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Inequality for Gorenstein minimal 3-folds
of general type

YonNG Hu

Let X be a Gorenstein minimal 3-fold of general type. We prove
the optimal inequality:

4
Kg’( > gX(wX) -2,

where x(wx) is the Euler-Poincaré characteristic of the dualizing
sheaf wx.

1. Introduction

Throughout this paper, we work over the complex number field C.

The geography of projective varieties of general type plays a very impor-
tant role in the classification of algebraic varieties. There are two important
types of inequalities in studying the geographical problem: Noether inequal-
ity and Yau inequality.

For Yau inequality, we have the following results.

e In 1977, Yau ([21]) proved that the optimal inequality (—1)"c} ™2 - ¢y >
(—1)"%@1’_‘ holds for all canonically polarized nonsingular varieties
of dimension n. In [I0] and [20], the same inequality is proved for more
general cases]]

e In 1977, Miyaoka ([I4]) proved that the inequality ¢ < 3cs holds for all
nonsingular projective surfaces of general type. In 1985, Miyaoka ([15])
proved that 3cy — ¢? is pseudo-effective for all nonsingular minimal
projective varieties of general type.

In this paper we will restrict our interest to inequalities of Noether type.
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Tt is pointed out by one of the referees that Yau’s method can cover more general
cases.
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Let S be a smooth minimal surface of general type. We have the classical
Noether inequality: K2 > 2p,(S) — 4 and K2 > 2x(Og) — 6 (c.f. [16]).

Let X be a projective 3-fold of general type. A natural question is: does
there exists an inequality of Noether type for 3-folds of general type? There
have been many works dedicated to proving the 3-dimensional version of the
Noether inequality:

e In 1992, M. Kobayashi (c.f. [I3| Proposition 3.2]) constructed an in-
finite number of canonically polarized smooth 3-folds of general type
satisfying the equalities:

4 10 4
(L1) K% = 5p,(X) - 3 K% = Sx(wx) -2,

e In 2004, M. Chen (c.f. [7]) studied minimal 3-folds of general type and
gave effective Noether type inequalities.

e In 2004, M. Chen (c.f. [8]) proved that the optimal inequality K% >
%pg (X) — % holds for all canonically polarized smooth 3-folds of gen-
eral type.

e In 2006, F. Catanese, M. Chen and De-Qi Zhang (c.f. [2]) proved that
the optimal inequality K g’( > %pg(X ) — 1—?? holds for all smooth mini-
mal 3-folds of general type.

e In 2015, J. A. Chen and M. Chen (c.f. [5]) proved the optimal inequal-
ity K% > 3pg(X) — & under the assumption that X is Gorenstein
minimal.

In this paper, a normal projective 3-fold X is called Gorenstein minimal
if X has at worst Q-factorial terminal singularities, the canonical divisor
Kx is a Cartier divisor and K x is nef.

It is interesting to know whether there exists a similar Noether type
inequality between K ;’( and x(wx). The following open problem was raised
by M. Chen (c.f. [8, 3.9]):

Conjecture 1.1. [8 3.9] Let X be a Gorenstein minimal 3-fold of general
type. There should be an analogue of the Noether inequality in the form:

K?( > CLX(OJX) - bv

where a and b are positive rational numbers.
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As was pointed out by M. Chen (c.f. [§]), it is difficult to find a Noether
inequality in this direction because the inter relations among py(X), ¢(X)
and h?(Ox) are not clear to us, unlike in surface case. Some partial results
were proved in [19] and in [9].

- In 1997, D. K. Shin (c.f. [I9]) proved that an effective inequality K3 >
gx(w X) — g holds for all smooth minimal 3-folds of general type.

- In 2006, M. Chen and C. D. Hacon (c.f. [9]) proved that an effective in-
equality K3 > % X(wx) — 13—0 holds for all smooth minimal 3-folds of general

type.

We restrict our attention to the situation where X is a Gorenstein min-
imal 3-fold of general type. The aim of this paper is to prove the following.

Theorem 1.2. Let X be an irregular Gorenstein minimal 3-fold of general
type. Then

4
K_:;’( > gX(WX)~

According to [5, Theorem 1.1] and Theorem [1.2] we can get our main
result as follows.

Theorem 1.3. Let X be a Gorenstein minimal 3-fold of general type. Then
3 4

Remark 1.4. The inequality in Theorem is optimal because of
M. Kobayashi’s examples (c.f. (1.1)). It is well known that we have y(wx) >
0 if X is a Gorenstein minimal 3-fold of general type. So is meaningful.
One may ask whether is still true if X is a minimal 3-fold of general
type. Unfortunately, if X is not Gorenstein, then y(wx) could be either pos-
itive, zero, or negative (c.f. [4l line 10-18, page 2501]). This problem does not
seem possible to resolve with the methods and the techniques of the present
article.

2. Notations and the set up
Definition 2.1. Let S be a smooth projective surface of general type.

Denote by Sy its minimal model and by (a,b) = (K% ,py(S)). We call S is
a surface of type (a,b).
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Let X be a Gorenstein minimal 3-fold of general type with pg(X) > 2.
According to [12, Lemma 5.1], X is locally factorial. Write

where [M] is the movable part of |Kx| and Z is the fixed part of |Kx]|.

We shall resolve the base locus of |M] in two steps. For a linear system
T, we denote by BsY the base locus of T. Roughly speaking, the first step
is to resolve the subset Bs|M| N Sing(X).

Lemma 2.2 (cf. [5, Section 2]). There is a birational morphism o: Xo —
X satisfying the following properties.

(a) The morphism « is a composition of successive divisorial contractions
to points and Xy is a Gorenstein 3-fold with locally factorial terminal
singularities.

(b) Denote by | M| the movable part of |a* M|. Then Bs| M| N Sing(Xg) = 0.
(¢) The following formulae

m
(2.2) KXO =a*Kx + Z ¢t Dy,
t=1

m m
o (M)=My+» diDi, o (Z)=2Zo+ Y eD
t=1 t=1

hold, where
(i) Zy is the strict transform of Z,
(i1) Dy is a prime divisor such that a(Dy) is a point for 1 <t <m, and
(iii) ¢, d¢ and e; are non-negative integers such that 0 < ¢, < d; for
1<t <m.

Proof. The birational morphism « is constructed in [5, p. 4-p. 5], using
explicit resolutions of terminal singularities (see [3] and [, Definition 2.2]).
Then (a) and (b) follow from the construction and [I2, Lemma 5.1]. Since
both Xg and X are locally factorial, ¢, d; and e; are non-negative integers.
The inequality ¢; < d; follows by [5, Corollary 2.4]. O

We fix a birational morphism «: Xy — X as in Lemma We may
assume that the number of divisorial contractions in the construction of «
is minimal. The second step is to resolve the base locus of |My| without
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changing the singularities of Xy. This is possible by Lemma (b) and by
Hironaka’s Theorem (cf. [11]).

Lemma 2.3 (cf. [7, Lemma 4.2]). There are successive blowups
B:Y =Xp1 B Xpn— = Xipn 5 X == X1 B X

such that m; is a blowup along a smooth irreducible center W;, W; is con-
tained in the base locus of the movable part of |(mg om0 -+ omi_1)*My| and
W; N Sing(X;) = 0. Moreover, the morphism 3 = m, 0---omy satisfies the
following properties.

(a) Denote by |M| the movable part of |B*My|. Then | M| is base point free.
(b) The following formulae

n n
(2.3) Ky =B"Kx,+ Y _aiE;, BMy=M+» bE;
=0 =0

hold, where E; is the strict transform of the exceptional divisor of m; for
0 <i<mn, and a; and b; are positive integers such that a; < 2b; for 0 <
1 <n.

Proof. The construction of the blowups 7; and (a) follow by Lemma (b)
and by Hironaka’s Theorem (cf. [I1]). We remark that the assertion a; < 2b;
in (b) is exactly [7, Lemma 4.2]. O

From now on, we fix a birational morphism £ as in Lemma [2.3|such that
the number n + 1 of blowups is minimal. Denote by ¢k, the canonlcal map
of X and by ¥ the image of ¢k, . Let ¢ be the morphism induced by the

linear system |M|. Then ¢ = ¢x, om, where m = oo . Let Y 5B S e
the Stein factorization of ¢. We have the following commutative diagram:

f

Y —B
/l\i '
X0—>X77>2

Note that B is normal.

Proposition 2.4. Keep the same notation as above. We have the following
known results.
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(1) If dim B = 3, then K% > 2py(X) — 6 (cf. );

(2) If dim B = 2, then K% > {%(g(C’) —1)] (pg(X) — 2) where g(C) is the
genus of a general fiber C' of f . In particular, we have K‘% > 2py(X) —4
if 9g(C) = 3.

(3) if dim B = 1, then either K% > 2p,(X) — 4 or the general fiber of f is
a smooth projective surface of type (1,2).

Proof. Assertion (1) follows by [13, Main Theorem]. (2) is exactly [7, Theo-
rem 4.1 (ii)]. (3) is just [7, Theorem 4.1 (iii)]. O

3. Proof of Theorem [1.3

This section is devoted to proving Theorem Throughout this section, we
denote by X a Gorenstein minimal 3-fold of general type. It is well known
that K% is a positive even integer and x(w) > 0(c.f. [6, 2.1, 2.2]). Denote by
a: X — T the Stein factorization of the Albanese morphism of X and by F
a general fiber of a. Since 3-dimensional terminal singularities are isolated
(c.f. [18]), F' is smooth.

The following lemma is due to [9, Propsition 2.1].

Lemma 3.1. Let X be a Gorenstein minimal 3-fold of general type with
pg(X) > 0. Then x(wx) < py(X) unless a general fiber of a is a surface F
with q(F') = 0, in which case one has the inequality

Proof. After taking a resolution of X, Lemma follows easily by [9, Prop-
sition 2.1]. 0

Proposition 3.2. Let X be a Gorenstein minimal 3-fold of general type.
Keep the same notation as in the beginning of this section.

(1) If ¢(X)=0, then x(wx)<py(X)—1. Therefore we have K% >
4
3x(wx) —2.

(2) {]; q(X) =1, then x(wx) < py(X) holds and we have K% > 3x(wx) —
?.

(3) If dimT > 2 and py(X) > 0, then x(wx) < pg(X) holds and we have

K% > %X(WX) - 1?)0-
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(4) If ps(X) =0, then K3 > 2x(wx).
(5) If diimT =1 and py(X) = 1, then K% > 2x(wx).
If X satisfies one of the above conditions, then all these statements imply

4 10
(3.1) K% > FX(wx) — =

Proof. Assertions (1) and (2) follow by [5, Theorem 1.1]. Assume that X
satisfies condition (3). Since F' is a general fiber and X is of general type,
X(wx) < pg(X) follows by Lemmal[3.1] So (3) follows by [5, Theorem 1.1]. (4)
is exactly Case 2 of 1.3 of [9]. Assume that X satisfies condition (5). Since
pg(X) >0 and F is a general fiber, we have py(F) > 0 and F' is of general
type. According to Lemma we have y(wx) < 2py(X). So x(wx) = 1.
Hence K% > 2x(wx) for K% is an even positive integer. O

We now turn to the case where X satisfies py(X) > 2, ¢(X) > 2 and
dim7 = 1. In this case, T is a nonsingular projective curve with ¢(T') =
q(X) > 2 (c.f. [I, Prop V.15]) and F' is a smooth minimal surface of general
type because X is minimal. The fibration a is relatively minimal because
X is minimal. Therefore Kx/p = Kx — a*Kr is nef by [I7, Theorem 1.4].
Since py(X) > 2, we can study the nontrivial canonical map of X. We can
take the modification 7: Y — X as in Section 2 (see page 2-3). Keep the
same notation as in the last section. Recall that the morphism f: Y — B is
the Stein factorization of the canonical morphism (see page 3).

Lemma 3.3. Let X be a Gorenstein minimal 3-fold of general type with
Pg(X) > 2. Keep the same notation as above. Assume that T is a nonsingular
curve of genus g(T) = q(X) > 2. Then

4
(3.2) K% > Sxlex) — 6
unless the general fiber of f is a curve of genus g = 2.

Proof. Case 1. dimB > 2.

According to Proposition we have K% > 2p,(X)—6. Then we
have by Lemma

Case 2. dimB = 1.

If the general fiber of f is not a surface of type (1,2), then we have
K% > 2p,(X) — 4 by Proposition So holds by Lemma

Now we turn to the case where the general fiber of f is a surface of
type (1,2). Since K% is a positive even integer, holds if y(wx) < 6.
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So we may assume that x(wx) > 7. We have py(X) > 5 by Lemma We
have ¢(X) <1 by [7, Lemma 4.5]. But this contradicts to our assumption
q(X) > 2. We are done. O

Proposition 3.4. Let X be a Gorenstein minimal 3-fold of general type
with pg(X) > 2. Keep the same notation as above. Assume that T is a non-
singular curve of genus g(T) = q(X) > 2 and that a general fiber C of f is
a curve of genus g(C) = 2. Then

4
(3-3) K3 > 2x(wx) = 6.

Proof. Since K% is a positive even integer, is automatically true for
X(wx) < 6. We may assume x(wx) > 7. So pg(X) > 5 by Lemma Ac-
cording to Proposition we can assume that ¢(X) > 2 and that the gen-
eral fiber C' of f is a nonsingular curve of genus 2. Recall that |M]| is the
movable part of |[Ky| and that |M]| is base point free.

We have M? = dy, - degd - C, where ¥ is the image of ¢ and the symbol
= stands for numerical equivalence.

Because ¥ is non-degenerate, we have dy; > pg(X) — 2. Since both 7* K x
and M are nef, we conclude that

(3.4) K% > (n*Kx - M?) =ds, -degé - (n*Kx - C)

(pg(X) —2)degd - (m"Kx - C).

If ("*Kx-C)>2, then K% >2py(X)—4. So holds by and
Lemma B.11

From now on, we assume that (7* Ky - C) = 1.

In order to prove Proposition [3.4, we need to use the techniques in the
proofs of [7, Theorem 4.3] and [5, Theorem 3.1]. Recall from (2.1)),

and ([2.3) that

m

n
(3.5) Ky =1 Kx + (Z aB D+ aE) :

t=1 =0

m n
T Kx =M+ (Z(dt +e)B D+ Y biE;+ ﬁ*Zo>
=1 =0
In particular, we have K% = (1*Kx)? = (7*Kx)*- M) + (K% - Z). We aim
to bound ((7*Kx)? - M) from below.

For this purpose, by Bertini’s theorem, we choose a general member S
of |[M| such that S is smooth and consider the fibration f|g. By abuse of
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notation, we still denote by C' the general fiber of f|g. We remark that S is
of general type since so is X. Also the divisors *D;|s and E;|g are effective
for1<t<mand 0<i<n.

Recall that a: X — T is the Stein factorization of the Albanese mor-
phism of X and that Kx p is a nef divisor. It is easy to see that ay: Y — T
is the Stein factorization of the Albanese morphism of Y. Take a general
fiber F' of a such that Fy = n*F is also a general fiber of ay. Note that F
is a smooth minimal surface of general type.

Since dimB = 2, we can see that dimf(Fy) > 1. So S N Fy is a nontrivial
effective curve on Y. Thus we have ay (S) =T.

Since both Ky = Kx — 2(q(X) — 1)F and Fy are nef divisors, we have
(m*Kx -C) >2(q(X)—1)(Fy -C) > 0.

Therefore (Fy - C) =0 because ¢(X) > 2 and (7*Kx -C)=1. So f|s
and ay|g induce the same fibration. Denote by v: S — T the induced fibra-
tion. We have g(T) > ¢(T) = ¢(X) > 2.

By the definition of M we can write

(3.6) Ml|s =~*A = (degA)C,
where A is an effective divisor on T.

Since ¢g(C) = 2, we have (Ky - C) = 2 by the adjunction formula.
According to (3.5) and (7*Kx - C') = 1, we have

((i 8" Dy + iaiEi) ‘ : C) =1 and

t=1 i=0 S

((Z(dt +e1) 3" Dy + Z b E; + B*ZO> : C) =
s

t=1 i=0
We conclude that the horizontal part of (3°;", ¢;8*Dy + Y i a;iE;)|s con-
sists of an irreducible reduced curve I'; which is also the horizontal part of
(Z?;l(dt + 6t)5*Dt + Z?:O szz + B*Z(])Lg and (F . C) =1.
We can write

m n
(thﬁ*Dt"i_ZaiEi) ‘ =T+ Dy +EV7
t=1 i=0 s

(3.7) (i(dt + et)B*Dt + i b, E; + ﬁ*ZU>

t=1 1=0

=T+ D}, +Ey
S
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where Ey, Dy, E{, and Dy, are effective divisors contained in the fibers of
7.
According to Lemma (c¢) and Lemma (b), we have

(3.8) Dy + Ey < 2Dy, + 2Ey,.
Because I is a section of ~,
(3.9) (T - (2D}, + 2E{, — Dy — Ey)) > 0.
The adjunction formula yields
(3.10) (Ks-T)+T? =2p,(T) —2>2¢(X) -2
Note that
Ky|s =7 Kx|s + T+ Dy + Ey and n*Kx|s = M|s + T + Dy, + EY,

by (3.5)). By (3.9), one has

2¢(X) —2< ((Ksg+T)-T)= ((Ky + M)|g-T) 4 I?

(m*Kx|s + M|s+ Dy + Ey +2I') - T)
(m*Kx|s + M|s + 2D}, + 2E;, +2I') - T)
(3" Kx|s — M|s) - T)

=3(r"Kxls-T') — degA.

(
= (
(3.11) <(
=

The last equality holds by M|s = (degA)C (see (3.6))) and (T'- C) =

So we have
(3.12) (m"Kx -T') > gdegA
By and (7*Kx - C) =1, we have
(3.13) (" Kx|s - Mlg) = degA.
We have
(3.14) K% > (n*Kx|s-M|s) + (n*Kx -T) > gdegA

by (3.13]) and - We will bound degA from below.
Case 1. hY(T, A) > 0.
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By Clifford’s inequality and (3.6)), we have
degA > 2h°(T, A) — 2 = 2h°(S, M|s) — 2 > 2py(X) — 4.

So (3.3)) follows by above inequality, (3.14) and Lemma
Case 2. h} (T, A) = 0.
By Riemann-Roch formula and Lemma [3.1] we have

(3.15)  degA = hO(T, A) + g(T) — 1 > p,(X) + ¢(X) — 2 > x(wx) — 1.

We conclude (3.3 from (3.14) and (3.15]). O

We can now prove our main result.

Proof of Theorem[1.3 According to Proposition[3.2] Lemma3.3]and Propo-
sition we have

(3.16) K3 > —x(wx) — 6.

Since X is irregular, for every integer m > 2 there is a cyclic unramified
covering 7: X — X of degree m. We have

(3.17) K¢ =1"Kx, K;’A( =mK%, X(wg) = mx(wx).
Note that X is an irregular Gorenstein minimal 3-fold of general type. So
we have K % > % X(wg) — 6. Therefore by (3.16) and (3.17)), we have

4 6
K% > gX(WX) T

Theorem follows by letting m — oo. O

Theorem follows easily by Theorem and Proposition (1).
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