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We view a moduli space of semistable sheaves on a K3 surface as a
global quotient stack, and compute its cotangent complex in terms
of the universal sheaf on the Quot scheme using the classical and
reduced Atiyah classes. As an application, we define the notion
of a symplectic stack, and show that it includes moduli stacks of
semistable sheaves on K3 surfaces.
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Holomorphic symplectic manifolds are complex manifolds with nowhere
degenerate holomorphic 2-forms. They have very rich geometry and beau-
tiful properties, mainly due to the interaction of two structures on the sec-
ond cohomology group, namely, the weight 2 Hodge decomposition and the
Beauville-Bogomolov pairing. For example, they have unobstructed defor-
mations [4, 18, 30, 32, 33|, local and global Torelli theorems [1, 11, 35].
Furthermore, birational irreducible holomorphic symplectic manifolds are
always deformation equivalent [10]. Looking for examples of holomorphic
symplectic manifolds is always one of the central problems in this area.

On the other hand, moduli spaces of Gieseker semistable sheaves on a
projective variety [7, 20, 21] have been a very popular research area in dif-
ferential geometry, algebraic geometry, gauge theory and theoretical physics
for a long time. When the underlying variety is a K3 surface, Mukai [22]
constructed a non-degenerate holomorphic 2-form on the smooth locus of
the moduli space. Therefore, the smooth moduli spaces of sheaves on K3
surfaces provide a whole series of examples of irreducible holomorphic sym-
plectic manifolds. A similar result on abelian surfaces [1] yields another series
of examples, which are the so called generalized Kummer varieties. For quite
a long time these are the only known examples of irreducible symplectic va-
rieties. A natural question to ask at this stage is: since Mukai has showed
the existence of a holomorphic 2-form on the smooth locus of any singular
moduli space of semistable sheaves on K3 surfaces, is there any way to turn
these singular moduli spaces into “symplectic objects”?

O’Grady’s work [26, 27] partly answered this question. He studied such
a 10-dimensional singular moduli space, as well as a 6-dimensional moduli
space of sheaves over an abelian surface, and constructed their symplectic
resolutions. A comparison of topological invariants shows that they are two
new examples of irreducible symplectic manifolds. Some work was done along
this route, and eventually, Kaledin, Lehn and Sorger showed that, O’Grady’s
example was the only one which could arise by desingularizing moduli spaces
of sheaves on K3 surfaces [17, Theorem 6.2]. However, this result excludes
many of the moduli spaces from the game, although they are very close to
symplectic manifolds.

At the same time, people are trying to generalize the notion of symplectic
manifolds to allow singularities. Beauville defined the notion of symplectic
singularities in [2]. After that a lot of work was extensively done by many
other people, such as [16, 23, 24]. In particular, in [17, Theorem 6.2], it is
proved that all singular moduli spaces of sheaves on K3 surfaces are (singu-
lar) symplectic varieties in the sense of [2].
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Another reason why we should enlarge the notion of holomorphic sym-
plectic manifolds to include all singular moduli spaces of sheaves on K3
surfaces roots in enumerative geometry and theoretical physics. In recent
years, the study of Donaldson-Thomas type invariants has grown into a
large area involving many modern techniques in many different fields in al-
gebraic geometry, such as deformation theory, stacks, derived categories and
motives. Although a lot of work about Donaldson-Thomas type invariants
on Calabi-Yau 3-folds is done, not so much is known on a K3 surface. On
the other hand, Vafa and Witten in [34] predicted from S-duality that the
generating function of the Euler characteristics of instanton moduli spaces
on K3 surfaces has a modularity property. As a consequence, the Euler char-
acteristics of singular moduli spaces could be all determined by those of the
smooth ones. To the best of the author’s knowledge, mathematically there’s
no convincing definition of the Euler characteristics (which are presumbly
Donaldson-Thomas type invariants) needed for this conjecture so far, and
the contribution of the singularities of the moduli spaces to the denominators
remains a mystery.

In this paper, we are trying to generalize the notion of holomorphic
symplectic manifolds into the stacky world. So that one has the possibil-
ity of dealing with all moduli spaces of semistable sheaves on K3 surfaces,
when considered as Artin stacks, in a uniform way, without the necessity
of distinguishing them by the existence of symplectic resolutions. The role
of the holomorphic symplectic form in the definition of the holomorphic
symplectic manifolds, is to provide an isomorphism of the tangent bundle,
or rather the cotangent bundle, with its dual, such that the isomorphism is
anti-symmetric. By thinking of these moduli spaces as stacks, we will replace
the cotangent bundle by the cotangent complex. Therefore, motivated by the
work on symmetric obstruction theories in [3], we propose the definition of
a symplectic stack as follows:

Definition 1.1. A symplectic stack is an algebraic stack, whose cotangent
complex is a symplectic complex, namely, a complex equipped with a non-
degenerate anti-symmetric bilinear pairing.

The precise definitions can be found in Definitions 6.1, 6.5 and 6.6.

Besides the trivial examples of symplectic manifolds and quotients of
symplectic manifolds by finite subgroups of symplectomorphisms, the major
part of this paper is devoted to study the question whether the moduli spaces
of semistable sheaves on K3 surfaces can be understood as symplectic stacks.

For this purpose, we fix a K3 surface X, a Mukai vector v € H:lg(X, 7).
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There exists a system of hyperplanes in the ample cone of X with respect to
v; see [12, Section 4.C]. We fix an ample class H which is generic with respect
to v, namely, not contained in any of these hyperplanes. The advantage of H
being generic lies in the fact that the Mukai vector of any direct summand
of an H-polystable sheaf of Mukai vector v is proportional to v.

For technical reasons, we assume further that v? > 0 to guarantee the ex-
istence of stable sheaves. We consider the global quotient stack M = [Q/G]
as the quotient of the GIT-semistable locus @) of Quot scheme by the gauge
group G = PGL(N). We will call it the reduced moduli stack of semistable
sheaves on a K3 surface (see Remark 6.9), and prove that it is a symplectic
stack (see Theorem 6.10).

The main difficulty during establishing this result lies in the computation
of the cotangent complexes of the quotient stack. We obtain explicit formulas
for the cotangent complexes in terms of the universal quotients, which we
view as the main result of this paper (see Theorems 4.5 and 5.10):

Theorem 1.2. Under the above assumptions, the cotangent complexes of
the GIT-semistable locus of the Quot scheme Q and the reduced moduli stack
of semistable sheaves M can be expressed explicitly by the universal quotient
sequence on Q. More precisely, using the notations given at the end of this
section, we have quasi-isomorphisms

Rm,RHom(K,F)y — Lo
R RHom(F, F)§[-1] L.

ll\?

By using Serre duality, we can prove the following theorem (see Theo-
rem 6.10):
Theorem 1.3. Let (X, H) be a polarized K3 surface, v € H;lg(X, 7) a
Mukai vector with respect to which H is generic. Assume v > 0. Then the
reduced moduli stack M of semistable sheaves on X is a symplectic stack.

The main techniques used in this presentation were adopted from the
paper [13] of Huybrechts and Thomas on the application of Atiyah class
on deformation theory of complexes, and the paper [8] of Gillam on the
application of reduced Atiyah class on the deformation theory of quotients.
The paper is organized as follows:

In Section 2, we first of all briefly recall some properties of cotangent
complexes which will be used later. Then we turn to a short summary of clas-
sical Atiyah classes and reduced Atiyah classes, including their definitions
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and properties in the deformation-obstruction theory. We will also show that
the reduced Atiyah class is a lift of the classical Atiyah class.

Section 3 is mainly a technical point. Since we will eventually be in-
terested in the moduli space of sheaves with fixed determinant, we have
to remove the effect of the trace map. This section uses techniques in de-
rived categories to create “traceless version” of all complexes involved in the
following sections.

Section 4 contains the first half of the central computation, which is
on the cotangent complex of the GIT-semistable locus of the Quot scheme.
Following [8, 13|, we use the reduced Atiyah class to establish a morphism
from a complex constructed only from the universal family on the Quot
scheme, to the cotangent complex of Quot scheme. Then we show that this
morphism induces isomorphisms on all cohomology groups.

Section 5 provides the other half of the central computation. We use the
transitivity property of the cotangent complex, together with the cotangent
complex of the Quot scheme computed in previous section to obtain the
cotangent complex of the quotient stack. The commutativity of the diagram
(13) is the major obstacle that we have to overcome in this section.

In Section 6, we take the definition of symmetric obstruction theories
in [3] as a model, and formally introduce the notion of a symplectic stack.
As an application of the computations in previous sections, we show that
the moduli stacks we studied in previous sections are indeed examples of
symplectic stacks.

After the first version of this manuscript was finished, the author was
informed that similar results were obtained independently by Pantev, Toén,
Vaquié and Vezzosi in [29]. Using the powerful machinery in derived algebraic
geometry, the authors of [29] were able to construct symplectic structures
under much more general settings. However, the language used in the present
paper is mostly classical and much less technical, therefore this paper can
be viewed as a more elementary approach to the computation of cotangent
complexes and the construction of symplectic structures.

Notations. Throughout this paper, X will always be a projective K3 sur-
face, and v € Hy),(X,Z) is a fixed Mukai vector. Moreover, H is an ample
line bundle on X generic with respect to v, which is used to determine
the stability of sheaves in Gieseker’s sense. We also assume that v > 0 un-
der the Mukai pairing, so that there is at least one H-stable sheaf on X
with Mukai vector v. We always use @) for the GIT-semistable locus of the

Grothendieck’s Quot scheme used in the GIT construction of the moduli
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space. We denote the two projections from Q) x X by

QxX
Q/ \X.

The gauge group PGL(N) in the GIT construction will be denoted by G.
It acts on @ and the global quotient stack [Q/G] will be denoted by M. We
use

q:Q — M

for the structure morphism from @ to the global quotient stack M. We
always assume that the stable locus is non-empty. Since the stability is an
open condition, we denote the open dense subscheme of ) over which the
quotient sheaf is stable by @°, and the corresponding image of )° under ¢
by M5,

We also fix the universal quotient sequence
(1) 0 —K—E—F—0

on the GIT-semistable locus of the Quot scheme, or more precisely, on @ x
X. Here we should note that £ is obtained by pulling back a vector bundle
on X via the projection my, therefore is a trivial family over Q.
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2. Cotangent complexes and Atiyah classes
2.1. Cotangent complexes

We first of all recall some properties of cotangent complexes, which will
be important for our later discussions. The classical reference for cotangent
complexes is [14]. For cotangent complexes of stacks, one can see [19, Chapter
17] and [28].

Lemma 2.1. [14, 19] The cotangent complex of X is an object in the de-
rived category D°(X), which

1) is quasi-isomorphic to a single locally free sheaf in degree 0 if X is a
smooth scheme;

2) has perfect amplitude in [—1,0] and is quasi-isomorphic to a single
sheaf in degree 0 if X is a scheme of locally complete intersection;

3) has perfect amplitude in (—o0, 0] if X is a scheme or a Deligne-Mumford
stack;

4) has perfect amplitude in (—oo, 1] if X is an Artin stack.

The computation of the cotangent complex is in general very difficult,
however the following functorial property turns out to be very helpful in
some cases.

Proposition 2.2. [14, 19] Let
x Lyt z

be two morphisms of schemes or stacks. Then we have the following exact
triangle in D(X):

Furthermore, this exact triangle is functorial. Namely, if we have a commu-
tative diagram
X I y— =2z

R

X/Hy/*)‘z/’
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then there are morphisms between two exact triangles (vertical arrows in the
following diagram) which make the diagram commute

u* f* Ly 20 —> Ly jz0 —> u*Lysy

| l l

J'Ly/z Ly/z Ly

Another important property which is helpful in understanding the cotan-
gent complex of a scheme is

Lemma 2.3. [1}] Let X be a scheme. Then
HO(Ly) = Qx,

the cotangent sheaf of X . In particular, if X is a local complete intersection,
we have a quasi-isomorphism

Lx —» Qx.
Proof. See [14, Proposition 1.2.4.2]. O

The reason why cotangent complexes are important is that they play a
central role in deformation theory, which is the whole essence of [14, 15].
For our purpose, we need two properties of cotangent complexes concerning
deformation theory.

Let X be any scheme, and I be any coherent Ox-module. We use the
notion

X[I] = Specx(Ox @& I)

for the trivial square zero extension of X by I. In other words, X[I] can be
viewed as a first order deformation of X, and we denote the corresponding
natural inclusion by ¢;: X — X|[I]. A retract of X[I] is defined to be a
morphism r : X[I] — X such that the composition r o ¢; = idx.

Proposition 2.4. [14] Under the above notations, all retracts from X|[I] to
X are parametrized by Hom(ILx, I). Or in other words, the automorphism
group of the deformation X|[I| is canonically given by Hom(Lx, I).
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Proof. This is part of [14, Theorem II1.2.1.7]. Since X is a scheme, by the
above lemmas, we have

Hom(Lx,I) = Hom(2x, I) = Der(Ox, I).

However every retract r : X[I] — X corresponds to a splitting ¢ of the
exact sequence

OHIHOX@ITOXH()’

which is an algebra homomorphism, therefore corresponds to a derivation
into 1. ]

A priori, X[I] may not be the only first order thickening of X by the ideal
1. The following proposition gives a parameter space for all such thickenings.
It’s an application of the so-called “Fundamental Theorem of Cotangent
Complex” in [14].

Proposition 2.5. [1/] Under the above notations, all isomorphism classes
of first order thickenings of X by the ideal I are parametrized by Ext!(Lx, I).

Proof. See [14, Theorem III.1.2.3, I11.1.2.7]. O

The class corresponding to a particular thickening of X is called the
Kodaira-Spencer class which represents the thickening. Obviously, the zero
element in Ext!(ILy, I) represents the trivial thickening X [I].

Now we apply the general theory of cotanget complexes to @Q; i.e., the
GIT-semistable locus of the Quot scheme. Due to the existence of strictly
semistable sheaves, @) is in general singular. However, the cotangent complex
of @ is very simple. In fact, it is quasi-isomorphic to a single sheaf concen-
trated in degree 0. The following lemma is part of [17, Proposition 3.11]. We
nevertheless give an elementary proof.

Lemma 2.6. The GIT-semistable locus of the Quot scheme Q in the GIT
construction of the moduli space of semistable sheaves on a K3 surface is a
local complete intersection. In particular, the cotangent complex Ly has per-
fect amplitude in [—1,0], and is quasi-isomorphic to the cotangent sheaf Q.
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Proof. By [13, Proposition 2.2.8], at every closed point ¢ € @, which is by
the above notation represented by a quotient

0 — K—F—F—0,
there is an inequality concerning the dimension of @) at the point
dim Hom(K, F) > dim, Q > dim Hom(K, F) — dim Ext' (K, F)o,
where Ext! (K, F)g is the kernel of the composition map
Ext!(K, F) —s Ext®(F, F) -2 H?(Ox) = C.

And the Quot scheme (@ is a local complete intersection if and only if the
second equality holds at every closed point ¢ € Q.

By [17, Theorem 4.4] (see also [36, Theorem 3.18]), we know that the
GIT-semistable locus of the Quot scheme () is irreducible. Therefore, dim, @
is constant on the only connected component of (). Furthermore, it is easy
to check that for every i > 2, we have

Ext'(K,F) =0,
which implies
dim Hom(K, F) — dim Ext! (K, F)o = x(K, F) + 1

which is a topological number only depending on the Chern classes of F
hence is also constant. Therefore it suffices to check the equality of both
sides at one closed point of Q).

However by the assumption, there exists at least one point in the Quot
scheme (Q which is represented by a stable quotient sheaf F'. At such a point
the obstruction space Ext!(K, F)q vanishes, therefore both equalities hold
at the same time. By the above discussion we conclude that the Quot scheme
@ is a local complete intersection. And the statement about L follows from
that. OJ

2.2. Classical Atiyah classes
In [14], the Atiyah class were defined in two different ways. We follow the

second approach using the exact sequence of principal parts, which itself was
defined in [14, II1.1.2.6].
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Let A — B be a ring homomorphism, and I the kernel of the surjective
ring homomorphism B ® 4 B — B. Then we have an exact sequence

00— —B®s4B—B—0
which splits by either of the ring homomorphisms
Ji,jo: B—B®aB

where
Ji@)=z®1, ja(r)=1®@uw.
After dividing by I? we obtained

0—I/I> — B®aB/I> — B —0
which we denoted by
0 — Qpja — Py — B —0.

Note that Pé,/A is a B-B-bimodule. Let M be a B-module. We tensor the
above exact sequence by M from right side and obtain

0 — Qpja ©p M — Py @ M — M — 0,

which defines a class in Exts(M, M @ Qp /4)- This class is called the Atiyah
class of M.

In our settings, we let A be Ox and B be Ogxx. For any sheaf 7 on
@ x X, we obtained the Atiyah class of F, which we denote by At(F). Note
that, a priori, what we defined above is only a truncation of the full Atiyah
class. For the definition of the full Atiyah class, we need to replace B by a
simplicial resolution in the sequence of principal parts. However, because of
Lemma 2.6, there’s no difference in this case. More precisely, since

Qoxx/x = Loxx/x = m'Lg,
we have actually defined the (full) Atiyah class
At(F) € Ext, x(F, F @ m*Lg).

Now we study the deformation properties of the Atiyah class. We have
already seen from Lemma 2.4 that, for any coherent sheaf I on @), the space
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Homg(Lg, I) parametrizes all retracts ¢ : Q[I] — Q. On the other hand,
from classical sheaf deformation theory, we also know that ExtézX y(F, F®
7m*I) parametrizes all flat deformations of F from @ to Q[I] (see for example
[31, Lemma 3.4]). The Atiyah class gives a nice relation of the two spaces
as follows:

Proposition 2.7. Let I be any coherent Og-module and F be a coherent
sheaf of Ogx x-module which is flat over Q. Let At(F) be its Atiyah class
defined as above. Then the map

At(F)U (F ® —) : Homg (Lo, I) — EXT’IQXX("FPF@ 1)

given by precomposing with the Atiyah class of F can be interpreted as
{retracts of 11} — {flat deformations of the F over Q[I|},

where the arrow is given by pulling back the sheaf F via the chosen retract.

The proof of the proposition is very straightforward and is just a mat-
ter of unwinding the definitions. However, to the best of my knowledge, it
doesn’t seem to appear anywhere in this form. So we include a proof here.

Proof. From Lemma 2.4, we actually know that, for any
u € HomQ(LQ, I) = HOIHQ(QQ, I),

the corresponding retract is given by the splitting of the second row in the
following diagram via the arrow (id,u o dg):

(id,dq)
0——=0Qg —>00®Qg—=0g—0
0 1 Ogadl Oq 0,
(id,uodgq)

where dg is the universal derivation defined by
dQ(ﬂZ):1®$—$®1

for every x € Og.
Note that Og @ Qg is exactly the principal part Pclg together with the
left Og-module structure, while the splitting (id, dg) is exactly the right
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Og-module structure. Similarly, Og @ I can also be identified with Ogp
such that the splitting (id, u o dg) corresponds exactly to the retract.

We pullback the diagram to () x X and tensor every term with the sheaf
F. Using the splittings of both rows, we get

OHW*QQ@);HP&QXX/X@.FHF*)O

| |

0——= 71" F ——71"QU]® F——F —=0,

From the above construction we see exactly that the second row is the
class At(F) U (F ® u), which finishes the proof. O

The above proposition concerns the relation of the Atiyah class with
deformations of F over the trivial first order deformation Q[I] of Q. Next
proposition relates the Atiyah class with obstructions of deforming F to an
arbitrary first order deformation of ). More precisely, we have seen from
Lemma 2.5 that Ext!(Lg, I) parametrizes all isomorphism classes of first
order thickenings of ) by the ideal sheaf I. And classical deformation theory
tells us that the obstruction of deforming F to any first order extension of
the base lies in the space Ext?(F, F @ 7*I) (see for example [31, Proposition
3.13]). Via the Atiyah class, we can make a precise formation of their relation:

Proposition 2.8. [14] Let I be any coherent Og-module and F be a co-
herent sheaf of Ogx x-module which is flat over Q. Let At(F) be its Atiyah
class defined as above. The map

AHF) U (F® =) : Ext(Lg, 1) — Exty, x (F, F @ 7*1)
given by precomposing with the Atiyah class can be interpreted as

{thickenings Q" of Q by I} — {obstructions to the existence
of flat deformations of F over Q'}.

Proof. This proposition lies under the general principle of “the composition
of Atiyah class and Kodaira-Spencer class is the obstruction”. The proof can
be found in [14, Proposition IV.3.1.8]. O
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2.3. Reduced Atiyah classes

Now we turn to the reduced Atiyah class, which was defined and extensively
studied in [8]. Two definitions were given, one using graded cotangent com-
plex, the other using more classical language. We follow the second approach
in [8] and give a brief description of the reduced Atiyah class in our context,
under the additional property that @) is a local complete intersection, just
to avoid any simplicial resolution of algebras.

Recall that we have the short exact sequence of sheaves on ) x X given
by (1), where

E=rxEp

is a trivial family of vector bundles over ). We have the following commu-
tative diagram with all rows and columns exact:

0*>’C®7T*QQ*>5®7T*QQ*>]:®TF*QQHO

0 PYK) PY(&) PYF)——0
0 K £ F 0
0 0 0.

The exactness of the three columns are trivial, because they are all exact
sequence of principal parts. The exactness of the third row is part of given
data. The exactness of the first row is due to the flatness of F and exactness
of the middle row follows from that of the other two rows.

As observed in [8], the middle column naturally splits, due to the fact
that £ is a trivial family over @). The reversed arrow ¢ in the above diagram
is chosen as follows: we have

& =0q ®c Ey

and
P(E) = (0gxq/T?) ®c Ey = (0g ®c Og/T?) @c Ey,
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where [ is the ideal sheaf of the diagonal in ) x Q. Then we define

o: E — PUE)
a®e — a®l®e.

It’s obvious that o is indeed a splitting.

After all of the preparation, we define the reduced Atiyah class at €
Hom(K, F ® m*Lg) as the composition of the following arrows from the
above diagram, starting from /C:

(3) F & W*LQ

|

P(E) P(F)

ig

where the downward arrow in the right column means that, everything in
P1(F) which comes from K via the composition of the other three arrows
is in the image of this downward arrow, therefore can be uniquely lifted to
F @ m*Lg. The reason is that if we maps it further down to F as in the
above diagram, we get the zero section. Hence the composition of the four
arrows is well-defined.

The reduced Atiyah class behaves compatibly with the classical Atiyah
class. In fact, it is a lifting of the classical Atiyah class in the following sense

K

Proposition 2.9. Let at € Hom(K, F @ 7*LLg) be the reduced Atiyah class,
and e € Extl(}",IC) be the extension class represented by the universal quo-
tient sequence (1) on Q. Then

1) The composition
(at[l])ce: F — K[1] — F @ 7*Lgl[1]

is the classical Atiyah class At(F);

2) The composition
(e@nmLg)oat : K — F@n'Lg — K ® n*Lg[1]

is the classical Atiyah class At(K).
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Proof. We will only use the first half of the proposition, so only this part will
be proved in details. However, the proof of the second part of the proposition
is completely parallel to that of the first part.

To prove the first part of the proposition, it suffices to show that

0 K & F 0

|

0—F@71'Lg — PY(F) —=F —=0

is a pushout diagram, where the first row is the universal family (1), while
the second row is the principal part sequence for F. By the construction of
the pushout, in fact we just need to show the sequence

(4) 0— K5 o (Forly) 2 PY(F) —0

is an exact complex, where the map ¢ is the pair of the first arrow in
diagram (3) and the negation of the reduced Atiyah class —at, and the
map 9 is the sum of composition of the middle two arrows in (3) and the
downward arrow.

To verify this claim, we observe that

e (1 is injective, which is obvious because the first component is injec-
tive;

e (9 is surjective. In fact, Im(i3) is a submodule of P!(F), and obvi-
ously F @ 7*Lg lies in Im(p2). Furthermore, Im(p2)/(F @ 7*Lg) = F
because the image of £ hits everything in F;

e Im(p1) C ker(ps), which is due to the construction of the reduced
Atiyah class;

e ker(p2) C Im(p1). In fact, if (e, f') e &P (F@n*Lg) satisfies
as(e, f') =0, then e comes from a certain k € K, because its image
in F is the negation of the image of f’ in F, which is 0. Then it is
clear that p1(k) = (e, f').

The above observations finish the proof of the exact sequence (4). i

Similar to the discussion of the classical Atiyah class, we will also need
to use some deformation interpretations of the reduced Atiyah class. We
know from the deformation theory of quotients (for example, in Chapter 2
of [12]) that, for any coherent Og-module I, the space Hom(K,F @ 7*I)
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parametrizes all first order flat deformations of the universal quotient (1)
to the square-zero extension Q[I]. We also know that Extbx x (K, F@r*I)
contains all obstruction classes of lifting the quotient (1) to the first order.

The following two propositions from [8] concerning the relation between
the reduced Atiyah class and the deformation theory. The statements are
parallel to similar results in previous section about classical Atiyah class.
The first one relates the reduced Atiyah class with deformation of quotients
on the trivial square free deformation of the base:

Proposition 2.10. /8] Let I be any coherent Og-module and at be the
reduced Atiyah class of the quotient (1). The map

at U(F @7 (—)) : Homg(Lg,I) — Homgx x (K, F @ 7*1I)
given by precomposing with the reduced Atiyah class can be interpreted as
{retracts of 1.1} — {flat deformations of the quotient (1) over Q[I]},
where the arrow s given by pullback.
Proof. See the proof in [8, Lemma 3.2]. O
Next proposition concerns the relation between the Atiyah class and the
obstruction of deformation of the quotient map, which is also under the

essence of “the product of Atiyah class and Kodaira-Spencer class is the
obstruction class”.

Proposition 2.11 ([8]). Let I be any coherent Og-module and at be the
reduced Atiyah class of the quotient (1). The map

atU(Fen*(—)): Extb(LQ,I) — Extbxx(lC,]:@@ 7w I)
given by precomposing with the reduced Atiyah class can be interpreted as

{thickenings Q" of Q by I}
— {obstructions to the existence
of flat deformations of the quotient (1) over Q'}.

Proof. See [8, Lemma 1.13]. O
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3. Trace maps and trace-free parts of complexes

On the Quot scheme @, we apply the derived functor Rm,RHom(—,F) to
the exact sequence (1) and get an exact triangle of complexes

(5) RmRHom(K,F)[-1] — Rn,RHom(F,F) — Rm,RHom(E,F).

In this section we will construct the “traceless” version of this exact triangle.
First of all it is easy to see that the trace map tr : RHom(F,F) —
Ogx x splits by a reverse map of scaling. Therefore we have

(6) RHom(F,F) =RHom(F,F)o® Ogxx,

where the first summand is the kernel of the above trace map. The splitting
leads to

Rm,RHom(F, F) = Rm,RHom(F, F)o ® Rm,Ogx x.

However, the second component above can be further decomposed into
two direct summands as

Rm.Ogxx = RmuyOx
= RI'(Ox) ® Og
— (H0(0x) & H¥(Ox)[~2]) © Og
= m.00xx © RQW*OQX)([—Q}.

Therefore we have a decomposition of the middle complex of (5)
(7) RmRHom(F,F) =Rm.RHom(F,F)y® m.0gxx ® R*1.00xx[—2],
in which we also keep in mind that

1.00xx = 0o,
R*m.0gxx = Og.

We combine the equation (5) and the obvious morphisms of embeddings
and splittings from the equation (7) to get two morphisms

a: m.00xx — Rm,RHom(E, F);
8: Rm.RHom(K, F)[-1] — R*m.O0gxx[~2]-
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Now we define the “traceless” version of the other two complexes by

completing the exact triangles. More precisely, we define

Rm RHom(E, F)o = Cone(a)
Rm RHom(IC, F)o = Cone(f3).

Then we have the following
Proposition 3.1. We naturally get an exact triangle

(8) Rr.RHom (K, F)o[-1] — Rm.RHom(F,F)o
— Rm RHom(E, F)o.

Proof. We observe two exact triangles from the above cone construction:

9) 1:00xx — RmRHom(E, F) — Rn,RHom(E, F)o,
and
(10) R, RHom(K, F)o|—1] — RmRHom(IC, F)[—1]

Then this proposition is just a direct consequence of next lemma.

Lemma 3.2. Let
A— B —C

be an exact triangle in a triangulated category, where B = By @ Bo.

1) If we complete the natural morphism A — Bs into an exact triangle
Ag — A — Bo,

then we get a new exact triangle
Ay — B1 — C;
2) If we complete the natural morphism By — C' into an exact triangle
B, — C — (Cy,

then we get a new exact triangle

A — By — Cy.
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Proof. Both statements are immediate applications of the octahedral axiom
of triangulated categories. O

Next we analyze the fiberwise behaviour of the exact triangle (8) and
the corresponding cohomology groups. Let p € () be a closed point. Let X,
be the corresponding fiber in the product @ x X, and

(11) 0 — K, —E, —F,—20

be the corresponding quotient represented by p. Then the restriction of the
decomposition (7) becomes

RHom(F), F,,) = RHom(F), F}))o & H°(Ox,) ® H*(Ox,)[-2].

When we restrict the exact triangle (9) to the closed point p, we get the
exact triangle

H°(Ox,) — RHom(E,, F,) — RHom(E), F})o.

When we consider the corresponding long exact sequence of the cohomology
groups, we realize that the complexes RHom(E,, F},) and RHom(E,, F})o
have the same cohomology groups except in degree 0, where we get an exact
sequence

0 — HY(Ox,) ~% Hom(E,, F,) — Hom(E,, F,)y — 0.

From the above construction we see that the arrow oy, factor through
Hom(F,, F,) by a scalar map H°(Ox,) — Hom(F), F},) and a natural map
induced by the quotient (11), therefore Hom(E,, F},)o is obtained by “re-
moving” the 1-dimensional vector space generated by the map in the quo-
tient (11).

Similarly, we can analyze the exact triangle (10) and get a parallel con-
clusion. Summarizing the discussion we obtain the following lemma

Lemma 3.3. The “traceless” complexes
R, RHom(E,F)o and Rm.RHom(K,F)o

have the following pointwise behaviour:
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1) The restriction of the complex Rm,RHom(E,F)o to any closed point
p € Q computes the cohomology groups

Ext'(Ep, Fy) if i # 0;

Ext!(E,, F,)o =
XV (Ep: Fp)o {coker(ap) if i =0,

where oy, is the following composition of the scalar and the natural
map induced by (11)

ap : H'(Ox,) — Hom(E,, F,) — Hom(E), F},).

2) The restriction of the complex Rm,RHom(IC,F)o to any closed point
p € Q computes the cohomology groups

Ext!(Kp, Fp) ifi # 1;

X fu = {ker(ﬁp) ifi=1,

where B, is the following composition of the natural map induced by
(11) and the trace map

By : Ext'(K,, F,) — Ext*(F,, F,) — H*(Ox,).
4. Cotangent complex of the quot scheme

The goal of this section is to compute the cotangent complex of the GIT-
semistable locus of the Quot scheme ().

Lemma 4.1. The reduced Atiyah class at induces a morphism from
Rr . RHom (K, F)Y to the cotangent complex L.

Proof. In Section 2.3, we defined the reduced Atiyah class
at € Homgy x (IC, F @ m*Lg).
By Grothendieck-Verdier duality and Serre duality, we have

Homgy x (K, F ® m*Lg) = Homgx x (RHom(F,K), 7*Lg)
= Homg (Rm. RHom(F,K)[2],Lg)
= Homg (Rm.RHom (K, F @ w:)",Lg)
= Homg (Rm.RHom (K, F)¥,Lg).
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Therefore the class at induces a morphism between the two complexes, de-
noted by

v : Rm.RHom (K, F)" — Lg.
O

The rest of the section is aiming to prove that, although ~ itself is not
a quasi-isomorphism, if we replace the complex Rm,RHom(IKC, F)V by its
“traceless” counterpart Rm,RHom (K, F)y constructed in previous section,
then we get a quasi-isomorphism. We start from the following lemma com-
paring the degree 0 cohomology groups.

Lemma 4.2. The morphism ~ defined as above induces an isomorphism
on the 0-th cohomology groups of the two complexes.

This lemma was proved in [8, Theorem 4.2]. For the sake of completeness
we include the proof here.

Proof. For simplicity, in this proof we denote
C := Rm,RHom(K,F)".
We are aiming to show that
H(y) : H(C) — H'(Lg)

is an isomorphism. By Yoneda’s lemma for the abelian category of coherent
sheaves, it suffices to show that, for every coherent sheaf I on @), the induces
morphism

HO(~); : Homg(H"(Lg), I) — Homg(H®(C), I)

is an isomorphism. However, notice that both complexes Lg and C' have
non-trivial cohomology only in non-positive degrees. Therefore, we have

Homg(H’(Lg), I) = Homg(Lg, I),
Homg (H’(C), I) = Homg(C, I).

Hence it suffices to show that the pullback morphism
v1 : Homg(LLg, 1) — Homg(C, 1)

is an isomorphism. Again by Grothendieck and Serre duality theorems, we
have
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Homg(C, I) = Homg(Rm.RHom (K, F)¥,I)
= Homg (R, RHom(F,K)[2],I)
= Homgx x (RHom(F,K),n*I)
= Homgy x (K, F @ 7*1I).

Therefore the morphism ~; becomes
~r : Homg(Lg, I) — Homgxx (K, F @ 1),

which is given by the product with the reduced Atiyah class at. The defor-
mation interpretation of this morphism is given by Proposition 2.10, namely,
for any retract r : Q[I] — @, vs(r) is a deformation of quotient of &, given
by pulling back the universal quotient (1) from @ to Q[I] via r.

However, because of the universal property of ), any deformation of
the universal quotient is obtained by pulling back from . Therefore, the
above morphism 7 is an isomorphism, which concludes that H°(v) is also
an isomorphism. O

We take the dual of the exact triangle (10) and get another exact triangle
(12)  R*m.Ogxx[l] — RmRHom(K,F)" — Rr.RHom(K, F)J.
Lemma 4.3. The morphism

v : RmRHom(K, F)Y — Lg
can be extended to a morphism
Y0 : R RHom(K, F)§ — Lo,

which induces an isomorphism of the 0-th cohomology groups of the two
complezes.

Proof. For the first statement, it suffices to prove that
HomQ(RQﬂ'*OQXx[l],LQ) =0.

In fact, by Lemma 2.6, L is quasi-isomorphic to a single sheaf in degree 0.
Also notice that R*m.Ogx x[1] = Og[1] is a single sheaf lying in degree —1.
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Due to degree reason, the above equation holds, hence v can be extended to
70-

From the long exact sequence induced by (12) we realise that the com-
plexes Rm,RHom(K,F)V and Rm.RHom(K,F); have the same 0-th co-
homology group. The second statement follows from this observation and
Lemma 4.2. O

Lemma 4.4. The complex Rm RHom(K,F){ has perfect amplitude in
[—1,0], and is quasi-isomorphic to a single sheaf in degree 0.

Proof. We first look at the fiber cohomology of Rm.,RHom(IC,F)y before
taking the dual. From the second part of Lemma 3.3, we already know all
cohomology groups of the restriction of the complex Rm,RHom (K, F)o to
any closed point p € Q). Moreover, by the long exact sequence induced by
the restriction of the universal quotient at the point p, we can easily tell
which of them vanish. It’s not hard to find out that

Hom(K,, F,) ifi=0;
EXti(Kpa Fp)O - ]EXtQ(F;)7 Fp)o 1f7, = 1’

0 otherwise.

Therefore, we know that the only possible non-trivial fiber cohomology lies
in degree 0 and 1. Furthermore, over the locus where F), is stable, the only
non-trivial fiber cohomology lies in degree 0.

Now we turn to the dual complex Rm,RHom(K, F)y. Since the fiber
cohomology respect the operation of taking duals, we conclude that, the only
possible non-trivial fiber cohomology lies in degree —1 and 0. Furthermore,
on the open subset of () where F), is stable, the fiber cohomology in degree
—1 is even trivial.

Now we are ready to prove the two statements in the lemma. First of all,
we can always resolve the complex Rm,RHom (K, F)§ by a perfect complex
of finite length. We denote this perfect resolution by

A5 — AT AL A

We prove the first statement. If s < —1, we can actually truncate the
complex at the position s + 1, by replacing A° by 0 and A°T! by the cokernel
of the map A% — AT, We claim that this cokernel is again a locally free
sheaf over . In fact, for any closed point p € @, the kernel of the fiber map
A5 — A5t s the fiber cohomology group Ext™*(K), Fp)y, which by the
above discussion vanishes when s < —1. Therefore the morphism between
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the two locally free sheaves A® and A°T! is fiberwise injective, hence has a
locally free cokernel. This operation increases the lowest degree of the locally
free resolution by 1. We can repeat this procedure until we have s = —1.

Similarly, if ¢ > 0, we can always truncate the resolution step by step
from the highest degree, while keeping every term in the complex locally
free, until we reach ¢t =0, by using the fact that the fiberwise cohomol-
ogy groups vanish in positive degrees. Therefore, we know tha the complex
Rm.RHom(K, F)Y is quasi-isomorphic to a perfect complex in degree [—1, 0],
which we still denote by

AT AC

Finally, to prove the second statement, we only need to show that the
cohomology of this 2-term complex in degree —1 vanishes. In fact, we already
know that over an open dense subset Q° of ) where the quotient sheaf is

stable, the fiberwise cohomology of this 2-term cohomology is 0 in degree
—1, which implies that the morphism of locally free sheaves

A7l — A0

is injective over the stable locus Q°. However any subsheaf of a locally free
sheaf is torsion free, hence we conclude that the kernel sheaf is 0, which
proves the second statement. O

Finally, we can state the main result of this section
Theorem 4.5. The morphism
Y0 @ RmeRHom (K, F)y = Lo
s a quasi-isomorphism.
Proof. By Lemma 4.3, the morphism g is well-defined and H%(yp) is an
isomorphism. from which the proposition is clear. By Lemmas 2.6 and 4.4,

the only non-trivial cohomology groups in both complexes are in degree 0.
Therefore 7y is a quasi-isomorphim. O

5. Cotangent complex of the moduli stack
The goal of this section is to compute the cotangent complex of the moduli

stack M = [Q/G]. To achieve this goal, we will first build up the commuta-
tive diagram
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(13) Rm.RHom(K, F)y —=Rm.RHom(E,F)y
\
l ‘
v
e, Lo/m

such that the two vertical arrows are isomorphisms. We should notice that
the two horizontal arrows are both functorial morphisms, while the left ver-
tical arrow was constructed in the previous section and proved to be an
isomorphism. It only remains to construct the right vertical arrow to make
the diagram commute, and prove that it is an isomorphism.

Before we get into the main business, we need to study the fiber product
of the quotient map ¢q: Q — M with itself. More precisely, we have the
following lemma:

Lemma 5.1. The following diagram commutes:

(14) GxQ -
X\
N @xmQ5—0
N
Q——=M,

where G is the gauge group PGL(N), whose action on the Quot scheme Q
is the upper horizontal arrow m, pr; is the projection from G x Q to the i-th
factor, p; is the projection from Q X ap Q to the i-th factor, and j = (m, pra).
Moreover, j is an isomorphism of schemes.

Proof. The commutativity is straightforward. In fact, the commutativity of
the square is due to the fiber product, and the commutativity of the two
triangles is due to the definition of the map j. And the statement that j is an
isomorphism is a standard fact. For example, see [6, Part I, Proposition 4.43].

O

We will also need the following two facts related to the fiber product
described in diagram (14).
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Lemma 5.2. Notations are the same as in Lemma 5.1. Then we have
m*ILQ/M = pTTLg.

Proof. From the above lemma we know that the outer square of the diagram
(14) is also a fiber product. Since the quotient map ¢ is smooth, we apply
[19, Theorem 17.3 (4)] and get

m*Lo/m = Loxq/q = prile:
which proves the claim. Il
Lemma 5.3. Notations are the same as in Lemma 5.1. Lel
Lo — Lo/m
be the functorial map induced by the right vertical arrow q, and
m*Lg — m*Lg/m

be its pullback via the multiplication. Then we have the following commuta-
tive diagram

(15) m*Lg ———Lagxq

L,

m*LQ/M - prilq

where the upper horizontal arrow is the funtorial map induced by the mul-
tiplication map m, the lower horizontal arrow s the one constructed in
Lemma 5.2, and the right vertical arrow is the projection into the first factor.

Proof. This is a direct application of the functoriality of the transitivity
sequence in Lemma 2.2. l

Lemma 5.4. Notations are the same as in Lemma 5.1. Recall that F is
the universal quotient sheaf on QQ x X. Then we have

piF =paF.
Or equivalently, by further pulling back via the isomorphism j, we have

m*F = pr3F.
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Proof. The two identities are equivalent because j is an isomorphism and the
diagram (14) commutes. Now we show the second identity. By the general
construction of moduli spaces of semistable sheaves, in the universal exact
sequence (1), we have

E=V ® OQxX(—m)
for some large positive integer m; see [12, Section 4.3].
If we pullback the morphism u : &€ — F along pro, then we get
u:V @ Og ® Ogxx(—m) — F

where F = Ty
On the other hand, since G = PGL(V'), we have a universal isomorphism

h:V Q00— V &, Oa

such that at any point g € G we have the automorphism of V' given by g.
The action of G on ) shows that the pullback of the morphism u : &€ — F
along m is given by the composition

h u
V @1 Og @1 Ogxx(—m) — V @ Og @1, Ogxx(—m) — F.
It follows that m*F = F = pryF. O

Lemma 5.5. The composition of the reduced Atiyah class and the functo-
rial morphism of cotangent complezes factor through €. In other words, the
dotted arrows in the following diagram exist and make the diagram commute:

Fornlg——=F @m Lg/m

Proof. To prove the composition of the two solid arrows factors through &,
we only need to show that the composition of the following three maps is a
zero map:

Fl-1]

However, by Proposition 2.9, we know that the composition of the first two
maps in the above diagram is exactly the classical Atiyah class. Therefore the
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problem becomes to show the composition of the classical Atiyah class and
the functorial morphism between the cotangent complexes, i.e., the following
two morphism, is a zero map:

We can pull back the maps in equation (16) via the multiplication m. If
we denote m*F by F, by applying Lemma 5.2, we get

(17) Fl-1] — F@m*Lg — F @ prile.

We will first show that the compositions of these two maps is zero.
By Lemma 5.3, we can further replace the above maps into the compo-
sition of three

(18) Fl-1] — F@m*Lg — F ® Laxg — F @ prile.

Since F is obtained by the pullback via m, by the functorial property
of Atiyah classes, we realized that the composition of the first two maps in
(18) is simply the Atiyah class of the sheaf F itself! N

However, by Lemma 5.4, we see that the universal sheaf F can also be
realized as pr3F, therefore by the functorial property again, its Atiyah class
can also be viewed as the pull back of the Atiyah class of F via the projection
pro. In particular, it lies in the second component of

Ext!(F, F ® Laxq) = Ext'(F, F @ priLq) @ Ext'(F, F @ priLo).

Therefore its projection into the first factor is 0, which implies the compo-
sition of the three maps in (18) is 0.
Now we define the diagonal map

A:Q — GxQ,
qg — (1,9

and it is easy to see that the composition m o A is the identity map on
Q. Because of this, we can pull back the maps in (17) via the map A and
obtain the original maps in (16). The above discussion implies that the
composition in (16) is 0. Therefore the dotted arrows in the statement exist
and make the whole diagram commutative, where the horizontal dotted
arrow is simply the one in the exact sequence of the universal quotient over
the Quot scheme Q. O
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We can translate the above lemma into the language of cotangent com-
plexes as follows.

Lemma 5.6. We have the commutative diagram

(19) Rm,RHom(K,F)” —= Rr.RHom(E, F)"
Le Lo/ms

where the upper horizontal arrow is the natural map from the universal quo-
tient, the lower horizontal arrow is the functorial map given by the quotient,
and the left vertical arrow is given by the reduced Atiyah class.

Proof. This is just a literal translation of Lemma 5.5. In the proof of
Lemma 4.1, we use the Grothendieck-Verdier duality and Serre duality to
construct a canonical isomorphism (by abuse of notation we simply use
equalities)

Homgy x (K, F ® 7" Lg) = Homg (R, RHom(K, F)",Lg).

Following exactly the same steps, we can construct another canonical iso-
morphism

Homgy x (€, F @ m* Lo m) = HOIHQ(R?T*RHOTH(S,.F)V,LQ/M).

If we denote the two vertical arrows in Lemma 5.5 by uw and v, which are
elements of the spaces on the left hand side of the two equations respectively.
We denote the corresponding elements on the right hand side by «’ and v’

The previous lemma claims that, the composition of u with the canonical
map Lo — Lg/q agrees with the precomposition of v with the map K —
€ in the universal quotient sequence (1). Therefore, by the above canonical
isomorphisms, we know that, the composition of v’ with the canonical map
Lo — Lg am also agrees with the precomposition of v’ with the map K —
€ in the universal quotient sequence (1), which is exactly the conclusion of
this lemma. O

If we compare the above result with the one we stated at the beginning
of the section, we need to replace the upper two complexes by their traceless
counterparts. Therefore we have the following lemma.

Lemma 5.7. We have the commutative diagram (13).
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Proof. From the discussion in Section 3 we had the following two exact
triangles, which are the dual of the exact triangles (9) and (10):

(20) Og[l] — RmRHom(K,F)" — Rm.RHom (K, F)y
and
(21) Rm.RHom(E,F)y — RmRHom(E,F)¥ — Og.

First of all we claim that both arrows coming out of Rr,RHom (K, F)Y
in (19) factor through Rm.RHom(K,F)y. For this purpose it suffices to
show that the pre-composition of these two arrows by the first arrow in (20)
is 0. In fact, since Og[1] is a single sheaf lying in degree —1, while both Lg
and Rm,RHom (K, F)V are both single sheaves lying in degree 0, there is
only the zero map from a sheaf in degree —1 to a sheaf in degree 0. This
allows us to replace the upper left corner of (19) by its traceless counterpart.

Next we claim that the upper horizontal arrow in (19) can be lifted to
Rm.RHom(E,F)y. For this we only need to show that the composition of
this arrow with the second arrow in (21)

Rm.RHom(K, F)” — Rm.RHom(E, F)” — Oq
is a zero map, or equivalently, its dual composition
O — Rm,RHom(E, F) — Rm,RHom(K,F)

is a zero map on (). Since we assume that there is at least one stable sheaf
in the moduli space, the stable locus @Q° in the Quot scheme is open and
dense. Therefore it suffices to check the above claim at every closed point
in QQ°.

Pick any closed point p € QQ°. By the construction of the traceless com-
plexes, the restriction of the above two maps at p becomes

Hom(F}, F,) — Hom(E,, F},) — Hom(K),, F},),

whose composition of 0, as expected. Therefore we can as well replace the
upper right corner of (19) by its traceless counterpart and obtain the com-
mutative diagram (13). O

Finally we are aiming to prove that the right vertical map in (13) is a
quasi-isomorphism, or more precisely, an isomorphism between two single
sheaves in degree 0. First we compute the two sheaves explicitly to see if
they have a chance to be isomorphic.
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Lemma 5.8. Both Rn.RHom(E,F)y and Lg/n are quasi-isomorphic to
a trivial vector bundle of rank equal to dim G concentrated in degree 0.

Proof. We recall the construction of the Quot scheme. There exists a suf-
ficient large integer n, such that for every semistable sheaf F' with the
prescribed Mukai vector, F'® O(n) has trivial cohomology in positive de-
grees, and £ ® cO(n) is the trivial bundle generated by the global sections
of FF® O(n). If we assume the dimension of the global sections is N, then
the gauge group G = PGL(N). Therefore we have

Rm,RHom(E,F) = Rm,RHom(E(n), F(n))
= Rr,RHom(OPN, F(n))
= Rm.F(n) @ OPNY
= m.F(n) @ OV
= 0"V @ 0PN = gnd(OPN).

And from the construction of exact triangle (9), we see that the map Og —
Rm . RHom(E,F) is at every closed point p € @ given by the identity map

Cld — Hom(F), F},) — Hom(E,, F},)

which is injective. Therefore the exactly triangle (9) actually becomes an
exact sequence of sheaves on @)

0 — Og — End(05") — End(OFN)o — 0.
So Rm.RHom(E, F)y is quasi-isomorphic to End (OSN )o which is a trivial
bundle of rank N2 — 1 concentrated in degree 0.
On the other hand, by noticing that
mo A =1d,
together with Lemma 5.2, we have
Lo/m = A"m Lo/pm = A'prile = g® Oq
which is also a trivial bundle of rank equal to dimg = N? — 1. (|

Finally, we are ready to prove the following lemma.
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Lemma 5.9. The right vertical arrow constructed in (13)
¢ : Rm,RHom(E,F)§ — Lg/m
is an isomorphism of two sheaves.

Proof. From the above discussion we know that this arrow is a map between
two locally free sheaves of the same rank.

First of all we will show that, on the stable locus @, ¢ is an isomorphism.
For this purpose, it suffices to show that ¢, is surjective on the stable locus
Q*. However, due to the commutativity of the diagram (13), whose left
vertical arrow is an isomorphism, it suffices to show that the functorial map

(22) LQS — LQS/MS

is surjective on QQ°, where M? is as a substack of M the quotient of Q° by
the group G.

To show that the map (22) is surjective, we only need to show that the
pullback of the map via

ms: G xQ° — Q°
is surjective. By applying Lemma 5.2, we just need to prove that
mglLg: — prila

is surjective. Here by abuse of notation, we use pr; for the projection of
G x Q° to its first factor.
Since both @° and G are smooth, we can consider the dual of the above
map
priTe — m* Tp-.

We need to show that it is injective on fibers at every closed point p € @Q°.
Or in other words, we need to show that the pushforward of the tangent
spaces

mex(priTa) — To-

is injective at every closed point p € Q°. However, this is equivalent of saying
that the G-action is free on the stable locus ¢, which is obvious.

So far we have proved that the map ¢ is an isomorphism of two locally
free sheaves of the same rank on °. Next we claim that ¢ is actually an
isomorphism over ). In fact, the locus in () where ¢ is not an isomorphism
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is the zero locus of the corresponding map of determinant line bundles,
therefore is a Cartier divisor. In particular, if it is not an empty set, it should
have dimension 1. However, by [17, Proposition 6.1], the strictly semistable
locus Q\Q@?® has codimension at least 2. Therefore the degeneracy locus must
be empty, and ¢ is an isomorphism everywhere. (|

Now we get our key result on the cotangent complex of the moduli stack.
Theorem 5.10. We have a quasi-isomorphism
R RHom(F, F){[-1] — ¢* L.

Proof. From the above discussion on the diagram (13), and two functorial
exact triangles, we obtain the following diagram (in which the first exact
triangle follows from equation (8)):

(23) Rm.RHom(K,F)] — Rm.RHom(E, F)y — Rm.RHom(F,F)y

| i v

Lo Lg/m L [1]

Since the left square commutes, by the axioms of triangulated categories,
the dotted arrow exists and is a quasi-isomorphism. O

6. Symplectic stacks
In this section we give an application of Theorem 5.10. Motivated by the
symmetric obstruction theory in [3], we want to study bilinear pairings on

complexes. The following notion of anti-symmetric forms is completely par-
allel to [3, Definition 1.1]:

Definition 6.1. Let X be a scheme, and E* € D(X) be a perfect complex.
A non-degenerate anti-symmetric bilinear form on E° is a morphism

B:E"®@FE — Oy

in D°(X), which is
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1) anti-symmetric, i.e. the following diagram is commutative

(24) EoE L oy
\LL \L—id
. . B
E ®@FE —— Oy,

where ¢ is the isomorphism switching the two factors of the tensor
product;

2) non-degenerate, which means that § induces an isomorphism
0:E — EY.

In such a case, we call E* a symplectic complex and § a symplectic pairing
on E°.

Remark 6.2. Note that there are other equivalent ways of phrasing this
definition (c.f. [3, Remark 1.2]). In fact, we can avoid using the tensor prod-
uct and use only the isomorphism S. Then the condition of anti-symmetry

becomes ¥ = —@, or more precisely, the following diagram commutes:
(25) B gV

-

E!\/\/ 0\/ E!\/,

where 7 is the naturally isomorphism of the perfect complex E and its double
dual.

Similar to the situation in [3], it is usually easier to work with 6 only.
Then an anti-symmetric pairing on the complex E' is simply an isomorphism
0:E — E°V satisfying 0¥ = —0.

Remark 6.3. Note that here we adopted the sign conventions in [5, Sec-
tion 1.3]. The sign conventions which are most relevant to the above defini-
tion are the ones related to switching the two factors in a tensor product and
to the identification of a complex with its dual. More precisely, we should
keep in mind that the definition of the natural isomorphism

(26) Ei®E,~2E,QF,

uses a sign of (—1)P? on the component EY @ Ej [5, page 11]. Moreover,
from the definition of Hom complex in [5, page 10], we can easily find that
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if F is a perfect complex represented by
_>EZ*1<‘DZ_7I>EZ ﬂ)E’JFl — 5 ...
then the dual complex EV can be represented by

(

. 1)tV . —1)i-1t Yo .
_”_>(Ez+1)v lfz (Ez)v( )_;Pz— (Ezfl)v_>__.

and the double dual complex EVY becomes
N = Sy L U 5

Note that the extra sign is induced in all the morphisms in the complex.
To get compatible with this, according to [5, page 14], the isomorphism
ip: E° — E"VV is chosen to involve a sign of (—1)" in degree n.

An obvious example of a symplectic complex is a single vector bundle
equipped with a symplectic metric sitting in degree 0. However, to get a
better feeling of a symplectic complex, especially the tricky sign conventions,
we can see the following example:

Example 6.4. Let X = C?" with z1,22,...,%n, Y1,Y2,.-.,Yn as coordi-
nates. Let E be the complex of locally free sheaves

Ox -2 08 Ly 0y,
where the morphisms are

a = (xlv"‘ an,_yla'--:_yn)T?

ﬁ: (yla”'ayna'xla"’vxn)a

where the letter “T” in the upper right corner denotes the transpose of the
matrix. Then the dual complex EY becomes

Ox 25 082 =% 0y,
and we can define a morphism 6 : E — EY by

Ox —2- 02 2oy

T

Ox oY =% Oy,
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where v is the standard 2n x 2n symplectic matrix

0o -1,
1, 0 ’
The dual isomorphism 0 : EYY — EY now becomes

Ox e (ggié% i> Ox

N

—OCT
Ox —— O™ Oy,

We also mentioned above that the natural isomorphism ig : E — EVV is
defined to be

Ox —2= 09" - 0y

lid lid iid
—a ®2n —B
Ox —=0y" ——Ox.

The above diagrams verify the required symplectic condition in 25. Therefore
the complex F in this example is a symplectic complex.

Now we define a symplectic complex on an algebraic stack, by using an
atlas of a stack.

Definition 6.5. Let X be an algebraic stack, and v : U — X" an atlas of
the stack X', where U is a scheme. Let G € Db (X) be a perfect complex. We
say G is a symplectic complez, if there exists a symplectic pairing

B:u'GRu'G — Oy,

satisfying that
4B = b,

where ¢; and ¢o are the projections in the following fiber diagram

UXXUL>U

| i

U X.
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In the special case that X is a global quotient stack [U/G] for some group
G acting on U, the above definition can be understood as the G-equivariance
of the pairing . Based on the definition of symplectic complex, we can now
define the following notion of symplectic stacks:

Definition 6.6. Let X be a scheme or an algebraic stack. We call X a
symplectic stack, if its cotangent complex Ly is a symplectic complex.

From this definition we immediately see:

Example 6.7. Any holomorphic symplectic manifold X is a symplectic
stack, because a nowhere degenerate holomorphic 2-form defines a symplec-
tic pairing on the tangent bundle Ty, or equivalently the cotangent bun-
dle Qx.

A slightly more general situation is the following:

Example 6.8. Let X be a holomorphic symplectic manifold with a nowhere
degenerate holomorphic 2-form o, and G is a finite group acting on X pre-
serving the symplectic form o. Let ¢ : X — X = [X/G] be the stacky quo-
tient map. Then the Deligne-Mumford stack X is a symplectic stack.

In fact, by Proposition 2.2, we know that
¢'Lxy =Lx = Qx,

because G is finite. The holomorphic symplectic form o defines a symplec-
tic pairing on x. Since the G-action preserves o, this symplectic pairing
descends to Ly, which shows X" is a symplectic stack.

We mentioned that the cotangent complex of a stack could lie over all
degrees not larger than 1. However, for a symplectic stack, due to the iso-
morphism between the cotangent complex and its dual, its perfect amplitude
could only be within the interval [—1,1]. Therefore, the cotangent complex
could have only two types: either a single locally free sheaf sitting in degree
0, or a perfect complex in degree [—1,1]. All the above examples fall in the
first type. Next we will show that the global quotient stack M = [Q/G] that
we studied in previous sections provides an example of the second type, in
which the cotangent complex has non-trivial cohomology in degrees —1,0
and 1.

Remark 6.9. Before we prove M is a symplectic stack, we briefly mention
the relation of the global quotient stack M = [@Q/G] with the moduli stack
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of semistable sheaves on the K3 surface X with any fixed Mukai vector v.
It was proved in [25, Theorem 5.1] that the algebraic stack of semistable
sheaves on X with Mukai vector v is a global quotient stack [Q/GL(N)].
However, since the non-zero scalar matrices act trivially on @), it is natural
to replace the group GL(N) by the quotient group G = PGL(N), so that
the G-action on the stable locus in () is free (assuming the stable locus is
non-empty). In this sense, we can call the global quotient stack M = [Q/G]
the reduced moduli stack of semistable sheaves on the K3 surface with Mukai
vector v.

Theorem 6.10. Let (X,H) be a polarized K3 surface, v € Hy,(X,Z) a
Mukai vector with respect to which H is generic. Assume v > 0. Then the
reduced moduli stack M of H-semistable sheaves on X with Mukai vector v
is a symplectic stack.

Proof. By Proposition 5.10, we know that the pullback of the cotangent
complex via the quotient map is

R, RHom(F,F)y[—1] = ¢*Lu.

To prove the cotangent complex L is a symplectic complex, we first show
that there exists a symplectic pairing on ¢*LL ¢, then show that the sym-
plectic pairing satisfies the compatibility condition in Definition 6.5 for a
symplectic complex on a stack.

Step 1. We show that the relative Serre duality defines a non-degenerate
anti-symmetric bilinear form on the complex Rm,RHom/(F,F).

The relative Serre duality tells us that the composition of the derived
Yoneda product and the trace map

Rm,RHom(F,F) @ Rm,RHom(F,F ® wx)
s REPmRHom(F,F @ wy)|[—2]
2 Rmawg[—2] & 0g[-2)

is a non-degenerate bilinear form.

Due to the fact that X is a K3 surface, the relative dualizing sheaf w;, of
the projection 7 : @ x X — @ has a trivialization given by the pullback of
generator of H*Y(X) via the second projection. We denote the isomorphism
by

J:OQX)( — Wr-
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Then we can also write the above non-degenerate bilinear form as

Rm.RHom(F,F) @ Rm.RHom(F,F)

(27) s R mRHom(F,F)|-2]
- 0gl-2]

Furthermore, this trace map also satisfies the symmetry condition ([12,
Equation 10.3])

tr(eUe) = (71)deg(e) deg(e/)tr(el Ue).
After a degree shift we get a bilinear form
Rm.RHom(F,F)[1] ® Rm,;RHom(F,F)[1] — Oq
which is still non-degenerate, and the symmetry condition becomes

tr(e Ue) = (—1)dea(©)FDdee(e)F) r(e/ )
(_1)deg(e) deg(e’)+deg(e)+deg(e’)+1 tr(e’ U 6)

(_1)deg(e) deg(e’)+1 tr(e' U 6).

The reason for the last equality is that: for tr(e U ¢e) to lie in the only non-
trivial degree of the complex Og, we must have

deg(e) + deg(e’) = 0.

Comparing the above equation with the sign convention in the equation
(26), we realize that, switching the two factors in the trace map actually
introduces an extra negative sign. This verifies the condition in equation
(24), therefore the bilinear pairing on Rm,RHom(F, F)[1] is anti-symmetric.

Step 2. We show that the bilinear form defined in step 1 restricts to a
bilinear form on Rm,RHom(F, F)o[l], which remains to be non-degenerate
and anti-symmetric.

By the decomposition (7), the bilinear form defined by Serre duality in
step 1 restricts to a bilinear form on a direct summand Rr,RHom(F, F)o[1],
which is still anti-symmetric. It remains to show that it is non-degenerate.

We claim that the sum of the other two components m,0Ogxx @
R*m,.O0xx[—2] in (7) is orthogonal to the component Rm,RHom(F,F)o
under Serre duality. Indeed, as the Serre duality (27) is given by the com-
position of Yoneda product and trace map, it is clear that the compo-
nent m,Ogxx is orthogonal to the kernel of the trace map; i.e. the sum
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of the components 1,0¢gxx @ Rm,RHom(F,F)y. On the other hand, we
know that the natural inclusion Og — Rm,RHom(F,F) in degree 0 is
Serre dual to the trace map RmRHom(F,F) — Og[—2] in degree 2;
see [22, Section 1]. Hence R?m,Ogyx x[—2] is orthogonal to the components
Rm.RHom(F,F)o ® R?*m.Ogxx[-2].

Therefore the traceless component Rm,RHom(F,F)y is orthogonal to
the direct sum m,0gxx EBRQW*OQX x[—2]. Hence the restriction of the
Serre duality pairing discussed in step 1 remains non-degenerate on
Rm RHom(F, F)o.

We conclude from step 2 that ¢*LL is a symplectic complex.

Step 3. Finally, we want to show that the symplectic pairing on the
complex Rm,RHom(F,F)y is G-equivariant.

For this purpose we just need to show that, the pull back of the sym-
plectic pairing via the maps m and pre in diagram (14) agree with each
other.

By flatness and [9, Propositions 5.8, 5.9], as well as the fact that the
decomposition (6) is natural under pullback, we conclude that the pullback
of the Serre duality pairing

(28)  RmRHom(F,F)o® R, RHom(F,F)o — R*m.0g[-2]
via m is
R, RHom(m*F,m*F)y @ Rr.RHom(m*F,m*F)o — R*m.Ocxol—2],

which is again the Serre duality pairing on G x @ by the functoriality of
Serre duality.

Similarly, if we pull back the pairing (28) via the other map pro, we
again get a Serre duality pairing

R RHom(prsF, priF)o @ RmRHom(priF, pryF)o — R2*mOaxol—2).

In Lemma 5.4, we have showed that the pullback of the universal sheaf
F via m and prg are canonically isomorphic, denoted by

F=m'F = praF.
Therefore the above two pullback maps agree with each other, and we con-

clude that the moduli stack M of the semistable sheaves on a K3 surface is
a symplectic stack in the sense of Definition 6.6. U
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