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Uniqueness of Schrödinger flow

on manifolds

Chong Song and Youde Wang

In this paper, we show the uniqueness of Schrödinger flow from
a general complete Riemannian manifold to a complete Kähler
manifold with bounded geometry. While following the ideas of
McGahagan[16], we present a more intrinsic proof by using the
distance functions and gauge language.

1. Introduction

The Schrödinger flow, which is independently introduced in [8] and [22], is
a geometric Hamiltonian flow of maps between manifolds. Suppose M is a
Riemannian manifold, N is a Kähler manifold with complex structure J and
u0 is a map from M to N . The Schrödinger flow is a time-dependent map
u : [0, T )×M → N satisfying the equation

(1.1)

{
∂tu = J(u)τ(u),

u(0) = u0,

where τ(u) is the tension field of u.
The Schrödinger flow is a natural generalization of the Laudau-Lifshitz

equation which emerges from the study of ferromagnetism [15]. It is also
closely related to the Da Rios equation which models the locally induced
motion of a vortex filament [6]. The PDE aspects of the Schrödinger flow,
including local well-posedness, global regularity and blow-up phenomena,
have been intensively studied in the last two decades. We refer to [1, 7, 17, 18]
and references therein for various results.

The local existence of the Schrödinger flow from a general Riemannian
manifold into a Kähler manifold was first obtained by Ding and Wang [9].
By using a parabolic approximation and the geometric energy method, they
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218 C. Song and Y.-D. Wang

proved that, if M is an m dimensional compact Riemannian manifold or
the Euclidean space Rm and the initial map u0 ∈W k,2(M,N) with k ≥
[m/2] + 2, then there exists a local solution u ∈ L∞([0, T ),W k,2(M,N)).
When the domain manifold M = Rm, same existence result was reproved by
McGahagan [16] by using a wave map approximating scheme.

The uniqueness of the Schrödinger flow turn out to be a more delicate
issue. In [8], Ding and Wang proved the uniqueness of C3-solutions to the
Schrödinger flow when M is compact. It follows from their proof that, when
M is compact or the Euclidean space Rm, a local solution to the Schrödinger
flow in the space L∞([0, T ],W [m/2]+4,2(M,N)) is unique. Their approach is
extrinsic since they embed the target manifold N into an ambient Euclidean
space RK and compare two solutions u1, u2 : M → N ↪→ RK by directly tak-
ing their difference.

A more intrinsic method was applied by McGahagan [16] to show that
the uniqueness of the Schrödinger flow actually holds in a larger function
space. More precisely, suppose M = Rm is the Euclidean space, N is a com-
plete manifold with bounded geometry which is embedded into an Euclidean
space RK and let S ′

m be the function space

S ′
m = W [m+3

2
],2 ∩ Ẇ 1,∞ ∩ Ẇ 2,m(Rm, N)

=
{
u : Rm → N ↪→ RK |‖u‖

W [m+3
2

],2 + ‖Du‖L∞ + ‖D2u‖Lm <∞
}
,

where D is the standard derivative on functions u : Rm → RK and the homo-
geneous Sobolev space Ẇ k.p consists of k-times weakly differentiable func-
tions u such that Dαu ∈ Lp for |α| = k.. Then by comparing the derivative
of two solutions via parallel transportation on N , McGahagan proved that a
solution to the Schrödinger flow in the space L∞([0, T ],S ′

m) is unique. Here
a complete Riemannian manifold is said to have bounded geometry if it has
positive injectivity radius and the Riemannian curvature tensor is bounded
and has bounded derivatives. By Sobolev embedding theorems, it is easy to
see that W [m/2]+2,2(Rm, N) ↪→ S ′

m. Thus it follows from the existence re-
sults that, if u0 ∈W k,2(Rm, N) for k ≥ [m/2] + 2, then there exists a unique
solution u ∈ L∞([0, T ),W k,2(Rm, N)) to the Schrödinger flow (1.1).

It is natural to ask if the uniqueness of the Schrödinger flow holds for a
general complete Riemannian manifold. In [18], Rodnianski, Rubinstein and
Staffilani asserts that for a complete Riemannian manifoldM and a complete
Kähler manifold N both with bounded geometry, the existence and unique-
ness of a solution in C0([0, T ],W k,2(M,N)) with initial data in W k,2(M,N)
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Uniqueness of Schrödinger flow on manifolds 219

for k ≥ [m/2] + 2 follows directly from the work of Ding-Wang [9] and Mc-
Gahagan [16]. However, a detailed proof is still missing in the literature.
In this paper, by exploring the geometric ideas of McGahagan’s proof, we
obtain the following uniqueness results on complete manifolds.

To state our results, we define the function spaces

S∞ = W 2,2 ∩ Ẇ 1,∞ ∩ Ẇ 2,∞(M,N),

Sm = W [m
2
]+1,2 ∩ Ẇ 1,∞ ∩ Ẇ 2,m(M,N).

Theorem 1.1. Suppose M is an m dimensional complete manifold with
bounded Ricci curvature RicM , N is a complete Kähler manifold with bounded
geometry. If u1, u2 ∈ L∞([0, T ],S∞) are two solution to the Schrödinger
flow (1.1) with the same initial map u0 ∈ S∞, then u1 = u2 a.e. on
[0, T ]×M .

Theorem 1.2. Suppose m ≥ 3, M is an m dimensional complete mani-
fold with bounded Riemannian curvature RM and positive injectivity radius
inj(M) > 0, N is a complete Kähler manifold with bounded geometry. If
u1, u2 ∈ L∞([0, T ],Sm) are two solution to the Schrödinger flow (1.1) with
the same initial map u0 ∈ Sm, then u1 = u2 a.e. on [0, T ]×M .

Remark 1.3. For a complete Riemannian manifold N with bounded ge-
ometry, the above spaces S∞ and Sm can by defined equivalently with
or without referring to a embedding N ↪→ RK . Namely, we may define the
Sobolev space of maps from M to N intrinsically by the covariant deriva-
tives induced from the Levi-Civita connections on M and N . Note that the
index [m+3

2 ] equals [m/2] + 1 when m is even and equals [m/2] + 2 when m
is odd, thus the space Sm is larger than the space S ′

m in McGahagan [16].

Remark 1.4. The assumptions on M in Theorem 1.2 is made to ensure
the validity of Sobolev inequalities, in particular the Gagliardo-Nirenberg
interpolation inequalities(cf. [2, 10]). Otherwise, we need the L∞ bound of
the second derivatives of the solutions as in Theorem 1.1.

The two theorems are proved simultaneously in Section 3 and the proof
is based on a geometric energy method. Given two solutions u1 and u2, we
will define an energy functional which describes their difference up to the
first-order derivatives as follows:

Q(t) :=

∫
{t}×M

|dN (u1, u2)|2dv +

∫
{t}×M

|P∇u2 −∇u1|2dv, t ∈ [0, T ].
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220 C. Song and Y.-D. Wang

The functional consists of two parts. The first part is simply the integral of
the distance of u1 and u2 on N . The second part is defined by the intrinsic
distance of the differentials ∇u1 and ∇u2. The key step here is to construct a
global isomorphism P between the two pull-back bundles u∗1TN and u∗2TN
by using parallel transportation in N . The existence of P is guaranteed
by the assumptions of the theorems. Then our goal is to show that this
functional satisfies a Gronwall type inequality and hence vanishes identically
on [0, T ].

The key innovation of McGahagan [16] is to compare ∇u1 and ∇u2
intrinsically via parallel transportation on N . While for the zeroth-order
term, she still use the embedding N ↪→ RK and the extrinsic distance |u1 −
u2|RK . Here we go one step further and use the intrinsic distance dN (u1, u2)
instead. In this way the functional Q is defined intrinsically. Actually, for
Theorem 1.1, we provide a purely intrinsic proof.

One advantage of our method is that the derivatives of dN (u1, u2) is
naturally connected with the first order term P∇u2 −∇u1. Correspondingly,
the cost is that we need an estimate of the Hessian of the distance function,
which appears in many other uniqueness problems in geometric analysis.
It is interesting that, different from the uniqueness arguments of harmonic
maps [3, 11, 21] and other parabolic geometric flows [4, 5], we need an upper
bound of the Hessian instead of a lower bound.

Another feature of our presentation is that we use the method of moving
frames and gauge language to illustrate the geometric ideas more clearly.
For example, we give an explicit expression of the difference of pull-back
connections and corresponding Laplacian operators.

The energy method can also be used in proving uniqueness of other types
of geometric flows. For example, Kotschwar applied the energy method to
prove the uniqueness of Ricci flow [13, 14]. Part of our motivation of the
current work arises from our study of another Schrödinger type geometric
flow, namely, the Skew Mean Curvature Flow(SMCF) [20]. The Gauss map
of SMCF satisfies a coupled system consisting of the Schrödinger flow and
a metric flow, where the metric on the domain manifold of the Schrödinger
map evolves along time [19]. The uniqueness of SMCF is still open and our
method here provides a possible solution to the more challenging problem.
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2. Preliminaries

2.1. Schrödinger flow in moving frame

Let T > 0 and I = [0, T ] be an interval. Suppose u : I ×M → N is a solution
to the Schrödinger flow

(2.1) ∂tu = J(u)τ(u).

We are going to rewrite the above equation in a moving frame, namely, a
chosen gauge of the pull-back bundle u∗TN .

To fix our notations, we let roman numbers i, j, k be indices ranging
from 1 to m, bold ones i, j,k ranging from 0 to m, and Greek letters α, β
ranging from 1 to n, where n is the dimension of N . Let M̄ := I ×M be en-
dowed with the natural product metric. We will use ∇ to denote connections
on different vector bundles which are naturally induced by the Levi-Civita
connections on M and N . In particular, this includes the pull-back bundle
u∗TN on M̄ , the pull-back bundle u(t)∗TN on some time slice {t} ×M
for t ∈ I and their tensor product bundles with the cotangent bundle T ∗M .
Sometimes in the context, we also use more specific notations such as ∇N
and ∇M to emphasize which connection we are using.

Locally on an open geodesic ball U ⊂M , we may choose an orthonormal
frame {ei}mi=1 of the tangent bundle TM . Set e0 := ∂t such that {ei}mi=0 forms
a local orthonormal basis of T (I × U). For convenience, we denote ∇i := ∇ei
and ∇t = ∇0. Then ∇tei = 0, 0 ≤ i ≤ m with ∇ the Levi-Civita connection
on M̄ .

Recall that the tension field is τ(u) = trg∇2u = ∇k∇ku, where ∇ku de-
notes the covariant derivative of u and is a section of the bundle u∗TN ⊗
T ∗M . Then the Schrödinger flow (2.1) has the form

∇tu = J(u)∇k∇ku.

Differentiating the equation, we get

∇t∇iu = ∇i∇tu
= ∇i(J(u)∇k∇ku) = J(u)∇i∇k∇ku
= J(u)(∇k∇i∇ku+RN (∇iu,∇ku)∇ku+RM (ei, ek, ek, el)∇lu)

= J(u)(∇k∇k∇iu+RN (∇iu,∇ku)∇ku+RicM (ei, el)∇lu),
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222 C. Song and Y.-D. Wang

where RM , RN are the curvature of M and N , respectively, and RicM is the
Ricci curvature of M . Here we have used the fact that ∇ is torsion free and
∇NJ = 0 since the target manifold N is Kähler.

Next we choose a local frame {fα}nα=1 of the pull-back bundle u∗TN ,
such that the complex structure J in this frame is reduced to a constant
skew-symmetric matrix which we denote by J0. Letting ∇iu =: φαi fα, we
may further rewrite the above equation for ∇iu as

(2.2) ∇tφi = J0(∆xφi +RN (φi, φk)φk +RicMij φj),

where ∆x = ∇k∇k is the Laplacian operator on u(t)∗TN ⊗ T ∗M .

2.2. Pseudo distance of tangent vectors

In the following context, we always assume N is a complete manifold with
curvature bounded by K0 and injectivity radius bounded from below by i0 >
0. Let δ0 = min{ i02 ,

1
4
√
K0
} and D ⊂ N be an open ball with radius δ0. Then

for any y1, y2 ∈ D, there exists a unique minimizing geodesic γ : [0, 1]→ D
connecting y1 and y2. Let P : Ty2N → Ty1N be the linear map given by
parallel transportation along γ.

For two vectors Xλ ∈ TyλN,λ = 1, 2, there is a natural distance function
defined by

d0(X1, X2) := |PX2 −X1|.

On the other hand, we can find a Jacobi field X̄ along γ such that X̄(0) = X1

and X̄(1) = X2. There is another distance function given by (cf. [11])

d(X1, X2) :=


(∫ 1

0 |∇sX̄|
2ds
) 1

2

, y1 6= y2;

|X1 −X2|, y1 = y2.

It turns out that the two distance functions are in a sense equivalent.
Here we quote the following lemma of Chen, Jost and Wang [3].

Lemma 2.1. There exists a constant C depending on the geometry of N
such that

|d0(X1, X2)− d(X1, X2)| ≤ C(|X1|+ |X2|)d(y1, y2),

where d is the distance function of N .
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2.3. Hessian of distance function

The distance function d of N can be regarded as a function defined on
N ×N . It is well-known that its square d2 is smooth when restricted to
D ×D. Let ∇̃ := ∇⊕∇ be the covariant derivative on N ×N induced by
the Levi-Civita connection ∇ on N .

Lemma 2.2. Let X̃=(X1, X2), Ỹ =(Y1, Y2) be two vectors in Ty1N×Ty2N ,
then

1

2
∇̃d2(X̃) =

〈
γ′(0),PX2 −X1

〉
,

1

2
|∇̃2d2(X̃, Ỹ )| ≤ |PX2 −X1||PY2 − Y1|+ Cd2(|X1|+ |X2|)(|Y1|+ |Y2|).

Proof. Let T̄ := γ′/d denote the unit tangent vector along γ and T1 = T̄ (0),
T2 = T̄ (1). Since T̄ is parallel along γ, we have P(T2) = T1. By the formula
of gradient of distance function, we have

∇̃d(X̃) = 〈−T1, X1〉+ 〈T2, X2〉
= 〈T1,−X1〉+ 〈PT2,PX2〉
= 〈T1,PX2 −X1〉 .

This proves the first identity of the lemma.
For the Hessian estimate, we have

1

2
∇̃2d2(X̃, Ỹ ) = ∇̃d(X̃) · ∇̃d(Ỹ ) + d∇̃2d(X̃, Ỹ ).

Let X̄ be the Jacobi field along γ with X̄(0) = X1 and X̄(1) = X2. Similarly,
Let Ȳ be the Jacobi field along γ with Ȳ (0) = Y1 and Ȳ (1) = Y2. Recall the
second variational formula of distance function (see for example Theorem 5.4
of [12])

∇̃2d(X̃, Ỹ ) =
1

d

(∫ 1

0

〈
∇sX̄⊥,∇sȲ ⊥

〉
ds−

∫ 1

0

〈
R(γ′, X̄⊥)Ȳ ⊥, γ′

〉
ds

)
,

where X̄⊥, Ȳ ⊥ is the component of X̄, Ȳ perpendicular to T̄ . It follows that

1

2
∇̃2d2(X̃, Ỹ ) = 〈T1,PX2 −X1〉 〈T1,PY2 − Y1〉

+

∫ 1

0

〈
∇sX̄⊥,∇sȲ ⊥

〉
ds− d2

∫ 1

0

〈
R(T̄ , X̄⊥)Ȳ ⊥, T̄

〉
ds.
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By Lemma 2.1, the second term in the right hand side can be bounded by∣∣∣∣∫ 1

0

〈
∇sX̄⊥,∇sȲ ⊥

〉
ds

∣∣∣∣ ≤ |PX⊥2 −X⊥1 ||PY ⊥2 − Y ⊥1 |
+ Cd2(|X1|+ |X2|)(|Y1|+ |Y2|).

Moreover, by the equation for the Jacobi field, it is easy to see that (see for
example the proof of Lemma 3.2 below)

|X̄| ≤ C(|X1|+ |X2|)

and

|Ȳ | ≤ C(|Y1|+ |Y2|).

Thus we have∣∣∣∣∫ 1

0

〈
R(T̄ , X̄⊥)Ȳ ⊥, T̄

〉
ds

∣∣∣∣ ≤ C(|X1|+ |X2|)(|Y1|+ |Y2|).

Combining the above inequalities together, we get the second identity and
hence finish the proof of the lemma. �

3. Proof of uniqueness

3.1. Outline of the proof

In this section we prove Theorem 1.1 and Theorem 1.2 simultaneously. For
S = S∞ or S = Sm, let u1, u2 ∈ L∞([0, T ),S ) be two solutions to the
Schrödinger flow (1.1) with same initial value u0 ∈ S . We need to show
that u1 = u2 a.e. for all (t, x) ∈ [0, T )×M .

The first step is to construct a family of geodesics connecting the two so-
lutions and hence a globally defined parallel transportation. To this order, we
show that in a sufficiently small time interval I := [0, T ′], the two solutions lie
sufficiently close to each other, such that there exists an unique geodesic con-
necting u1 and u2 for each (t, x) ∈ I ×M . More precisely, we define a map
U : [0, 1]× I ×M → N such that U(0, t, x) = u1(t, x), U(1, t, x) = u2(t, x)
and γ(t,x)(s) := U(s, t, x) : [0, 1]→ N is a geodesic for any fixed (t, x) ∈ I ×
M . Thus we can define a linear map P : u∗2TN → u∗1TN between the two
pull-back bundles by using parallel transportations along the geodesics.
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Next we define two functions

Q1(t) :=

∫
M
|d(u1, u2)|2dv,

and

Q2(t) :=

∫
M
|P∇u2 −∇u1|2dv.

Our goal is to derive a Gronwall type estimate for the energy Q1(t) +Q2(t)
and conclude that Q1(t) = Q2(t) = 0 for all t. Two estimates will play an
important role in the computation. The first is the estimate of the Hessian of
distance function. The second one is the estimate of difference of pull-back
connections corresponding to the two solutions.

3.2. Construction of connecting geodesics

First we need the following lemma.

Lemma 3.1. Under the assumptions of Theorem 1.1 or Theorem 1.2, there
exists T ′ > 0 such that d(u1, u2) < δ0 for any (t, x) ∈ [0, T ′]×M .

Proof. To prove the lemma, we only need to show that for both λ = 1 and
2, uλ(t, x) stays close to u0(x) for fixed x ∈M and sufficiently small t > 0.

If uλ satisfies the assumptions of Theorem 1.1, then τ(uλ) ∈ L∞([0, T ]×
M)). In this case, we can simply bound the distance of u0(x) = uλ(0, x) and
uλ(t, x) by the length of the curve γλ(·) = uλ(·, x). In fact, from the equation
∂tuλ = J(uλ)τ(uλ), we deduce

d(uλ(t, x), u0(x) ≤
∫ t

0
|∂tuλ|dt ≤ t‖τ(u)‖L∞ ≤ Ct.

Thus the lemma holds for Theorem 1.1.
For the case of Theorem 1.2, we need to embed the target manifold N

into an Euclidean space. By the Schrödinger flow equation, we have

1

2

d

dt
‖uλ(t, x)− u0(x)‖2L2 =

∫
M
〈uλ − u0, ∂tuλ〉 dv

≤ C‖uλ − u0‖L2‖τ(uλ)‖L2 ≤ C.

Since uλ(0, x) = u0(x), it follows

‖uλ − u0‖L2 ≤ Ct1/2.
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The assumptions on M allows us to apply the Gagliardo-Nirenberg interpo-
lation inequality (Theorem 5 in [2]) to get

‖uλ − u0‖L∞ ≤ C‖uλ − u0‖aL2‖uλ − u0‖1−aW [m/2]+1,2 ≤ Cta/2,

where 0 < a = 1− m
2([m/2]+1) < 1.

Note that the above bound only gives an estimate of the extrinsic dis-
tance of uλ and u0. However, since uλ ∈ L∞([0, T ],W [m/2]+1,2) and ∂tuλ ∈
L∞([0, T ],W [m/2]−1,2), by Sobolev embedding and interpolation inequalities,
we know that uλ actually belongs to C0([0, T ]×M,N). Thus for sufficiently
small T ′ > 0 and fixed x ∈M , the curve uλ(·, x) lies in a connected neigh-
borhood of u0(x) in M which locates inside a small ball of the extrinsic
Euclidean space. Since N has bounded geometry, it follows

d(uλ, u0) ≤ C‖uλ − u0‖C0 = C‖uλ − u0‖L∞ ≤ Cta/2,

Consequently, the lemma also holds for Theorem 1.2. �

An important fact is that the uniqueness is a local property. Namely,
once we know u1 = u2 on a small time interval [0, T ′], then we can prove
u1 = u2 on the whole interval [0, T ] by repeating the argument. Therefore,
we only need to prove Theorem 1.1 and 1.2 in the time interval I = [0, T ′].

Now by Lemma 3.1, for any (t, x) ∈ I ×M , there exists a unique mini-
mizing geodesic γ(t,x) : [0, 1]→ N such that γ(t,x)(0) = u1(t, x) and γ(t,x)(1) =
u2(t, x). By letting (t, x) vary, the family of geodesics give rise to a map
U : [0, 1]× I ×M → N connecting u1 and u2, where U(s, t, x) = γ(t,x)(s).
Therefore, we can define a global bundle morphism P : u∗2TN → u∗1TN by
the parallel transportation along each geodesic. Moreover, P can be extended
naturally to a bundle morphism from u∗2TN ⊗ T ∗M to u∗1TN ⊗ T ∗M .

3.3. Estimate of Q1

Now consider the composition of the distance function d : N ×N → R and
ũ := (u1, u2) : I×M → N×N . Let X̃ = (∇u1,∇u2) and Ỹ = (J∇u1, J∇u2).
Using the Schrödinger flow equation and integrating by parts, we have
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d

dt
Q1 =

d

dt

∫
M
|d(u1, u2)|2dv

=

∫
M

〈
∇̃d2, (∂tu1, ∂tu2)

〉
dv

=

∫
M

〈
∇̃d2, (Jτ(u1), Jτ(u2))

〉
dv

= −
∫
M

〈
∇∇̃d2, (J∇u1, J∇u2)

〉
dv

= −
∫
M
∇̃2d2(X̃, Ỹ )dv.

Applying Lemma 2.2, we have

1

2
|∇̃2d2(X̃, Ỹ )| ≤ |PX2 −X1||PY2 − Y1|+ Cd2(|X1|+ |X2|)(|Y1|+ |Y2|)

= |P∇u2 −∇u1||PJ∇u2 − J∇u1|
+ Cd2(|∇u1|+ |∇u2|)(|J∇u1|+ |J∇u2|)
≤ |P∇u2 −∇u1|2 + Cd2.

Therefore, we arrive at

(3.1)
1

2

d

dt
Q1 ≤ Q2 + CQ1,

where the constant C depends on L∞ norm of ∇u1 and ∇u2.

3.4. Estimate of Q2

Next we derive estimates for the functional

Q2 =

∫
M
|P∇u2 −∇u1|2dv.

To proceed, we express the bundle morphism P more explicitly by choosing
local orthonormal frames of the pull back bundles. In particular, we can
arrange the frame to be parallel along the connecting geodesics which is
constructed in the previous section.

More precisely, we first fix a local orthonormal frame on u∗1TN . For
each point (t, x), we parallel transport the frame to get a moving frame
{f̄α(s)} along the geodesic γ(t,x)(s). Then we set f1,α = f̄α(0), f2,α = f̄α(1).
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Obviously, by the construction, we have Pf2,α = f1,α. If we denote ∇iuλ =
φαλ,ifλ,α, it follows

P∇iu2 = P(φα2,if2,α) = φα2,if1,α.

Thus, letting φλ := φαλ,i and ψ := φ2 − φ1, the quantity we need to consider
is simply

Q2 =

∫
M
|φ2 − φ1|2dv =

∫
M
|ψ|2dv.

In other words, by using the bundle morphism P, we actually regard φλ, λ =
1, 2 as sections living on the same bundle u∗1TN . However, the pull-back
connection ∇λ := u∗λ∇N acting on φλ stays distinct.

Recall that by (2.2), φλ satisfies the following equation

(3.2) ∇λ,tφλ = J0∆λφλ + J0R
N#φλ#φλ#φλ + J0Ric

M#φλ,

where # denotes linear combinations of the components of involved terms.
Since φ1 and φ2 are now regarded as sections on the same bundle, we may
subtract (3.2) for λ = 1, 2 to get

∇1,tψ + (∇2,t −∇1,t)φ2 = J0∆1,xψ + J0(∆2,x −∆1,x)φ2 + S,

where

S := J0(R
N (u1)#φ1#φ1#φ1 −RN (u2)#φ2#φ2#φ2) + J0Ric

M#(φ1 − φ2).

Hence we have

1

2

d

dt
Q2 =

∫
M
〈ψ,∇1,tψ〉 dv

=

∫
M
〈ψ, J0∆1,xψ〉 dv +

∫
M
〈ψ, S〉 dv

+

∫
M
〈ψ,−(∇2,t −∇1,t)φ2 + J0(∆2,x −∆1,x)φ2〉 dv.

The first term vanishes after integration by parts. Moreover, by the assump-
tion of bounded geometry of N , it is easy to see that

|S| ≤ C(d(u1, u2) + |ψ|),
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where the constant depends on RN ,∇NRN , RicM and the L∞-norm of φλ.
Thus we arrive at
(3.3)
1

2

d

dt
Q2 ≤

∫
M
|ψ|
(
|(∇2,t −∇1,t)φ2|+ |J0(∆2,x −∆1,x)φ2|+ C|d|+ C|ψ|

)
dv

≤ C(‖d‖2L2 + ‖ψ‖2L2 + ‖(∇2,t −∇1,t)φ2‖2L2 + ‖(∆2,x −∆1,x)φ2‖2L2).

Therefore, we are led to compute the difference of the two connections and
corresponding Laplacians.

3.5. Estimate of the connection

Denote the difference of the two connections ∇λ = u∗λ∇N , which is a tensor,
by

B := ∇2 −∇1.

To be more specific, let ωi be the orthonormal co-frame which is the dual
of ei. Under the local frame {fλ,α} of the pull-back bundle u∗λTN , we can
write ∇λ = d+Aλ where Aλ = Aλ,iω

i is a (skew-symmetric) matrix valued
1-form. Thus B := Biω

i = (A2,i −A1,i)ω
i.

Recall that by our construction, we have a map U : [0, 1]× I ×M → N
such that U(s, t, x) := γ(t,x)(s) is a geodesic. Thus we have a global pull-back
bundle U∗TN , which is defined over [0, 1]× I ×M , with an orthonormal
frame {f̄α} which is defined by parallel transportation. Now let ∇̄ := U∗∇N
denote the pull-back connection on U∗TN which corresponds to an 1-form

Ā = Āsds+ Āiω
i.

In particular, since f̄α is parallel along s, Ās vanishes, leaving along Ā =
Āiω

i. The curvature of ∇̄ is given by the formula

F̄ = dĀ+ [Ā, Ā].

Since Ās = 0, the ds ∧ ωi component of F̄ is simply

F̄si = ∂sĀi.

On the other hand, we have U(0, t, x) = u1(t, x), U(1, t, x) = u2(t, x).
Obviously, u∗1TN and u∗2TN are just the restriction of U∗TN at s = 0 and
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s = 1, respectively. Moreover, the restriction of ∇̄ at u∗λTN is just the pull-
back connection ∇λ. That is, Āi(0) = A1,i and Āi(1) = A2,i. Therefore,

Bi = A2,i −A1,i =

∫ 1

0
F̄sids.

Note that F̄ is in fact the pull-back of the curvature RN on N , i.e. F̄ =
U∗RN . It follows

(3.4) Bi =

∫ 1

0
RN (∇̄sU, ∇̄iU)ds.

Since |∇̄sU | = |∂sγ(t,x)| = d(u1, u2), we have

(3.5) |Bi| ≤ sup
s
|RN ||∇̄sU ||∇̄iU | ≤ C sup

s
|∇̄iU |d.

Next we need the following lemma to estimate the Jacobi field ∇̄iU and
its derivatives. See the appendix of [16] for another proof.

Lemma 3.2. The derivatives of U satisfy the following estimates:

sup
s
|∇̄iU | ≤ C(|φ1,i|+ |φ2,i|),

sup
s
|∇̄i∇̄jU | ≤ C(|∇1,iφ1,j |+ |∇2,iφ2,j |) + C(|φ1,i|+ |φ2,i|)(|φ1,j |+ |φ2,j |),

where the constant C depends on the derivative (up to second order) of the
exponential map in the domain.

Proof. First recall that each Jacobi field W can be generated by a family of
variation of geodesics

γ(s, t) = expp(s(T + tV ))

and has the form

W (s) = ∂tγ(s, 0) = D expp |sT (sV ).

Therefore, in a small geodesic ball we have

|W (s)| ≤ |D expp |sT | · s|V | ≤ s|D expsT |x|/|D expp |T |W (1)|.

It follows that |W (s)| ≤ C|W (1)| where the constant

C = sup |D expp |/ inf |D expp |.
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The constant can be achieved since we have D expp |0 = id and the expo-
nential map is smooth.

Now for any 0 ≤ i ≤ n, W := ∂iU is a Jacobi field along the geodesic
connection u1 and u2, which satisfies

{
∇2
sW +R(W,T )T = 0,

W (0) = φ1,i, W (l) = φ2,i.

Since the Jacobi equation is linear, we can decompose W = W1 +W2 where
W1,W2 are both Jacobi fields such that W1(0) = 0,W1(1) = φ2,i and
W1(0) = φ1,i,W1(1) = 0, and both satisfy the above estimate. Therefore first
desired inequality follows. The second one can be proved similarly by taking
one more derivative. �

3.6. Estimate of Laplacian

Now we are ready to estimate the difference of two Laplacian operators ∆1,x

and ∆2,x. Since ∇1 = ∇2 −B, we have

∆1,x = ∇1,k∇1,k = (∇2,k −Bk) ◦ (∇2,k −Bk)
= ∇2,k∇2,k −∇2,k ◦Bk −Bk∇2,k +B2

k)

= ∆2,x −∇2,kBk − 2Bk∇2,k +B2
k.

Hence

∆2,x −∆1,x = ∇2,kBk + 2Bk∇2,k −B2
k.

The last two terms on the right hand side of the equality can be easily
handled by (3.5). To estimate the first term, first observe

∇2,kBk = ∇̄kBk + (∇2,k − ∇̄k)Bk,

where we can control the last term by

∇2,k − ∇̄k = Āk(1)− Āk(s) =

∫ 1

s
F̄skds ≤ Cd.
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So all we need to deal with is the term ∇̄kBk, which we use (3.4) to estimate

∇̄kBk = ∇̄k
∫ 1

0
RN (∇̄sU, ∇̄kU)ds

=

∫ 1

0
∇NRN (∇̄kU, ∇̄sU, ∇̄kU)

+RN (∇̄sU, ∇̄2
kU) +RN (∇̄k∇̄sU, ∇̄kU)ds

≤ C(sup
s
|∇̄kU |2d+ sup

s
|∇̄2

kU |d+ sup
s
|∇̄kU |

∫ 1

0
|∇̄k∇̄sU |ds).

The first term can be controlled by applying Lemma 3.2. As for the last
term, we apply Lemma 2.1 to derive

∫ 1

0
|∇̄k∇̄sU |ds =

∫ 1

0
|∇̄s∇̄kU |ds ≤

(∫ 1

0
|∇̄s∇̄kU |2ds

) 1

2

≤ |P∇̄kU(1)− ∇̄kU(0)|+ C(|∇̄kU(1)|+ |∇̄kU(0)|)d
≤ |φ2,k − φ1,k|+ C(|φ2,k|+ |φ1,k|)d
≤ |ψ|+ Cd.

Consequently, we have

(3.6) |(∆2,x −∆1,x)φ2| ≤ C(d+ sup
s
|∇̄2

kU |d+ |ψ|),

where the constant only depends on |φλ| and the target manifold N .

Remark 3.3. Here we fixed a gap in McGahagan’s proof by applying
Lemma 2.1. In fact, the term D∂sγ, which appeared in the estimate of the
derivative of the curvature term (line 18, page 394 in [16]), may blow up
if the two solutions are too close to each other. In particular, the distance
function d(u1, u2) is not differentiable at x ∈M if u1(t, x) = u2(t, x).

3.7. Uniqueness

Finally, we continue the estimate of Q2 and finish the proof of Theorem 1.1
and Theorem 1.2. Combining the estimates (3.3), (3.5) and (3.6), we obtain

1

2

d

dt
Q2 ≤ C(‖ψ‖2L2 + ‖d‖2L2 + ‖ sup

s
(|∇̄2

kU |+ |∇̄tU |)d‖2L2).
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Applying Lemma 3.2 again, we can bound the last term by

‖ sup
s

(|∇̄2
kU |+ |∇̄tU |)d‖2L2 ≤ C(‖(|∇1,kφ1,k|+ |∇2,kφ2,k|)d‖2L2 + ‖d‖2L2).

Now for Theorem 1.1, we have ∇2uλ ∈ L∞(I ×M), then

‖(|∇1,kφ1,k|+ |∇2,kφ2,k|)d‖L2 ≤ (‖∇2
1,ku1‖L∞ + ‖∇2

2,ku2‖L∞)‖d‖L2 .

For Theorem 1.2 where ∇2uλ ∈ L∞(I, Lm(M,N)), we have

‖(|∇1,kφ1,k|+ |∇2,kφ2,k|)d‖L2 ≤ (‖∇2u1‖Lm + ‖∇2u2‖Lm)‖d‖
L

2m
m−2

.

By Sobolev embedding and the estimate in Lemma 2.2, we have

‖d‖
L

2m
m−2
≤ C‖d‖W 1,2 ≤ C(‖d‖L2 + ‖ψ‖L2).

In either case, we obtain

(3.7)
1

2

d

dt
Q2 ≤ C(Q1 +Q2).

The inequalities (3.1) and (3.7) together yield

1

2

d

dt
(Q1 +Q2) ≤ C(Q1 +Q2),

where C depends on the norms of u1 and u2 in the space S . Since Q1(0) =
Q2(0) = 0 at initial time, we conclude the uniqueness by Gronwall’s inequal-
ity and finish the proof of Theorem 1.1 and 1.2.
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