
Communications in

Analysis and Geometry

Volume 25, Number 5, 1019–1061, 2017
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This paper is motivated by a relatively recent work by Joyce [12–16]
in special Lagrangian geometry, but the basic idea of the present
paper goes back to an earlier pioneering work of Donaldson [5]
(explained also by Freed and Uhlenbeck [7]) in Yang–Mills gauge
theory; Donaldson discovered a global structure of a (compactified)
moduli space of Yang–Mills instantons, and a key step to that result
was the proof of surjectivity of Taubes’ gluing construction [23].

In special Lagrangian geometry we have currently no such a
global understanding of (compactified) moduli spaces, but in the
present paper we determine a neighbourhood of a ‘boundary’ point.
It is locally similar to Donaldson’s result, and in particular as Don-
aldson’s result implies the surjectivity of Taubes’ gluing construc-
tion so our result implies the surjectivity of Joyce’s gluing con-
struction in a certain simple case.
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1. Introduction

The main result of the present paper may be stated briefly as the surjectivity
of Joyce’s gluing construction in a certain simple case, and we begin therefore
with a review of Joyce’s work [12–16].

LetM be a Calabi–Yau (or more generally almost1Calabi–Yau) manifold
of complex dimension m, and let X be a compact special Lagrangian m-
fold in M with finitely many singular points x, y, . . . , z ∈ X modelled on
multiplicity-one special Lagrangian cones Cx, Cy, . . . , Cz ⊂ C

m with isolated
singularity.

Joyce [14, 15] studied a smoothing2of X by the gluing technique, which
may be sketched as follows: as local smoothing models for Cx, Cy, . . . , Cz let
Lx, Ly, . . . , Lz be non-compact special Lagrangian submanifolds properly-
embedded in C

m and asymptotic at infinity to Cx, Cy, . . . , Cz with multi-
plicity 1 respectively; for each t > 0 let tLx := {tz ∈ C

m : z ∈ Lx} and define
tLy, . . . , tLz likewise; then under some hypotheses we can glue tLx, tLy, . . . ,
tLz to X at x, y, . . . , z respectively into a family of compact special La-
grangian submanifolds Nt ofM with small t > 0 and tending toX as t → +0
as varifolds3, which are a notion of ‘singular’ submanifolds in geometric mea-
sure theory.

Consider now the space V consisting of all compactly-supported special
Lagrangian integral varifolds with no boundary in M , so that X ∈ V, where
X has isolated singular points and multiplicity-one tangent cones but gen-
eral elements of V may have non-isolated singularity and higher-multiplicity
tangent cones.

We wish to detemine a neighbourhood of X in V. For some simple X
indeed we can determine a neighbourhood of X in V in a way similar to
Donaldson’s work (explained also by Freed and Uhlenbeck [7]) in Yang–
Mills gauge theory.

Donaldson compactifies a moduli space M of Yang–Mills instantons by
adding some objects with isolated singularity (by Uhlenbeck’s theorem [24])

1 This is a terminology of Joyce [12–16] which means that M need not be Ricci-
flat.

2 Joyce [14, 15] calls it a desingularization but in algebraic geometry it means a
resolution of singularity which does not fit our context, and we shall therefore call
it a smoothing.

3 Another well-known notion in geometric measure theory are currents and there
is some difference between varifolds and currents, but the difference will not matter
in special Lagrangian geometry (or more generally calibrated geometry) as we shall
explain in §2 below.
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and those singular objects form the boundary ∂M of the compactified mod-
uli space M = M∪ ∂M.

Donaldson determines indeed a neighbourhood N of ∂M in M and its
proof is based on the bubbling-off (or blowing-up) analysis using a technique
of Uhlenbeck [24] and on the classification of local models by Atiyah, Hitchin
and Singer [3].

In our situation the basic tool necessary for the blowing-up analysis is
already prepared in the preceding paper [11], which will be explained in §3
below. On the other hand the classification of local models Lx, Ly, . . . , Lz

will be difficult in general. Consider therefore the simple case where m = 3
and the cones Cx, Cy, . . . , Cz are all equal to

(1.1) C := {(z1, z2, z3) ∈ C
3 \ {0} : |z1| = |z2| = |z3|, z1z2z3 ∈ (0,∞)}

which is a special Lagrangian cone in C
3 discovered by Harvey and Law-

son [8, Chapter III.3.A, Theorem 3.1]. It is also stable in the sense of Joyce
[13, §3.2]. In the unit sphere S5 := {(z1, z2, z3) ∈ C

3 : |z1|2 + |z2|2 + |z3|2 =
1} it is easy to see that C ∩ S5 is diffeomorphic to T 2 and so C is a T 2-cone.
Haskins [9] proves that C is, as a stable T 2-cone, unique up to SU3-rotation.

To state our classification theorem we also define:

L1 := {(z1, z2, z3) ∈ C
3 : |z1|2 − 1 = |z2|2 = |z3|2, z1z2z3 ∈ [0,∞)},(1.2)

L2 := {(z1, z2, z3) ∈ C
3 : |z1|2 = |z2|2 − 1 = |z3|2, z1z2z3 ∈ [0,∞)},(1.3)

L3 := {(z1, z2, z3) ∈ C
3 : |z1|2 = |z2|2 = |z3|2 − 1, z1z2z3 ∈ [0,∞)},(1.4)

which are all non-compact special Lagrangian submanifolds properly-
embedded in C

3 and asymptotic at infinity to C with multiplicity 1. In
particular L1, L2, L3 are all non-singular, despite of the condition z1z2z3 ∈
[0,∞); for instance the map S1 × C → L1 ⊂ C

3 given by (eiθ, z) �→
(eiθ

√
|z|2 + 1, z, e−iθz̄) is a diffeomorphism; permuting the co-ordinates of

C
3 we also get diffeomorphisms onto L2 and L3.
Our classification theorem is:

Theorem 1.1. Let W be a special Lagrangian varifold in C
3 with no bound-

ary asymptotic at infinity to C with multiplicity 1. Then W is a mutiplicity-
one varifold represented by C or sL+ b for some L ∈ {L1, L2, L3}, t > 0
and b ∈ C

3 where sL+ b := {tz + b ∈ C
3 : z ∈ L}.

The proof of Theorem 1.1 will be given in §4 and at the moment we only
point out that the proof uses a symmetry of C.
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We return now to the special Lagrangian geometry in the (almost)
Calabi–Yau manifold M . Let X be a compact special Lagrangian 3-fold
X with only one singular point x modelled on C so that we can apply Theo-
rem 1.1 above. One may also consider of course two or more singular points
in which case however one has to consider their interaction as Joyce does
[16, §10.3]—we shall not discuss it in the present paper.

To state our main results we also introduce the subspace X ⊂ V consist-
ing of those Y which are singular only at one point and modelled on C with
multiplicity 1, so that X ∈ X . Our main results may then be summarized
briefly into the following single statement:

Theorem 1.2. There exists a neighbourhood U of X in V such that any
element of U \ X may be obtained by Joyce’s gluing construction.

Here U \ X may be empty, in which case we have U ⊂ X and so X is
unsmoothable.

We shall state a more precise meaning of ‘Joyce’s gluing construction’ in
Theorem 1.2. As in (1.2)–(1.4) we have three local models L1, L2, L3 and so
there are apparently three distinct ways of smoothing X but in fact there is
at most one4way, which may be explained as follows.

For any L ∈ {L1, L2, L3} we can certainly glue L to X at x into a com-
pact submanifold ofM but to make it Lagrangian inM we need a topological
condition between L and X given by Joyce [16, Theorem 10.4 (see also The-
orem 7.3)]. There may be no L ∈ {L1, L2, L3} for which L and X satisfy
the topological condition, which will be recalled in §6.1 below. Joyce [12,
Proposition 10.3] proves indeed:

Lemma 1.3. There is at most one L ∈ {L1, L2, L3} for which L and X
satisfy the topological condition.

Theorem 1.2 includes the following statement:

Theorem 1.4. If there is no L ∈ {L1, L2, L3} for which L and X satisfy
the topological condition of Joyce [16, Theorem 10.4] then there exists a
neighbourhood of X in V contained in X .

It is easy to see that that if there is L ∈ {L1, L2, L3} for which L and
X satisfy the topological condition, then so do L and Y , where Y is not

4 There will be possibly more than one way of smoothing X if one considers a
family of (almost) Calabi–Yau manifolds as Joyce does [16, §10.2].
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exactly X but in a neighbourhood Y of X in X . Consequently L and Y may
be glued together into a compact special Lagrangian submanifold of M .

More precisely we re-scale L by small t > 0 and glue tL toX at x. Making
Y smaller if necessary we can indeed find a real number τ > 0 and define a
continuous map G : [0, τ)× Y → V with the following two properties:

(i) G(0, Y ) = Y for all Y ∈ Y;

(ii) if (t, Y ) ∈ (0, τ)× Y then G(t, Y ) is a compact special Lagrangian sub-
manifold of M obtained by gluing Y and tL together.

Theorem 1.2 may be then refined as follows:

Theorem 1.5. If there is L ∈ {L1, L2, L3} for which L and X satisfy the
topological condition of Joyce [16, Theorem 10.4] then G : [0, τ)× Y → V is
a homeomorphism onto a neighbourhood U of X in V with U ∩ X = Y.

Thus U is a collar neighbourhood of Y in V and so locally similar to
Donaldson’s situation [5] which also contains a collar neighbourhood of the
boundary ∂M of the compactified moduli space M in the notation above.

We also note that Y and U \ Y are manifolds of finite dimension, and
that G maps (0, τ)× Y diffeomorphically onto U \ Y. These facts may be
proven in the following three steps:

(i) As U \ Y consists of compact special Lagrangian (non-singular) sub-
manifolds of M it follows from McLean’s theorem [18, Theorem 3.6]
that U \ Y is a manifold but with respect to the C∞-topology. By Al-
lard’s regularity theorem [1, Theorem 8.19] however the C∞-topology
on U \ Y is equal to the varifold topology induced from V.

(ii) Joyce [13, Corollary 6.11] extended McLean’s theorem to the stable-
cone singularity and as C is stable (see [13, §3.2]) we can apply Joyce’s
theorem so that Y will be a manifold with respect to a strong topology
(given by Joyce [13, Definition 5.6]). It is again equal to the varifold
topology, which we prove in Theorem 6.7 below.

(iii) The fact that G maps (0, τ)× Y diffeomorphically onto U \ Y is al-
ready observed by Joyce (see a discussion after [16, Definition 8.9]);
there are in fact natural co-ordinate systems on (0, τ)× Y and U \ Y
with respect to which G is a product map.

Thus Theorems 1.4 and 1.5 are the precise meaning of Theorem 1.2.
Their proof will be given in §§5–7, the last three sections of the present
paper. It will be again similar to the corresponding part of Donaldson’s
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proof [5, III.4] (see also Freed and Uhlenbeck [7, §9, Connectivity of the
Collar]).

We point out that Theorem 1.5 implies the connectivity of a neighbour-
hood of X in V, which part requires a careful treatment in particular. It is
also the case in Donaldson’s situation.

The remaining sections may be summarized as follows. In §2 we give a
review of geometric measure theory and calibrated geometry including spe-
cial Lagrangian geometry. There are two notions of ‘singular’ submanifolds
in geometric measure theory, varifolds and currents, and there is some differ-
ence between them in general, but it does not matter in calibrated geometry
as we shall explain in §2.

We shall mainly use varifolds rather than currents so that we can directly
use Allard’s regularity theorem [1, Theorem 8.19] which for instance we have
used above in the proof that the two topologies on U \ Y, the C∞-one and
the varifold one, are the same.

In §3 we analyse the blowing-up of special Lagrangian varifolds in a
general situation, concerning a multiplicity-one special Lagrangian Jacobi-
integrable cone with isolated singularity, which fits Joyce’s framework [16,
Definition 6.7].

In §4 we prove Theorem 1.1 as we have mentioned above.
Some material of §§2–4 is not directly relevant to the main results (The-

orems 1.4 and 1.5) but may be of independent interest and of potential use
in more general situations.
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2. Calibrated geometry and geometric measure theory

In this section we shall give a review of special Lagrangian geometry (a kind
of calibrated geometry) and geometric measure theory. First of all we shall
define almost Calabi–Yau manifolds and their special Lagrangian submani-
folds.

Let (M,ω) be a symplectic manifold of dimension 2m, and let J be
a complex structure on M such that if we put ĝ(v, w) = ω(v, Jw) then ĝ
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will be a Kähler metric on (M,J). Let Ω be a holomorphic (m, 0)-form on
(M,J) with Ω|x 	= 0 for every x ∈ M . Then we shall call (M,ω, J,Ω) an
almost Calabi–Yau manifold, and (ω, J,Ω) an almost Calabi–Yau structure
on M . We can define a smooth function ψ : M → (0,∞) such that

(2.1)
ψ2m

m!
ω∧m = (−1)s

(
i

2

)m

Ω ∧ Ω where s =
m(m− 1)

2
.

We put g=ψ2ĝ. We shall call g the almost Calabi–Yau metric on (M,ω, J,Ω).
Here g need not be a Kähler metric on (M,J). If we have ψ(x) = 1 for every
x ∈ M then g will be a Kähler metric of Ricci curvature 0. In that case
we shall call (ω, J,Ω) a Calabi–Yau structure on M , and g the Calabi–Yau
metric on (M,ω, J,Ω).

We define a Calabi–Yau structure on R
2m = C

m as follows. Let (z1, . . . ,
zm) be the co-ordinates of C

m. Let ω0 =
i
2(dz

1 ∧ dz1 + · · ·+ dzm ∧ dzm),

g0 = dz1 ⊗ dz1 + · · ·+ dzm ⊗ dzm and Ω0 = dz1 ∧ · · · ∧ dzm. Let J0 be the
complex structure of Cm. Then (ω0, J0,Ω0) is a Calabi–Yau structure on
R
2m, and g0 is the almost Calabi–Yau metric on (R2m, ω0, J0,Ω0).
Let (M,ω, J,Ω) be an almost Calabi–Yau manifold, and let g be the

almost Calabi–Yau metric on (M,ω, J,Ω). Then ReΩ will be a calibration
of degree m on (M, g) in the sense of Harvey and Lawson [8]; i.e. for any
point x ∈ M and any R-linear subspace S ⊂ TxM with dimR S = m we have
|(ReΩ)x|S | � 1 where the norm is induced from the metric g on M .

Special Lagrangian submanifolds of (M,ω, J,Ω) are defined as real m-
dimensional submanifolds N of M with |ReΩ|N | = 1 where the norm is
again induced from the metric g on M . Special Lagrangian submanifolds of
(M,ω, J,Ω) will be Lagrangian with respect to ω and area-minimizing with
respect to g.

We can also define ReΩ-varifolds and currents in (M, g), which we shall
call special Lagrangian varifolds and currents in (M,ω, J,Ω), respectively.
In the remainder of this section we shall consider calibrated geometry not
limited to special Lagrangian geometry.

We suppose thatM is a manifold. For each x ∈ M we denote byGp(TxM)
the Grassmann manifold of all vector subspaces of TxM of dimension p. We
put Gp(TM) =

⋃
x∈M Gp(TxM). By a varifold of dimension p in M we shall

mean a Radon measure on Gp(TM).
We suppose that g is a Riemannian metric on M , and φ is a calibration

of degree p on M . For each x ∈ M we put Gφ(TxM) = {S ∈ Gp(TxM) :
|φ|S |g = 1}. We also put Gφ(TM) =

⋃
x∈M Gφ(TxM). By a φ-varifold in M

we shall mean a Radon measure on Gφ(TM).
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For each x ∈ M and S ∈ Gφ(TxM) we define
−→
S ∈ ∧p TxM as follows.

We take an orthonormal basis (e1, . . . , ep) for TxM with respect to g|x such

that 〈φ|x, e1 ∧ · · · ∧ ep〉 = 1. We set
−→
S = e1 ∧ · · · ∧ ep. It is easy to see that−→

S is independent of the choice of (e1, . . . , ep), and so well-defined.

Let V be a φ-varifold in M . Then we can define a p-current
−→
V in M by

setting
−→
V (χ) =

∫
Gφ(TM)

〈χ|x,
−→
S 〉dV (x, S)

for every compactly-supported p-form χ on M .
Harvey and Lawson [8, Chapter II.1, Definition 1.4] define positive φ-

currents in M , which we shall explain next. First of all we recall a definition
of Harvey and Lawson [8, Chapter II.A, Definition A.1]: by a φ-non-negative

p-form on M we shall mean a p-form χ on M with 〈χ|x,
−→
S 〉 ≥ 0 for every x ∈

M and S ∈ Gφ(TxM). Harvey and Lawson [8, Chapter II.A, Proposition A.2]
prove that a p-current T in M is a positive φ-current if (and only if) we have
T (χ) ≥ 0 for every compactly-supported φ-non-negative p-form on M . We
have:

Theorem. Let V be a φ-varifold in M . Then
−→
V is a positive φ-current in

M in the sense of Harvey and Lawson.

Proof. We have only to prove that if χ is a compactly-supported φ-non-
negative p-form on M then we have

−→
V (χ) ≥ 0. By the definition of φ-non-

negative p-forms we have 〈χ|x,
−→
S 〉 ≥ 0 for every x ∈ M and S ∈ Gφ(TxM).

Hence we get
−→
V (χ) =

∫
〈χ|x,

−→
S 〉dV (x, S) ≥ 0, completing the proof. �

We suppose now that M is compact. We take a ∈ Hp(M ;R). We denote

by V the set of all compactly-supported integral φ-varifolds V in M , ∂
−→
V =

0 and [
−→
V ] = a. Here V integral means that there exists an integer-valued

‖V ‖-measurable function ΘV (called the multiplicity function of V ) such
that for any compactly-supported continuous function f : M → [0,∞) we
have ‖V ‖(f) =

∫
M fΘV Hp where Hp denotes the p-dimensional Hausdorff

measure in (M, g).
We give V the weak topology in the sense of Allard [1, Definition 2.6(2)],

i.e. the topology of the Radon measures on Gp(TM). We have then:

Theorem. V is compact.

Proof. It is easy to see that V is a metrizable space. It suffices therefore to
prove that if V1, V2, V3, . . . ∈ V then there exists a subsequence of (Vn)

∞
n=1



Surjectivity of a gluing construction 1027

converging in V. SinceM is compact it is clear that φ is compactly-supported,
and for each n = 1, 2, 3, . . . therefore we have areaVn =

−→
Vn(φ) = a · [φ] where

[φ] denotes the de Rham cohomology class of φ. This implies that areaVn is
bounded with respect to n. By an integral compactness theorem of Allard [1,
Theorem 6.4], therefore, we can find a subsequence of (Vn)

∞
n=1 converging

as Radon measures on Gp(TM). We may identify (Vn)
∞
n=1 with the subse-

quence. We denote its limit by V . It suffices then to prove V ∈ V. Allard’s
[1, Theorem 6.4] integral compactness theorem implies that V is an integral

varifold. Since Vn tends to V as varifolds we see that
−→
Vn tends to

−→
V as

p-currents in M . As ∂
−→
Vn = 0 for every n = 1, 2, 3, . . . so we have ∂

−→
V = 0.

As [
−→
Vn] = a for every n = 1, 2, 3, . . . so we have [

−→
V ] = a. We have therefore

V ∈ V as we want. �

Let V be a varifold of dimension p in M . Then we shall denote by ‖V ‖
the Radon measure on M defined by setting ‖V ‖(f) = V (f ◦ π) for every
f ∈ Cc(M ;R), where π denotes the projection of Gp(TM) onto M , and
Cc(M ;R) denotes the set of all compactly-supported continuous functions
on M .

We denote by R the set of all Radon measures on M which may be
expressed as ‖V ‖ for some V ∈ V. We give R the topology of the Radon
measures on M . We have then:

Theorem. The mapping V �→ ‖V ‖ is a homeomorphism of V onto R.

Proof. From the definition of R it is clear that V �→ ‖V ‖ maps V onto R.
We claim that the mapping V �→ ‖V ‖ is one-to-one. As V is area-minimizing
it follows from Allard’s theorem [1, Theorem 5.5] that V is rectifiable so that
for each V ∈ V and f ∈ Cc(M ;R) we have

(2.2) V (f) =

∫
x∈M

f(x, Tx‖V ‖)d‖V ‖(x)

where Tx‖V ‖ denotes the (approximate) tangent space to ‖V ‖ at x, which
exists for ‖V ‖-almost every x ∈ M (the terminology ‘approximate’ tangent
space is used by Simon [22, see Remark 38.2]). The expression (2.2) shows
that V is determined by ‖V ‖ so that the mapping V �→ ‖V ‖ is one-to-one.

From the definition of ‖V ‖, moreover, we see that V �→ ‖V ‖ is continu-
ous. We have thus proved that V �→ ‖V ‖ is a continuous bijection of V onto
R. Notice also that V is compact and R is Hausdorff. Then we see that
V �→ ‖V ‖ is a homeomorphism of V onto R. �
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We denote by T the set of all positive φ-currents in M which may be
expressed as

−→
V for some V ∈ V. We give T the topology of p-currents in M .

We have then:

Theorem. The mapping V �→ −→
V is a homeomorphism of V onto T .

Proof. From the definition of T it is clear that V �→ −→
V maps V onto T .

We claim that the mapping V �→ −→
V is one-to-one. For each V ∈ V and f ∈

Cc(M ;R) we have

−→
V (fφ) =

∫
(x,S)∈Gφ(TM)

〈f(x)φ|x, S〉dV (x, S) =

∫
Gφ(TM)

f(x)dV = ‖V ‖(f).

Thus
−→
V determines ‖V ‖. On the other hand we have already seen in (2.2)

that ‖V ‖ determines V . Consequently
−→
V determines V ; more precisely the

mapping V �→ −→
V is one-to-one.

It is easy to see that V �→ −→
V is continuous. We have thus proved that

V �→ −→
V is a continuous bijection of V onto T . Notice also that V is compact

and T is Hausdorff. Then we see that V �→ −→
V is a homeomorphism of V

onto T . �

3. Analysis of blowing-up

In this section we shall analyse blowing-up near multiplicity-one special
Larangian cones with isolated singularity. We can summarize our results
as follows.

Let (M,ω, J,Ω) be an almost Calabi–Yau manifold of complex dimension
m, and X a special Lagrangian m-fold in (M,ω, J,Ω) with only one singular
point xmodelled on a multiplicity-one special Lagrangian cone C ⊂ C

m with
isolated singularity, where C need not be the stable T 2-cone as in §1 and so
we are in a more general situation. The problems in the present section are
local near x and so we may take M to be an open ball about x. We consider
special Lagrangian varifolds V1, V2, . . . , Vn, . . . tending to X.

We begin in §3.1 by recalling the definition of an energy functional for
Vn introduced in the preceding paper [11]. We prove that if the energy of Vn

is small then Vn has singularity only at one point yn and asymptotic at yn
to a multiplicity-one special Lagrangian cone C1-close to C.

We also prove in §3.2 that if the energy of Vn is large for all n then
Vn blows up; i.e. there exist points yn near xn and small numbers sn > 0
such that if we re-scale Vn about yn by sn then it will tend to a special
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Lagrangian varifold W with no boundary in C
m asymptotic at infinity to a

multiplicity-one special Lagrangian cone C1-close to C.

3.1. Energy functional

We define an energy functional as follows. For each varifold V of dimension
m in R

n we put

E(V ) =

∫
R

n×Gm(Rn)

|S⊥y|2
|y|m+2

dV (y, S) ∈ [0,∞]

where S⊥ denotes the orthogonal complement to S in R
n, and S⊥y denotes

the projection of y onto S⊥.
We shall recall a monotonocity formula for stationary varifolds. For each

ρ > 0 let Bρ denote the open ball of radius ρ about 0 in C
m, i.e. Bρ := {y ∈

R
n : |y| < ρ}. For each ρ > σ > 0 let Aσ,ρ denote the open annulus of inner

radius σ and outer radius ρ about 0 in C
m, i.e. Aσ,ρ = Bρ \Bσ. For each

Z ⊂ R
n we put Z̃ = Z ×Gm(Rn). If V is a stationary varifold of dimension

m in (B, g0) and if 0 < σ < ρ < 1 then we have

(3.1)
‖V ‖(Bρ)

ρm
− ‖V ‖(Bσ)

σm
= E(V �Ãσ,ρ);

for the proof we refer e.g. to Allard [1, Theorem 5.1(1)] or Simon [22, Equa-
tion 17.4]. It is easy to extend (3.1) to Riemannian metrics in place of g0:

Proposition 3.1. There exist constants ε0 ∈ (0, 1) and k > 1 depending
only on m,n and satisfying the following property: let g is a Riemannian
metric on B1 with ε := |g − g0|C1(B1) < ε0. and V a stationary varifold of
dimension m in (B1, g); then for every σ, ρ ∈ R with 0 < σ < ρ < 1 we have

(3.2) ekερ
‖V ‖(Bρ)

ρm
− ekεσ

‖V ‖(Bσ)

σm
≥ E(V �Ãσ,ρ).

Remark 3.2. The co-efficients ekερ and ekεσ on the left-hand side come
from the following computation: modifying the proof of Simon [22, Equa-
tion 17.4] we get indeed

kε
‖V ‖(Bρ)

ρm
+

d

dρ

‖V ‖(Bρ)

ρm
� d

dρ

∫
y∈ ˜Bρ

|S⊥y|2
|y|m+2

dV
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the left-hand side of which is not greater than d
dρ

(
ekερ ‖V ‖(Bρ)

ρm

)
and so inte-

gration over the interval (σ, ρ) implies (3.2).

We suppose now that n = 2m and (ω, J,Ω) is an almost Calabi–Yau
structure on B1. We denote by V0 the space of all special Lagrangian integral
varifolds with no boundary in (B1, ω, J,Ω).

We define r : R2m → [0,∞) by setting r(y) = |y| for each y ∈ R
2m. We

put gcyl = r−2g0, which we shall call the cylindrical metric on R
2m \ {0}.

We regard (0,∞) as a multiplicative group acting upon R
2m as re-scaling.

By a smooth cone in R
2m we shall mean a closed submanifold of R2m \ {0}

invariant under the re-scaling by (0,∞). We denote by C the set of all special
Lagrangian smooth cones in (R2m, ω0, J0,Ω0).

We suppose C ∈ C. We denote by NC the normal bundle to C in R
2m

with respect to g0. We get the same bundle even if we use gcyl in place of g0.

For each u ∈ Ck(C;NC) and ρ < σ we define |u|k,cyl[ρ,σ] as follows. We put

t = − log r and ∂t =
∂
∂t . We put Σ = C ∩ S2m−1. By the definition of smooth

cones Σ is a compact submanifold of S2m−1. We denote by ∇Σ the Levi-
Civita connexion over Σ induced from g0. We put

|u|k,cyl[ρ,σ] = sup
C∩Aσ,ρ

∑
i,j≥0,i+j≤k

|∂i
t∇j

Σu|.

If |u|1,cyl[ρ,σ] is sufficient small, then we can define the exponential map
expu : C ∩Aσ,ρ → Aσ,ρ with respect to the metric gcyl, and the image of
expu will be a submanifold of Aσ,ρ, which we shall denote by Graphcyl u.
We put |Graphcyl u| = Hm�Graphcyl u where Hm denotes the Hausdorff m-
dimensional measure with respect to the almost Calabi–Yau metric g.

We suppose that (ω, J,Ω) is an almost Calabi–Yau structure on B1, and
g is the almost Calabi–Yau metric on B1. From the proof of the author [11,
Theorem 2.2] we get:

Theorem 3.3. There exists ε > 0 depending only on m and C such that if
we have

|Ω− Ω0|C0(B1) + |g − g0|C1(B1) < ε, V ∈ V0, 0 < ρ < 1, E(V �Ãρ,1) < ε

and v ∈ C∞(C ∩A1/2,1;NC), |v|2,cyl[1/2,1] < ε, |Graphcyl v| = ‖V ‖�A1/2,1

then we can extend v to C ∩Aρ,1 so that ‖V ‖�Aρ,1 = |Graphcyl v| and

|v|2,cyl[ρ,1] < kεα for some k > 0 and α ∈ (0, 1) depending only on m and C.
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Remark. For the proof one has to use a result of �Lojasiewicz [17], following
Simon [20].

We shall give a corollary to the theorem above. We give C the C∞-
topology. Let C′ be a neighbourhood of C in C. Then we have:

Corollary 3.4. There exists ε > 0 depending only on m, C and C′ such
that if we have

|Ω− Ω0|C0(B1) + |g − g0|C1(B1) < ε, V ∈ V0, E(V ) < ε

and v ∈ C∞(C ∩A1/2,1;NC), |v|2,cyl[1/2,1] < ε, |Graphcyl v| = ‖V ‖�A1/2,1

then V is singular only at 0 and asymptotic at 0 to some C ′ ∈ C′ with
multiplicity 1.

Remark 3.5. By a result of Simon [20, Theorem 5] C ′ will be a unique
tangent cone to V at 0.

Proof. Let C ′ be a tangent cone to V at 0. For each δ > 0 let δ−1V denote
the re-scaling of V by δ−1. Then by the definition of tangent cones we can
take δ1 > δ2 > δ3 > · · · tending to 0 with δ−1n V tending to C ′ as n → ∞.
By definition C′ is a C1-neighbourhood of C in C and so we can take η > 0
such that if v ∈ C∞(Σ;NC) and |v|C1(Σ) ≤ η then we have Graphcyl v ∈ C′.

Let k, α be as in Theorem 3.3 and make ε so small that kεα < η. Applying
Theorem 3.3 with ρ = δ/2 we find vn ∈ C∞(C ∩Aδn/2,1;NC) such that

(3.3) ‖V ‖�Aδn/2,1 = |Graphcyl vn| with |vn|2,cyl[δn/2,1]
≤ η.

Define v′n∈C∞(C ∩A1/2,1;NC) by v′n(y) = vn(δny) for y∈C ∩A1/2,1. Then
by (3.3) we have

(3.4) ‖δ−1n V ‖�A1/2,1 = |Graphcyl v
′
n| with |v′n|2,cyl[1/2,1] ≤ η.

The definition of | • |2,cyl[1/2,1] also implies that v′n is C2-bounded and so we can

find a subsequence of v′n converging in the C1-topology as n → ∞ to some
w ∈ C1(C ∩A1/2,1;NC) with |w|1,cyl[1/2,1] � η. On the other hand since δ−1n V
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tends to C ′ as n → ∞ it follows that

(3.5) C ′ ∩A1/2,1 = Graphw.

This implies that C ′ is a multiplicity-one cone with isolated singularity, and
a result of Simon [20, Theorem 5] implies in particular that V is singular
only at 0.

The equation (3.5) also implies that w is C∞-differentiable and invariant
under the re-scaling of C. In particular since |w|1,cyl[1/2,1] � η it follows that

C ′ ∈ C′, completing the proof of Corollary 3.4. �

3.2. Bubbling-off

We suppose that (ω, J,Ω) is an almost Calabi–Yau structure on B1 with
J |0 = J0 and Ω|0 = Ω0. We denote by g the almost Calabi–Yau metric on
(B1, ω, J,Ω). We write g =

∑2m
i,j=1 gijdy

idyj and suppose

gij(0) = δij and
∂gij
∂yk

(0) = 0 for each i, j, k = 1, . . . , 2m.

If W is a varifold in R
n and if δ > 0 then we can define δ−1W by re-

scaling W by δ−1 (as in the proof of Corollary 3.4 above). If b ∈ R
n then we

can also define W − b by translating W by −b.
We take C ∈ C and a neighbourhood C′ of C in C. We denote by X ′

the space of all elements of V0 with singularity only at one point y and
asymptotic at y to some element of C′ with multiplicity 1. Let X ∈ X ′ and
let X be singular at 0 and asymptotic at 0 to C with multiplicity 1. We
have then:

Theorem 3.6. Let (Xn)
∞
n=1 be a sequence in X ′ converging to X. For

each n = 1, 2, 3, . . . let xn be the singular point of Xn, and let Cn be the
multiplicity 1 smooth tangent cone to Xn at xn. Then xn tends to 0 and Cn

tends to C as n → ∞.

Proof. By Allard’s regularity theorem xn tends to 0 as n → ∞, and so we
have only to prove that for each neighbourhood C′ of C in C there exists an
integer N > 0 such that for n > N we have Cn ∈ C. Let ε > 0 be so small
that we may apply Proposition 3.1 and Corollary 3.4 where Corollary 3.4



Surjectivity of a gluing construction 1033

involves the choice of C′ and so ε depends on C′. By Proposition 3.1 we have

E
(
(Xn − xn)�Ãσ,ρ

)
≤ ekερ

‖Xn − xn‖(Bρ)

ρm
− ekεσ

‖Xn − xn‖(Bσ)

σm

where 0 < σ < ρ < 1. Letting σ → 0 we get

(3.6) E(Xn − xn) ≤ ekερ
‖Xn − xn‖(Bρ)

ρm
− area(Cn ∩B1).

Making C′ smaller if necessary we may suppose that | area(C ′ ∩B1)−
area(C ∩B1)| < ε/2 for all C ′ ∈ C′ so that by (3.6) we have

(3.7) E(Xn − xn) ≤ ekερ
‖Xn − xn‖(Bρ)

ρm
− area(C ∩B1) +

ε

2
.

Making ρ smaller if necessary we may suppose

ekερ
‖X‖(Bρ)

ρm
− area(C ∩B1) <

ε

2
.

For n sufficiently large, therefore, we have

ekερ
‖Xn − xn‖(Bρ)

ρm
− area(C ∩B1) <

ε

2
.

This combined with (3.7) implies

E(Xn − xn) < ε.

On the other hand Allard’s regularity theorem implies that

‖Xn − xn‖�A1/2,1 = Graph vn

for some vn ∈ C∞(C ∩A1/2,1;NC) with |vn|2,cyl[1/2,1] < ε. Hence applying Corol-

lary 3.4 and Remark 3.5 to Xn − xn we find that Cn ∈ C′, completing the
proof of Theorem 3.6. �

We have also:

Theorem 3.7. Let (Vn)
∞
n=1 be a sequence in V0 \ X ′ converging to X. Then

there exists a sequence (δn)
∞
n=1 of positive real numbers converging to 0, a

sequence (yn)
∞
n=1 in B1 converging to 0, and a subsequence of

(
δ−1n (Vn −

yn)
)∞
n=1

converging to some varifold W in R
2m asymptotic at infinity to
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some element of C′ with multiplicity 1 and satisfying E(W − b) > 0 for every
b ∈ R

2m.

Remark. W will automatically be a special Lagrangian integral varifold
with ∂

−→
W = 0 in (R2m, ω0, J0,Ω0).

Proof. We take positive real numbers σ, ρ and ε, which we shall make smaller
if necessary. Allard’s regularity theorem implies that for each y ∈ Bσρ and
n large enough there exists vn,y ∈ C∞(C ∩A1/2,1;NC) such that

(3.8) ‖Vn − y‖�A1/2,1 = |Graph vn,y|, |vn,y|2,cyl[1/2,1] < ε

where ε is as in Corollary 3.4. Hence by Corollary 3.4 we find that E(Vn −
y) ≥ ε; otherwise Vn will be singular only at y and asymptotic at y to some
element of C′ with multiplicity 1, which contradicts Vn ∈ V0 \ X ′. We put

δn(y) = inf
{
δ ∈ (0, ρ) : E

(
(Vn − y)�Ãδ,ρ

)
=

ε

2

}
.

Since E(Vn − y) ≥ ε we see δn(y) > 0. It is also easy to see that y �→ δn(y)
is lower semi-continuous. Hence we can find yn ∈ Bσρ with δn(yn) =
infy∈Bσρ

δn(y). We put δn = δn(yn) > 0. We have then:

Lemma. δn tends to 0 as n → ∞.

Proof. Making ρ smaller if necessary we may suppose E(X�B̃ρ) < ε/2. We

take δ > 0. We have then E(X�Ãδ,ρ) < ε/2. Since Vn tends to X as n → ∞
we see that for n sufficiently large we have E(Vn�Ãδ,ρ) < ε/2. This implies
δn(0) < δ and so δn(0) tends to 0 as n → ∞. Since δn ≤ δn(0) we see that
δn also tends to 0 as n → ∞. �

We have also:

Lemma.
(
δ−1n (Vn − yn)

)∞
n=1

has a subsequence converging to some varifold

W in R
2m.

Proof. Let R > 0. Then we have only to prove

(3.9) sup
n=1,2,3,...

‖δ−1n (Vn − yn)‖(BR) < ∞.
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Notice that ‖δ−1n (Vn − yn)‖(BR) = δ−mn ‖Vn − yn‖(BδnR). Notice also that
by Proposition 3.1 we can find ε′ > 0 such that

ekε
′δnR ‖Vn − yn‖(BδnR)

(δnR)m
≤ ekε

′‖Vn − yn‖(B1)

which tends to ekε
′‖X‖(B1) as n → ∞. Then we get (3.9). �

We take W as above. From the definition of δn it is easy to see
E(W�Ã1,∞) ≤ ε/2. Using (3.8) with y = yn we can also apply Theorem 3.3
to find vn ∈ C∞(C ∩Aδn,1;NC) with

(3.10) ‖Vn − yn‖�Aδn,1 = Graph vn, |vn|2,cyl[δn,1]
< kεα.

This implies that there exists w ∈ C∞(C ∩A1/2,1;NC) such that

(3.11) ‖W‖�A1,2 = Graphw, |w|2,cyl[1,2] � kεα

and so the situation is similar to that of Corollary 3.4 in the sense that W is
away from infinity close to the multiplicity-one cone with isolated singularity
and that W satisfies the energy estimate E(W�Ã1,∞) ≤ ε/2. In a way similar
to the proof of Corollary 3.4 we can prove indeed that W is asymptotic at
infinity to a multiplicity-one cone C ′ with isolated singularity. Making ε
smaller if necessary we may suppose that C ′ is so C1-close to C that

(3.12) | area(C ′ ∩B1)− area(C ∩B1)| <
ε

8
.

It remains to prove E(W − b) > 0 for every b ∈ R
2m. We put V ′n = Vn −

yn − δnb. By Proposition 3.1 we have

(3.13) exp(kε′ρ)
‖V ′n‖(Bρ)

ρm
− exp(kε′δn)

‖V ′n‖(Bδn)

δmn
≥ E(V ′n�Ãδn,ρ) ≥

ε

2
.

We note that V ′n tends to X and δ−1n V ′n tends to W − b as n → ∞. By (3.13)
therefore we have

(3.14) ekε
′ρ ‖X‖(Bρ)

ρm
− ‖W − b‖(B1) ≥

ε

2
.

Making ρ > 0 smaller if necessary we may suppose

ekε
′ρ ‖X‖(Bρ)

ρm
≤ area(C ∩B1) +

ε

4
.
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This combined with (3.14) implies

area(C ∩B1)− ‖W − b‖(B1) �
ε

4
.

Hence by (3.12) we get

(3.15) area(C ′ ∩B1)− ‖W − b‖(B1) >
ε

8
.

On the other hand by (3.1) we have

‖W − b‖(BR)

Rm
− ‖W − b‖(B1) = E

(
(W − b)�Ã1,R

)
for each R > 1. Letting R → ∞ we get

area(C ′ ∩B1)− ‖W − b‖(B1) = E
(
(W − b)�Ã1,∞

)
.

This combined with (3.15) implies E
(
(W − b)�Ã1,∞

)
> ε/8 and so E(W −

b) > 0, completing the proof. �

4. Classification of local models

Let C be as in (1.1), and let L1, L2, L3 be as in (1.2)–(1.4). We begin by
recalling the statement of our classification result:

Theorem 4.1 (Re-statement of Theorem 1.1). Let W be a special
Lagrangian integral varifold with no boundary in (R6, ω0, J0,Ω0) asymptotic
at infinity to C with multiplicity 1. Then we have ‖W‖ = |sL+ b| for some
s > 0, L ∈ {C,L1, L2, L3} and b ∈ R

6.

Here |sL+ b| denotes the Radon measure on R
6 associated to sL+ b with

multiplicity 1 with respect to the Euclidean metric g0.
In what follows we give a sketch of the proof of Theorem 4.1.
First of all we analyse the asymptotic behaviour of W at infinity. From

the stability of C we find b ∈ R
6 such that W − b will decay rapidly to C at

infinity. For the sake of simplicity, therefore, we may suppose that W decays
rapidly to C at infinity.
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We define a T 2-action on R
6 = C

3 by setting

(eiθ, eiφ) · (z1, z2, z3) = (eiθz1, e
iφz2, e

−iθ−iφz3).

We note that ω0, J0, Ω0 and C are invariant under the T 2-action. We take
a moment map μ : C3 → R

2. We prove that μ is constant on Spt ‖W‖. The
idea of the proof is as follows.

We suppose for a moment that W is a submanifold of C3. By the T 2-
action, then, we can deform W as a special Lagrangian submanifold of C3.
The infinitesimal deformation may be identified with dμ|W , and so dμ|W
will be a harmonic 1-form on W , by the theory of McLean. Therefore μ|W
will be a harmonic function on W . Since W decays rapidly to C at infinity
we shall see that μ|W decays rapidly at infinity to some constant. By the
maximum principle, therefore, μ|W will be a constant function.

Actually W need not be a submanifold of R6. Using some basic results
on varifolds, however, we can modify the argument above. Thus we see that
μ is constant on Spt ‖W‖.

Harvey and Lawson [8, Chapter III.3.A, Theorem 3.1] construct a spe-
cial Lagrangian fibration F : C3 → R

3 invariant under the T 2-action. From
the proof of Harvey and Lawson we see that every T 2-invariant special La-
grangian submanifold of C3 is contained in a fibre of F .

We suppose again that W is a submanifold of C3. Since μ is constant on
W we see that W is then invariant under the T 2-action, and so contained in
a fibre of F . Actually W need not be a submanifold of C3, but we can again
modify the argument so that Spt ‖W‖ will be contained in a fibre of F .

For each fibre of F we have an explicit description of the topology and
asymptotic behaviour at infinity, and so we shall be able to complete the
proof by an elementary argument.

We begin now with a review of some basic properties of Laplacians over
cones.

We suppose that Σ is a compact manifold of dimension m− 1. We put
C = (0,∞)× Σ. We denote by r the projection of C onto (0,∞). We suppose
that gΣ is a Riemannian metric on Σ. We put gC = dr2 + r2gΣ. With respect
to gC we can define the Laplacian ΔC : C∞(C;R) → C∞(C;R).

We have also the Laplacian ΔΣ : C∞(Σ;R) → C∞(Σ;R) with respect to
gΣ. We put t = log r : C → R and ∂t =

∂
∂t . It is easy then to see −e2tΔC =

∂2
t + (m− 2)∂t −ΔΣ. We denote by 0 = γ0 ≤ γ1 ≤ γ2 ≤ · · · the eigenvalues

of ΔΣ. For each integer i ≥ 0 we consider the equation x2 + (m− 2)x− γi =
0 in x. We denote by αi and βi the two solutions with αi ≥ βi. We suppose
m ≥ 2. Since γ0 = 0 we get β0 = 2−m ≤ 0 = α0. Since γ0 ≤ γ1 ≤ γ2 · · · we
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get α0 ≤ α1 ≤ α2 ≤ · · · and β0 ≥ β1 ≥ β2 ≥ · · · . Since γi tends to ∞ as i →
∞ we see that αi tends to ∞ and βi tends to −∞ as i → ∞. We also put
Λ = {α0, β0, α1, β1, α2, β2, . . . }. For each λ ∈ R we put

Eλ = {f ∈ C∞(Σ;R) : ΔΣf = λ(λ+m− 2)f}.

By the definition of the eigenvalues we have Eλ 	= {0} if and only if λ ∈ Λ.
We can also take a complete orthonormal basis {v0, v1, v2, . . . } for

L2(Σ;R) such that ΔΣvi = γivi for each integer i ≥ 0. We have then:

Proposition 4.2. Let I be an open interval in R, let u ∈ C∞(I × Σ;R) and
suppose ΔCu = 0. Then there exist a0, b0, a1, b1, a2, b2 · · · ∈ R such that u =∑∞

i=0(air
αi + bir

βi)vi where the series converges in the local C∞-topology.

We give a proof for the sake of clarity:

Proof. We put log I = {t ∈ R : et ∈ I}. For each t ∈ log I and i ∈ {0, 1, 2, . . . }
we define ui(t) as the inner product of u|{et}×Σ and vi in L2(Σ;R). Then
t �→ ui(t) is a smooth function on log I. Since ΔCu = 0 we get (∂2

t + (m−
2)∂t − λi)ui = 0. Hence we find ai, bi ∈ R such that ui = aie

αit + bie
βit. It

suffices therefore to prove that
∑∞

i=0 uivi converges to u in the local C∞-
topology. We denote by dμΣ the Riemannian measure on Σ with respect to
gΣ, and by ‖ • ‖ the norm of L2(Σ;R). We have then

∫
log I×Σ

|u|2dtdμΣ =

∫
log I

∞∑
i=0

‖ui(t)‖2dt =
∞∑
i=0

∫
log I

‖ui(t)‖2dt < ∞.

Putting wn =
∑n

i=0 uivi we get

∫
log I×Σ

|u− wn|2dtdμΣ =

∞∑
i=n+1

∫
log I

‖ui(t)‖2dt

which tends to 0 as n → ∞. Thus wn tends to u in the L2-topology. Applying
elliptic regularity to u− wn we see that wn tends to u in the local C∞-
toplogy. �

Let u ∈ C∞(C;R) and α ∈ R. Then we shall write u = O(rα) as r → ∞
if there exists R > 0 such that

sup
(R,∞)×Σ

|r−α+k∇ku| < ∞ for every k = 0, 1, 2, 3, . . .
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where ∇ denotes the Levi-Civita connexion with respect to gC , and | • |
denotes the norm with respect to gC .

By a result of Simon [21, Part I, Lemma 5.9] we have:

Proposition. Suppose q ∈ (2−m,∞) \ Λ and f ∈ C∞
(
(R,∞)× Σ;R

)
with f = O(rq−2). Then there exists u ∈ C∞

(
(R,∞)× Σ;R

)
with u = O(rq)

such that ΔCu = f .

We give a corollary to this:

Corollary 4.3. Suppose R > 0, u ∈ C∞
(
(R,∞)× Σ;R

)
, p, q ∈ R, 2−m <

q < p, q /∈ Λ, u = O(rp) and ΔCu = O(rq−2). Then there exists (fλ)λ∈Λ ∈⊕
λ∈ΛEλ such that u =

∑
λ∈Λ∩(q,p] fλr

λ +O(rq) where Λ ∩ (q, p] is possibly
empty and in that case we set

⊕
λ∈∅Eλ = {0}.

Proof. Applying the proposition above to ΔCu in place of f we find u′ ∈
C∞

(
(R,∞)× Σ;R

)
with u′ = O(rq) such that ΔCu

′ = ΔCu. By Proposi-
tion 4.2 we can find some a0, b0, a1, b1, a2, b2, · · · ∈ R such that u− u′ =∑∞

i=0(air
αi + bir

βi)vi.
Since u′ = O(rq) we get u =

∑∞
i=0(air

αi + bie
βi)vi +O(rq). Since u =

O(rp) and p > q we get ai = 0 if αi > p. Since α0 ≤ α1 ≤ α2 ≤ · · · tend to
∞ we can find a unique integer i(p) such that αi(p)+1 > p and αi(p) ≤ p.

Since ai = 0 for every i > i(p) we see that
∑∞

i=0 bir
βivi converges in the

local C∞-topology. We put w =
∑∞

i=0 bir
βivi.

Since 0 ≥ 2−m = β0 ≥ β1 ≥ β2 ≥ · · · it follows that for every ρ > R we
have ∫ 2ρ

ρ

∫
Σ
|w|2dr

r
dμΣ ≤

( ρ

R

)2−m ∫ 2R

R

∫
Σ
|w|2dr

r
dμΣ.

Applying elliptic regularity to w we get w = O(r2−m). Since

u =

i(p)∑
i=0

air
αivi + w +O(rq) and q > 2−m

we get u =
∑i(p)

i=0 air
αivi +O(rq), completing the proof. �

We suppose now that C is a smooth special Lagrangian cone in (R2m \
{0}, ω0, J0,Ω0) and Σ = C ∩ S2m−1. For each ρ > 0 we put Bρ = {y ∈ R

n :
|y| < ρ}. We denote by iC : C → R

2m the inclusion map of C into R
2m.

Joyce [12, Definition 7.1] defines special Lagrangian submanifolds of
(R2m, ω0, J0,Ω0) asymptotic to C with multiplicity 1 at infinity with some
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rate < 2. We extend it to varifolds as follows. We denote by W the set of
all special Lagrangain integral varifolds W with ∂

−→
W = 0 in (R2m, ω0, J0,Ω0)

asymptotic at infinity to C with multiplicity 1. For each λ < 2 we denote
by Wλ the set of all W ∈ W such that we can find a compact subset K
of W , an R > 0 and a diffeomorphism f : C \BR → Spt ‖W‖ \K such that
f − iC = O(rλ−1).

We suppose that C is Jacobi-integrable in the sense of Joyce [12, Defi-
nition 6.7]. In a way similar to Simon [21, Part II, §§5 and 6], then, we can
prove that if W ∈ W then there exists λ < 2 such that W ∈ Wλ.

Joyce [12, Theorem 4.3] proves a version of Weinstein’s theorem [25,
Corollary 6.2], which we shall recall next. We denote by T ∗C the cotangent
bundle over C, by 0C the zero-section of T ∗C, and by ωC the canonical
symplectic form on T ∗C. We regard (0,∞) as a multiplicative group acting
upon C and R

2m as re-scaling. We can lift the (0,∞)-action uniquely to
T ∗C so that for each t ∈ (0,∞) we shall have t∗ωC = t2ωC (on the left-hand
side we regard t as a map of C into itself). We have then:

Lemma 4.4. There exist a neighbourhood UC of Im 0C in T ∗C invariant
under (0,∞), and a diffeomorphism ΦC of UC into R

2m equivariant under
(0,∞) with ΦC ◦ 0C = iC and Φ∗Cω0 = ωC .

Let W ∈ Wλ. Then we can take a compact subset K of W and a closed
1-form w on C \BR such that Spt ‖W‖ \KW = ΦC(Graphw). We denote
by πΣ the projection of C onto Σ, which induces a linear isomorphism
π∗Σ : H1(Σ;R) → H1(C \BR;R), so that we may write w = π∗ΣηW + dhW for
some 1-form ηW on Σ and some hW : C \BR → R. By results of Joyce [12,
Equations (7.7) and (7.8)] we have:

Lemma 4.5. If α < 2 and hW = O(rα) then we have ΔChW = O(r2(α−2)).

We can extend a result of Joyce [12, Theorem 7.11] as follows:

Lemma 4.6. Let W ∈ Wλ, λ
′ < λ < 2 and [λ′, λ) ∩ Λ = ∅. Then we have

W ∈ Wλ′.

Proof. For each integer n ≥ 0 we put λ(n) = 2n(λ− 2) + 2. We can take a
unique integer ν such that λ(ν + 1) < λ′ ≤ λ(ν). By an induction on n =
0, 1, . . . , ν, we shall prove hW = O(rλ(n)) for every n = 0, 1, . . . , ν.

By the property of hW we have hW = O(rλ) = O(rλ(0)). If ν = 0 we
can then complete the induction automatically. We suppose therefore ν >
0. Suppose also that we have hW = O(rλ(n)) for some n = 0, 1, . . . , ν − 1.
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By Lemma 4.5 we have ΔhW = O(r2(λ(n)−2)) = O(rλ(n+1)−2). Since n < ν
we get λ(n+ 1) ≥ λ′ and so [λ(n+ 1), λ) ∩ Λ = ∅. Applying Corollary 4.3
to hW , λ, λ(n+ 1) in place of u, p, q respectively, we get hW = O(rλ(n+1)),
completing the induction.

We have thus proved hW = O(rλ(n)) for every n = 0, 1, . . . , ν. Putting
n = ν we get hW = O(rλ(ν)). By Lemma 4.5 we have ΔChW = O(rλ(ν+1)−2).
By the definition of ν we have λ(ν + 1) ≤ λ′ and so ΔChW = O(rλ

′−2).
Applying Corollary 4.3 to hW , λ, λ′ in place of u, p, q respectively, we get
hW = O(rλ

′
), completing the proof. �

Joyce [13, Definition 3.6] defines the stability of C. We have:

Theorem 4.7. Let C be stable in the sense of Joyce. Then there exists
b ∈ R

2m such that W − b ∈ W0.

Proof. By the stability of C we have Λ ∩ (1, 2) = ∅ and E1 = {b · x : b ∈
R
2m}. We take λ ∈ (1, 1 + ε). Let hW be as above. Then by Lemma 4.6 we

have hW = O(rλ). By Lemma 4.5, therefore, we have ΔChW = O(r2(λ−2)).
Applying Corollary 4.3 to hW , λ, 2(λ− 2) in place of u, p, q we get hW =
b · x|C +O(r2(λ−2)+2).

We may suppose that for each t ∈ [0, 1] there exist a compact subset
Kt of R

2m and a 1-form wt on C \BR such that (Spt ‖W‖ − tb) \Kt =
ΦC(Graphwt). We put β = (b · x) ◦ ΦC . We have then a function β : UC →
R. Notice that Φ−1C (W − b) is the image of the time-one map of the flow
generated by dβ�ωC . Then we have ∂wt/∂t = −w∗t dβ and so w1 = w0 −
d
∫ 1
0 w∗t βdt = π∗ΣηW + d(hW −

∫ 1
0 w∗t βdt). Hence we get

hW−b = hW −
∫ 1

0
w∗t βdt = hW − β|C −

∫ 1

0
(w∗t β − β|C)dt

= O(r2λ−2) +O(rλ−1) = O(r2λ−2).

By results of Joyce [12, Equations (7.7) and (7.8)] we have ΔChW−b =
O(r4λ−8). Applying Corollary 4.3 to hW−b, 2λ− 2, 4λ− 8 in place of u, p, q
we get c ∈ R such that hW−b = c+O(r4λ−6) = O(r0) as we may suppose
4λ− 6 < 0. This completes the proof. �

Let λ < 2 and W ∈ Wλ. Take a compact subset KW of R2m, an R > 0 and
a diffeomorphism fW : C \BR → Spt ‖W‖ \KW with fW − iC = O(rλ−1).
Then we have a Riemannian metric f∗W g0 over C \BR. With respect to
f∗W g0 we can define the Laplacian ΔW : C∞(C \BR;R) → C∞(C \BR;R).
We have then:
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Proposition. If u ∈ C∞(C \BR;R) and u = O(rα) then we have ΔWu =
ΔCu+O(rα+λ−4).

Proof. Since fW − iC = O(rλ−1) we get f∗W g0 = i∗Cg0 +O(rλ−2). We denote
by∇W and∇C the Levi-Civita connexions over C \BR with respect to f∗W g0
and i∗Cg0 respectively. We have then ∇W = ∇C +O(rλ−3) and so ΔWu =
ΔCu+O(rα+λ−4) as we want. �

We give a corollary to this:

Corollary 4.8. If u ∈ C∞(C \BR;R), ΔWu = 0 and u = O(r0) then we
have u = c+O(r2−m) for some c ∈ R.

Proof. By the proposition above we have ΔCu = O(r0+λ−4) = O(rλ−4). If
λ− 2 < 2−m then we can complete the proof by applying Corollary 4.3 to
0, λ− 2 in place of p, q respectively.

We suppose therefore λ− 2 ≥ 2−m. We take λ′ ∈ (λ, 2) such that λ′ −
2 > 2−m. Applying Corollary 4.3 to 0, λ′ − 2 in place of p, q respectively,
we get u = c+O(rλ

′−2) for some c > 0. We have thus improved the decay
order estimate for u, and so we can complete the proof in a way similar to
the proof of Lemma 4.6. �

We suppose now

C = {(z1, . . . , zm) ∈ C
m \ {0} : |z1| = · · · = |zm|, z1 · · · zm ∈ (0,∞)}.

This is an extension of (1.1) to dimension m. Harvey and Lawson [8, Chap-
ter III.3.A, Theorem 3.1] prove that C is a special Lagrangian submanifold
of (R2m \ {0}, ω0, J0,Ω0).

We define a Tm−1-action on C
m as follows. We write Tm−1 = S1 × · · · ×

S1 and S1 = {t ∈ C : |t| = 1}. For each j ∈ {2, . . . ,m} we define the j-th
S1-action on C

m by setting t · (z1, . . . , zj , . . . , zm) = (tz1, . . . , t
−1zj , . . . , zm)

for each (z1, . . . , zm) ∈ C
m. This action preserves the subset C ⊂ C

m.
We also define a map μj : C

m → R by 2μj(z1, . . . , zm) = |z1|2 − |zj |2. We
shall identify R with the Lie algebra of S1 so that μj will be the moment
map on (Cm, ω0) with respect to the S1-action. One important property is
that μj |C ≡ 0.

We prove:

Theorem. Let m > 2. If W ∈ W0 and j ∈ {2, . . . ,m} then we have
gradTW μj = 0 almost everywhere on R

2m with respect to ‖W‖.
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Proof. We can take a compact subset KW of R
2m, an R > 0 and a dif-

feomorphism fW : C \BR → Spt ‖W‖ \KW with fW − iC = O(r−1). Since
μj = O(r2) and μj ◦ iC = 0 we get f∗Wμj = μj ◦ fW = μj ◦ fW − μj ◦ iC =∫ 1
0 dμj |(1−t)fW+tiC (fW − iC)dt = O(r2−1r−1) = O(r0) and so f∗Wμj = O(r0).
By a result of Joyce [13, Lemma 3.4] we have ΔW f∗Wμj = 0 for each
j = 2, . . . ,m. By Corollary 4.8 we can find cj ∈ R such that f∗Wμj − cj =
O(r2−m). Putting μ′j = μj − cj we get f∗Wμ′j = O(r2−m). We have clearly
gradμ′j = gradμj .

Take a smooth function χ : R → [0, 1] with χ = 1 on B1 and χ = 0
on R

6 \B2. Let R > 0, and define a function χR : R2m → [0, 1] by setting
χR(x) = χ(|x|/R). Since W has first variation 0 in B2R we get then∫

B2R

divTW (χRμ
′
j gradμj)d‖W‖ = 0.

Also by a result of Joyce [13, Lemma 3.4] we have divTW gradμj = 0 and so

(4.1)

∫
B2R

μ′j(gradχR, gradTW μj) + χR|gradTW μj |2d‖W‖ = 0.

Notice that (gradχR, gradTW μj)=(dχR, dμj |Spt ‖W‖\KW
) on Spt ‖W‖ \KW .

Take R sufficiently large so that KW ⊂ BR. Then we have gradχR = 0 on
KW and so (gradχR, gradTW μj) = (dχR, dμj |Spt ‖W‖\KW

) on Spt ‖W‖. We
have therefore∫
B2R

−μ′j(gradχR, gradTW μj)d‖W‖ ≤ sup
Spt ‖W‖\KW

|μ′j(dχR, dμj)|
∫
B2R

d‖W‖

and so by (4.1) we have

(4.2)

∫
B2R

χR|gradTW μj |2d‖W‖ ≤ sup
Spt ‖W‖\KW

|μ′j(dχR, dμj)|
∫
B2R

d‖W‖.

Since fW : C \BR → Spt ‖W‖ \KW is a diffeomorphism we get

(4.3) sup
Spt ‖W‖\KW

|μ′j(dχR, dμj)| = sup
C\BR

|f∗Wμ′j(df
∗
WχR, df

∗
Wμj)|.

Since χR = χ(r/R) we get |dχR| ≤ kR−1 for some k > 0 independent of R.
Since f∗Wμ′j = O(r2−m) we get

(4.4) sup
C\BR

|f∗Wμ′j(dχR, df
∗
Wμj)| ≤ kR2−mR−1R1−m = kR2−2m
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for some k > 0 independent of R. By (4.2)–(4.4) we have∫
B2R

χR|gradTW μj |2d‖W‖ ≤ kR2−2m
∫
B2R

d‖W‖.

On the other hand, by the monotonicity formula, we have
∫
B2R

d‖W‖ ≤ kRm

for some k > 0 depending only on m and T∞W . We have therefore∫
B2R

χR|gradTW μj |2d‖W‖ ≤ kR2−m, k > 0 independent of R.

Letting R → ∞ we get
∫
R

2m |gradTW μj |2d‖W‖ = 0 becausem > 2, complet-
ing the proof. �
We give a corollary to the theorem above. We define a map f : Cm → C

by setting f(z1, . . . , zm) = im+1z1 · · · zm for each (z1, . . . , zm) ∈ C
m. We put

Im f = (f − f̄)/2i : Cm → R and F = (μ2, . . . , μm, Im f) : Cm → R
m. We

have then:

Corollary 4.9. If W ∈ W0 then we have TyW = Ker dF |y for ‖W‖-almost
every y ∈ R

2m.

This follows readily from the proof of Harvey and Lawson [8, Chapter III.3.A,
Theorem 3.1].

We have moreover:

Corollary 4.10. For every W ∈ W0 there exists c ∈ R
m such that F = c

on Spt ‖W‖.

Proof. By Corollary 4.9 we have dF |Spt ‖W‖\KW
= 0, and F |Spt ‖W‖\KW

is

therefore locally constant. Since Spt ‖W‖ \KW
∼= C \BR

∼= (R,∞)× Tm−1

we see that Spt ‖W‖ \KW is connected, and F |Spt ‖W‖\KW
is therefore con-

stant; i.e. we have F |Spt ‖W‖\KW
= c for some c ∈ R

m.
Put φ = |F − c|2. Then we have φ = 0 on Spt ‖W‖ \KW and so Sptφ ∩

Spt ‖W‖ ⊂ KW . By Corollary 4.9 we have gradTW φ = 0 almost everywhere
on R

2m with respect to ‖W‖.
We shall now use a result of Michael and Simon [19, Theorem 2.1], who

prove a Poincaré–Sobolev inequality for varifolds; we refer also to Simon [22,
Theorem 18.6], who uses varifolds more explicitly. We are going to use the
following version:

Lemma. Let W be a stationary integral varifold of dimension m in (Rn, g0).
Suppose that we have a smooth function φ : Rn → [0,∞) with Sptφ ∩
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Spt ‖W‖ compact and gradTW φ = 0 almost everywhere on R
n with respect

to ‖W‖. Then we have φ = 0 on Spt ‖W‖.

We give a proof for the sake of clarity:

Proof. We define r : Rn → [0,∞) by setting r(y) = |y|. We can then define
∂r = ∂/∂r as a smooth vector field on R

n \ {0}. It is easy to see that r∂r
extends smoothly to R

n. Let φ be as above, and let χ be a compactly-
supported smooth function on R

n with χ = 1 on Sptφ ∩ Spt ‖W‖. Then we
can define φr∂r as a smooth vector field on R

n. Since W has first variation
0 we get ∫

R
n

divTW χφr∂rd‖V ‖ = 0.

Since χ = 1 on Sptφ ∩ Spt ‖W‖ we get
∫
Sptφ∩Spt ‖W‖ divTW φr∂rd‖W‖ = 0.

Since gradTW φ = 0 on Spt ‖W‖ we get
∫
Sptφ∩Spt ‖W‖ φ divTW r∂rd‖W‖ = 0.

Since divTW r∂r = m we get
∫
Sptφ∩Spt ‖W‖mφd‖W‖ = 0. Since φ ≥ 0 we get

φ = 0 on Sptφ ∩ Spt ‖V ‖, completing the proof. �

Hence we get φ = |F − c|2 = 0 on Spt ‖W‖, completing the proof of Corol-
lary 4.10. �

We suppose nowm = 3. For the fibres of F : C3 → R
3 we have an explicit

description of the topology and asymptotic behaviour at infinity, which we
shall use next. The behaviour of F : Cm → R

m is rather complicated if m >
3, which we shall not discuss.

We put

Y = {(a, 0, 0) ∈ R
3 : a ≥ 0}

∪ {(0, a, 0) ∈ R
3 : a ≥ 0} ∪ {(−a,−a, 0) ∈ R

3 : a ≥ 0}.

We note that if c ∈ R
3 \ Y then F−1(c) has no fixed point with respect to

the T 2-action

(eiθ, eiφ) · (z1, z2, z3) = (eiθz1, e
iφz2, e

−iθ−iφz3).

We have:

Proposition 4.11. Let W ∈ W and suppose Spt ‖W‖ ⊂ F−1(c) for some
c ∈ R

3. Then we have c ∈ Y .

For the proof we shall use:
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Lemma 4.12. If c ∈ R
3 \ Y then F−1(c) is a submanifold of R

6 diffeo-
morphic to R× S1 × S1 and asymptotic to C ∪ −C with multiplicity 1 at
infinity.

Proof. We put c = (c1, c2, c3). We may suppose c1 ≥ c2 ≥ 0 without loss of
generality. Since (c1, c2, c3) ∈ R

3 \ Y we get c3 	= 0 or c2 > 0. For each t ∈ R

we can find a unique φc(t) ∈ [0,∞) such that

(φc(t) + c1)(φc(t) + c2)φc(t) = |t+ ic3|2.

It is easy to see that φc(t) depends smoothly on t. We put

ψc(t) =
√

φc(t) + c1
√

φc(t) + c2.

Since c3 	= 0 or c2 > 0 we get ψc(t) > 0 for every t ∈ R, and so we can define(
ψc(t)

)−1
> 0 for every t ∈ R. Define a smooth map Φc : R× S1 × S1 →

F−1(c) by setting

Φc(t, u, v) =

(√
φc(t) + c1u,

√
φc(t) + c2v,

t+ ic3
ψc(t)uv

)
,

and a smooth map Ψc(t) : F
−1(c) → R× S1 × S1 by setting

Ψc(z1, z2, z3) =

(
Re z1z2z3,

z1

(φc(Re z1z2z3) + c1)1/2
,

z2

(φc(Re z1z2z3) + c2)1/2

)
.

Then Ψc ◦ Φc is clearly the identity map of R× S1 × S1. It is also easy to see
that Φc ◦Ψc is the identity map of F−1(c), and so F−1(c) is a submanifold
of C3 diffeomorphic to R× S1 × S1. It is also easy to see that F−1(c) is
asymptotic to C ∪ −C with multiplicity 1 at infinity. �
Proof of Proposition 4.11. We give a proof by contradiction, and so suppose
c /∈ Y . By Lemma 4.12, then, F−1(c) will be a connected submanifold of
R
6. By a constancy theorem of Allard [1, Theorem 4.6(3)] or Simon [22,

Theorem 41.1], therefore, the multiplicity function ΘW will be constant on
F−1(c) (we recall that ΘW is characterized by the condition ΘWH3 = ‖W‖
whereH3 denotes the 3-dimensional Hausdorff measure on R

6). On the other
hand we have ΘW = 1 near infinity on Spt ‖W‖ and so we shall have ΘW = 1
on F−1(c), which implies ‖W‖ = |F−1(c)|. By Lemma 4.12, however, F−1(c)
is asymptotic at infinity to C ∪ −C with multiplicity 1, which contradicts
that W is asymptotic at infinity to C with multiplicity 1. This completes
the proof. �
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Suppose now that c ∈ Y ⊂ R
2 × {0}. We prove:

Proposition 4.13. Let W ∈ W and suppose Spt ‖W‖ ⊂ F−1(c) for some
c ∈ Y ⊂ R

2 × {0}. Then we have ‖W‖ = |sL| for some s > 0 and L ∈
{C,L1, L2, L3}.

Proof. We treat the two cases c = 0, c 	= 0 individually but in both cases
the main tool is the constancy theorem (which we have already used in the
proof of Proposition 4.11).

If c = 0 ∈ Y ⊂ R
3 then we have F−1(0) = C ∪ {0} ∪ −C. Let U+ :=

{Re z1z2z3 > 0} and U− := {Re z1z2z3 < 0}, which are open subsets of C3.
Then we have F−1(0) ∩ U+ = C and F−1(0) ∩ U− = −C, which are sub-
manifolds of U+ and U− respectively. Hence by the constancy theorem
we find some integers n± � 0 such that ‖W‖�U± = n±|F−1(0) ∩ U±| where
‖W‖�U± denotes the Radon measure on R

6 with ‖W‖�U±(A) = ‖W‖(U± ∩
A) for A ⊂ R

6. On the other hand W is asymptotic at infinity to C, and so
n+ = 1 and n− = 0, which implies ‖W‖ = |C| as we want.

We turn now to the case c 	= 0. One easily sees that F−1(c) may be writ-
ten as the union of two S1 × R

2 intersecting at S1 × {0} and F−1(c) ∩ U+,
F−1(c) ∩ U− are diffeomorphic to S1 × (R2 \ {0}). Thus F−1(c) is topologi-
cally different from F−1(0), but otherwise the treatment above is valid with
F−1(c) in place of F−1(0), which implies ‖W‖ = |F−1(c) ∩ U+|. Finally from
(1.2)–(1.4), the definition of L1, L2, L3, it follows readily that the closure of
F−1(c) ∩ U+ in R

6 is equal to sL for some s > 0 and L ∈ {L1, L2, L3}, which
completes the proof of Proposition 4.13. �

We shall now complete the proof of Theorem 4.1. We suppose that W
is as in Theorem 4.1. By Theorem 4.7, then, we can find b ∈ R

6 such that
W − b ∈ W0. By Corollary 4.10, therefore, we can find c ∈ R

3 such that
Spt ‖W − b‖ ⊂ F−1(c). By Proposition 4.11, therefore, we have c ∈ Y . By
Proposition 4.13, therefore, we have ‖W − b‖ = |sL| for some s > 0 and
L ∈ {C,L1, L2, L3} as we want.

5. Combining results of §§3–4

As in §1 the proof of Theorems 1.4 and 1.5, the main theorems of the present
paper, is based on the results of §§3–4 above. In the present section therefore
we combine those results into a convenient form (Theorem 5.2 below). We
begin by recalling some basic notation from §1.
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Let (M,ω, J,Ω) be an almost Calabi–Yau manifold of complex dimension
3. Let V denote the space of all compactly-supported special Lagrangian
integral varifolds with no boundary in M .

Let X denote the subspace of V consisting of compact special Lagrangian
3-folds in M with only one singular point modelled on C with multiplicity
1 where C denotes the T 2-cone in C

3 given by (1.1).
Let L1, L2, L3 be as in (1.2)–(1.4), which are non-compact special La-

grangian submanifolds properly-embedded in C
3 and asymptotic at infin-

ity to C with multiplicity 1. For each s > 0 and L ∈ {L1, L2, L3} we write
sL := {sz ∈ C

3 : z ∈ L}.
In the notation above the main result of the present section may be

stated briefly as follows:

Theorem 5.1. Let X ∈ X and let x denote the unique singular point of
X. Then there exist a neighbourhood Bx of x in X and a neighbourhood U
of X in V such that if V ∈ U \ X then the following two statements hold:

(I) V is a multiplicity-one non-singular varifold and V restricted to M \
Bx is C1-close to X;

(II) there exists an open set Bx,V ⊂ Bx with the following two properties:
(i) V restricted to Bx,V is C1-close to sL for some s > 0 and L ∈
{L1, L2, L3}; (ii) V restricted to Bx \Bx,V is C1-close to the tangent
cone to X at x.

Proof. By Allard’s regularity theorem we can take a neighbourhood U of X
in V and a neighbourhood Bx of x such that if V ∈ U \ X then V will satisfy
the latter part of (I) above.

Near x we can apply Theorem 3.7 so that as V approaches X we can
take its re-scaled limit W with positive energy; more precisely the proof of
Theorem 3.7 implies that we can take y ∈ Bx, δ > 0 and a special Lagrangian
integral varifold W with no boundary in C

3 satisfying the following two
properties:

(a) E
(
V �(Bx \Bδ(y)

)
� ε/2 where Bδ(y) denotes a δ-ball about y in M

and ε denotes a constant given by Theorem 3.3;

(b) if we identify Bx with an open set in C
3, translate V by y ∈ C

3 and
dilate it by δ−1 then the resulting varifold δ−1(V − y) is close to W in
the varifold topology.

From (b) and Theorem 4.1 it follows that W is a multiplicity-one non-
singular varifold represented by some L ∈ {L1, L2, L3} up to dilation and
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translation in R
6 ∼= TxM . This combined with Allard’s regularity theorem

implies (i) above.
We have not seen yet what happens to V in the annular regionBx \Bδ(y)

but in that region V has little energy as in (a) above. This combined with
Theorem 3.3 implies (ii) above with Bx,V = Bδ(y).

Finally the former part of (I) follows from (i), (ii) and the latter part
of (I). �

In Theorem 5.1 above we have frequently used the expression ‘C1-close’
for Lagrangian submanifolds, but in later sections we shall need to describe
them in Weinstein neighbourhoods [25] (a class of tubular neighbourhoods
of Lagrangian submanifolds). In what follows therefore we introduce some
notation concerning Weinstein neighbourhoods and re-state Theorem 5.1 in
that notation.

We take a linear isomorphism γ : R6 → TxM with γ∗g|x = g0, γ
∗J |x =

J |0, γ∗Ω|x = Ω0 and γ(C) a multiplicity 1 smooth tangent cone to X at x.
We write X ′ := X \ {x}.

As in §2 we define ψ : M → (0,∞) by (2.1). We have then ω0 =
ψ2(x)γ∗ω|x. By Darboux’s theorem we can find a real number δ > 0 and
an embedding Γ : Bδ → M with Γ(0) = x, dΓ|0 = ψ(x)γ and Γ∗ω|x = ω0.

We define T ∗C, ωC , UC and ΦC as in Lemma 4.4. Joyce [12, Theorem 4.4
and Lemma 4.5] proves that making δ > 0 smaller if necessary we can take
an embedding fX of C ∩Bδ into X ′, a function hX : C ∩Bδ → R and an
α > 2 with hX = O(rα) such that f−1X (X ′) = ΦC(Graph dhX). We put Z =
X ′ \ fX(C ∩Bδ). It is clear that Z is an open subset of X ′ with boundary
diffeomorphic to T 2.

We denote by T ∗X ′ the cotangent bundle over X ′, by 0C the zero-section
of T ∗X ′, and by ωX the canonical symplectic form on T ∗X ′. Since fX maps
C ∩Bδ diffeomorphically onto X ′ \ Z we get a vector-bundle isomorphism
T ∗fX : T ∗(X ′ \ Z) → T ∗(C ∩Bδ) covering f

−1
X : X ′ \ Z → C ∩Bδ. Joyce [12,

Theorem 4.6] constructs a neighbourhood UX ′ of Im 0X in T ∗X ′ and a dif-
feomorphism ΦX of UX ′ into M with ΦX ◦ 0X = iX , Φ∗Xω = ωX and

ΦX |UX′\T ∗Z = Γ ◦ ΦC ◦ (+dhX) ◦ T ∗fX

where +dhX denotes the fibrewise translation of T ∗C by dhX .
For each y ∈ M we denote by P |y the set of all linear isomorphisms

φ : R6 → TyM with φ∗g|y = g0, φ
∗J |y = J0 and φ∗Ω|y = Ω0. We put P =⋃

y∈M P |y. It is clear that P is a principal bundle over M with structure
group SU3. We have (x, γ) ∈ P . By a result of Joyce [13, Theorem 5.2] we can
take a neighbourhood Ux,γ of (x, γ) in P such that for all p = (y, φ) ∈ Ux,γ
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we can construct embeddings Γp of Bδ into M depending smoothly on p
with Γp(0) = y, dΓp|0 = φ and ψ2(y)Γ∗pω = ω0, and embeddings Φp of UX ′

into M depending smoothly on p with Φp ◦ 0X = iX , Φ∗pω = ωX and

Φp|UX′\T ∗Z = Γp ◦ ΦC ◦ (+dhX) ◦ T ∗fX .

We turn now to L ∈ {L1, L2, L3}. We take an open subset K of L with
boundary diffeomorphic to T 2, a real number R > 0 and a diffeomorphism
fL of C \BR onto L \K with fL − iC = O(r−1). Making R > 0 larger if
necessary we can find a 1-form ηL on C \BR with ΦC(Graph ηL) = L \K.

We denote by T ∗L the cotangent bundle over L, by 0L the zero-section
of T ∗L, and by ωL the canonical symplectic form on T ∗L. Since fL maps
C \BR diffeomorphically onto L \K we get a vector-bundle isomorphism
T ∗fL : T ∗(L \K) → T ∗(C \BR) covering f−1L : L \K → C ∩BR. Joyce [12,
Theorem 7.5] constructs a neighbourhood UL of Im 0L in T ∗L and a diffeo-
morphism ΦL of UL into R

6 with Φ∗Lω0 = ωL, ΦL ◦ 0L = iL and

(5.1) ΦL|UL\T ∗K = ΦC ◦ (+ηL) ◦ T ∗fL

where +ηL denotes the fibrewise translation of T ∗C by ηL.
We are ready now to refine the statement of Theorem 5.1:

Theorem 5.2. For each ε > 0 there exists a neighbourhood U of X in V
such that if V ∈ U \ X then V will be a multiplicity-one non-singular var-
ifold in M and we can find some p ∈ P, s > 0, L ∈ {L1, L2, L3}, a closed
1-form βC on C ∩AsR,δ with |βC |1,cyl[sR,δ] < ε, a closed 1-form βL on K̂ with

|βL|C1( ̂K) < ε, and a closed 1-form βX on Ẑ with |βX |C1( ̂Z) < ε such that on

f−1L (K̂) ∩AsR,δ we have s2(f∗LβL + ηL) = βC , on f−1X (Ẑ) ∩AsR,δ we have
f∗XβX + dhX = βC , and

(5.2) V = Γp

(
sΦL(GraphβL)

)
∪ Γp ◦ ΦC(GraphβC) ∪ ΦX(GraphβX).

Remark. Here and subsequently if V is a multiplicity-one varifold in M
then we shall treat V as a subset of M to simplify the notation as in (5.2).

The right-hand side of (5.2) defines a submanifold of M because of the
two conditions s2(f∗LβL + ηL) = βC on f−1L (K) ∩AsR,δ and f∗XβX + dhX =
βC on f−1X (Z) ∩AsR,δ.

6. Remarks on Joyce’s work

This section will be devoted to several remarks on Joyce’s work [12–16].
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We begin in §6.1 by recalling Joyce’s topological condition [16, The-
orem 10.4] which is necessary for his gluing construction and also for the
precise statement of Theorems 1.4 and 1.5, the main theorems of the present
paper.

In §6.2 we prove Theorem 1.4, which claims that if there is no L ∈
{L1, L2, L3} satisfying Joyce’s topological condition then X is unsmoothable,
which is a corollary to Theorem 5.2.

On the other hand Theorem 1.5 supposes that there is some L ∈
{L1, L2, L3} satisfying Joyce’ topological condition and claims that there
exists a neighbourhood U of X in V such that the elements of U \ X may be
obtained by Joyce’s gluing construction. Its proof will be given in §7 below
after the preparation in §§6.3–6.5.

In §6.3 we prove that the varifold topology on X induced from V is equal
to a stronger topology defined by Joyce [13, Definition 5.6]. This result may
be of independent interest as an improvement of Joyce’s work in the second
paper [13].

In §6.4 we recall from Joyce’s second paper [13, Corollary 6.11] that X
is a manifold of finite dimension, which is a consequence of the fact that
the T 2-cone C is stable in the sense of Joyce [13, §3.2]. Our presentation
will be slightly different from that of Joyce, but it is superficial and we shall
only re-phrase Joyce’s statement [13, Theorem 6.10] so that we may use it
directly in §7.

In §6.5 we give an explicit description of the gluing map G : [0, τ)× Y →
V given in §1.

6.1. Joyce’s topological condition

Our main results concern the topological condition given by Joyce [16, The-
orem 10.4] which we therefore recall now. Let fX : C ∩Bδ → X ′ be as in §5
above, which induces a linear map

(6.1) f∗X : H1(X ′;R) → H1(C ∩Bδ;R) ∼= H1(T 2;R)

between cohomology groups. Its image will be denoted by Im f∗X , which is a
linear subspace of H1(T 2;R). Now we use:

Lemma (Joyce [16, Lemma 10.1]). Let X† be a compact orientable
3-dimensional manifold with boundary, and consider the natural restriction
map r† : H1(X†;R) → H1(∂X†;R) and its image Im r† inH1(∂X†;R). Then
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we have

dimR Im r† = 1
2 dimRH1(∂X†;R)

where dimRH1(∂X†;R) is always an even integer as ∂X† is a compact ori-
entable 2-dimensional manifold.

In our case X ′ may be retracted to some X† with ∂X† ∼= T 2 in the
notation above, and so

Corollary. dimR Im f∗X = 1
2 dimRH1(T 2;R) = 1.

On the other hand let L ∈ {L1, L2, L3} and define a closed 1-form ηL as
in §5.1. Then we can define its de Rham cohomology class

(6.2) Y (L) := [ηL] ∈ H1(C \BR;R) ∼= H1(T 2;R)

which is compatible with the notation of Joyce [16, Definition 6.2 (see also
Theorem 6.6)]. Joyce [16, Equation (77)] proves indeed:

Lemma 6.1. Y (L) 	= 0 for each L ∈ {L1, L2, L3} and moreover any two of
{Y (L1), Y (L2), Y (L3)} are linearly independent as vectors in H1(T 2;R).

Now let 〈Y (L)〉 denote the 1-dimensional linear subspace of H1(T 2;R)
generated by Y (L). Then Joyce’s topological condition [16, Theorem 10.4
(see also Theorem 7.3)] is equivalent to:

Condition 6.2. 〈Y (L)〉 = Im f∗X ⊂ H1(T 2;R).

Thus there are four lines 〈Y (L1)〉, 〈Y (L2)〉, 〈Y (L3)〉 and Im f∗X in the
plane H1(T 2;R) ∼= R

2, all passing thorough the origin 0 ∈ H1(T 2;R). The
three lines 〈Y (L1)〉, 〈Y (L2)〉, 〈Y (L3)〉 are all distinct by Lemma 6.1, and
Condition 6.2 is equivalent to the fourth line Im f∗X overlapping one of those
three lines.

It is now clear that there exists at most one L ∈ {L1, L2, L3} satisfying
Condition 6.2, which we have mentioned in Lemma 1.3.

6.2. Proof of Theorem 1.4

We are ready now to prove Theorem 1.4 as a corollary to Theorem 5.2:

Corollary 6.3. Suppose that for every neighbourhood U of X in V we have
U \ X 	= ∅. Then there exists L ∈ {L1, L2, L3} with 〈Y (L)〉 = Im f∗X .
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Remark. This statement is the contraposition of Theorem 1.4 and so they
are equivalent.

Proof of Corollary 6.3. Theorem 5.2 and the hypothesis above imply that
for each ε > 0 there exist L ∈ {L1, L2, L3}, a real number s > 0, a closed
1-form βL with |βL|C1( ̂K) < ε, and a closed 1-form βX on K̂, X̂ respectively
such that

s2[f∗LβL + ηL] = [f∗XβX + dhX ] ∈ H1(T 2;R)

and so [f∗LβL] + Y (L) ∈ Im f∗X . Here L depends on ε but letting ε = 1/n, n =
1, 2, 3, . . . , and taking a subsequence we can make L independent of n
and satisfying the following property: for infinitely many n there exist 1-
forms βL,n on K̂ with |βL,n|C1( ̂K) < 1/n and [f∗LβL,n] + Y (L) ∈ Im f∗X . Con-

sequently letting n → ∞ we get Y (L) ∈ Im f∗X .
On the other hand 〈Y (L)〉 and Im f∗X are both 1-dimensional as in §6.1,

and so 〈Y (L)〉 = Im f∗X , which completes the proof of Corollary 6.3. �
We can also strengthen Theorem 5.2 as follows:

Corollary 6.4. If there exists L ∈ {L1, L2, L3} with 〈Y (L)〉 = Im f∗X then
such an L is unique as proven in §6.1 and the statement of Theorem 5.2
holds for that unique L instead of assigning L1, L2 or L3 to each V ∈ U \ X .

Proof. In a way similar to the proof of Corollary 6.3 it follows that in the
statement of Theorem 5.2 we may suppose that 〈Y (L)〉 is ε-close to Im f∗X
but such an L is unique as in §6.1, which completes the proof of Corollary 6.4.

�

6.3. Topology on X

We have used so far the varifold topology induced from V but in what follows
we prove that it is actually equal to a stronger topology given by Joyce [13,
Definition 5.6]. We begin with:

Lemma 6.5. There exists a neighbourhood Y of X in X such that for each
Y ∈ Y there exist unique p(Y ) = (y, φ) ∈ P and a closed 1-form ηY on X ′

with

Y = Φp(Y )(Graph ηY )

where P,Φp(Y ) are as in §5; moreover near the singular point y in Y we
may write ηY = dhY for some unique function hY : X ′ → R decaying with
any rate < 3.
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Remark 6.6. If X were not modelled on the T 2-cone C then the rate of
hY would be confined as in the definition of Joyce [13, Definition 3.7].

Proof of Lemma 6.5. By Allard’s regularity theorem we may suppose that
Y is C1-close to X outside a neighbourhood of x in X. By Theorem 3.6
we may also suppose that the singular point y of Y is close to x and the
tangent cone to Y at y is close to that to X at x. These two facts readily
imply the existence of p(Y ) = (y, φ), ηY and the decay property of ηY , as
proven by Joyce [13, Theorem 5.3]. The uniqueness of p(Y ) = (y, φ) follows
from the definition of P , and the uniqueness of ηY follows from the fact that
Φ−1p(Y )(Y \ {y}) is C1-close to X ′ := X \ {x}, which completes the proof of
Lemma 6.5. �

Joyce [13, Definition 5.6] defines a topology on X dependent on μ ∈ (2, 3)
in which Y ∈ X is close to X if p(Y ) = (y, φ) is close to (x, γ) in P and ηY
is small in the weighted C1-space C1

μ(T
∗X ′) where p(Y ) = (y, φ) and ηY are

as in Lemma 6.5 above. We prove:

Theorem 6.7. Joyce’s topology is independent of μ and moreover equal to
the varifold topology induced from V.

Proof. It is clear that if X,Y ∈ X are close in the μ-topology then so they
are in the varifold topology. Conversely let X,Y ∈ X be close in the varifold
topology. Allard’s regularity theorem implies that Y is C1-close to X outside
a neighbourhood of x in X where x denotes the singular point of X. We may
also write Y as in Lemma 6.5 and Theorem 3.6 implies that p(Y ) = (y, φ) is
close to (x, γ) in P . The last part of Lemma 6.5 implies that Y approaches
X at x with any rate μ < 3, which completes the proof of Theorem 6.7. �

Theorem 6.7 readily extends to compact special Lagrangian m-folds of
X with isolated conical singularities in the sense of Joyce [12–16] where m is
an arbitrary integer > 2 and the tangent cones to X need not be modelled
on the stable T 2-cone C.

6.4. Consequence of stability of C

In §7 we use the fact that X is modelled on the stable cone C in the sense of
Joyce [13, §3.2] who proves indeed (in Corollary 6.11 in the same paper) that
a neighbourhood of X in X is a manifold of finite dimension and its tangent
space TXX is isomorphic to the compactly-supported de Rham cohomology
group H1

c (X
′;R) ⊂ H1(X ′;R).



Surjectivity of a gluing construction 1055

Here H1
c (X

′;R) is embedded in H1(X ′;R) because the map f∗X :
H0(X ′;R) → H0(T 2;R) is surjective. It is unnecessary for our purpose but
may be worth remarking that Joyce [13] deals with a more general case
where X has two or more singular points, and then TXX is isomorphic to
the image of the canonical map H1

c (X
′;R) → H1(X;R) which need not be

injective.
We shall need in §7 a more detailed statement of Joyce’s result above,

which we therefore recall now. We take a neighbourhood Y of X in X and
define a map H : Y → H1

c (X
′;R) as follows. Let Y be as in Lemma 6.5 so

that for each Y ∈ Y there exist unique p(Y ) = (y, φ) ∈ P and a closed 1-form
ηY on X ′ with

Y = Φp(Y )(Graph ηY ).

Consider the de Rham cohomology class [ηY ] ∈ H1(X ′;R), which maps to 0
under f∗X because of the last property in Lemma 6.5. Consequently [ηY ] lies
in H1

c (X
′;R), and we set H(Y ) = [ηY ].

With the notation above we can state the detailed version of Joyce’s
result [13, Theorem 6.10]:

Theorem 6.8. H maps a neighbourhood of X in X homeomorphically onto
a neighbourhood of 0 in H1

c (X
′;R).

6.5. Explicit description of gluing map

Finally we give an explicit description of G : [0, τ)× Y → V. The basic no-
tation is already given in §5 but we shall need some more notation.

We denote by η′L the harmonic 1-form on T 2 with [η′L] = Y (L) ∈
H1(T 2;R) and define a 1-form η̃L on C by setting η̃L := π∗η′L where π de-
notes the projection of C ∼= (0,∞)× T 2 onto T 2.

Since 〈Y (L)〉 = Im f∗X it is clear that there exists a closed 1-form ξL on
X ′ with f∗X [ξL] = Y (L) ∈ H1(T 2;R). Following the proof of Joyce (sketched
in [16, Theorem 7.3] and completed in [15, Theorem 6.12]) we find that for
a suitable choice of ξL the following statement holds:

Theorem 6.9. For all (t, Y ) ∈ (0, τ)× Y there exist three smooth functions
uL : K → R, uC : C ∩AtR,δ → R, uX : Z → R such that letting p(Y ), ηY be
as in Lemma 6.5 we can construct a compact special Lagrangian submanifold
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of (M,ω, J,Ω) of the form

G(t, Y ) := Γp(Y )

(
tΦL(Graph duL) ∪ ΦC(Graph t2η̃L + duC)

)
∪ ΦX(Graph t2ξL + ηY + duX).

Moreover |uL|C1(K), |uC |1,cyl[tR,δ], |uX |C1(Z) tend to 0 uniformly in Y as t → +0.

7. Proof of Theorem 1.5

As in §6.5 above we suppose that there is some L ∈ {L1, L2, L3} satisfying
Joyce’s topological condition and define the gluing map G : [0, τ)× Y → V.
Theorem 1.5 claims that for τ and Y small enough G is a homeomorphism
onto a neighbourhood of X in V.

To prove it we shall construct an inverse map to G. We shall indeed
take a neighbourhood U of X in V, then define a map F1 : U → [0,∞),
then define a map F2 : U → X and then set F = (F1, F2), to get a map
F : U → [0,∞)×X inverse to G.

In Donaldson’s situation [5] (explained also by Freed and Uhlenbeck [7])
in Yang–Mills gauge theory there is a map similar to F : U → [0,∞)×X
and the elements of U play the rôle of ‘concentrated’ instantons. There is
a map similar to F2 : U → X which assigns the ‘centres’ about which those
instantons are concentrated, and there is also a map similar to F1 : U →
[0,∞) which measures how concentrated they are.

We return now to our situation. By Allard’s regularity theorem there
exists a neighbourhood U of X in V such that for each V ∈ U we can take
a unique closed 1-form βX on Z such that

(7.1) V ∩ ΦX(UX ′ ∩ T ∗Z) = ΦX(GraphβX)

where by Theorem 5.2 we may suppose that V is a multiplicity-one varifold
(with singularity at most one point) and so we may treat V as a subset of
M .

Consider the de Rham cohomology class [βX ] ∈ H1(Z;R) ∼= H1(X ′;R).
Then by Condition 6.2 we may write f∗X [βX ] = rY (L) for some unique r ∈ R.

We claim that r � 0. If V ∈ U ∩ X then near x we may write V as the
graph of an exact 1-form as in Lemma 6.5 and so f∗X [βX ] = 0 in the notation
above, which implies r = 0.

If V ∈ U \ X then by Corollary 6.4 there exist a real number s > 0, a
closed 1-form βX on Z, and a closed 1-form βL on K such that [f∗XβX ] =
s2
(
[f∗LβL] + Y (L)

)
∈ H1(T 2;R). Hence recalling that Im f∗X = 〈Y (L)〉 we
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find [f∗LβL] = cY (L) for some c ∈ R. Making U smaller if necessary we may
suppose that βL is so small that |c| < 1

100 and then r = s2(1 + c) > 0 as we
want.

Thus we have defined a map F1 : U → [0,∞) and we turn now to the
definition of F2 : U → X .

In Theorem 6.9 we have taken a closed 1-form ξL on X ′ with f∗X [ξL] =
Y (L) and so [βX − rξL] ∈ Ker f∗X = H1

c (X
′;R). We may suppose that [βX −

rξL] is so small that by Theorem 6.8 we can define F2(V ) := H−1[βX −
rξL] ∈ Y.

Thus we have defined a map F = (F1, F2) : U → [0,∞)×X , which read-
ily satisfies the following two properties:

(i) F (Y ) = (0, Y ) for Y ∈ U ∩ X ;

(ii) F ◦G is the identity map of a neighbourhood of (0, X) in [0,∞)×X .

We can also prove:

Lemma 7.1. There exists a neighbourhood U of X in V such that if V ∈
U \ X then V may be written as the graph of an exact 1-form α on G ◦
F (V ) in a Weinstein neighbourhood of G ◦ F (V ) in the symplectic manifold
(M,ω).

Remark 7.2. The definitions of F and G readily imply that V and G ◦
F (V ) are C1-close to each other. On the other hand V and G ◦ F (V ) are
both Lagrangian submanifolds of (M,ω). Consequently V may be written
as the graph of a closed 1-form α on G ◦ F (V ). Thus the substantial part of
Lemma 7.1 is the exactness of the 1-form α.

Proof of Lemma 7.1. We proceed in two steps: the first step introduces some
notation to define α; and the second step proves that α is exact.

First Step. Let U be a neighbourhood of X in V, let V ∈ U \ X and
write F (V ) = (t, Y ) ∈ (0,∞)×X . Making U smaller if necessary we may
apply Lemma 6.5 to Y and in particular we can define p := p(Y ) ∈ P as in
Lemma 6.5.

Making U smaller if necessary we may also apply Corollary 6.4 to V . It
is also easy to see that (5.2) holds with t in place of s and with p as above;
i.e. there exist a closed 1-form βX on Z, a closed 1-form βC on C ∩AtR,δ,
and a closed 1-form βL on K such that

(7.2) V = Γp

(
tΦL(GraphβL)

)
∪ tΦC(GraphβC)

)
∪ ΦX(GraphβX).
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We take now aWeinstein neighbourhood of V in (M,ω) as follows. Define
a map fLV : K → V by setting

fLV := Γp ◦ tΦL ◦ βL

where βL is regarded as a map K into UL ∩ T ∗K. Likewise we can define
two maps fCV : C ∩AtR,δ → V and fXV : Z → V by setting

fCV := Γp ◦ tΦC ◦ βC , fXV := ΦX ◦ βX

respectively. Differentiating fLV : K → V we get a vector-bundle homomor-
phism fLV ! : T

∗K → T ∗V covering fLV : K → V . Likewise we can also de-
fine the two maps fCV ! and fXV !. Let UV be a neighbourhood of the zero-
section in T ∗V such that we can define a map ΦV : UV → M by

ΦV ◦ fLV ! = Γp ◦ tΦL ◦ (+βL), ΦV ◦ fCV ! = Γp ◦ tΦC ◦ (+βC)

and ΦV ◦ fXV ! = ΦL ◦ (+βX)

which defines a Weinstein neighbourhood of V in (M,ω).
By Theorem 6.9 we may write G ◦ F (V ) = ΦV (Graphα) for some unique

closed 1-form α on V .

Second Step. It remains to prove that [α] = 0 in the de Rham cohomology
group H1(V ;R). The co-efficient field R will be omitted in what follows
for the sake of brevity. We may topologically write V as a union of K
and Z the intersection of which is diffeomorphic to T 2 × R. We consider
the associated Mayer–Vietoris exact sequence. The map H0(K)⊕H0(Z) →
H0(T 2) is clearly surjective, and so the map H1(V ) → H1(K)⊕H1(Z) is
injective.

It suffices therefore to prove that [α] ∈ H1(V ) maps to 0 ∈ H1(K)⊕
H1(Z). We begin by considering its image in H1(Z). By the definition of F
we have [βX ] = t2Y (L) + [ηF2(V )] ∈ H1(Z) where ηF2(V ) is as in Lemma 6.5
with F2(V ) in place of Y . On the other hand by the construction of ΦV :
UV → M we have

βX + f∗XV α = t2ξL + ηF2(V ) + duL on Z

in the notation of Theorem 6.9. Consequently f∗XV [α] = 0 ∈ H1(Z) as we
want.

We also prove that [α] maps to 0 under the map H1(V ) → H1(K), which
is induced by fLV . We can naturally compactify K into a manifold with
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boundary diffeomorphic to T 2, which induces a map H1(K) → H1(T 2). Its
kernel is isomorphic to the compactly-supported cohomology group H1

c (T
2).

Since K is diffeomorphic to S1 × R
2 it follows that H1

c (S
1 × R

2) ∼= H2(S1 ×
R
2) = {0} and so the map H1(K) → H1(T 2) is injective.
It suffices therefore to prove that [α] ∈ H1(V ) maps to 0 ∈ H1(T 2) under

the composite map H1(V ) → H1(K) → H1(T 2). Recall that it is contained
in the Mayer–Vietoris sequence

H1(V ) → H1(K)⊕H1(Z) → H1(T 2)

and in particular that the two composite maps H1(V ) → H1(K) → H1(T 2)
and H1(V ) → H1(Z) → H1(T 2) are equal. On the other hand we have al-
ready proved that [α] ∈ H1(V ) maps to 0 ∈ H1(Z) and so to 0 ∈ H1(T 2) as
we want, which completes the proof of Lemma 7.1. �

As a corollary to Lemma 7.1 we can prove:

Corollary 7.3. G ◦ F is the identity map of a neighbourhood of X in V.

Proof. It suffices to prove that V = G ◦ F (V ) in the situation of Lemma 7.1.
Write the exact 1-form α as df for some smooth function f : G ◦ F (V ) → R.
Since V and G ◦ F (V ) are special Lagrangian it follows that f satisfies
Hopf’s maximum principle [10] and so f is constant as V is compact. Con-
sequently df = 0 and so V = G ◦ F (V ) as we want. �

Theorem 1.5 is now an immediate consequence of Corollary 7.3 and the
property (ii) stated before Lemma 7.1.
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