < r <
r1

4
.

It contradicts our assumption that s(x, t0) = 0 when x ∈ B(x0;R/8) and the
claim is proved.

Finally, by our claim, for any x0 ∈ Ω and B(x0; 2R) ⊂ Ω, s(x, t0) is not
zero somewhere inside B(x0;R/4), i.e., (4.6) holds. By repeating the argu-
ments in the above, we see that (4.7) is also true. This proves the Theorem.
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