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The eta invariant appears regularly in index theorems but is known
to be directly computable from the spectrum only in certain exam-
ples of locally symmetric spaces of compact type. In this work, we
derive some general formulas useful for calculating the eta invari-
ant on closed manifolds. Specifically, we study the eta invariant on
nilmanifolds by decomposing the spin Dirac operator using Kirillov
theory. In particular, for general Heisenberg three-manifolds, the
spectrum of the Dirac operator and the eta invariant are computed
in terms of the metric, lattice, and spin structure data. There are
continuous families of geometrically, spectrally different Heisenberg
three-manifolds whose Dirac operators have constant eta invari-
ant. In the appendix, some needed results of L. Richardson and
C. C. Moore are extended from spaces of functions to spaces of
spinors.
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1. Introduction

The eta invariant was introduced in the famous paper of M. F. Atiyah,
V. K. Patodi, and I. M. Singer (see [5]), in order to produce an index theo-
rem for manifolds with boundary. The eta invariant of a linear self-adjoint
operator is roughly the difference between the number of positive eigenvalues
and the number of negative eigenvalues, which of course is undefined when
these numbers are both infinite. However, this quantity may be regular-
ized to make it well-defined for classical pseudodifferential operators, using
methods similar to the zeta-function regularization of the determinant of
the Laplacian and methods used by physicists to regularize divergent inte-
grals. The eta function is analogous to Dirichlet L-functions in the same way
that the zeta function of elliptic operators is analogous to the Riemann zeta
function.

Let D : C∞ (E)→ C∞ (E) be an essentially self-adjoint elliptic classical
pseudodifferential operator of order d on sections of a vector bundle E →M ,
where M is a closed (compact, without boundary) Riemannian manifold of
dimension n. Let {λ} be the collection of eigenvalues with multiplicity. The
eta function is defined as

η (s) =
∑
λ 6=0

sgn (λ) |λ|−s .

This reduces to the zeta function if D has only nonnegative eigenvalues.
The eta function is holomorphic in s for large Re (s) and can be analytically
continued to a meromorphic function using heat kernel techniques. It is true
but not obvious that η (s) is regular at s = 0, and η (0) is always real; the eta
invariant is defined as η (0). See [5], [6], [22] for general information about
the eta invariant.

The eta function and its generalizations have been studied and utilized in
index theorems for noncompact manifolds and for families of operators and
in gluing formulas. The sign of the eta invariant of the boundary signature
operator on a 4-manifold with boundary has important geometric content; in
the case of a ball, it determines whether the conformal class of the boundary
metric contains a metric induced from a self-dual Einstein metric on the
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interior (see [27]). In physics, the eta invariant of the spin Dirac operators
has practical importance, for example in the regularization of Feynman path
integrals (see [40]). Recently, in the work of J. Brüning, F. W. Kamber,
and K. Richardson, the eta invariant is utilized in a new equivariant index
formula for G-manifolds and an index formula for Riemannian foliations (see
[13], [14], [15]).

It is very difficult to calculate the eta invariant for a given operator such
as a Dirac operator on a Riemannian manifold; much work has been done
to calculate this invariant for space forms, lens spaces and flat tori (see, for
example, [19], [21], [10]). More recently, S. Goette has calculated formulas
for the eta invariant and equivariant eta invariants on homogeneous spaces
of the form G�H with G compact (see [23]). In [4], M. Atiyah, H. Donnelly
and I. Singer computed the eta invariant of the boundary signature operator
of a framed solvmanifold in terms of the signature defect of a manifold whose
boundary is that solvmanifold. In [18], C. Deninger and W. Singhof com-
puted eta invariants of modified versions of Dirac operators on Heisenberg
manifolds and were able to compute the eta invariants up to local correction
terms. In [31], P. Loya, S. Moroianu and J. Park studied the spectrum of
the Dirac operator on a certain three-dimensional circle bundle over a non-
compact Riemann surface with cusps, that is, a noncompact manifold that
is a cofinite quotient of PSL (2,R). They also study the adiabatic limit of
the eta invariant as the fibers are collapsed. The first explicit computations
of eigenvalues of Dirac operators on homogeneous spaces corresponding to
noncompact Lie groups has been done by B. Ammann and C. Bär (see [1],
[8]), where the eigenvalues of the spin Dirac operator on certain (rectangu-
lar) Heisenberg manifolds were computed explicitly. In [33], R. Miatello and
R. Podestá compute the eta invariant on compact flat spin manifolds with
cyclic holonomy of odd prime order (see also [34] for related work). While
different techniques are employed, the Miatello-Podestá result has a similar
flavor to our main result, in that the final statement relies on metric data,
spin structure data, lattice data and prominently exploits group actions.

A Riemannian nilmanifold is a closed manifold of the form (Γ�G, g)
where G is a simply connected nilpotent Lie group, Γ is a cocompact (i.e.,
Γ�G is compact) discrete subgroup of G, and g is a left-invariant metric on
G, which descends to a Riemannian metric on Γ�G that is also denoted by
g. A Heisenberg manifold is a two-step Riemannian nilmanifold whose cov-
ering Lie group G is one of the (2n+ 1)-dimensional Heisenberg Lie groups
(see, for example, [26]). The study of nilmanifolds and nilpotent Lie groups
has long been relevant to inverse spectral problems (see [25] for a survey).
Nilmanifolds play an important role in the study of Dirac eigenvalues, as
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was shown in a paper of Ammann and C. Sprouse (see [3]). They show that
if a Riemannian spin manifold with bounded sectional curvature and finite
diameter has scalar curvature bounded from below by a sufficiently small
negative number and if the smallest Dirac eigenvalue λ is sufficiently close
to zero, then the manifold is diffeomorphic to a nilmanifold.

In this paper, we prove several results concerning the computation of the
eta invariant on closed manifolds. In Section 2.1, we discuss the interesting
relationships between the zeta and eta functions of operators, which can be
derived from [7, Proposition 2.10]. The main point is Proposition 1, the for-
mula ∂

∂cηc (s) = −sζ(D+c)2
(
s+1

2

)
, where ηc is the eta function corresponding

to the operator D + c = D + c1, where c is a real number, and where ζ(D+c)2

is the zeta function corresponding to the operator (D + c)2. From this we
see that changes in the eta invariant of an elliptic first order operator on a
closed, odd-dimensional manifold is related to a particular residue of a pole
of the zeta function corresponding to the second order operator (D + c)2.
This residue is, up to a constant, a coefficient in the asymptotic expansion

of the trace of the heat operator exp
(
−t (D + c)2

)
. In Section 2.2, this

coefficient is computed explicitly as a function of c.
Using these general results about ∂

∂cηc (0), if ηc (0) is known at a single
value of c, the heat kernel asymptotic formula and knowledge of small eigen-
values determine η0 (0), the eta invariant of D. In Theorem 5, we prove a
general formula for the eta invariant of a Dirac-type operator on a closed
manifold in the case that the spectrum of the operator is symmetric about a
certain real number λ. We deduce from this formula a more specific formula
for Dirac-type operators on three-manifolds with spectral symmetry about λ
in Section 2.4, which calculates the eta invariant in terms of the volume, the
total scalar curvature, the total trace of the twisting curvature, and small
eigenvalues of the Dirac-type operator (notation defined in that section):

η (0) = − n̂λ
3

6π2
vol (M) +

λ

4π2

(
n̂

12

∫
M

Scal +

∫
M
Tr
(
FW

))
+ sgn

(
λ
) (

2#
(
σ (D) ∩

(
0, λ
))

+ #
(
σ (D) ∩

{
0, λ
}))

.

Using Kirillov theory, the spin Dirac operator on two-step nilmanifolds
is decomposed explicitly in terms of irreducible subspaces of the right quasi-
regular representation in Section 3.2. To that end, occurrence and multiplic-
ity conditions for Dirac eigenspinors are developed in Section 3.3 in analogy
to Pesce’s known work [36] concerning the Laplacian. It is here that we
utilize analogues of the work of C.C. Moore [35] and L. Richardson [38],
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developed in the appendix, Section 7. Explicit formulas for the Dirac oper-
ator are computed in terms of a special basis of spinors for each invariant
subspace.

For general Heisenberg three-manifolds, the spectrum of the spin Dirac
operator and the eta invariant are computed in terms of the metric, the
lattice and spin structure in Section 5.2. The formula for the eta invariant
has the form

η (0) =
r2mv

96π2A2
−N (A, r, w2,mv,mw, ε) ,

where N (A, r, w2,mv,mw, ε) is a nonnegative integer specified in terms of
A; r, w2,mv,mw; ε, the metric, lattice, and spin structure data. In this sec-
tion, we exhibit continuous families of geometrically, spectrally different
Heisenberg three-manifolds whose spin Dirac operators have constant eta
invariant. Computations for a general Heisenberg nilmanifold are done in
Section 5.3; in particular, we show how to calculate the Dirac spectrum
for any example. We explore symmetries of the Dirac spectrum in higher-
dimensional Heisenberg manifolds in Section 5.4. In Section 6, we compute
the Dirac operator of a particular five-dimensional non-Heisenberg nilmani-
fold, and we show that the techniques used in previous sections do not yield
explicit formulas for the eigenvalues in this case.

The authors would like to thank the referees for a very thorough reading
of the original manuscript.

2. The eta invariant

2.1. Eta and zeta functions of perturbed operators

In this section, we exhibit some general results relating families of eta and
zeta functions that may be well-known to experts. In particular, Proposition
2.10 in [7] relates the derivative of the eta invariant of a family of operators
to a trace that can be identified with the zeta function in our particular
application. Also, in [11, Lemma 2.1] and in [12, Lemma 9], the researchers
use the same idea to relate the residues at the poles of the eta function to the
asymptotics of a heat kernel. For the sake of exposition and completeness,
we include the proofs of very specific results that have not been previously
stated in this form, which will be needed in later sections.

In this section and throughout the paper, we will often use the notation
(D + c) for an operator, where D is an operator and c is a scalar, and we
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regard c in this expression as c times the identity. We also use the notation
σ (D) to denote the spectrum of D, with multiplicities.

Proposition 1. Let D be any self-adjoint operator for which η (s) is defined
and analytic at s = 0. Suppose in addition that there exists an interval I ⊂ R
and a constant B > 0 such that for all c ∈ I,

1)
∑

λ sgn (λ+c) |λ+c|−s and
∑

λ

(
(λ+c)2

)− s+1

2

converge absolutely for

Re (s) > B, and

2) −c is not an eigenvalue of D.

Then the eta function ηc (s) corresponding to the operator D + c satisfies,
on its domain,

d

dc
ηc (s) = −sζ(D+c)2

(
s+ 1

2

)
,

where ζ(D+c)2 is the zeta function corresponding to the nonnegative operator

(D + c)2, that is

ζ(D+c)2 (s) =
∑
µ>0

µ−s,

where the sum is over all positive eigenvalues with multiplicity {µ} of the
operator (D + c)2. In particular, if D is a first-order, elliptic, essentially
self-adjoint differential operator, then d

dcηc (0) is the residue of the simple
pole of the meromorphic function ζ(D+c)2

(
s+1

2

)
at s = 0. (If ζ(D+c)2

(
s+1

2

)
is

regular at s = 0, then d
dcηc (0) = 0.)

Remark: It is known that second-order essentially self-adjoint elliptic
differential operators such as (D + c)2 on a manifold of dimension n yield
zeta functions with at most simple poles, and they are located at s = n

2 ,
s = n

2 − 1, s = n
2 − 2, . . ., for n odd and at s = n

2 , s = n
2 − 1, . . . , s = 1 for n

even. See [22] for specifics. Further, the residues at these poles are given by
explicitly computable integrals of locally-defined functions.

Proof. We know that for each eigenvalue λ of D, sgn (λ+ c) does not vary
with c ∈ I. Then for large Re (s),
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ηc (s) =
∑
λ

sgn (λ+ c)
(

(λ+ c)2
)−s/2

d

dc
ηc (s) =

∑
λ

sgn (λ+ c)

(
−s

2

(
(λ+ c)2

)−s/2−1
)

2 (λ+ c)

= −s
∑
λ

sgn (λ+ c) |λ+ c|−s−2 (λ+ c)

= −s
∑
λ

(
(λ+ c)2

)− s+1

2

= −sζ(D+c)2

(
s+ 1

2

)
·

Since both sides are analytic in s for large Re (s), the statement must remain
true after analytic continuation. �

We are interested in the eta invariant, which is ηc (0). By the formula
in the proposition above, the relevant information is the residue of the pole
of the zeta function ζ(D+c)2 (z) at z = 1

2 . For odd-dimensional manifolds,
this is a constant times one of the heat invariants. If the manifold is even-
dimensional, there is no pole at z = 1

2 , so that d
dcηc (0) = 0.

Corollary 2. If the manifold is even-dimensional, then d
dcηc (0) = 0, so

that the eta invariant is constant with respect to c on intervals where D + c
has trivial kernel, and then it changes by integral jumps in general.

We also have the following result about perturbations of zeta functions.

Proposition 3. With the assumptions of Proposition 1,

d

dc
ζ(D+c)2 (s) = −2sηc (2s+ 1) .

Proof. For large Re (s),

d

dc
ζ(D+c)2 (s) =

d

dc

∑
λ

(
(λ+ c)2

)−s
=
∑
λ

−s
(

(λ+ c)2
)−s−1

2 (λ+ c)

= −2s
∑
λ

|λ+ c|−2s−2 (λ+ c)

= −2s
∑
λ

sgn (λ+ c) |λ+ c|−2s−1 = −2sηc (2s+ 1) .
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Since both sides are analytic in s for large Re (s), the statement must remain
true after analytic continuation. �

2.2. Heat Kernel Asymptotics

Because of Proposition 1, we will be interested in the residues of ζ(D+c)2 (s)
at its poles, which are determined by the heat kernel asymptotics (see Sec-
tion 2.3). Specifically, we need the asymptotics as t→ 0+ of

Tr
(

exp
(
−t (D + c)2

))
=

∫
M
Tr Kc (t, x, x) dvol,

where we assumeD =
∑

(ej�)∇ej : C∞ (E)→ C∞ (E) is a Dirac-type oper-
ator and c ∈ R. That is, the Leibniz rule ∇X (v � s) =

(
∇MX v

)
� s+ v � ∇Xs

is satisfied for all vector fields X and v and sections s ∈ C∞ (E), where ∇M
is the Levi-Civita connection. We will let n be the dimension of the manifold
M , and we will let n̂ be the rank of the vector bundle E. Here and in what
follows, we use the � symbol to denote Clifford multiplication. The element
Kc (t, x, x) ∈ End (Ex) is

Kc (t, x, x) = e−t(D+c)2 (x, x) ,

which satisfies (
∂

∂t
+ (D + c)2

)
Kc (t, x, y) = 0

lim
t→0+

Kc (t, x, y) = δxy,

where δxy is the Dirac delta distribution. To find the asymptotics as t→ 0+,
we need to solve for uk (x, y) ∈ Hom (Ey, Ex), where

(1) Kc (t, x, y) ∼ 1

(4πt)n/2
e−r

2/4t
(
u0 (x, y) + tu1 (x, y) + t2u2 (x, y) + · · ·

)
where r = dist (x, y). Such an asymptotic expansion exists, since (D + c)2 is
a generalized Laplacian (see [9], [22], [39]).

We will assume that we have chosen geodesic normal coordinates x =
(x1, . . . , xn) centered at y = 0 and that the frame field (e1, . . . , en) is parallel
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translated radially from the origin (i.e. y) such that

ej (0) = ∂j .

Then in these coordinates, we may map Ex to Ey via radial parallel
translation, so that each uk (x, y) may be regarded as a matrix-valued func-
tion of x, with Rn̂ identified with Ey. Observe that the Dirac operator may
be expressed as

D =
∑
j

ej � ∇ej =
∑
p,q

gpq∂p � ∇∂q ,

where in the first case we are summing over an orthonormal frame, and in
the second case we are using the coordinate vector fields, with (gpq) the
inverse of the metric matrix (gij).

We have, using the Einstein summation convention,

− (D + c)2 = − (ei � ∇ei + c)2(2)

= − (ei � ∇ei)
(
ej � ∇ej

)
− 2c (ei � ∇ei)− c2

= − (ei�) (ej�)∇ei∇ej
+ [− (ei�) ((∇eiej) �)− 2c (ej�)]∇ej − c2

= ∇ei∇ei −
∑
i<j

(ei�) (ej�)
[
∇ei ,∇ej

]
+ [− (ei�) ((∇eiej) �)− 2c (ej�)]∇ej − c2

= ∇ei∇ei −
∑
i<j

(ei�) (ej�)
(
∇[ei,ej ]

)
+ [− (ei�) ((∇eiej) �)− 2c (ej�)]∇ej
−
∑
i<j

(ei�) (ej�)
([
∇ei ,∇ej

]
−∇[ei,ej ]

)︸ ︷︷ ︸
define this to be Kij

− c2.

Further, let K =
∑

i<jKij ∈ End (Ex).

Next, let s be a bundle endomorphism, and let f be any function. Let
h = 1

(4πt)n/2
e−r

2/4t, and let g = det (gij), where r is the geodesic distance to

y = 0. Then from the formulas in [39, pp. 99-100] (extended, as is common,
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to endomorphisms),

∇h = − h
2t
r∂r

∂h

∂t
+ ∆h =

rh∂rg

4gt

D (fs)− fDs = (∇f) � s
D2 (fs)− fD2s = (∆f) s− 2∇∇fs,

so (
− (D + c)2

)
(fs) = −

(
D2 + 2cD + c2

)
(fs)

= −
(
fD2s+ (∆f) s− 2∇∇fs

)
− 2c (fDs+ (∇f) � s)− c2fs

= −f (D + c)2 s− (∆f) s+ 2∇∇fs− 2c (∇f) � s.

Then

1

h

(
∂t + (D + c)2

)
(hs)

=

(
−1

h
∆h+

r∂rg

4gt

)
s+ ∂ts+ (D + c)2 s

+

(
∆h

h

)
s− 2

h
∇∇hs+

2c

h
(∇h) � s

= ∂ts+ (D + c)2 s+
r

4gt
∂rgs+

1

t
∇r∂rs−

c

t
(r∂r) � s.

Writing

s = u0 + tu1 + t2u2 + · · · ,

we solve
(
∂t + (D + c)2

)
(hs) = 0 and get the equations

(3) ∇r∂ruj +

(
j +

r∂rg

4g
− c (r∂r�)

)
uj = − (D + c)2 uj−1 ,

or

(4) ∇∂ruj +

(
j

r
+
∂rg

4g
− c (∂r�)

)
uj = −1

r
(D + c)2 uj−1

This is an ordinary differential equation along a geodesic emanating from y,
the center of the geodesic coordinates.
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Note that for any smooth function f ,

exp (f (r) (∂r�)) =
∑
k≥0

1

(2k)!
f (r)2k (∂r�)2k

+
∑
k≥0

1

(2k + 1)!
f (r)2k+1 (∂r�)2k+1

=
∑
k≥0

(−1)k

(2k)!
f (r)2k +

∑
k≥0

(−1)k

(2k + 1)!
f (r)2k+1

 (∂r�)

= cos (f (r)) 1 + sin (f (r)) (∂r�) .

We also have the operator equation

∇∂r [cos (f (r)) 1 + sin (f (r)) (∂r�)]
= −f ′ (r) sin (f (r)) 1+ cos (f (r))∇∂r + f ′ (r) cos (f (r)) (∂r�)

+ sin (f (r)) (∂r�)∇∂r
= [cos (f (r)) 1 + sin (f (r)) (∂r�)]∇∂r +−f ′ (r) sin (f (r)) 1

+ f ′ (r) cos (f (r)) (∂r�)
= [cos (f (r)) 1 + sin (f (r)) (∂r�)]

(
∇∂r + f ′ (r) (∂r�)

)
.

Thus we multiply (4) by rjg1/4 [cos (−cr) 1 + sin (−cr) (∂r�)]. Then observe
that

∇∂r
(
rjg1/4 [cos (−cr) 1 + sin (−cr) (∂r�)]uj

)
= rjg1/4 [cos (−cr) 1 + sin (−cr) (∂r�)]

(
∇∂r +

(
j

r
+
∂rg

4g
− c (∂r�)

))
uj

= −1

r
rjg1/4 [cos (−cr) 1 + sin (−cr) (∂r�)] (D + c)2 uj−1,

so the new recursion formula is

∇∂r
(
rjg1/4 [cos (−cr) 1 + sin (−cr) (∂r�)]uj

)
(5)

= −rj−1g1/4 [cos (−cr) 1 + sin (−cr) (∂r�)] (D + c)2 uj−1 .

Substituting j = 0, we see that g1/4 [cos (−cr) 1 + sin (−cr) (∂r�)]u0 is par-
allel along radial geodesics, which means that

u0 (r) = g−1/4 [cos (−cr) 1− sin (−cr) (∂r�)](6)

= g−1/4 [cos (cr) 1 + sin (cr) (∂r�)] .



i
i

“2-Richardson” — 2018/4/19 — 16:19 — page 282 — #12 i
i

i
i

i
i

282 R. Gornet and K. Richardson

In other words, u0 (r) is the linear map from Ey to Ex (with y being the
origin of the geodesic coordinate system and r being the distance from y to
x) defined by

s (y) 7→ g−1/4 [cos (cr) 1 + sin (cr) (∂r�)] s (x) ,

where s (x) is the radial parallel translate of s (y) along the geodesic con-
necting y to x.

By writing

u1 = u1 (0) +O (r) ,

from (3) we see

u1 + r

(
∇∂ru1 +

(
∂rg

4g
− c (∂r�)

)
u1

)
= − (D + c)2 u0.

In particular,

u1 (0) =
(
− (D + c)2 u0

)
(0) .

We have r2 = xjxj , r∂r = xj∂j , and g = 1+1
3Ripqixpxq +O

(
r3
)

in geodesic
normal coordinates in terms of the Riemann curvature tensor Rijk` at x = 0
(see [39, p. 104]), using the convention that

Rijkl =
〈(
∇M∂k∇

M
∂` −∇

M
∂`∇

M
∂k

)
∂j , ∂i

〉
.

Using the binomial expansion,

u0 = g−1/4 [cos (cr) 1 + sin (cr) (∂r�)]

= 1+cr (∂r�)−
c2r2

2
1− 1

12
Rijkixjxk1+O

(
r3
)

= 1+cxj (∂j�)−
c2xjxj

2
1− 1

12
Rijkixjxk1+O

(
r3
)
.

Then at 0,

(Du0) (0) = gpq (∂p�)∇∂qu0

= (∂p�)∇∂pu0

= (∂p�) c (∂p�) = −nc1.
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At 0, ∇∂p∂q = 0 for all p, q ; thus, from (2) and the above,(
D2u0

)
(0) =

(
−∇∂p∇∂p +K

)
u0

=

(
nc2+

1

6
Rijji +K

)
1 =

(
nc2 − 1

6
Scal +K

)
1,

where Scal denotes the scalar curvature. Then

u1 (0) =
(
−
(
D2 + 2cD + c2

)
u0

)
(0)(7)

= −
(
nc2 − 1

6
Scal +K − 2cnc+ c2

)
1

=

(
(n− 1) c2 +

1

6
Scal

)
1−K.

We have shown that the heat kernel for (D + c)2 has the expansion

Kc (t, x, x) := exp
(
−t (D + c)2

)
(x, x)

=
1

(4πt)n/2

(
1 + t

((
(n− 1) c2 +

1

6
Scal

)
1−K

)
+O

(
t2
))

,

Tr exp
(
−t (D + c)2

)
=

1

(4πt)n/2

(
n̂vol (M)

+ t

[
n̂ (n− 1) c2vol (M) +

n̂

6

∫
M

Scal−
∫
M
Tr (K)

]
+O

(
t2
) )

.

Here, n is the dimension of the manifold, and n̂ is the rank of the bundle E.
The Clifford contracted curvature term K has the form (see [39, pp. 48–

49], [9, Thm. 3.52])

K =
Scal

4
+ FE�S .

On a spin manifold, if S is the spinor bundle, then E ∼= S ⊗W with con-
nection ∇S⊗W = ∇W ⊗ 1 + 1⊗∇S , and FE�S is the twisting curvature of
E, meaning

FE�S = FW =
∑
i<j

FW (ei, ej)
(
ei�
) (
ej�
)
,

with FW the curvature of ∇W . In particular, if D is the spin Dirac operator
on a spin manifold, then FW = 0 and
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Tr exp
(
−t (D + c)2

)
=

1

(4πt)n/2

(
n̂vol (M)

+ t

[
n̂ (n− 1) c2vol (M)− n̂

12

∫
M

Scal

]
+O

(
t2
))

.

Observe that our first recursion formula (4) for the heat invariant endo-
morphism uj corresponding to (D + c)2 is

∇∂ruj +

(
j

r
+
∂rg

4g
− c (∂r�)

)
uj = −1

r
(D + c)2 uj−1 ,

where r is the distance from the origin of the coordinate system, and the
differential equation holds along a geodesic from 0 to x. For j ≥ 0, we expand

uj =

K∑
k=0

ckuj,k +O
(
cK+1

)
,

where each uj,k is independent of c ∈ R. For consistency we declare that
uj,k = 0 if either j or k is negative. Our recursive formula above implies that
(collecting powers of c)

∇∂ruj,k +

(
j

r
+
∂rg

4g

)
uj,k = (∂r�)uj,(k−1) −

1

r
D2u(j−1),k(8)

− 2

r
Du(j−1),(k−1) −

1

r
u(j−1),(k−2).

Proposition 4. We have

uj,k = O
(
rmax{k−2j,0}

)
.

In particular,

uj,k (0) = 0

if k > 2j, so that uj is a polynomial in c of degree at most 2j.

Proof. Clearly, uj,0 = O (1) for all j ≥ 0, as these refer to the standard heat
invariants (with c = 0). Also, the formula holds for u0,k by Taylor analysis
of the expicit formula (6). We prove the general case by induction; assume
that the theorem holds for all (j, k) such that 0 ≤ j < J and k ≥ 0 or j = J
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and 0 ≤ k ≤ K, with J ≥ 1 and K ≥ 0. Then the formula preceding the
statement implies that

r∇∂ruJ,K+1 +

(
J +

r∂rg

4g

)
uJ,K+1 = r (∂r�)uJ,K −D2u(J−1),(K+1)

− 2Du(J−1),K − u(J−1),(K−1).

Note that, given A (r) = O (rp) is smooth in r, we have r∂rA (r) = O (rp) if
p 6= 0 and r∂rA (r) = O (r) if p = 0. Similarly, r (∂r�)A (r) = O

(
rp+1

)
since

∂r� is bounded and has constant norm. Then, by the induction hypothesis,

uJ,K+1 = O
(
rmax{K−2J,0}+1

)
+O

(
rmax{K−2J+3−2,0}

)
+O

(
rmax{K−2J+2−1,0}

)
+O

(
rmax{K−2J+1,0}

)
= O

(
rmax{K−2J+1,0}

)
,

since D (O (rp)) = O
(
rmax{p−1,0}) as long as the quantities are smooth in

r. �

Because (∂r�)2j = (−1)j and (∂r�)2j+1 = (−1)j (∂r�), from (6) we have

u0,k =
1

k!
g−1/4rk (∂r�)k .

Also, since all of the uj,0 are known (the standard heat invariants), we may
use (8) to calculate uj,k for all j ≥ 0, k ≥ 0. That is,

∇∂r
(
rjg1/4uj,k

)
= rjg1/4

(
(∂r�)uj,(k−1) −

1

r
D2u(j−1),k

− 2

r
Du(j−1),(k−1) −

1

r
u(j−1),(k−2)

)
,

and so the expression may be integrated along a radial geodesic to solve for
uj,k. We note that the formulas above and below for uj,k are well-known for
the case k = 0 (see, for example, [39, pp. 101ff], [22]); they are not easily
found in the literature for general k but may be known to experts. From the
formulas for u0,k and (7) we have

u0,0 (0) = 1, u1,0 (0) =

(
1

6
Scal

)
1−K, u1,1 (0) = 0, u1,2 (0) = (n− 1) 1.
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Let

aj,k =

∫
M

tr (uj,k (x, x)) dvol ,

where uj,k (x, x) is the expression at r = 0 of uj,k found above. In particular,
if n is the dimension of the manifold M and n̂ is the rank of the bundle E,

(9)
a0,0 = n̂vol (M) , a1,0 =

n̂

6

∫
M

Scal−
∫
M
Tr (K) ,

a1,1 = 0, a1,2 = n̂ (n− 1) vol (M) .

Then the heat invariants aj (c) corresponding to (D + c)2 satisfy

(10) aj (c) =

∫
M

tr (uj (x, x)) dvol =

2j∑
k=0

ckaj,k .

2.3. The eta invariant for arbitrary manifolds with spectral
symmetry

Suppose that M is a closed Riemannian manifold of dimension n. Recall
from Proposition 1, we wish to calculate lim

s→0
−sζ(D+c)2

(
s+1

2

)
, at a particular

value of c where dim ker (D + c)2 = {0}. From (1), as t→ 0+,∑
µ

e−tµ =

∫
M

trKc (t, x, x) dV (x) ∼ 1

(4πt)n/2

(
a0 + ta1 + t2a2 + · · ·

)
,

where {µ} are the eigenvalues of (D + c)2 with multiplicities. The standard
derivation of the analytic continuation of the zeta function is as follows. For
large Re (s),

ζ(D+c)2 (s) =
∑
µ

µ−s =
1

Γ (s)

∫ ∞
0

ts−1

(∑
µ

e−tµ

)
dt

=
1

Γ (s)

∫ 1

0
ts−1

(
1

(4πt)n/2

(
a0 + a1t+ · · ·+ aN t

N
))

dt

+
1

Γ (s)

∫ 1

0
ts−1

(∑
e−tµ − 1

(4πt)n/2

(
a0 + a1t+ · · ·+ aN t

N
))

+
1

Γ (s)

∫ ∞
1

ts−1
(∑

e−tµ
)
dt
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=
1

(4π)n/2 Γ (s)

N∑
j=0

aj

∫ 1

0
ts−1−n

2
+jdt+ φN (s)

=
1

(4π)n/2 Γ (s)

N∑
j=0

aj
s− n

2 + j
+ φN (s) ,

where φN (s) is holomorphic for Res > n
2 −N − 1, Γ (·) is the Gamma func-

tion, and aj is the heat invariant corresponding to (D + c)2:

aj =

∫
M

tr (uj (x, x)) dvol .

Then, since Γ
(

1
2

)
=
√
π,

lim
s→0
−sζ(D+c)2

(
s+ 1

2

)
= lim

s→0

−s
(4π)n/2 Γ

(
s+1

2

) an−1

2(
s+1

2 −
1
2

)
= −21−nπ−(n+1)/2an−1

2
,

or
d

dc
ηc (0) = −21−nπ−(n+1)/2an−1

2
(c) .

Note that if n is even, d
dcηc (0) = 0.

Now, suppose that there is a point of symmetry, λ < 0, in the spec-
trum σ (D) of D, meaning that σ (D)− λ is symmetric about 0 in R. Then
η−λ (0) = 0. We then integrate the formula above from c = 0 to c = −λ. We

have a discontinuity (a jump of +2) at each c ∈
(
0,−λ

)
that is an eigenvalue

of −D, due to the fact that c 7→ sgn (λ+ c) has a similar discontinuity near
c = −λ. Also, if either 0 or −λ are contained in the spectrum of −D, then
we will have a jump discontinuity of +1 at those points. Let c1 ≤ · · · ≤ ck be
the points of

(
0,−λ

)
that are eigenvalues of −D. Let n0 be the multiplicity

of 0 in σ (D), n−λ be the multiplicity of λ in σ (D). Then the fundamental
theorem of calculus yields∫ c1

0

d

dc
ηc (0) dc = ηc1 (0)− η0 (0)− 1− n0,∫ cj+1

cj

d

dc
ηc (0) dc = ηcj+1

(0)− ηcj (0)− 2,∫ −λ
ck

d

dc
ηc (0) dc = η−λ (0)− ηk (0)− 1− n−λ,
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which add to∫ −λ
0

d

dc
ηc (0) dc = η−λ (0)− η0 (0)− 2k − n0 − n−λ.

Therefore, since η−λ (0) = 0 and η0 (0) = η (0),

η (0) = −
∫ −λ

0

d

dc
ηc (0) dc− 2k − n0 − n−λ

=

∫ 0

−λ

d

dc
ηc (0) dc− 2k − n0 − n−λ

In the case where the point of symmetry is positive (λ > 0), the calculation
above may be adapted in the following ways. We integrate the formula for
d
dcηc (0) from c = −λ to c = 0, and if c1 ≤ · · · ≤ ck are the points of

(
−λ, 0

)
that are eigenvalues of −D, we have∫ c1

−λ

d

dc
ηc (0) dc = ηc1 (0)− η−λ (0)− 1− n−λ,∫ cj+1

cj

d

dc
ηc (0) dc = ηcj+1

(0)− ηcj (0)− 2,∫ 0

ck

d

dc
ηc (0) dc = η0 (0)− ηk (0)− 1− n0,

which yields

η0 (0) =

∫ 0

−λ

d

dc
ηc (0) dc+ 2k + n0 + n−λ,

with n0, n−λ defined above.

In general, if λ is the point of symmetry of σ (D),

η0 (0) = η−λ (0) +

∫ 0

−λ

d

dc
ηc (0) dc

+ sgn
(
λ
) (

2#
(
σ (D) ∩ Iλ

)
+ #

(
σ (−D) ∩

{
0,−λ

}))
= −21−nπ−(n+1)/2

∫ 0

−λ
an−1

2
(c) dc+ sgn

(
λ
)

2#
(
σ (D) ∩ Iλ

)
+ sgn

(
λ
)

#
(
σ (D) ∩

{
0, λ
})
,

where Iλ is
(
0, λ
)

or
(
λ, 0
)
, depending on the sign of λ, and where the last

two terms include multiplicities.
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Thus, from the formula above and the expression for the heat invariant
coefficients aj,k in (10), we have the following formula for η (0) = η0 (0).

Theorem 5. Let σ (D)− λ be symmetric about 0 in R. Then the eta in-
variant satisfies

η (0) = −21−nπ−(n+1)/2

(
n−1∑
k=0

(−1)k

k + 1
λ
k+1

an−1

2
,k

)
+ sgn

(
λ
)

2#
(
σ (D) ∩ Iλ

)
+ sgn

(
λ
)

#
(
σ (D) ∩

{
0, λ
})
,

where Iλ is the open interval between 0 and λ, and where implicitly the last
two terms include multiplicities.

2.4. The zeta function and the eta invariant for three-manifolds

By Theorem 5, for n = 3 we have

η (0) = −2−2π−2

(
λ

1
a1,0 −

1

2
λ

2
a1,1 +

1

3
λ

3
a1,2

)
+ sgn

(
λ
)

2#
(
σ (D) ∩ Iλ

)
+ sgn

(
λ
)

#
(
σ (D) ∩

{
0, λ
})
,

From (9),

η (0) = − n̂λ
3

6π2
vol (M)− λ

4π2

(
n̂

6

∫
M

Scal−
∫
M
Tr (K)

)
+ sgn

(
λ
) (

2#
(
σ (D) ∩

(
0, λ
))

+ #
(
σ (D) ∩

{
0, λ
}))

,

where implicitly the last two terms include multiplicities. Note that every
three-manifold is spin, and thus if we let FW be the twisting curvature, then∫

M
Tr (K) =

∫
M

n̂Scal

4
+

∫
M
Tr
(
FW

)
.

Then we have

η (0) = − n̂λ
3

6π2
vol (M) +

λ

4π2

(
n̂

12

∫
M

Scal +

∫
M
Tr
(
FW

))
(11)

+ sgn
(
λ
) (

2#
(
σ (D) ∩

(
0, λ
))

+ #
(
σ (D) ∩

{
0, λ
}))

.
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3. Two-step Nilmanifolds and Dirac operators

3.1. Two-step Nilmanifolds and the Laplace-Beltrami operator

We review known results about the Laplacian on two-step nilmanifolds in
this section. A Lie algebra g is two-step nilpotent if its derived algebra
z′ = [g, g] 6≡ 0 is contained in its center; i.e., [g, [g, g]] ≡ 0 but [g, g] 6≡ 0. A
Lie group G is two-step nilpotent if its Lie algebra is. Let G be a simply
connected two-step nilpotent Lie group of dimension n with Lie algebra g.
Let Γ be a cocompact (i.e., Γ�G compact), discrete subgroup of G, and
denote M = Γ�G. Fix an inner product 〈 , 〉 on g, which corresponds to
a left-invariant metric on G, and which descends to a Riemannian metric
on M . Note that left translation by noncentral elements is no longer an
isometry on M . Let {Xi} be an orthonormal basis of left-invariant vector
fields of g.

All nilpotent Lie groups are unimodular [17, Proposition 1.2.10], so that
the Laplace-Beltrami operator acting on smooth functions on G can be ex-
pressed as

∆ = −
∑

X2
i .

Denote by ρ the (right) quasi-regular representation of G on L2 (Γ�G); i.e.,
for g ∈ G, f ∈ L2 (Γ�G),

(ρ (g) f) (x) = f (xg) .

This is a unitary representation of G, and ρ is the induced representation of
the trivial representation of Γ. Denote by ρ∗ the associated unitary action
of g on C∞ (Γ�G) ⊂ L2 (Γ�G); i.e., for X ∈ g, f ∈ C∞ (Γ�G),

(ρ∗ (X) f) (x) =
d

dt

∣∣∣∣
0

f (x exp (tX)) .

Because on smooth functions ρ∗ (X) f = Xf , we may rewrite the Laplacian
as

∆ = −
∑

(ρ∗Xi)
2 .

By expressing the Laplace-Beltrami operator in terms of the representa-
tion ρ, we see that irreducible subspaces of the representation are also invari-
ant subspaces of the Laplacian. By restricting ∆ to an irreducible subspace
of L2 (Γ�G), Gordon, Wilson, and Pesce ([26], [36]) have been able in the
two-step nilpotent case to explicitly solve for its eigenvalues and eigenfunc-
tions. The Laplace spectrum of Γ�G is then the union over all irreducible
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subspaces of the spectrum of the restricted Laplacian. The multiplicity of
an eigenvalue is the sum over the irreducible subspaces of L2 (Γ�G) of the
eigenvalue’s multiplicity in the irreducible subspace times the multiplicity of
the irreducible subspace in L2 (Γ�G). The key ingredient that distinguishes

the nilpotent case in general, and the two-step nilpotent case in particular,
is that occurrence conditions, eigenvalues, eigenfunctions, and multiplicities
can be explicitly expressed in terms of log Γ and (g, 〈 , 〉) using Kirillov
theory. For more details, see [25].

Kirillov ([28], [29]) proved that equivalence classes of irreducible unitary
representations of nilpotent Lie groups G are in 1-1 correspondence with the
orbits of the coadjoint action of G on g∗. The coadjoint action is defined by,
for x ∈ G, α ∈ g∗,

x · α = α ◦Ad
(
x−1

)
.

Given a fixed representative α ∈ g∗ corresponding to a coadjoint orbit, let πα
denote the associated irreducible unitary representation of G with represen-
tation space Wα. The possible dimensions of Wα are either 1 (characters)
or infinite. L. F. Richardson ([38]) computed the decomposition of ρ into
irreducibles.

Notation: Given α ∈ g∗, let Bα : g× g→ R be defined by

Bα (X,Y ) = α ([X,Y ]) .

Let gα = ker (Bα) = {X ∈ g : Bα (X,Y ) = 0 for all Y ∈ g}, let Bα be the
nondegenerate skew-symmetric bilinear form induced by Bα on g�gα, and
denote by ±i d1, . . . ,±i dr the eigenvalues of Bα. Note log Γ generates a
lattice L in g [26, proof of Thm 2.4]. Let Aα = L� (L ∩ gα). Let

∆α = ∆|Wα
.

In the two-step nilpotent case, H. Pesce explicitly calculated the spec-
trum of the restricted Laplace-Beltrami operator ∆α as follows.

Proposition 6. ([36, Section II and Appendix A]) We continue the nota-
tion above.

1) πα occurs in the representation L2 (Γ�G) if and only if

α (log Γ ∩ gα) ⊂ Z.

2) If πα occurs and α ([g, g]) = {0}, then πα is one-dimensional and oc-
curs with multiplicity ma = 1. The Laplace spectrum associated to this
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irreducible subspace is

spec (∆α) =
{

4π2 ‖α‖2
}
.

3) If πα occurs and α ([g, g]) 6= {0}, then πα is infinite-dimensional and
occurs with multiplicity

mα =
√

det
(
Bα
)
,

where the determinant is computed with respect to (any) lattice ba-
sis of Aα ⊂ g�gα. The Laplace spectrum associated to this irreducible
subspace is

spec (∆α) = {µ (α, p) : p ∈ (Z≥0)m} ,

where

µ (α, p) = 4π2
∑

α (Zi)
2 + 2π

∑
(2pj + 1) dj ,

with {Z1, . . . , Zk} an orthonormal basis of gα. The multiplicity of µ in
spec (∆α) is the number of p ∈ (Z≥0)m satisfying µ (α, p) = µ.

Remark 7. In other words, the multiplicity of an eigenvalue λ is the sum
of the multiplicity of λ as an eigenvalue in each ∆α times the multiplicity of
πa in the representation L2 (Γ�G).

3.2. The Dirac operator on two-step nilmanifolds

As we intend to calculate the eta invariant of the spin Dirac operator, we
now extend Pesce’s results to the Dirac setting. Recall that G is a simply
connected n-dimensional two-step nilpotent Lie group with Lie algebra g
and Γ is a cocompact, discrete subgroup of G. We fix an inner product on
g, which corresponds to a left-invariant metric on G, which descends to a
Riemannian metric on Γ�G.

Let Σn be a standard irreducible spinor representation (see [9, Section
3.2]), also considered as a trivial bundle over G. A spin structure and the
corresponding spinor bundle Σε over Γ�G are determined by Σn and a
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homomorphism ε : Γ→ {±1} (see [9, Prop 3.34, p. 114]). We have

(12) L2 (Γ�G,Σε) ∼= L2
ε (Γ�G)⊗C Σn,

where L2
ε (Γ�G) is defined by

(13) L2
ε (Γ�G) =

{
f ∈ L2

loc (G) : f (γx)=ε (γ) f (x) for all γ∈Γ, x∈G
}
.

The isomorphism from L2
ε (Γ�G)⊗C Σn to L2 (Γ�G,Σε) is f ⊗ s 7→ fs,

where Σn is identified with the constant sections G→ G× Σn. Clifford mul-
tiplication by elements of T (Γ�G) ∼= Γ�G× g is given by the standard
Clifford action � of Cl (g) on Σn. That is, ξ ∈ g acts on L2

ε (Γ�G)⊗C Σn by

ξ � (fs) = f (ξ � s) .

By construction, (ξ�) is a constant matrix on Γ�G for every left-invariant
vector field ξ.

Note that the (Clifford) connection on any spinor bundle is given by

(14) ∇Σ
Ei = ∂Ei +

1

4

∑
j,k

Γkij (Ej�) (Ek�)

according to the Ammann-Bär formula [1, formula 1.1], where {Ej} is a
left-invariant orthonormal basis of the tangent space, Γkij are the Christoffel
symbols associated to the metric and frame, and ∂Ei is a directional deriva-
tive. In our case, we use the left-invariant metric on g, yielding a metric on
Γ�G. Then the Dirac operator D on Γ�G acts on L2

ε (Γ�G)⊗ Σn by

D =
∑

(Ei�)∇Σ
Ei

=
∑
i

(Ei�) ∂Ei+
1

4

∑
i,j,k

Γkij (Ei � Ej � Ek�)

If ρε denotes right multiplication acting on L2
ε (Γ�G), we have

∂Ei =
d

dt

∣∣∣∣
0

ρε (exp (tEi))

= ρε∗ (Ei) .

Note that ρε is the induced representation of ε : Γ→ {±1} to G. The
Christoffel symbols are defined by

∇EiEj =
∑

ΓkijEk,



i
i

“2-Richardson” — 2018/4/19 — 16:19 — page 294 — #24 i
i

i
i

i
i

294 R. Gornet and K. Richardson

and the Koszul formula gives

2Γkij = −〈Ei, [Ej , Ek]〉+ 〈Ej , [Ek, Ei]〉+ 〈Ek, [Ei, Ej ]〉 .

At this point, the formulas given above are completely general for any Lie
group G with a left-invariant metric.

We now assume G is 2-step nilpotent, so that 〈Ei, [Ej , Ek]〉 = 0 unless Ei
is in the center of g. If g = z⊕ v with z the center and v = z⊥, its orthogonal
complement, then the inner product on g is determined by and determines
the map j : z→ so (v) defined as

(15) 〈j (Z)X,A〉 = 〈Z, [X,A]〉

for all Z ∈ z and all X,A ∈ v. See, for example, [20, p.618ff]. Note that if
〈Z, [g, g]〉 = 0, then j (Z) is the zero map.

Let k0 be the dimension of the center and k0 +m0 the dimension of
g, and we choose the orthonormal basis {Z1, . . . , Zk0 , X1, . . . , Xm0

} so that
{Zi} is an orthonormal basis of z and {Xi} is an orthonormal basis of v.
Then one easily verifies that

∇ZiXk = ∇XkZi = −1

2
j (Zi)Xk, ∇XiXk =

1

2
[Xi, Xk] , ∇ZiZk = 0.

We label E1 = Z1, . . . , Ek0 = Zk0 , Ek0+1 = X1, . . . , Ek0+m0
= Xm0

. The
Christoffel symbols satisfy Γrpq = 0 if at least two of p, q, r are ≤ k0 or if
p, q, r > k0. If a ≤ k0, b, q > k0,

2Γabq = −2Γaqb = 2Γbaq = 2Γbqa = −2Γqab = −2Γqba
= 〈Za, [Xb−k0 , Xq−k0 ]〉 = 〈j (Za)Xb−k0 , Xq−k0〉 .

Letting ∂Ei = ∂i, Ci = (Ei�), Cabq = (Ea � Eb � Eq�), etc., the Dirac op-
erator is

D =
∑
i

∂iCi+
1

4

∑
i,j,k

ΓkijCijk

=
∑
i

∂iCi+
1

4

∑
a≤k0; b,q>k0

(
ΓabqCbqa + ΓbaqCaqb + ΓqbaCbaq

)
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=
∑
i

∂iCi+
1

4

∑
a≤k0; q>b>k0

(
ΓabqCbqa + ΓaqbCqba + ΓbaqCaqb

+ ΓqabCabq + ΓqbaCbaq + ΓbqaCqab

)
=
∑
i

∂iCi+
1

2

∑
a≤k0; q>b>k0

ΓabqCabq

=
∑
i

∂iCi+
1

4

∑
a≤k0; q>b>k0

〈Za, [Xb−k0 , Xq−k0 ]〉 (Za �Xb−k0 �Xq−k0�) ,

so

D =
∑
i

(Ei�) ∂Ei+
1

4

∑
a≤k0; b<i≤m0

〈Za, [Xb, Xi]〉 (Za �Xb �Xi�)(16)

=
∑
i

(Ei�) ρε∗ (Ei) +
1

2

∑
a≤k0

Za � j (Za) .

In the expression above, we have used the fact that j (Za) ∈ so (m0) =
spin (m0) and have therefore identified j (Za) with the operator

1

2

∑
b<i≤m0

〈j (Za)Xb, Xi〉Xb �Xi � .

The formula above works for any two-step nilmanifold.

Example 8. In the three-dimensional Heisenberg case, for some constant

A > 0, we let
{
X1 = 1√

A
X,X2 = 1√

A
Y,Z

}
be an orthonormal frame with

[X,Y ] = Z. We choose a basis of Σ3
∼= C2 so that

(Z�) =

(
i 0
0 −i

)
, (X1�) =

(
0 i
i 0

)
, (X2�) =

(
0 −1
1 0

)
.

Then

〈Z, [X1, X2]〉 =
1

A
,

(Z �X1 �X2�) = −1,

so the equation above becomes

D =

3∑
i=1

(Ei�) ∂ei −
1

4A
,
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as seen in [1, Equation 3.2], with d2T = 1
A in their notation.

3.3. Analogue of Pesce’s theorem for spinors

In this section, we decompose L2
ε (Γ�G) as a direct sum of irreducible repre-

sentations. Let α ∈ g∗. Recall Bα (X,Y ) := α ([X,Y ]), gα = kerBα, so that
α ([gα, g]) = 0. Let gα be a maximal polarizer of α, meaning that it is a sub-
algebra of g such that α ([gα, gα]) = 0 and there does not exist a subalgebra
h with the same property such that gα ( h ⊆ g. Note that for every α ∈ g∗

and every choice of gα,

gα ⊂ gα.

Given gα, let Gα = exp (gα).

Lemma 9. (Lemma 4 from [36, Appendix A]) Let α ∈ g∗, α ([g, g]) 6= 0 and
Bα (X,Y ) = α ([X,Y ]) ∈ Z for all X,Y ∈ log Γ. Then there exists a basis
{U1, . . . , Um, V1, . . . , Vm,W1, . . . ,Wk}of g formed of elements of log Γ, and
there exist integers r1, . . . , rk such that

1) We have

Bα (Ui, Vi) = α ([Ui, Vi]) = ri,

Bα (Ui, Vj) = 0 if i 6= j, and

Bα (Ui, Uj) = Bα (Vi, Vj) = 0 for all i, j.

2) {W1, . . . ,Wk} is a basis of gα, {W1, . . . ,Wk1} is a basis of [g, g],
k1 ≤ k,

3) [g, g] ∩ log Γ = spanZ {W1, . . . ,Wk1}.

Remark 10. It follows from Pesce’s proof of this Lemma that we may also
choose {W1, . . . ,Wk0} to be a basis of z, with k1 ≤ k0 ≤ k.

As before, log Γ generates a lattice L in g. Let Aα = L� (L ∩ gα). When
πα occurs, this will be a lattice in g�gα.

Proposition 11. (Version of Pesce Occurrence Condition ([36, Proposi-
tion 9 of Appendix A]) for Dirac spinors) The representation πα appears in
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L2
ε (Γ�G) if and only if

(17) α (log γ) ∈ Z+
1− ε (γ)

4

for all γ ∈ Γ ∩Gα. In this case, the multiplicity of πα is mα = 1 if α ([g, g]) =
{0}, and otherwise

mα =
√

det
(
Bα
)
,

where the determinant is computed with respect to (any) lattice basis of
Aα ⊂ g�gα.

Proof. Items 4 through 8 in [36, Appendix A] apply in this situation.
If α ([g, g]) = 0, then g = gα = gα. Then condition (17) is equivalent to

Theorem 22. In addition, using Theorem 24,

m
(
πα, L

2
ε (Γ�G)

)
= # ((Gα�G)ε�Γ)

= # ((G�G)ε�Γ) = 1.

For the remainder of the proof, we assume α ([g, g]) 6= 0. First, we assume πα
appears in L2

ε (Γ�G). Then, by Theorem 22, there exists α′ in the coadjoint
orbit of α such that

(
α′, Gα

′)
is an ε-integral point, where α′ = α ◦ Ix (Ix =

conjugation by x), α′ = α◦Ad(x) and Gα
′

= Ix−1 (Gα) such that

α′ (log γ) ∈

{
Z if ε (γ) = 1
1
2 + Z if ε (γ) = −1

for all γ ∈ Γ ∩Gα′ . In the two-step case, Gα
′

= Gα since Ix (y) y−1 ∈ Z (G)
for all x, y ∈ G, and Z (G) ⊆ Gα ⊆ Gα

′
. Also in the two-step case, if α, α′ lie

in the same coadjoint orbit, then there exists X ∈ g such that
α′ = α ◦ (I + ad (X)). Thus

α (log γ + ad (X) log γ) ∈

{
Z if ε (γ) = 1
1
2 + Z if ε (γ) = −1

for all γ ∈ Γ ∩Gα. This implies the same condition is met for all γ ∈ Γ ∩Gα,
in which case α (ad (X) log γ) = α ([X, log γ]) = 0, by definition of Gα.
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On the other hand, suppose

α (log γ) ∈ Z+
1− ε (γ)

4

for all γ ∈ Γ ∩Gα. Note that if X,Y ∈ log Γ, then [X,Y ] ∈ log Γ since
[expX, expY ] = exp ([X,Y ]) (since G is two-step). Therefore, α ([X,Y ]) ∈
Z, since ε ([expX, expY ]) = 1. We can then use Lemma 9 to construct a ba-
sis {U1, . . . , Um, V1, . . . , Vm,W1, . . . ,Wk} ⊂ log Γ of g and integers r1, . . . , rm
such that α ([Uj , Vj ]) = rj . Set h = spanR {V1, . . . , Vm,W1, . . . ,Wk}. Then h
is a rational ideal of g, since [h, g] ⊆ z ⊆ h (two-step condition), and h is a
polarizer of α. Set H = exp (h), which is a normal subgroup of G. Note that

H =


m∏
i=1

exp (yiVi)

k∏
j=1

exp (zjWj) : yi, zj ∈ R

 .

Define α (exp (X)) = exp (2πiα (X)) for all X ∈ h. By Theorem 22, to prove
that πα occurs, we need only construct an ε-integral point in the G-orbit of
(α,H). For x ∈ G, define xi, yi, zj by the formula

x =

m∏
i′=1

exp (xi′Ui′)

m∏
i=1

exp (yiVi)

k∏
j=1

exp (zjWj) ,

and define pi, qi, ηj by

α
(∑

uiUi + viVi +
∑

wjWj

)
=
∑

(piui + qivi) +
∑

ηjwj ,

for all ui, vi, wj ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ k. By [36, Lemma 7, Appendix A],
[36, Theorem 8, Appendix A],

H ∩ Γ =


m∏
i=1

exp (tiVi)

k∏
j=1

exp (sjWj) : ti, sj ∈ Z

 .

We need to show that there exists x ∈ G such that (α ◦ Ix) (γ) = ε (γ) for
all γ ∈ H ∩ Γ. First note that

(α ◦ Ix) (exp (Wj)) = α (exp (Wj + [log (x) ,Wj ]))

= exp (2πiα (Wj + [log (x) ,Wj ]))

= exp (2πiα (Wj)) since Wj ∈ gα

= α (exp (Wj)) = ε (exp (Wj))
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since Wj ∈ (log Γ) ∩ gα. Next,

(α ◦ Ix) (exp (Vj)) = α (exp (Vj + [log (x) , Vj ]))(18)

= exp (2πiα (Vj + [log (x) , Vj ]))

= exp (2πiα (Vj + xj [Uj , Vj ]))

= exp (2πi (qj + xjrj)) .

By setting xj = − qj
rj

or − qj+
1

2

rj
depending on whether ε (exp (Vj)) = ±1, we

conclude.

(α ◦ Ix) (exp (Vj)) = ε (exp (Vj)) .

We have shown that for all γ ∈ H ∩ Γ there exists x ∈ G such that
(α ◦ Ix) (γ) = ε (γ).

We now calculate the multiplicity with which πα appears. In fact, for
x ∈ G, the calculations above show that for all X ∈ h, (α ◦ Ix) (exp (X))
depends only on the xi and not on yi or zj , 1 ≤ i ≤ m, 1 ≤ j ≤ k. Thus from
(18) the orbit of (α,H) is the set of characters of H{

(χq′ , H) : q′ ∈ Rm
}
,

where where after a bit of calculation identical to [36, p.453, lines -8 through
-5]

χq′

 m∏
i=1

exp (tiVi)

k∏
j=1

exp (sjWj)

 = exp

2πi

 m∑
i=1

q′iti +

k∑
j=1

ηjsj

 .

Then (χq′ , H) is an ε-integer point if and only if

q′i ∈ Z whenever ε (exp (Vi)) = 1,

q′i ∈
1

2
+ Z whenever ε (exp (Vi)) = −1.

Note also from (18) that two ε-integer points (χq′ , H) and (χq′′ , H) are in
the same Γ-orbit if and only if q′i − q′′i ∈ riZ, i = 1, . . . ,m. So the number
mα of Γ-orbits in the ε-integer points is r1r2 · · · rm. Next, it is clear that the
images of U1, . . . , Um, V1, . . . , Vm form a basis of Aα. So

det
(
Bα
)

= det (Bα (Ui, Vj))
2 = (r1r2 · · · rm)2 = m2

α.

�
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4. Decomposition of the Dirac operator on two-step
nilmanifolds

We continue with the notation of the previous section; recall that k0 is the
dimension of the center z and n = k0 +m0 is the dimension of g = z⊕ v, and
we will choose the orthonormal basis {E1, . . . , En} = {Z1, . . . , Zk1 , . . . , Zk0 ,
X1, . . . , Xm0

} so that {Zj}k1j=1 is an orthonormal basis of [g, g], {Zj}k0j=1 is
an orthonormal basis of z and {Xj} is an orthonormal basis of v. From
formula (16) and this choice of basis, the Dirac operator is now

D =

n∑
i=1

(Ei�) ρε∗ (Ei) +
1

2

∑
a≤k1

Za � j (Za) ,

acting on

(19) H = L2 (Γ�G,G×ε Σn) ∼= L2
ε (Γ�G)⊗ Σn,

which we decompose using Kirillov theory.
Choose an element α ∈ g∗. Our strategy is as follows. We first construct

a subspaceHα of L2
(
Γ�G,G×ε Ck

)
that is invariant with respect to ρε and

invariant by D. Once we have done this, by Kirillov theory, let Hα be the
irreducible ρε-subspace of L2

ε (Γ�G) corresponding to the coadjoint orbit of
α, and let

Hα ∼= Hα ⊗ Σn

through the isomorphism above. While Hα is ρε-irreducible, Hα is not for
n ≥ 2. We express D acting on Hα, and because of the two-step structure,
we are able to solve explicitly the partial differential equation for eigenvalues
via Hermite functions.

Since
∑n

i=1 ρε∗ (Ei) (Ei�) is independent of the choice of basis {E1, . . . ,
En}, the second term is similarly independent of choices and independent
of the representation ρε. Define

Dρε =

n∑
i=1

(Ei�) ρε∗ (Ei)

M =
1

2

∑
a≤k0

Za � j (Za) =
1

2

∑
a≤k1

Za � j (Za) ,(20)

so thatD = Dρε +M withM a hermitian linear transformation independent
of invariant subspace. Note that ρε and (Y �) commute if (Y �) is a constant
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transformation — that is, if Y is left-invariant. Thus M commutes with ρε
because each 〈Za, [Xb, Xi]〉 is constant on Γ�G.

As before, we define the symplectic form on g by Bα (U, V ) := α ([U, V ]),
and let gα = kerBα = {U ∈ g : Bα (U, ·) = 0}, kα = dim gα. We have two
cases.

4.1. Finite-dimensional Hα-irreducible subspaces: kα = n, i.e.
α ([g, g]) = 0.

In this case, gα = g, and gα = g is a maximal polarizer of α. Then Gα =
exp (gα) = G. Define

Hα = {σ ∈ H : σ (hx) = α (h)σ (x) for all h ∈ Gα, x ∈ G}
= {σ ∈ H : σ (hx) = α (h)σ (x) for all h ∈ G, x ∈ G}
= α (·)⊗ Σn,

where

α (h) = e2πiα(log h).

For σ ∈ Hα, we have, since α ([g, g]) = 0, for p ∈ Γ�G,

ρε∗ (U)σ (p) =
d

dt

∣∣∣∣
0

σ (p exp (tU) 1) =
d

dt

∣∣∣∣
0

e2πiα log(p exp(tU))σ (1)

=
d

dt

∣∣∣∣
0

e2πiα(log(p)+tU+ 1

2
[log(p),tU ])σ (1)

=
d

dt

∣∣∣∣
0

e2πiα(log(p)+tU)σ (1) .

We have ρε∗ (Za)σ = 0, and ρε∗ (Xi)σ = ∂
∂xi
σ = 2πiα (Xi)σ. Thus,

D|Hα =

m0∑
i=1

2πiα (Xi) (Xi�) +
∑

Zj 6∈[g,g]

2πiα (Zj) (Zj�)(21)

+
1

2

∑
a≤k1

Za � j (Za) ,

which is a constant matrix. The eigenvalues of D|Hα are then the eigenvalues
of this Hermitian matrix.
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4.2. Infinite-dimensional Hα-irreducible subspaces: kα < n, so
that α ([g, g]) is not identically zero.

Choose a new orthonormal basis of g:

{W1, . . . ,Wkα , U1, . . . , Um, V1, . . . , Vm} ,

where n = kα + 2m, {Wj} is a basis of gα with W1 = Z1, . . . ,Wk0 = Zk0 ∈ z,
Wk0+1, . . . ,Wkα ∈ gα ∩ z⊥.

Bα (Ui, Vi) = α ([Ui, Vi]) = di > 0, 0 < d1 ≤ d2 ≤ · · · ≤ dm,
Bα (Ui, Vj) = 0 if i 6= j

Bα (Ui, Uj) = Bα (Vi, Vj) = 0 for all i, j.

Note the similarity with Lemma 9, but we have replaced some of the Vj
with their negatives in order to make dj positive. We may assume n− kα
is even, since the restriction of Bα to g⊥α is a symplectic form. Then the
polarizing subalgebra gα (meaning that gα is a subalgebra of g such that
α ([gα, gα]) = 0 and is maximal with respect to inclusion) will be chosen to
be

gα = span {V1, . . . , Vm,W1, . . . ,Wkα} ,

and again Gα := exp (gα). We have, with α (h) = exp (2πiα (log h)),

Hα = {σ ∈ H : σ (hx) = α (h)σ (x) for all h ∈ Gα, x ∈ G} .

Let Hα be the ρε-irreducible subspace of L2
ε (Γ�G) such that

Hα ∼= Hα ⊗ Σn

through the isomorphism (12). Let β : Hα → L2
C (Rm) be the unitary isomor-

phism defined by β (F ) (t) = F (exp (t1U1) · · · exp (tmUm)). Note that the
map

t ∈ Rk 7→ Gα exp (t1U1) · · · exp (tmUm) ∈ Gα�G

pushes the Euclidean metric onto a right G-invariant metric on Gα�G.
Note that Hα = β−1

(
L2
C (Rm)

)
, and for x = h exp (t1U1) · · · exp (tmUm) an
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arbitrary element of G with h ∈ Gα, and f ∈ L2
C (Rm),(

β−1f
)

(x) =
(
β−1f

)
(h exp (t1U1) · · · exp (tmUm))

= α (h) f (t1, . . . , tm) .

Here πα is the representation of G on Hα induced from the character α of
Gα; we have for f ∈ Hα,

(πα (x) f) (y) = (ρεxf) (y) = f (yx) .

We define the representation π′α of G on L2
C (Rm) by

π′α (x) = β ◦ πα (x) ◦ β−1

for all x ∈ G.
For any x, y ∈ G, let [x, y] = xyx−1y−1. To compute the action of G on

L2
C (Rm), recall that sinceG is 2-step (following [36, p. 447, proof of Prop. 9]),

for any h0 ∈ Gα,

•
m∏
j=1

exp (tjUj)h0 =

[
m∏
j=1

exp (tjUj) , h0

]
h0

m∏
j=1

exp (tjUj)

•
m∏
`=1

exp (t`U`)
m∏
j=1

exp (sjUj)

= exp
(
−
∑

1≤j<`≤m t`sj [Uj , U`]
) m∏
j=1

exp ((tj + sj)Uj)

•

[
m∏
j=1

exp (tjUj) , h0

]
= exp

[∑m
j=1 tjUj , log h0

]
.

For any x ∈ G, by the calculations above, there exists h0 ∈ Gα and real

numbers s` ∈ R such that x = h0

m∏
j=1

exp (sjUj). For any f ∈ L2
C (Rm), t, s ∈

Rm (
π′α (x) f

)
(t) =

(
β−1f

) m∏
`=1

exp (t`U`)h0

m∏
j=1

exp (sjUj)

 .

Since
(
β−1f

)
(hg) = α (h)

(
β−1f

)
(g), we see

(
π′α (x) f

)
(t) = α

[ m∏
`=1

exp (t`U`) , h0

]
h0 exp

− ∑
1≤j<`≤m

t`sj [Uj , U`]


× f (t+ s) .
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We have used the fact that exp ([g, g]) ⊂ Z (G) ⊂ Gα and the calculations
above. Since the restriction of Bα to RU1 ⊕ · · · ⊕ RUm × RU1 ⊕ · · · ⊕ RUm
is zero, we have(

π′α (x) f
)

(t) = f (t+ s) e2πiα(log h0+[
∑m
j=1 tjUj ,log h0]).

Now, define the vector w ∈ Rm by

w :=

(
α (V1)

d1
, . . . ,

α (Vm)

dm

)
.

Define the unitary isomorphism Tw : L2
C (Rm)→ L2

C (Rm) by

(Twf) (t) = f (t− w) ,

and define

π′′α (x) = Tw ◦ π′α (x) ◦ T−1
w

for all x ∈ G. We claim that the representation π′′α∗ = ρε∗ is given by

π′′α∗ (Uj) f (t) =
∂

∂tj
f (t) ,

π′′α∗ (Vj) f (t) = 2πitjdjf (t) ,

π′′α∗ (Wj) f (t) = 2πiα (Wj) f (t) .(22)

To see this (see also [36, Section 3]), we have for r ∈ R,

π′′α(exp(rUj))f(t) = (Twπ
′
α(exp(rUj))T−wf)(t)

=
(
π′α(exp(rUj))T−wf

)
(t− w)

= (T−wf)(t− w + rej)

= f(t+ rej),

with ej the jth standard unit vector in Rm. Also,

π′′α(exp(rVj))f(t) = (π′α (exp(rVj))T−wf)(t− w)

= (T−wf)(t− w)e2πiα(rVj+[(tj−wj)Uj ,Vj ])

= f(t)e2πi(rα(Vj)+tjdjr−wjdjr)

= f(t)e2πitjdjr.
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We have

π′′α(exp(rWj))f(t) = (π′α (exp(rWj))T−wf)(t− w)

= f(t)e2πiα(rWj).

With W1 = Z1, . . . ,Wk0 = Zk0 , equation (16) becomes (see (20))

D|Hα =

n∑
j=1

Ej � ρε∗ (Ej) +
1

2

∑
a≤k1

Za � j (Za)

=

n∑
j=1

Ej � ρε∗ (Ej) +M

=

kα∑
j=1

(Wj�) ρε∗ (Wj) +

m∑
j=1

(Uj�) ρε∗ (Uj) +

m∑
j=1

(Vj�) ρε∗ (Vj) +M

=

kα∑
j=1

2πiα (Wj) (Wj�) +

m∑
j=1

(Uj�)
∂

∂tj
+

m∑
j=1

2πitjdj (Vj�) +M

=

m∑
j=1

(Uj�)
∂

∂tj
+

m∑
j=1

2πidj (Vj�) tj +M ′α,

where M ′α is defined as the constant Hermitian transformation

(23) M ′α = M +

kα∑
j=1

2πiα (Wj) (Wj�) ,

with M as in (20).
We have

D|Hα = M ′α +

m∑
j=1

(
(Uj�)

∂

∂tj
+ 2πidj (Vj�) tj

)
(24)

= M ′α +

m∑
j=1

(Uj�)
(
∂

∂tj
− 2πidj (Uj�) (Vj�) tj

)
,

so that

(25) D|Hα = M ′α +

m∑
j=1

(Uj�)
(
∂

∂tj
+ Θjtj

)
,
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where we define

(26) Θj = −2πidj (Uj�) (Vj�) ,

a Hermitian symmetric linear transformation.

4.3. Matrix choices

We now make specific choices of the matrices (Uj�), (Vj�), where Uj , Vr,
Wk are from the basis chosen at the beginning of Section 4.2 relative to a
particular α. We continue to use the positive real numbers dj as defined in
that section as well. Note that any other choices would yield the same Dirac
spectrum. See [30, Part I, section 5] for details on the representations of
Clifford algebras, on which much of this material is based.

Let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
1′ =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)
We view Σn = C2bn/2c =

⊗
bn/2c times

C2. Observe that multiplication satisfies

(27)

1 1′ σ1 σ2

1′ 1 −iσ2 iσ1

σ1 iσ2 1 −i1′
σ2 −iσ1 i1′ 1

with multiplication on the left given by the column items.
Let

(U1�) = iσ1 ⊗ 1⊗ · · · ⊗ 1, (V1�) = iσ2 ⊗ 1⊗ · · · ⊗ 1,

and in general, for 1 ≤ j ≤ m,

(Uj�) = i1′ ⊗ · · ·⊗1′ ⊗ σ1 ⊗ 1⊗ · · · ⊗ 1,

(Vj�) = i1′ ⊗ · · ·⊗1′ ⊗ σ2 ⊗ 1⊗ · · · ⊗ 1,(28)

where each (Uj�) and each (Vj�) has j − 1 leading factors of 1′ and a total of
n′ =

⌊
n
2

⌋
= m+

⌊
kα
2

⌋
matrix factors of size 2× 2 . Continuing, each (Wk�),
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1 ≤ k ≤ kα, is chosen to be

(29) (Wk�) = i1′ ⊗ · · ·⊗1′ ⊗ σ ⊗ 1⊗ · · · ⊗ 1,

with σ being σ1 or σ2 according to whether k is odd or even, such that there
are at least m leading factors of 1′ in the above expression. If the dimension
kα is odd, then the last matrix is chosen to be

(30) (Wkα�) = i1′ ⊗ · · ·⊗1′.

With these choices, observe that from (26),

Θj = 2πdj
(
1⊗ 1⊗ · · ·⊗1⊗ 1′ ⊗ 1⊗ · · · ⊗ 1

)
,

with 1′ in the jth slot. We let

(31) v` = e`1 ⊗ e`2 ⊗ · · · ⊗ e`n′

where each e`• is either e1 =

(
1
0

)
, e−1 =

(
0
1

)
, with ` = (`1, . . . , `n′) ∈

{1,−1}n
′
, then {v`} forms a basis of Σn. Then

Θjv` = 2πdj`jv`,

(Uj�) v` = i`1`2 · · · `j−1v`j = ±iv`j ,

with `j = (`1, . . . ,−`j , . . . , `n′).
We see that Θj commutes with every Θj′ , and Θ2

j = 4π2d2
jId. Note that{

(2πdj`j , v`) : ` ∈ {1,−1}n
′
}

is the set of eigenvalues and simultaneous or-

thonormal eigenvectors of every Θj , j = 1, . . . ,m.

Let p = (p1, . . . , pm) ∈ Zm. We let hp (t) = hp1 (t1) · · ·hpm (tm) using the
Hermite functions

hp (t) = et
2/2

(
d

dt

)p
e−t

2

for p ≥ 0,(32)

hp (t) = 0 for p < 0,

which satisfy

h′p (t) = thp (t) + hp+1 (t)

hp+2 (t) + 2thp+1 (t) + 2 (p+ 1)hp (t) = 0.
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The first equality is just the chain rule. To see the second equality, note that
by the product rule and the binomial theorem,(

d

dt

)p+2

e−t
2

=

(
d

dt

)p+1 (
−2te−t

2
)

= −2t

(
d

dt

)p+1

e−t
2 − 2(p+ 1)

(
d

dt

)p
e−t

2

,

and the result follows. Combining the two

h′p (t) = thp (t)− 2thp (t)− 2php−1 (t) = −thp (t)− 2php−1 (t) .

Note that {hp (t) : p ∈ (Z≥0)m} is a basis of L2 (Rm,C).
For p ∈ Zm, let

(33) up,` (t) = hp1

(√
2πd1t1

)
hp2

(√
2πd2t2

)
· · ·hpm

(√
2πdmtm

)
v`,

with v` as in (31). Observe that up,` = 0 if any coordinate of p is negative.
Then, using the formulas above for h′p (t),

∂

∂tj
up,` (t) = −2πdjtjup,` (t)− 2pj

√
2πdjup−ej ,` (t)

= 2πdjtjup,` (t) +
√

2πdjup+ej ,` (t) ,(
∂

∂tj
+ tjΘj

)
up,` (t) = (2πdj(`j − 1)) tjup,` (t)− 2pj

√
2πdjup−ej ,` (t)

= (2πdj(`j + 1)) tjup,` (t) +
√

2πdjup+ej ,` (t) .

Recall that p has dimension m, and ` has dimension n′ =
⌊
n
2

⌋
≥ m. Now,

from (25) we have

Dup,` (t) =

M ′α +

m∑
j=1

(Uj�)
(
∂

∂tj
+ tjΘj

)up,` (t)(34)

= −2
∑

j≤m,`j=1

pj
√

2πdj (Uj�)up−ej ,` (t)

+
∑

j≤m,`j=−1

√
2πdj (Uj�)up+ej ,` (t) +M ′αup,` (t)
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= −2
∑

j≤m,`j=1

ipj
√

2πdj`1`2 · · · `j−1up−ej ,`j (t)

+
∑

j≤m,`j=−1

i
√

2πdj`1`2 · · · `j−1up+ej ,`j (t) +M ′αup,` (t) .

Often the eigensections can be found as linear combinations of the up,` (t).
We modify the basis so that it is more convenient. For fixed p = (p1, . . . ,

pm) and ` = (`1, . . . , `m, . . . , `n′), let E` be the m-tuple defined by

(E`)a =

{
0 if `a = 1

−1 if `a = −1.

Then

(35) up,` (t) =

 ∏
j≤m, `j=−1

√
2pj

up+E`,` (t) .

Using the fact that p + E` + ej = p + E`j if `j = −1 and p + E` − ej =
p + E`j if `j = 1, we compute

Dup,` (t) = −
∑

j≤m,`j=1

2i
√
πdjpj`1`2 · · · `j−1up,`j (t)

+
∑

j≤m,`j=−1

2i
√
πdjpj`1`2 · · · `j−1up,`j (t) +M ′αup,` (t) ,

so that

(36) Dup,` (t) = −2i
∑
j≤m

√
πdjpj`1`2 · · · `jup,`j (t) +M ′αup,` (t) .

5. Heisenberg examples

Heisenberg Lie algebras are the only two-step nilpotent Lie algebras with
one-dimensional center. Let n = 2m+ 1; define the n-dimensional Heisen-
berg Lie algebra by g = span {X1, . . . , Xm, Y1, . . . , Ym, Z} with [Xj , Yk] =
δjkZ and other basis brackets not defined by skew-symmetry equal to zero.
The n-dimensional Heisenberg Lie groupG is the simply connected Lie group
with Lie algebra g. A Heisenberg manifold is a quotient of G by a cocompact
discrete subgroup Γ, where the metric comes from a left-invariant metric on
G. From [24, Proposition 2.16], we see that every Heisenberg manifold is
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isometric to one with the following metric and lattice. The metric may be
chosen for Γ�G on (X1, . . . , Xm, Y1, . . . , Ym, Z) to be

gA =

 A 0 0
0 A 0
0 0 1

 =

(
gA 0
0 1

)

where A = diag (a1, . . . , am) is a diagonal m×m matrix with positive non-
decreasing entries.

We identify Xi with the matrix E1,i+1, which is the matrix with 1 in
the (1, i+ 1)-entry and all other entries zero. Similarly, we identify Yj with
Ej+1,m+2 and Z with Em+2,m+2. In this section, we define exp (Xi) to be
the matrix exponential exp (E1,i+1) = I + E1,i+1, and we define exp (Yj) and
exp (Z) in a similar way. For v ∈ R2m and z ∈ R, we denote

(v, z) =


1 v1 · · · vm z
0 1 · · · 0 vm+1
...

... I
...

...
0 0 · · · 1 v2m

0 0 · · · 0 1

 ,

With this notation,

exp (x1X1 + · · ·+ xmXm + y1Y1 + · · ·+ ymYm + zZ)(37)

=

(
x1, . . . , xm, y1, . . . , ym, z +

1

2
x · y

)
,

log (x1, . . . , xm, y1, . . . , ym, z)

= x1X1 + · · ·+ xmXm + y1Y1 + · · ·+ ymYm +

(
z − 1

2
x · y

)
Z.

To get from the matrix coordinates to the exponential coordinates, we use
the change of coordinate mapping

(v, z) 7→ exp

(
v1X1 + · · ·+ vmXm + vm+1Y1 + · · ·+ v2mYm

+

(
z − 1

2
(v1vm+1 + · · ·+ vmv2m)

)
Z

)
.

Every cocompact discrete subgroup Γ can be generated by exp (L) and
exp (rZ), where L is a 2m-dimensional lattice in R2m = span{X1, . . . , Xm,
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Y1, . . . , Ym}, and exp (rZ), r > 0, generates a one-dimensional lattice in
the center of G. We denote Γ = Γ (L, r); note (L, r) will yield a cocom-
pact discrete subgroup if and only if for all V, V ′ ∈ L, [exp (V ) , exp (V ′)] =
exp (krZ) for some k ∈ Z [26, proof of Theorem 2.4]. Two such Heisenberg
manifolds determined by (L, r, gA) and (L′, r′, gA′) are isometric iff gA =

gA′ , r = r′, and there exists a matrix Φ ∈ S̃p (m,R) ∩O (2m, gA) ⊂M2m (R)
such that

Φ (L) = L′.

(See [24, Proposition 2.16]). Here, O (2m, gA) is the orthogonal group, and

S̃p (m,R) =
{
β ∈ GL (2m,R) : βtJβ = ±J

}
, where J =

(
0 I
−I 0

)
.

5.1. Three-dimensional case

5.1.1. Eigenvalues. For our Heisenberg manifold, we choose {X,Y, Z} so

that [X,Y ] = Z and
{

1√
A
X, 1√

A
Y,Z

}
is an orthonormal frame, with A > 0.

With notation as in the general case, we choose an element α ∈ g∗, which
fixes a coadjoint orbit.

Finite-dimensional irreducible subspaces: If the one-form α (Z) =
0, then gα = g, and gα = g is the maximal polarizer of α. Then Gα =
exp (gα) = G. Let

Hα = {f : g→ Σn | for some s ∈ Σn, all h ∈ G, f (h) = α (h) s } ,

where

α (h) = e2πiα(log h).

From (21),

D|Hα =
2πi

A
α (X) (X�) +

2πi

A
α (Y ) (Y �)

+
1

4A2
〈Z, [X,Y ]〉 (Z �X � Y �)

=
2πi

A
α (X) (X�) +

2πi

A
α (Y ) (Y �) +

1

4A2
(Z �X � Y �) ,

which is a constant matrix. The eigenvalues of D|Hα are then the eigenvalues
of this Hermitian matrix. We set
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(X�) = i
√
Aσ1 =

(
0 i

√
A

i
√
A 0

)
, (Y �) = i

√
Aσ2 =

(
0 −

√
A√

A 0

)
,

(Z�) = i1′ =

(
i 0
0 −i

)
,

The matrix is

D|Hα =

(
− 1

4A − 2π√
A

(α (X) + iα (Y ))

− 2π√
A

(α (X)− iα (Y )) − 1
4A

)
.(

− 1
4A − 2π√

A
(α+ iβ)

− 2π√
A

(α− iβ) − 1
4A

)
,

eigenvalues:
{

1
16A2

(
−4A− 32

√
π2A3α2 + π2A3β2

)
if A 6= 0

The eigenvalues are

(38) σα =

{
− 1

4A
+

2π√
A
‖α‖ ,− 1

4A
− 2π√

A
‖α‖

}
.

Infinite-dimensional irreducible subspaces: On the other hand,
suppose α (Z) = α ([X,Y ]) = d is nonzero.

From (36), (23), and (31), with U = X√
A

, V = sgn (d) Y√
A

, W = Z, we

have, since d1 = |d|
A ,m = 1, ` = ±1, E` = `−1

2 ,

up,` (t) = hp

(√
2πd1t

)
v`,

up,` (t) =

{
up,` (t) ` = 1
√

2pup−1,` (t) ` = −1,

Dup,` (t) = −2i`

√
π
|d|
A
p u

p,−` (t) +M ′αup,` (t) .

Then

M ′α =
1

4A2
〈Z, [X, sgn (d)Y ]〉 (Z �X � sgn (d)Y �) + 2πiα (Z) (Z�)

=
1

4A2

(
i 0
0 −i

)(
0 i

√
A

i
√
A 0

)(
0 −

√
A√

A 0

)
+ 2πid

(
i 0
0 −i

)
=

(
−2πd− 1

4A 0
0 2πd− 1

4A

)
,
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so that

M ′αv` = −
(

2πd`+
1

4A

)
v`,

and, for ` ∈ {−1, 1}, p ∈ Z≥0 ,

Dup,` (t) = −2i`

√
π
|d|
A
p u

p,−` (t) +

(
−2πd`− 1

4A

)
u
p,`

(t) .

The p = 0 case (u0,−1 = u−1,−1 = 0) is

Du0,1 (t) =

(
−2πd− 1

4A

)
u0,1 (t) .

The matrix for D restricted to the span of {up,1, up,−1} for p ≥ 1 is −2πd− 1
4A 2i

√
π |d|A p

−2i

√
π |d|A p 2πd− 1

4A

 ,

which has eigenvalues

− 1

4A
± 2

√
π |d| p
A

+ π2d2 .

Thus, the list of all eigenvalues for the α (Z) = d 6= 0 case is

σα =

{
− 1

4A
− 2πd

}
∪

{
− 1

4A
± 2

√
π |d| p
A

+ π2d2 : p ≥ 1

}
.

5.1.2. Occurrence conditions for lattice. Here, the lattice L should
be a two-dimensional lattice, say spanned by v = (v1, v2) (corresponding
to the matrix element (v1, v2, 0) ) and w = (w1, w2). The central lattice is

spanned by r (corresponding to (0, 0, r) ). Let S̃p (1,R) = {β ∈ GL (2,R) :
βtJβ = ±J}. The condition βtJβ = ±J is equivalent to detβ = ±1, so in

fact S̃p (1,R) ∩O (2,R) = O (2,R) . This means we can rotate so that v =
(v1, 0) with v1 > 0, and so that w = (w1, w2) with w2 > 0. Because v, w, and
r generate a cocompact discrete subgroup, we must have, for any h1, h2, h,
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k1, k2, k ∈ Z,

(h1v + h2w, hr) (k1v + k2w, kr)

= ((h1 + k1) v + (h2 + k2)w, r (h+ k) + h1k2v1w2 + h2k2w1w2) .

is an element of the lattice, by closure for multiplication. Thus, for any
choice of integers h1, h2, k1, k2, we must have h1k2v1w2 + h2k2w1w2 ∈ rZ, i.e.

v1w2 , w1w2 ∈ rZ. Letting v1w2 = rmv, w1w2 = rmw , we have v =
(
rmv

w2
, 0
)

,

w =
(
rmw

w2
, w2

)
. The parameters are

(39) A > 0, r > 0, w2 > 0,mv ∈ Z>0,mw ∈ Z.

In our matrix coordinate system, from (37) we have

log

(
rmv

w2
h1 +

rmw

w2
h2, w2h2, rh

)
=

(
rmv

w2
h1 +

rmw

w2
h2

)
X + (w2h2)Y

+

(
hr − 1

2
rh1h2mv −

1

2
rh2

2mw

)
Z.

The commutator satisfies[(
rmv

w2
h1 +

rmw

w2
h2, w2h2, rh

)
,

(
rmv

w2
k1 +

rmw

w2
k2, w2k2, kr

)]
= (0, 0, rmv (h1k2 − h2k1)) .

We now determine a spin structure by fixing ε : Γ→ {1,−1}. Let

ε1 = ε (v, 0) = ε

(
rmv

w2
, 0, 0

)
,

ε2 = ε (w, 0) = ε

(
rmw

w2
, w2, 0

)
,

ε3 = ε (0, 0, r) .

Since ε1ε2ε
−1
1 ε−1

2 = (ε3)mv = 1 is the only relation, the values of ε1 and ε2

are arbitrary (±1), but it may be that ε3 is restricted by ε3
mv = 1. If mv is

even, there is no restriction, but

(40) if mv is odd, then ε3 = 1.

Now we choose an arbitrary element α ∈ g∗, we may either choose α = α3Z
∗

or α = α1X
∗ + α2Y

∗, since all possible coadjoint orbits may be parametrized
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by such elements. The occurrence condition is calculated on v and w. In
particular, α (v) must be an integer or half integer depending on whether
ε1 = ±1. Likewise for α (w). From Section 7, the occurrence conditions are:

α1
rmv

w2
∈ Z+

1− ε1

4
,(41)

α1
rmw

w2
+ α2w2 ∈ Z+

1− ε2

4
,(42)

α3r ∈ Z+
1− ε3

4
.(43)

The multiplicities corresponding to these representations are as follows.
If we choose α ∈ g∗ such that α = α1X

∗ + α2Y
∗, then mα = 1 (see Sec-

tion 7). If we choose α ∈ g∗ such that α = α3Z
∗, then gα = z. We have

mα =

√
det
(
Bα|span{X,Y }

)
with respect to a lattice basis of L, chosen to be v = rmv

w2
X, w = rmw

w2
X +

w2Y , and thus

(
Bα (v, v) Bα (v, w)
Bα (w, v) Bα (w,w)

)
=

(
0 α ([v, w])

−α ([v, w]) 0

)
.

So

mα = |α ([v, w])| = |α3| rmv ∈ Z>0.

The conditions (40) and (43) confirm that mα is an integer.

Now we are ready to calculate the spectrum of the Dirac operator on a
general Heisenberg 3-manifold with spin structure. Such a manifold with spin
structure is given by (L, r, gA, ε), and it is determined by the lattice basis
v = rmv

w2
X, w = rmw

w2
X + w2Y for L and ε1, ε2, ε3 as above with conditions

(39), (40), (41), (42), (43).
We now calculate the part of the spectrum corresponding to each coad-

joint orbit in g∗. There are two cases, α3 = 0 and α3 6= 0. If ε3 = −1, the
condition (43) does not permit α3 = 0. As a consequence, finite-dimensional
irreducible subspaces do not occur. If ε3 = 1, condition (43) is satisfied and
α = α1X

∗ + α2Y
∗. The conditions (41) and (42) are satisfied if and only if
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there exist j1, j2 ∈ Z such that

α1 =
w

2

rmv

(
j1 +

1− ε
1

4

)
,

α2 =
1

w2

[(
j2 +

1− ε2

4

)
− mw

mv

(
j1 +

1− ε
1

4

)]
,

with eigenvalues

σα =

{
− 1

4A
+ 2π ‖α‖ ,− 1

4A
− 2π ‖α‖

}
=

{
− 1

4A
+ 2π

√
α2

1 + α2
2

A
,− 1

4A
− 2π

√
α2

1 + α2
2

A

}
,

and the multiplicity of this representation is mα = 1. If α = 0 is permit-
ted — i.e. ε = 1 — then Hα is no longer irreducible, and the eigenspace
corresponding to − 1

4A is two-dimensional.
We now consider the case α3 6= 0. By (43) we may choose α ∈ g∗ in the

coadjoint orbit such that α = dZ∗ = 1
r

(
κ+ 1−ε3

4

)
Z∗ 6= 0 with κ ∈ Z, with

eigenvalues

{
− 1

4A
− 2πd

}
∪

{
− 1

4A
± 2

√
π |d| p
A

+ π2d2 : p ≥ 1

}
,

or in other words

σα =

{
− 1

4A
− 2π

r

(
κ+

1− ε3

4

)}

∪

− 1

4A
± 2

√
πp

rA

∣∣∣∣κ+
1− ε3

4

∣∣∣∣+
π2

r2

(
κ+

1− ε3

4

)2

: p ∈ Z>0

 ,

and the multiplicity of this representation is

mα = mv

∣∣∣∣κ+
1− ε3

4

∣∣∣∣ > 0.

A special case occurs in [1], with r = T ′, A = (d′)2 T ′, mv = r′, p = p′, d =
τ ′

T ′ , mw = 0, where the primes indicate the notation used in [1].
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5.2. Eta invariant of three-dimensional Heisenberg manifolds

From (11), the eta invariant of the spin Dirac operator corresponding to a
spin structure on a three-dimensional manifold is (n = 3, n̂ = 2,W is trivial
so that tr

(
FW

)
= 0)

η (0) = − λ
3

3π2
vol (M)

+
λ

24π2

∫
M

Scal− 2#
(
σ (D) ∩

(
λ, 0
))
−#

(
σ (D) ∩

{
0, λ
})
,

where λ < 0 is the point of symmetry of the spectrum, and where the last
two terms count multiplicities. (Recall the rank of the spinor bundle is two.)

We have

λ = − 1

4A

is the point of symmetry, and from ([20, Section 2]),

Scal =
1

4
Tr
(
j (Z)2

)
=

1

4
Tr

((
0 − 1

A
1
A 0

)2
)

= − 1

2A2
.

Also,

vol (M) = rAdet

( rmv

w2

rmw

w2

0 w2

)
= r2Amv.

From the expressions for the eigenvalues of σ (D), we see that
#
(
σ (D) ∩

{
− 1

4A

} )
is nonzero only if the part of the spectrum correspond-

ing to α = 0 ∈ g∗ is nontrivial. This happens only if ε1 = ε2 = ε3 = 1. Thus,

#

(
σ (D) ∩

{
− 1

4A

})
=

{
2 if ε = 1

0 otherwise.

To count #
(
σ (D) ∩

(
− 1

4A , 0
))

, the toral eigenvalues, i.e. the ones from
the finite-dimensional irreducible subspaces, are (see (38)){

− 1

4A
+ τ : 0 < τ = 2π

√
α2

1 + α2
2

A
<

1

4A

}

=

{
− 1

4A
+ τ : τ = 2π

‖α‖√
A
, 0 < ‖α‖ < 1

8π
√
A

}



i
i

“2-Richardson” — 2018/4/19 — 16:19 — page 318 — #48 i
i

i
i

i
i

318 R. Gornet and K. Richardson

With fixed r > 0, w2 > 0,mv ∈ Z>0,mw ∈ Z, by (41), (42) the coadjoint or-
bit represented by α = α1X

∗ + α2Y
∗ has an associated irreducible represen-

tation that occurs with multiplicity one if and only if

α1rmv

w2
∈ Z+

1− ε
1

4
, α2w2 +

rmw

w2
α1 ∈ Z+

1− ε
2

4
.

The relevant nontoral eigenvalues, i.e. those from the infinite-dimensional
irreducible subspaces, are

σα =

{
− 1

4A
− 2π

r

(
κ+

1− ε3

4

)
: κ ∈ Z,− r

8πA
< κ+

1− ε3

4
< 0

}
∪

{
− 1

4A + 2

√
πp
rA

∣∣κ+ 1−ε3
4

∣∣+ π2

r2

(
κ+ 1−ε3

4

)2
: p ∈ Z>0, κ ∈ Z,

0 < rp
∣∣κ+ 1−ε3

4

∣∣+ πA
(
κ+ 1−ε3

4

)2
< r2

64πA

}
,

with multiplicity mα = mv

∣∣κ+ 1−ε3
4

∣∣ > 0. Letting µ = κ+ 1−ε3
4 ∈ Z+ 1−ε3

4 ,

the inequality 0 < rp |µ|+ πAµ2 < r2

64πA is equivalent to

0 < |µ| < r

2πA

(√
1

16
+ p2 − p

)
,

so the relevant nontoral eigenvalues in the open interval
(
− 1

4A , 0
)

associated
to D|Hα are

σα =

{
− 1

4A
− 2π

r
µ : µ ∈ Z+

1− ε3

4
,− r

8πA
< µ < 0

}

∪

 −
1

4A + 2
√

πp
rA |µ|+

π2

r2 µ
2 : p ∈ Z>0, µ ∈ Z+ 1−ε3

4 ,

0 < |µ| < r
2πA

(√
1
16 + p2 − p

)
 ,

with multiplicities mα = mv |µ|.
In summary, summing over all coadjoint orbits whose associated irre-

ducible representation occurs in ρε ,

#

(
σ (D) ∩

(
− 1

4A
, 0

))
= #

{
(α1, α2) : α1rmv

w2
∈ Z+

1−ε1
4 ,

α2w2 + rmw

w2
α1 ∈ Z+

1−ε2
4 , 0 < ‖α‖ < 1

8π
√
A

}
+mv

∑
µ∈Z+

1−ε3
4

− r

8πA
<µ<0

|µ|+mv

∑
p∈Z>0

∑
µ∈Z+

1−ε3
4

0<|µ|< r

2πA(
√

1

16
+p2−p)

|µ| .
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Likewise,

# (σ (D) ∩ {0}) = #

{
(α1, α2) : α1rmv

w2
∈ Z+

1−ε
1

4 ,

α2w2 + rmw

w2
α1 ∈ Z+

1−ε
2

4 , ‖α‖ = 1
8π
√
A

}

+

{
mv |µ| if µ = − r

8πA
∈ Z+

1− ε3

4

}
+mv

∑
p∈Z>0

∑
µ∈Z+

1−ε3
4

|µ|= r

2πA(
√

1

16
+p2−p)

|µ| .

We now show that the last line produces at most two nonzero terms. If

µ1, µ2 ∈ Z+ 1−ε3
4 both satisfy |µj | = r

2πA

(√
1
16 + p2

j − pj
)
> 0 and |µ1| 6=

|µ2|, solving for r
2πA yields

k

(√
1 + 16p2

1 + 4p1

)
− h

(√
1 + 16p2

2 + 4p2
2

)
= 0

for some positive h, k ∈ Z+ 1−ε3
4 , and

1− h2

k2
+ 32

h

k
p1p2 − 32

h2

k2
p2

2 = 8
h

k

(
h

k
p2 − p1

)√
16p2

2 + 1.

If h
kp2 = p1, then the equation above implies p1 = p2. On the other hand, if(

h
kp2 − p1

)
is not zero,

1− h2

k2 + 32hkp1p2 − 32h
2

k2 p2
2

8hk
(
h
kp2 − p1

) =
√

16p2
2 + 1.

Since the left side is rational and the right side is irrational, this is impossible.

Thus, there are at most two nonzero summands in the expression below.

mv

∑
p∈Z>0

∑
µ∈Z+

1−ε3
4

|µ|= r

2πA(
√

1

16
+p2−p)

|µ|

=


mvr
2πA

(√
1
16 + p2 − p

)
if r

2πA

(√
1
16 + p2 − p

)
∈ Z+ 1−ε3

4

for some p ∈ Z>0

0 otherwise
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Then

{
mv |µ| if µ = − r

8πA
∈ Z+

1− ε3

4

}
+mv

∑
p∈Z>0

∑
µ∈Z+

1−ε3
4

µ=± r

2πA(
√

1

16
+p2−p)

|µ|

=


mvr
πA

(√
1
16 + p2 − p

)
if r

2πA

(√
1
16 + p2 − p

)
∈ Z+ 1−ε3

4

for some p ∈ Z>0

mvr
8πA if r

8πA ∈ Z+ 1−ε3
4

0 otherwise

In summary,

# (σ (D) ∩ {0})

= #

{
(α1, α2) : α1rmv

w2
∈ Z+

1−ε
1

4 ,

α2w2 + rmw

w2
α1 ∈ Z+

1−ε2
4 , ‖α‖ = 1

8π
√
A

}

+


mvr
πA

(√
1
16 + p2 − p

)
if r

2πA

(√
1
16 + p2 − p

)
∈ Z+ 1−ε3

4

for some p ∈ Z>0

mvr
8πA if r

8πA ∈ Z+ 1−ε3
4

0 otherwise.

Putting these calculations together, we have

η (0) = − λ
3

3π2
vol (M)

+
λ

24π2

∫
M

Scal− 2#
(
σ (−D) ∩

(
λ, 0
))
−#

(
σ (−D) ∩

{
0, λ
})

= −
(
− 1

4A

)3
3π2

r2Amv +

(
− 1

4A

)
24π2

(
− 1

2A2

)(
r2Amv

)
−N (A, r, w2,mv,mw, ε)

=
r2mv

192π2A2
+

r2mv

192π2A2
−N (A, r, w2,mv,mw, ε)

=
r2mv

96π2A2
−N (A, r, w2,mv,mw, ε) ,
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where N (A, r, w2,mv,mw, ε) is the nonnegative integer defined by

N(·) = 2#
(
σ (D) ∩

(
λ, 0
))

+ #
(
σ (D) ∩

{
0, λ
})

(44)

= 2#

{
(α1, α2) : α1rmv

w2
∈ Z+

1−ε
1

4 ,

α2w2 + rmw

w2
α1 ∈ Z+

1−ε
2

4 , 0 < ‖α‖ < 1
8π
√
A

}
+ 2mv

∑
µ∈Z+

1−ε3
4

− r

8πA
<µ<0

|µ|+ 2mv

∑
p∈Z>0

∑
µ∈Z+

1−ε3
4

0<|µ|< r

8πA(
√

1+16p2+4p)

|µ|

+ #

{
(α1, α2) : α1rmv

w2
∈ Z+

1−ε
1

4 ,

α2w2 + rmw

w2
α1 ∈ Z+

1−ε
2

4 , ‖α‖ = 1
8π
√
A

}

+


mvr
πA

(√
1
16 + p2 − p

)
if r

2πA

(√
1
16 + p2 − p

)
∈ Z+ 1−ε3

4

for some p ∈ Z>0

mvr
8πA if r

8πA ∈ Z+ 1−ε3
4

0 otherwise

+

{
2 if ε1 = ε2 = ε3 = 1

0 otherwise

All the sums above are finite.
We summarize this result in the following theorem.

Theorem 12. The eta invariant of the spin Dirac operator on a three-
dimensional Heisenberg manifold with parameters A, r, w2 > 0, mv ∈ Z>0,
mw ∈ Z with spin structure determined by ε = (ε1, ε2, ε3) ∈ {±1}3 satisfies

η (0) =
r2mv

96π2A2
−N (A, r, w2,mv,mw, ε) ,

where N (A, r, w2,mv,mw, ε) is the nonnegative integer given by the expres-
sion (44).

Remark 13. The expression above is consistent with the calculation of
W. Zhang in [41], who calculates the adiabatic limit of the mod1 reduction
of the eta invariant on circle bundles M → B, where the metric on the
base B is blown up (A→∞). The Zhang formula for the case of the spin
Dirac operator twisted by a line bundle L over the base (corresponding to
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a different spin structure) is

lim
A→∞

η (DM,L) =
1

2
dim ker (DB,L)

+

〈
Â (TB) ch (L)

tanh
(
e
2

)
− e

2

e tanh
(
e
2

) , [B]

〉
mod1,

where e is the Euler class of the circle bundle. In our case, the base is a flat
torus, and the fibers of the circle bundle are the Z-parameter curves. First,
we consider the right side of the equation. The integer dim ker (DB,L) is ei-
ther 2 or zero (depending on whether the line bundle L is trivial or not), so
that term is zero. The Euler class of the circle bundle is trivial, since it has
a section given by {(x, y, 0) : x, y ∈ R�Z}, and even the Euler form is zero
since the global angular form (constant) dz is closed. The relevant character-

istic forms are then Â (TB) = 1, ch (L) = 1 + (2-form) ,
tanh( e2)− e2
e tanh( e2)

= − e
12 =

0, so the second term is also 0. The left side of Zhang’s equation is

lim
A→∞

(
r2mv

96π2A2
mod1

)
= 0

in our case, so we see that our formula is consistent with this result.

Corollary 14. From the expressions for η (0), we may consider families of
Heisenberg manifolds with constant η (0). For example, if we let

A = b1r

w2 = b2
√
r

for some constants b1, b2 > 0. Holding mv, mw, ε, b1, b2 constant and letting
r vary, we obtain a family of Heisenberg manifolds with constant η (0) yet
with different eigenvalues for D; even the point of symmetry − 1

4A varies
with r.

Corollary 15. Consider the “rectangular” Heisenberg 3-manifold (i.e.
mw = 0). Suppose that the following conditions are met:

1) A > r
4π

2) rmv

4π
√
A
< w2 < 4π

√
A
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Then if the spin structure is nontrivial (ε 6= id),

η (0) =
r2mv

96π2A2
.

Otherwise,

η (0) =
r2mv

96π2A2
− 2.

5.3. Dirac Operator eigenvalues for general Heisenberg
nilmanifolds

We use the notation of Section 4. Suppose that k0 = 1 is the dimension of
the center z and n = 1 +m0 is the dimension of g = z⊕ v, and we will choose
the orthonormal basis {Z,X1, . . . , Xm0

}, with m0 = 2m, so that Z is a unit
vector and {Xj} is an orthonormal basis of v. From formula (16), the Dirac
operator is

D =

n∑
i=1

(Ei�) ρε∗ (Ei) +
1

4

∑
b<i≤m0

〈Z, [Xb, Xi]〉 (Z �Xb �Xi�) ,

acting on

H = L2
(

Γ�G,G×ε Ck
)
∼= L2

ε (Γ�G)⊗ Σn,

which we decompose using Kirillov theory. Using notation from Section 4,
the cases are:

Case 1: kα = n, i.e. α (Z) = 0.
As in (21),

(45) D|Hα =

m0∑
i=1

2πiα (Xi) (Xi�) +
1

4

∑
b<i≤m0

〈Z, [Xb, Xi]〉 (Z �Xb �Xi�) ,

which is a constant matrix. The eigenvalues of D|Hα are then the eigenvalues
of this Hermitian matrix.

Case 2: kα < n, so that α (Z) 6= 0.
For every noncentral vector v, there exists a vector w such that

Bα (v, w) = α ([v, w]) = α (Z) 6= 0; we must have gα = z and kα = 1. From
(20), (23), (36), the Dirac operator may be expressed in terms of the basis
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{up,`} as

Dup,` = −
∑
j

2i
√
πdjpj`1`2 · · · `jup,`j +M ′αup,` ,

where in this case

M ′αup,` = 2πiα (Z) (Z�)up,` +
1

4

m∑
j=1

〈Z, [Uj , Vj ]〉 (Z � Uj � Vj�)up,` .

We use the matrix choices of Section 4.3, and for convenience, we let

Z = i1′ ⊗ · · · ⊗ 1′︸ ︷︷ ︸
m times

,

and thus, since 〈Z, [Uj , Vj ]〉 = dj , the formulas (28) and (27) yield

M ′αup,` =

−2πα (Z) `1 · · · `m −
1

4

∑
j≤m

dj`1 · · · ̂̀j · · · `m
up,`.

In summary,

Dup,` = −
∑
j

2i
√
πdjpj`1`2 · · · `jup,`j(46)

+

−2πα (Z) `1 · · · `m −
1

4

∑
j≤m

dj`1 · · · ̂̀j · · · `m
up,`,

and we have the following.

Proposition 16. The infinite-dimensional subspace Hα decomposes on any
Heisenberg manifold as a direct sum of finite-dimensional subspaces that are
invariant by the Dirac operator. In particular, the Dirac operator acts by the
formula (46) on the finite-dimensional invariant subspace

Up = span {up,` : ` ∈ {−1, 1}m} .

Remark 17. For any specific example of a Heisenberg manifold, the for-
mula (45) allows us to calculate the eigenvalues of D restricted to the finite-
dimensional representations spaces Hα with α (Z) = 0, and the previous
proposition allows us to calculate all other eigenvalues of D explicitly.
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5.4. Symmetries of invariants subspaces of higher dimensional
Heisenberg manifolds

It is well-known (see [5, p.61, Remark 3a], [2, p.174, Cor. 2.19]) that the
spectrum of the Dirac operator on spin manifolds of dimension congruent
to 1 mod 4 is symmetric about 0. In following sections, we explore the
symmetry of the spectrum restricted to invariant subspaces.

5.4.1. Symmetry in the toroidal part of the spectrum for Heisen-
berg manifolds. Suppose that we are given a (2m+ 1)-dimensional
Heisenberg manifold, and α ∈ g∗ is chosen so that α (Z) = 0. Then we may
choose an orthonormal basis {A1, A2, . . . , Am, B1, B2, . . . , Bm} of z⊥ ⊆ g with
the following properties:

1) α (Aj) = 0 if j ≥ 2, α (Bj) = 0 if j ≥ 1;

2) [Ai, Bj ] = ajδijZ for some real numbers aj .

(Simply choose A1 orthogonal to kerα and continue to form a symplectic
basis of z⊥.) Then the restriction of D to the subspace Hα is

D|Hα =

m0∑
i=1

2πiα (Xi) (Xi�) +
1

4

∑
b<i≤m0

〈Z, [Xb, Xi]〉 (Z �Xb �Xi�)

= 2πiα (A1) (A1�) +
1

4

m∑
j=1

aj (Z �Aj �Bj�) .

If m is even, then observe that A1 �A2 � · · ·Am� anticommutes with
D|Hα and is also invertible. Thus, it maps the λ eigenspace of D|Hα iso-
morphically onto the −λ eigenspace of D|Hα , and therefore the spectrum of
D|Hα is symmetric about zero and does not contribute to the eta invariant.

A more complicated argument can be used to show that for all m ≥ 2,
the spectrum of D|Hα is symmetric about zero. Let

Lj = Z �Aj �Bj�

for 1 ≤ j ≤ m. Observe that Lj is symmetric, L2
j = 1, and LjLk = LkLj for

all j, k. Also A2� is invertible and anticommutes with L1, and A1� anticom-
mutes with Lj for j > 1. Thus, the dimension of the +1 eigenspace of Lj is
the same as the dimension of the −1 eigenspace for Lj , and there exists a ba-
sis of simulaneous eigenvectors of Σn = C2m . Let {v1, . . . , v2m−1} be the sub-
set of this basis consisting of +1 eigenvectors of L2. Since A2 commutes with
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L2 and anticommutes with L1, the +1-eigenspace of L2 is a direct sum of +1
and −1 eigenspaces of L1 in equal dimensions. Thus, we may further assume
that {v1, . . . , v2m−2} are +1-eigenvectors of L1 and that {v2m−2+1, . . . , v2m−1}
are −1-eigenvectors of L1. Then {v1, . . . , v2m−1 , iA1v1, . . . , iA1v2m−1} pro-
vides a basis of C2m for which D|Hα corresponds to a block matrix with
2m−2-dimensional blocks of the form

x


Q+R 0 I 0

0 −Q+R 0 I
I 0 Q−R 0
0 I 0 −Q−R

 ,

where x is a scalar and Q and R are (commuting) diagonal matrices. A
simple argument shows that the characteristic polynomial of such a matrix
is an even function, and thus the spectrum of D|Hα is symmetric about zero
and does not contribute to the eta invariant, if m ≥ 2. We summarize the
results in the following theorem.

Theorem 18. On any Heisenberg manifold of dimension greater than 3, the
restriction of the Dirac operator to any invariant subspace Hα with α (Z) = 0
has spectrum that is symmetric about 0.

Remark 19. No Heisenberg three-manifolds have this property; see (38).

5.4.2. Symmetry in the infinite-dimensional irreducible subspaces.
Next, suppose that α ∈ g∗ is chosen so that α (Z) 6= 0. Let

U = span {up,` : p = (p1, . . . , pm) ∈ (Z≥0)m , ` ∈ {−1, 1}m} .

Let L : U → U be the linear map defined by

L (up,`) = δ`up,−` ,

where δ` = ±1 according to an unspecified formula. Note that L−1 (up,`) =
δ`δ−`Lup,` = δ−`up,−`. Now, we have
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L−1DLup,` = δ`L
−1Dup,−`

= δ`L
−1

(
−
∑

j 2i
√
πdjpj`1`2 · · · `j (−1)j up,−`j

+
(
−2πα (Z) `1 · · · `m (−1)m − 1

4

∑
j≤m dj`1 · · · ̂̀j · · · `m (−1)m−1

)
up,−`

)

= δ`

(
−
∑

j 2i
√
πdjpj`1`2 · · · `j (−1)j δ`jup,`j

+
(
−2πα (Z) `1 · · · `m (−1)m − 1

4

∑
j≤m dj`1 · · · ̂̀j · · · `m (−1)m−1

)
δ`up,`

)

= δ`

−∑
j

2i (−1)j δ`j
√
πdjpj`1`2 · · · `jup,`j


+ (−1)m−1

2πα (Z) `1 · · · `m −
1

4

∑
j≤m

dj`1 · · · ̂̀j · · · `m
up,`.

Remark 20. For the case where m is even, we define δ` = (`1)2 (`2)3 · · ·
(`m)m+1, so that δ`jδ` (−1)j = (−1)j+1 (−1)j = −1, and thus, the matrix
for L−1DL is the negative of the matrix for D with α (Z) replaced by its
negative. Thus the spectrum σα satisfies σ−α = −σα if m is even. The sym-
metry of the eigenvalues about 0 follows from the fact that, α occurs if and
only if −α occurs; see (17). This confirms in this case the known fact men-
tioned at the beginning of this section that the spectrum of the spin Dirac
operator on manifolds of dimension congruent to 1 mod 4 is symmetric.

Remark 21. For the case where m is odd and the dimension is 2m+ 1,
we define δ` = (`1)1 (`2)2 · · · (`m)m, so that δ`jδ` (−1)j = 1; we see in that
case that the matrix for L−1DL is the same as the matrix for D with α (Z)
replaced by its negative. Thus the spectrum σα satisfies σ−α = σα ifm is odd.
Moreover, the eigenvalues of the Dirac operator need not be symmetric about
0, and the eta invariant need not be zero, as can be seen from the m = 1
case in Section 5.2. Therefore, for Heisenberg manifolds of dimension 2m+ 1
with m odd and greater than 1, because of this remark and Theorem 18, the
methods of Section 2.1 do not apply and cannot be used to obtain a formula
for the eta invariant.

6. Example of a five-dimensional non-Heisenberg
nilmanifold

The purpose of this section is to exhibit an example of a two-step nilmanifold
for which the techniques used above fail to produce the Dirac eigenvalues as
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eigenvalues of finite-dimensional matrices. Because this manifold is (4(1) +
1)-dimensional, we know a priori that the eta invariant vanishes. We use the
notation of Section 4 with a specific class of examples. We have that k0 = 2
is the dimension of the center z and m0 = 3, and we have the orthonormal
basis {Z1, Z2, X, Y1, Y2} so that each Zj is a unit vector and {X,Y1, Y2} is an
orthonormal basis of v. The only nontrivial bracket relations are [X,Y1] =
Z1, [X,Y2] = Z2. From formula (16), the Dirac operator is

D =

5∑
i=1

ρε∗ (Ei) (Ei�) +
1

4

∑
i=1,2

Zi �X � Yi�,

acting on

H = L2
(
Γ�G,G×ε C4

) ∼= L2
ε (Γ�G)⊗ Σ5,

which we decompose as follows. For α ∈ g∗, the subspace Hα of L2(Γ�G,
G×ε Ck) is invariant with respect to ρε and invariant by D. If Hα is the
irreducible ρε-subspace of L2

ε (Γ�G) corresponding to the coadjoint orbit
of α, we have Hα ∼= Hα ⊗ Σn. As before, define the symplectic form on g
by Bα (u, v) = α ([u, v]), and let gα = kerBα = {u ∈ g : Bα (u, ·) = 0}, kα =
dim gα.

6.1. Finite dimensional Hα-irreducible subspaces: kα = 5, i.e.
α (z) = 0.

As in (21),

D|Hα = 2πiα (X) (X�) +
∑
j=1,2

2πiα (Yj) (Yj�) +
1

4

∑
i=1,2

Zi �X � Yi � .

The eigenvalues of D|Hα are then the eigenvalues of this constant Hermitian
linear transformation.

We make the specific choices of the matrices (Ej�) as in Section 4.2.
Note Σn = C22

= C2 ⊗ C2. We have

(X�) = i1′ ⊗ 1′, (Y1�) = iσ1 ⊗ 1, (Y2�) = iσ2 ⊗ 1,

(Z1�) = i1′ ⊗ σ1, (Z2�) = i1′ ⊗ σ2,
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Recalling (27), our matrix is (using basis v1,1, v−1,1, v1,−1, v−1,−1 )

D|Hα = 2πiα (X) (X�) +
∑
j=1,2

2πiα (Yj) (Yj�) +
1

4

∑
i=1,2

Zi �X � Yi�

= −2πα (X) 1′ ⊗ 1′ −
∑
j=1,2

2πα (Yj)σj ⊗ 1

− i

4

∑
j=1,2

(
1′ ⊗ σj

) (
1′ ⊗ 1′

)
(σj ⊗ 1)

= −2πα (X) 1′ ⊗ 1′ −
∑
j=1,2

2πα (Yj)σj ⊗ 1+
1

4
(σ1 ⊗ σ2 − σ2 ⊗ σ1)

=


−2πα (X) −2πα (Y1)− i2πα (Y2) 0 0

−2πα (Y1) + i2πα (Y2) 2πα (X) i
2 0

0 − i
2 2πα (X) −2πα (Y1)− i2πα (Y2)

0 0 −2πα (Y1) + i2πα (Y2) −2πα (X)

.

We may then determine that the four eigenvalues of D|Hα are:

1

4
± 1

4

√
64π2α (X)2 + 16πα (X) + 64π2α (Y1)2 + 64π2α (Y2)2 + 1,

−1

4
± 1

4

√
64π2α (X)2 − 16πα (X) + 64π2α (Y1)2 + 64π2α (Y2)2 + 1.

Using the α 7→ −α symmetry, for a typical nilmanifold, this portion of
the spectrum will be symmetric about zero.

6.2. Infinite-dimensional Hα-irreducible subspaces: kα < n, so
that α (z) 6= 0.

In this case, a typical coadjoint orbit has an element of the form α = b2Y
∗

2 +
g1Z

∗
1 + g2Z

∗
2 , with g1, g2 not both zero.

Choose a new orthonormal basis of g:{
W1 =

g1Z1 + g2Z2√
g2

1 + g2
2

,W2 =
−g2Z1 + g1Z2√

g2
1 + g2

2

,

W3 =
−g2Y1 + g1Y2√

g2
1 + g2

2

, U = X,V =
g1Y1 + g2Y2√

g2
1 + g2

2

}
,

where {W1,W2,W3} is a basis of gα, Bα (U,U) = Bα (V, V ) = 0, and

d := Bα (U, V ) = α ([U, V ]) = α

([
X,

g1Y1 + g2Y2√
g2

1 + g2
2

])
=
√
g2

1 + g2
2.
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Then the polarizing subalgebra gα will be chosen to be

gα = span {V,W1,W2,W3} ,

and again Gα := exp (gα).
Equation (24) becomes

D = (U�) ∂
∂t

+ 2πid (V �) t+M ′α,

where M ′α is the constant Hermitian matrix (using X1 = U,X2 = V,X3 =
W3,W1,W2, k0 = 2,m0 = 3, kα = 3,m = 1)

M ′α =
1

4

∑
a≤2; b<i≤3

〈Wa, [Xb, Xi]〉 (Wa �Xb �Xi�) +

3∑
j=1

2πiα (Wj) (Wj�) ,

from (20), (23).
We calculate

[X1, X2] = [U, V ] = W1, [X1, X3] = W2, [X2, X3] = 0,

so that

M =
1

4

∑
a≤2; b<i≤3

〈Wa, [Xb, Xi]〉 (Wa �Xb �Xi�)

=
1

4
W1 �X1 �X2 �+

1

4
W2 �X1 �X3 � .

Again we make the specific choices of the matrices (Ej�) as in Section 4.3,
with

(X1�) = iσ1 ⊗ 1, (X2�) = iσ2 ⊗ 1, (X3�) = i1′ ⊗ 1′,

(W1�) = i1′ ⊗ σ1, (W2�) = i1′ ⊗ σ2,

Then, since α (W2) = 0, α (X3) = g1b2
d ,α (W1) = d =

√
g2

1 + g2
2, we use (27)

to obtain
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M ′α =
1

4
W1 �X1 �X2 �+

1

4
W2 �X1 �X3 �+2πiα (W1)W1�

+ 2πiα (X3) (X3�)

=
1

4

(
i1′ ⊗ σ1

)
(iσ1 ⊗ 1) (iσ2 ⊗ 1)

+
1

4

(
i1′ ⊗ σ2

)
(iσ1 ⊗ 1)

(
i1′ ⊗ 1′

)
+ 2πid

(
i1′ ⊗ σ1

)
+ 2πi

g1b2
d

(
i1′ ⊗ 1′

)
= −1

4
1⊗ σ1 +

1

4
σ1 ⊗ σ1 − 2πd1′ ⊗ σ1 − 2π

g1b2
d

1′ ⊗ 1′.

We need to determine what M ′α does to the basis {up,`}. We have

up,` =

{
up,` if `1 = 0
√

2pup−1,` if `1 = −1,

up,` = hp

(√
2πdt

)
v`

Then

(1⊗ σ1)up,` = (1⊗ σ1)

{
up,` if `1 = 0
√

2pup−1,` if `1 = −1

=

{
up,`2 if `1 = 0
√

2pup−1,`2 if `1 = −1

= up,`2 ,

(σ1 ⊗ σ1)up,` = (σ1 ⊗ σ1)

{
up,` if `1 = 0
√

2pup−1,` if `1 = −1

=

{
up,−` if `1 = 0
√

2pup−1,−` if `1 = −1

=
(√

2p
)−`1

up+`1,−`,(
1′ ⊗ σ1

)
up,` = `1 (1⊗ σ1)up,` = `1up,`2 ,(

1′ ⊗ 1′
)
up,` = `1`2up,`.

Substituting,
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M ′αup,` =

(
−1

4
1⊗ σ1 +

1

4
σ1 ⊗ σ1 − 2πd1′ ⊗ σ1 − 2π

g1b2
d

1′ ⊗ 1′
)
up,`

= −1

4
up,`2 +

1

4

(√
2p
)−`1

up+`1,−`

− 2πd`1up,`2 − 2π
g1b2
d
`1`2up,`

=

(
−1

4
− 2πd`1

)
up,`2 +

1

4

(√
2p
)−`1

up+`1,−` − 2π
g1b2
d
`1`2up,`.

From (36), we have

Dup,` = −2i
√
πdp`1up,`1 +M ′αup,`

= −2i
√
πdp`1up,`1 +

(
−1

4
− 2πd`1

)
up,`2

+
1

4

(√
2p
)−`1

up+`1,−` − 2π
g1b2
d
`1`2up,` .

There are no apparent invariant subspaces for D spanned by a finite number
of the up,` . The matrix for D is an infinite band matrix. This shows the
difficulty of computing the Dirac eigenvalues for a general nilmanifold.

7. Appendix: CCMoore/LenRichardson Papers and
Adaptations

7.0.1. Occurrence and Multiplicity Condition. Let Γ be a cocom-
pact (i.e., Γ�G compact) discrete subgroup of the simply connected nilpo-
tent Lie groupG. Let ε : Γ→ {±1} ⊂ GL

(
Ck
)

be a homomorphism. Denote
by Uε the representation of G induced by ε; in particular,

Uε = L2
ε (Γ�G) =

{
f : G→ Ck : f (γg) = ε (γ) f (g) for all g ∈ G, γ ∈ Γ

}
,

where the (left) action of G on Uε is given by interior right multiplication.
Note that if ε = 1, then Uε = L2

ε (Γ�G) is the direct sum of k copies of the
quasi-regular representation U = L2 (Γ�G). As in the quasi-regular case,
standard results in representation theory imply in general that Uε can be
decomposed into the direct sum of irreducible representations of G, each
with finite multiplicity. A good reference for the standard representation
theory used in this appendix is [17].
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Our motivation for this construction is that spin structures over nilman-
ifolds Γ�G correspond exactly to homomorphisms ε : Γ→ GL

(
Ck
)
, where

the image of ε lies in the set {±1} , and k = 2bn/2c. The resulting spinor
bundle is

Σε = G×ε Ck = G× Ck� {(g, v) : (g, v) = (γg, ε (γ) v) for all γ ∈ Γ} ;

see [9, Prop 3.34, p. 114]. The sections of this bundle are elements of Uε, on
which the Dirac operator acts.

In the quasi-regular case (ε = 1), L. Richardson and R. Howe, building on
work of C. C. Moore, independently proved an exact occurrence condition
and multiplicity formula; they determined the irreducible representations
π of G that occur in U = L2 (Γ�G) and the corresponding multiplicities
m (π, U). The purpose of this appendix is to generalize their occurrence and
multiplicity formula from the quasi-regular to the case of general ε.

Before stating the main results, we require the following definitions and
observations.

Denote by Ĝ the set of equivalence classes of irreducible unitary repre-
sentations of G. The Kirillov Correspondence is the bijection between the
set of orbits of the co-adjoint action of G on g∗ and Ĝ. In particular, Kir-
illov Theory proves that to each α ∈ g∗ corresponds an irreducible unitary
representation πα of G, every irreducible representation of G is unitarily
equivalent to such a πα, and two such irredicuble unitary representations
πα and πα′ are unitarily equivalent if and only if α′ = α◦Ad

(
x−1

)
for some

x ∈ G. Kirillov Theory applies mainly to nilpotent Lie groups, with gener-
alizations to some solvable groups.

Choose α ∈ g∗ and let h be any subalgebra of g. Let H = exp (h) be
the unique simply connected Lie subgroup of G with Lie algebra h. The
subalgebra h or the subgroup H is subordinate to α iff α ([h, h]) ≡ 0. If in
addition h is maximal with respect to being subordinate, then h is called a
maximal subordinate subalgebra for α, or a polarizer for α.

The explicit mapping between elements of g∗ and Ĝ is as follows. Since G
is nilpotent and simply connected, the exponential map is a diffeomorphism
with inverse log. For α ∈ g∗, let h be a maximal subordinate subalgebra of
α. Define α (·) = e2πiα(log(·)), which is a character on H — i.e., a (complex)
one-dimensional representation. The irreducible unitary representation πα
is the representation of G induced by the representation α of H.

Recall that we have fixed a cocompact, discrete subgroup Γ of G. We
call the pair (α,H) rational (with respect to Γ) if it can be constructed with
respect to a rational covector α, i.e. α (log Γ) ⊂ Q.We call the pair (α,H) a
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special maximal pair if logH = h is a maximal subordinate subalgebra for
α that is special in the sense that it is algorithmically and inductively con-
structed from α and Γ as described in [38, pp. 176-178]. As Kirillov theory
dictates that the representation πα is independent of the maximal subor-
dinate subalgebra (up to unitary equivalence), and as Richardson’s paper
shows that any covector α has a special maximal subordinate subalgebra,
this additional property is not a restriction.We call (α,H) an ε-integral point
if and only if for all γ ∈ Γ ∩H, α (γ) = e2πiα(log(γ)) = ε (γ). The equivalent
condition on the Lie algebra level is, for all γ ∈ Γ ∩H,

α (log γ) ∈

{
Z if ε (γ) = 1

Z+1
2 if ε (γ) = −1.

Let π ∈ Ĝ be induced from α ∈ g∗ under the Kirillov correspondence.
Let F be the family of special maximal characters of π, that is all possible
pairs (α,H) that induce π with h = log (H) a special maximal subordinate
subalgebra. Now L. Richardson proved that x ∈ G acts on F via

(α,H) · x =
(
αx,x

−1

H
)
,

where Ix denotes conjugation by x, the function αx = α ◦ Ix, and x−1

H =
x−1Hx = Ix−1 (H). Note that (α,H) · x is an ε-integral point if and only if

αx (γ) = ε (γ)

for all γ ∈ Γ ∩
(
x−1

H
)

if and only if α (γ) = ε (γ) for all γ ∈
(
x−1

Γ
)
∩H.

We may now state the following main results of this Appendix.

Theorem 22. If π is induced by the special maximal character (α,H) under
the Kirillov correspondence, then m

(
π, L2

ε (Γ�G)
)
> 0 if and only if there

is an ε-integral point in the orbit (α,H) ·G.

Lemma 23. Assume that m
(
π, L2

ε (Γ�G)
)
> 0, and let the special maxi-

mal character (α,H) induce π under the Kirillov correspondence. The action
satisifes (α,H) · x = (α,H), iff x ∈ H, so that we may identify the G-orbit
of (α,H) with H�G. If (α,H) is an ε-integral point and if γ0 ∈ Γ, then
(α,H) · γ0 is also an ε-integral point.

Let (H�G)ε be the set of ε-integral points in H�G. As a result of the
Lemma, Γ acts on (H�G)ε.



i
i

“2-Richardson” — 2018/4/19 — 16:19 — page 335 — #65 i
i

i
i

i
i

The eta invariant on two-step nilmanifolds 335

Theorem 24. If the special maximal character (α,H) induces π under
the Kirillov correspondence, then the multiplicity of π in the ε-quasi regular
representation Uε = L2

ε (Γ�G), denoted m
(
π, L2

ε (Γ�G)
)
, is the number of

Γ-orbits in the set (H�G)ε of ε-integral points in the G-orbit H�G of
(α,H). That is,

m
(
π, L2

ε (Γ�G)
)

= # ((H�G)ε�Γ) .

7.0.2. Proof of Occurrence and Multiplicity. The proofs of the Lemma
and Theorems follows the outline in L. Richardson’s paper closely. We verify
that a few key Lemmas of C. C. Moore extend to the ε-quasi-regular setting,
and from there the proof primarily follows that of L. Richardson verbatim,
after substuting our Lemmas for those of Moore, and replacing “integral
point” with “ε-integral point.”

For any π ∈ Ĝ, suppose there exists γ0 ∈ Γ such thatN = exp (R log (γ0))
is a one-dimensional rational normal subgroup of G and π (N) = 1. Let ϕ be
the natural projection of G onto G0 = G�N , so Γ0 = Γ ·N�N = ϕ (Γ) is
a cocompact discrete subgroup of G0. Then the representation π0 of G0 de-
fined by π0 (ϕ (g)) = π (g) is well-defined and irreducible, hence an element

of Ĝ0 (see [35, Lemma 2.1]).

Lemma 25. Generalized ε-Reduction Lemma. (generalization of [35,
Lemma 2.2], quoted as [38, Lemma 2.6])

Note that ε induces a homomorphism of Γ0 iff ε (γ0) = 1. With no-
tation as above, denote by U0ε the representation of G0 induced by the
ε-homomorphism of Γ0, if it exists. If m (π, Uε) 6= 0 then ε (γ0) = 1, and
the multiplicity m (π, Uε) of π in Uε is equal to the multiplicity m (π0, U0ε)
of π0 in U0ε.

Proof. By normality, N ⊂ Z (G). This follows from the Campbell-Baker-
Hausdorff formula, since for vectors A ∈ logG, and X ∈ logN , we have

exp (A) exp (X) exp
(
A−1

)
= exp (rX)

= exp (X + [A,X] + c2 [A, [A,X]] + · · · ) .

Let ad (A)k (X) be the first zero element of the sequence

(X, [A,X] , [A, [A,X]] , . . . , ) .

Because G is nilpotent,
{
X, [A,X] , [A, [A,X]] , . . . , ad (A)k−1 (X)

}
is lin-

early independent. Since rX = X + [A,X] + c2 [A, [A,X]] + · · · , we have
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[A,X] = 0. Note that since π (N) = 1, if m (π, Uε) 6= 0, Uε (n) f = f for all
n in N and f in the corresponding invariant subspace Hπ. This means
that while f (γg) = ε (γ) f (g) for all g ∈ G, γ ∈ Γ, it must also be true that
(Uε (n) f) (g) = f (gn) = f (ng) = f (g) for all n ∈ N . If n ∈ Γ ∩N , then in
addition we have f (gn) = f (ng) = f (g) = ε (n) f (g), which implies that
ε (γ) is the identity and ε induces a homomorphism of Γ0. Thus ε restricted
to Γ ∩N acts trivially on the image of the sections of Hπ. Let M = Γ�G.
We can project M onto M0 = Γ0�G0, and M becomes a fiber bundle over
M0 with circle T ∼= (Γ ∩N)�N as fiber. Let

HN =
{
f : G→ Ck : f (γg) = ε (γ) f (g)

for all γ ∈ Γ and f (gn) = f (g) for all n ∈ N
}
,

which is the set of sections on M that are constant on the fibers of M →M0,
i.e. such that Uε (n) f = f for all n ∈ N . This is an invariant subspace of Uε,
because for such f , Uε (n)Uε (g) f = Uε (g)Uε (n) f = Uε (g) f for all g ∈ G,
n ∈ N . The projection of the space of all sections ontoHN lies in the center of
the commuting algebra of Uε; that is, the projection of Uε onto an invariant
subspace must commute everything that commutes with Uε, because if L
commutes with Uε, then HN is also an invariant subspace of L, and thus the
projection onto HN commutes with L. Let UN be the restriction of Uε to
HN , and we define UN0

(ϕ (n)) = UN (n), the corresponding representation
of G0. Using the realization of UN0

on sections of M that are constant on the
fibers, we can also realize UN0

on the space L2 (M0,Σε). It is clear that UN0

is equivalent to U0ε. We also have m (π, Uε) = m (π, UN ), since π is trivial
on N , and m (π, UN ) = m (π0, UN0

) = m (π0, U0ε), as desired. �

Lemma 26. (Pukansky, as stated in [38, Lemma 2.2]) Let g be a nilpotent
Lie algebra with one dimensional center z =RZ1, with G and Γ as above.
Then g = RX1 ⊕ RY1 ⊕ RZ1 ⊕ g′, where [X1, Y1] = Z1. Let g1 = RY1 ⊕ RZ1 ⊕
g′ = {X ∈ g : [X,Y1] = 0} . The elements Y1, Z1 may be chosen to lie in
log Γ; i.e., g1 may be chosen to be rational with respect to the cocompact
discrete subgroup Γ of G.

Theorem 27. Kirillov’s Theorem (as quoted in [38, Theorem 2.3])
If G has one dimensional center, then every irreducible representation

π of G such that π is non-constant on the center is induced by a necessar-
ily irreducible representation of G1 = exp (g1), with g1 as in the previous
Lemma.
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Definition 28. We call the subgroup G1 from the previous theorem a
Kirillov subgroup.

Theorem 29. ε-Generalized Moore’s Algorithm (generalization of Moore’s
Algorithm, quoted as [38, Moore’s Algorithm 2.7]).
Let π be an irreducible representation of G, where G has a one dimensional
center Z (G), and π|Z(G) 6= id. Let π1 be an irreducible representation of

G1, a rational Kirillov subgroup of G having codimension one, such that
π1 induces π. Define πx1 (x1) = π1

(
xx1x

−1
)

for x in G and x1 in G1. Let

U1ε be defined for G1 and Γ1 = Γ ∩G1 as Uε is defined for G and Γ. Let Ĝ1

denote the dual space of equivalence classes of unitary irreducible representa-

tions of G1. Let A′ =
{
ρ1 ∈ Ĝ1 : m (ρ1, U1ε) > 0 and ρ1|Z(G) 6= Id

}
. For all

γ ∈ Γ, since G1 is normal and γΓγ−1 = Γ, Uγ1ε
∼= U1ε. Thus m (ργ1 , U1ε) =

m (ρ1, U1ε), or {ργ1 : ρ1 ∈ A′} = A′.Let A be a subset of A′ that meets each
Γ-orbit in A′ in exactly one element. Then

m (π, Uε) =
∑

ρ1∈πG1 ∩A

m (ρ1, U1ε) .

Proof. The proof closely follows that in [35, pp. 151–153].
Let Z2 (G) be the subgroup of G such that Z2 (G)�Z (G) is the center

of G�Z (G). The group Z2 (G) is a rational subgroup of G (with respect to
any lattice), see for example [17, Chapter 5], and we may choose a rational
subgroup W of Z2 (G) (and G) of dimension 2 that contains Z (G). The
centralizer G0 of W then has codimension 1 in G and is a rational normal
subgroup (see [38, Lemma 2.2], quoted from [28]). Finally, since G0 is codi-
mension one and normal, we can find a rational one-parameter group S such
that G = G0 o S.

We now use the following, whose proof can be found in any book on
Kirillov theory. Denote by U0εthe representation of G0 induced by the ho-
momorphism ε.

Lemma 30. If π ∈ Ĝ and if π is nontrivial on Z (G), then π is induced by

some π0 ∈ Ĝ0. The set of all representations of G0 that induce π is the orbit
of π0 under G; that is, {πx0 : x ∈ G} and πx0 = πy0 iff x = ymodG0, where
πx0 = π0 ◦ ix. If π is the restriction of π to G0, then π =

∫
G�G0

πx0 dx =∫
S π

x′
0 dx′, where dx and dx′ refer to Haar measure in G�G0

∼= S.

Now let (Uε)
s be the subspace of Uε complementary to the stabilizer of

Uε|Z(G). The projection onto the subspace corresponding to (Uε)
s is in the
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center of the commuting algebra of Uε (see similar argument in the proof of
Lemma 25). Thus if π is nontrivial on Z (G) and occurs in Uε, then it occurs
in (Uε)

s just as often. Thus,

Uε =
∑
π∈Ĝ

m (π, Uε)π

(Uε)
s =

∑
π∈B

m (π, Uε)π,

where B is the subset of Ĝ consisting of those π that are nontrivial on Z (G)

and such that m (π, Uε) > 0. For each π ∈ B, choose a π0 ∈ Ĝ0 that induces
π. If (Uε)

s is the restriction of (Uε)
s to G0,

(Uε)
s =

∑
π∈B

m (π, Uε)π(47)

=
∑
π∈B

m (π, Uε)

∫
G�G0

πx0 dx.

On the other hand, we can decompose Uε, the restriction of Uε to G0, by
using Mackey’s subgroup theorem. Indeed, let Ux0ε be the representation of
G0 induced by the ε-representation of xΓx−1 ∩G0 = x (Γ ∩G0)x−1 (since
G0 is normal). Note that as x is fixed, we can extend the definition of ε
to xΓx−1. It is clear that Ux0ε is the conjugate by x of U0ε; i.e., Ux0ε (n) =
(U0ε)

x (n) = U0ε

(
xnx−1

)
. Then by Mackey’s Theorem ([32, Theorem 12.1]),

Ux0ε depends only on the double coset Γ · x ·G0 of x. But G0 is normal, and
Γ · x ·G0 = Γ ·G0 · x is a coset of the subgroup ΓG0. We know that ΓG0 is
closed ( basic fact about nilpotent groups: Γ is cocompact discrete, G0 is
normal in G ), and thus the double cosets fill out the group, allowing us to
apply Mackey’s Theorem.

Finally, (also by Mackey)

Uε =

∫
Γ·G0�G

Uy0ε dy.

Now, if
(
Uε
)s

is the part of Uε that is orthogonal to the stabilizer of Z (G),

then
(
Uε
)s

= (Uε)
s, since the center is in G0. Finally, if (U0ε)

s is the similar
subrepresentation of U0ε on which Z (G) acts nontrivially, then one imme-
diately deduces from the above that(

Uε
)s

= (Uε)
s =

∫ y

Γ·G0�G
((U0ε)

s)y dy.
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We write

(U0ε)
s =

∑
λ0∈A′

m (λ0, U0ε)λ0,

where A′ is the set of elements of Ĝ0 that do not vanish on Z (G) and for
whichm (λ0, U0ε) > 0. We are using the fact thatm (λ0, U0ε) = m (λ0, (U0ε)

s)
for λ0 ∈ A′.

If γ ∈ Γ, then γΓγ−1 ∩G0 = Γ ∩G0, and from this it follows that
((U0ε)

s)γ = (U0ε)
s. Therefore, we have m (λγ0 , U0ε) = m (λ0, U0ε), and thus

γ ·A′ = A′. Now let A be a subset of A′ such that A meets each orbit of Γ
on A′ in exactly one element. Since G0 acts trivially on Ĝ0 and hence on A′,
a ΓG0-orbit in A′ is just a Γ-orbit in A′. Moreover, G0 (by Kirillov) is the
subgroup of ΓG0 leaving any point in A′ fixed. Therefore, we can write

(U0ε)
s =

∑
λ0∈A

m (λ0, U0ε)
∑

s∈Γ·G0�G0

λs0,

and thus

(
Uε
)s

=
∑
λ0∈A

m (λ0, U0ε)

∫
Γ·G0�G

 ∑
s∈Γ·G0�G0

λs0

y

dy

 .
But since G�G0 is equivalent as a Borel space and measure space to Γ ·
G0�G× (G0�Γ ·G0) by choosing a Borel cross section, the representation
in square brackets is just ∫

G�G0

λx0 dx.

Thus,

(48)
(
Uε
)s

=
∑
λ0∈A

m (λ0, U0ε)

∫
G�G0

λx0 dx.

Now, since G0 is type I and direct integral decompositions are essentially
unique, we may equate coefficients in (48) and (47). We find then that the
family of orbits

{
πG0 : π0 ∈ B

}
and

{
λG0 : λ0 ∈ A

}
are the same. Moreover,

the orbits of πG0 are all distinct, whereas some of the orbits of λG0 may
coincide. Thus, we can equate the multiplicities as follows:

m (π, Uε) =
∑

λ0∈πG0 ∩A

m (λ0, U0ε) .

(End of generalized Moore Algorithm Proof) �
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Corollary 31. Under the conditions of Moore’s algorithm, m (π, Uε) > 0 if
and only if there is an irreducible representation π1 of the rational Kirillov
subgroup G1 such that m (π1, U1ε) > 0 and π = IndGG1

(π1).

Remark 32. Abelian case:
Suppose Γ is a lattice in G = Rn, given by generators γ1, γ2, . . . , γn. The
coadjoint orbit of any α ∈ g∗ is {α}, and the maximal abelian subalgebra
is h = g = Rn. By the Kirillov correspondence this implies that irreducible
representations of G are characters x 7→ e2πiα(x)of G determined by elements
α ∈ g∗ = (Rn)∗. Such an α occurs as a representation induced by ε if

e2πiα(γ) = ε (γ)

for all γ ∈ Γ.
This condition occurs exactly when α (γ) ∈ Z whenever ε (γ) = 1 and

α (γ) ∈ Z+ 1
2 when ε (γ) = −1; i.e., the pair (α,H) is an ε-integral point.

This means that there exists kj , lj ∈ Z such that

α =
∑

j, ε(γj)=1

kjγ
∗
j +

∑
j, ε(γj)=−1

(
1

2
+ lj

)
γ∗j ,

where {γ∗1 , γ∗2 , . . . , γ∗n} is the basis of g∗ dual to {γ1, γ2, . . . , γn}. So πα can
be written as

πα (t) =
∏

j, ε(γj)=1

e2πikjtj
∏

j, ε(γj)=−1

eπi(2lj+1)tj ,

with t =
∑
tjγj ∈ Cn.

We now prove Theorem 22, the ε-generalized Richardson occurrence con-
dition.

Proof. Forward Direction:
Suppose H has codimension zero. This implies that α ([g, g]) = 0, by the def-
inition of maximal subordinate subalgebra. By possibly repeated application
of Lemma 25, we can factor out [g, g], and the occurrence and multiplicity
remain unchanged. This reduces the problem to the abelian case, which is
proved in Remark 32.

We now proceed inductively on the codimension of H: assume that the
theorem is known for codimension k − 1 or less. Now suppose π ∈ Ĝ and
that m (π, Uε) is greater than zero. Let π be induced from (α,H), where the
codimension of H is k.



i
i

“2-Richardson” — 2018/4/19 — 16:19 — page 341 — #71 i
i

i
i

i
i

The eta invariant on two-step nilmanifolds 341

Cases:

1) Suppose that π = 1 on Z (G). Since the center is always a rational sub-
algebra (for nilpotent groups, for any cocompact lattice), then we pick
a one-dimensional rational subgroup N ⊂ Z (G) on which π is trivial.
Then we can apply Lemma 25, and we have reduced the codimension
of H by one.

2) Suppose that π acts nontrivially on Z (G) 6= G and that
dim (Z (G)) > 1. We have that Uε (z) is multiplication by ε (z) for
all z ∈ Γ ∩ Z (G) by the definition of Uε. Write π = πλ for some ra-
tional λ ∈ g∗. Since the kernel of λ restricted to z is rational and at
least dimension one, we can pick a one-dimensional rational subgroup
N ⊂ Z (G) on which π is trivial. We now apply Lemma 25 and reduce
the codimension of H by one.

3) Suppose that π acts nontrivially on Z (G) 6= G and that dim (Z (G)) =
1. Let G1 be the rational Kirillov subgroup of G corresponding to π,
and note that the codimension of G1 is 1 and H ⊂ G1, by construction.
Let U1ε be the restriction of Uε to G1. By Corollary 31, there is an
irreducible representation π1 of G1 such that m (π1, U1ε) > 0 and π1

induces π. Let π′1 = IndG1

H α, which then induces π, and π′1 is also an
irreducible representation of G1 by the Kirillov theory. But π1 must
be equivalent to π′′1 (·) = (π′1)x (·) := π1

(
x (·)x−1

)
for some x ∈ G by

the Kirillov correspondence. Sincem (π′′1 , U1ε) > 0, there exists g1 ∈ G1

such that f ◦Ad (x) ◦Ad (g1) : log (Γ ∩G1)→ Q (again, see [35, Cor.
2, p. 154]). Note that we do not know that (α,H) · x is maximal. Write
log (xg1) = aX1 + P1, where P1 ∈ g1 and X1 is the first external vector
for h, as in the construction of the special maximal subordinate subal-
gebra in [38, Section 3]. Note that Y1 ∈ log (Γ) from the construction
satisfies [X1, Y1] = Z1 ∈ log (Γ), which generates Z (G). Since g1 is the
centralizer C (Y1, g), we have

α ◦Ad (x) ◦Ad (g1) (Y1)

= α

(
Y1 + [aX1 + P1, Y1] +

1

2
[aX1 + P1, [aX1 + P1, Y1]] · · ·

)
= α (Y1 + a [X1, Y1] + 0 + 0 + · · · )
= α (Y1 + aZ1) ,

by the Campbell-Baker-Hausdorff formula. Since Y1 ∈ log (Γ), α(Y1 +
aZ1) = α (Y1) + aα (Z1) ∈ Q, but since Y1, Z1 ∈ log (Γ) we have a ∈ Q.
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Let g0 = exp (aX1). Then (α,H) · g0 induces ρ1 on G1, which induces
π on G, where (α,H) · g0 is a rational maximal character on G1 and
m (ρ1, U1ε) > 0. By construction, (α,H) · g0 is maximal.

By the induction hypothesis, there is an ε-integral point in (α,H) ·
g0 ·G1, so that (α,H) ·G has an ε-integral point.

Converse:
Suppose (α,H) ·G has an ε-integral point (α,H) · g0. As above, we re-

duce to the case where the dimension of the center is 1 and π restricted to
Z (G) is nontrivial. We know that the Kirillov subgroup G1 is normal in G,
so our ε-integral point (α,H) · g0 induces πg01 , which induces πg0 , which is
equivalent to π. Also, (α,H) induces π1, which induces π, and (α,H) · g0

is a maximal character in G1. It follows from the induction hypothesis that
m (πg01 , U1ε) > 0 which by Moore’s induction implies that m (π, Uε) > 0. �

Assume that m
(
π, L2

ε (Γ�G)
)
> 0, and (α,H) induces π, where log (H)

is a special maximal subordinate subalgebra to α with respect to Γ. See [38,
Section 3] for the construction for the special subordinate subalgebra.

Lemma 33. If x = exp (X), and if (α,H) · x = (α,H), then x ∈ H.

Proof. See [38, Section 5], Lemma 5.1. The proof holds verbatim. �

As a result, we may identify the G-orbit of (α,H) with H�G.

Lemma 34. If (α,H) is an ε-integral point and if γ0 ∈ Γ, then (α,H) · γ0

is an ε-integral point.

Proof. Consider (α,H) · γ0. Note that Γ ∩γ
−1
0 H =γ−1

0 (Γ ∩H) since γ−1
0 Γ =

Γ. But if γ−1
0 γγ0∈Γ ∩γ

−1
0 H, then αγ0

(
γ−1

0 γγ0

)
=α (γ)=ε (γ)=ε

(
γ−1

0 γγ0

)
for every γ ∈ Γ ∩H. Also, γ

−1
0 (Γ ∩H) is uniform in γ−1

0 H. �

Let (H�G)ε be the set of ε-integral points in H�G. As a result of the
second Lemma, Γ acts on (H�G)ε.

We now prove Theorem 24.

Proof. The proof of [38, Theorem 5.3] goes through, replacing the refer-
ence to Lemma 2.6 with Lemma 25 and the reference to Lemma 2.7 with
Theorem 29, and replacing the phrase “integral point” with “ε-integral
point”. �
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[15] J. Brüning, F. W. Kamber, and K. Richardson, Index theory for basic
Dirac operators on Riemannian foliations, Contemporary Mathematics
546 (2011), 39–81.

[16] P. Castro-Villarreal, Brownian motion meets Riemann curvature,
J. Stat. Mech. (2010) P08006. DOI:10.1088/1742-5468/2010/08/

P08006.

[17] Lawrence J. Corwin and Frederick P. Greenleaf, Representations of
nilpotent Lie groups and their applications. Part I. Basic theory and ex-
amples, Cambridge Studies in Advanced Mathematics, 18, Cambridge:
Cambridge University Press, 1990.

[18] C. Deninger and W. Singhof, The e-invariant and the spectrum of the
Laplacian for compact nilmanifolds covered by Heisenberg groups, In-
vent. Math. 78 (1984), 101–112.

[19] H. Donnelly, Eta invariants for G-spaces, Indiana Univ. Math. J. 27
(1978), no. 6, 889–918.

[20] P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant
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[37] A. S. Petrow, Einstein-Räume, Akademie-Verlag, Berlin, 1964.



i
i

“2-Richardson” — 2018/4/19 — 16:19 — page 346 — #76 i
i

i
i

i
i

346 R. Gornet and K. Richardson

[38] L. F. Richardson, Decomposition of the L2-space of a general compact
nilmanifold, Amer. J. Math. 93 (1971), 173–190.

[39] John Roe, Elliptic operators, topology and asymptotic methods, second
edition, Pitman Research Notes in Mathematics Series 395, Longman,
Harlow, 1998.

[40] E. Witten, Quantum field theory and the Jones polynomial, Comm.
Math. Phys. 121 (1989), no. 3, 351–399.

[41] Weiping Zhang, Circle bundles, adiabatic limits of η-invariants and
Rokhlin congruences, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 1,
249–270.

Department of Mathematics, University of Texas at Arlington

Arlington, Texas 76019-0408, USA

E-mail address: rgornet@uta.edu

Department of Mathematics, Texas Christian University

Box 298900, Fort Worth, Texas 76129, USA

E-mail address: k.richardson@tcu.edu

Received February 18, 2015


	Introduction
	The eta invariant
	Two-step Nilmanifolds and Dirac operators
	Decomposition of the Dirac operator on two-step nilmanifolds
	Heisenberg examples
	Example of a five-dimensional non-Heisenberg nilmanifold
	Appendix: CCMoore/LenRichardson Papers and Adaptations
	References

