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This paper concerns closed hypersurfaces of dimension n(≥ 2) in
the hyperbolic space Hn+1

κ of constant sectional curvature κ evolv-
ing in direction of its normal vector, where the speed is given by a
power β(≥ 1/m) of the mth mean curvature plus a volume preserv-
ing term, including the case of powers of the mean curvature and
of the Gauß curvature. The main result is that if the initial hyper-
surface satisfies that the ratio of the biggest and smallest principal
curvatures is close enough to 1 everywhere, depending only on n,
m, β and κ, then under the flow this is maintained, there exists a
unique, smooth solution of the flow for all times, and the evolving
hypersurfaces converge exponentially to a geodesic sphere of Hn+1

κ ,
enclosing the same volume as the initial hypersurface.
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1. Introduction

Let Mn be a smooth, compact oriented manifold of dimension n(≥ 2) with-
out boundary, (Nn+1, ḡ) be an (n+ 1)-dimensional complete Riemannian
manifold, and X0 : M

n → Nn+1 a smooth immersion. Consider a one-
parameter family of smooth immersions: Xt : M

n → Nn+1 evolving accord-
ing to

(1.1)

⎧⎨
⎩

∂
∂tX(p, t) = {F̄ (t)− F (λ(W (p, t)))}ν (p, t) , p ∈ Mn,

X(·, 0) = X0(·),

where ν (p, t) is the outer unit normal to Mt = Xt(M
n) at the point X (p, t)

in the tangent space TNn+1, W−ν (p, t) = −Wν (p, t) is the matrix of the
Weingarten map on the tangent space TMn induced by Xt, λ is the map
from T ∗Mn ⊗ TMn to R

n which gives the eigenvalues of the map W , F is
a smooth symmetric function, and F̄ (t) is the average of F on Mt:

(1.2) F̄ (t) =

∫
Mt

F (λ(W ))dμt∫
Mt

dμt
,

where dμt denotes the surface area element of Mt. As is clear from the
presence of the global term F̄ (t) in equation (1.1), the flow keeps the volume
of the domain Ωt enclosed by Mt constant.

This paper considers the flow (1.1) with the speed F (λ) given by a power
of an mth mean curvature, namely

(1.3) F (λ1, . . . , λn) = Hβ
m,

where (λ1, . . . , λn) are the principal curvatures of the evolving hypersurfaces
Mt, and for any m = 1, . . . , n, the mth mean curvature Hm is the average
of the mth elementary symmetric functions Em, namely

(1.4) Hm =

(
n

m

)−1
Em =

m!(n−m)!

n!

∑
1≤i1<···<im≤n

λi1 · · ·λim .
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Obviously H1 = H/n and Hn = K, where H and K denote the mean cur-
vature and the Gauß-Kronecker curvature respectively.

For the flow (1.1) without the volume constraint term F̄ (t), in the case
when Nn+1 is the Euclidean space R

n+1, there are many papers which con-
sider the evolution of convex hypersurfaces, of particular interest here is
in the analysis of the flow (1.1) where the speed F (λ) is homogeneous of
degree one in the principal curvatures, beginning with a classical result of
Huisken [31] who proved that any closed convex hypersurface under mean
curvature flow shrinks to a round point in finite time (Huisken’s theorem
may be considered as an extension of the theorem of Gage and Hamilton
[26] to dimensions bigger than one), and including the similar results on the
nth root of Gauß-Kronecker curvature [20], the square root of scalar curva-
ture [21], and a large family of other speeds [3, 9]. The first such result with
degree of homogeneity greater than one was due to Chow [20] who consid-
ered flow by powers of the Gauß-Kronecker curvature. He proved that the
evolving hypersurfaces by Kβ with β ≥ 1/n become spherical as they shrink
to a point provided the initial hypersurface M0 is sufficiently pinched. We
also mention that Tso [54] showed the same result for the Gauß-Kronecker
curvature flow and Andrews [6] proved that the limit of the solutions under
Kβ-flow with β ∈ ( 1

n+2 ,
1
n ] evolves purely by homothetic contraction to a

point in finite time. Later such results were proved by Schulze [51] for the
flow by powers of the mean curvature, by Alessandroni and Sinestrari [1]
for the flow by powers of the scalar curvature, by Andrews and McCoy [11]
for the flow of convex hypersurfaces with pinched principal curvatures by
high powers of curvature, and for such flows in the special case of surfaces
in three-dimensional spaces [5, 10, 48, 51], where the lower dimension al-
lows a more complete understanding of the equation for the evolution of the
second fundamental form. However, when Nn+1 is a more general Rieman-
nian manifold, there are few results on the behavior of these flows: Huisken
[32] extended the result of [31] in R

n+1 to compact hypersurfaces in general
Riemannian manifolds with suitable bounds on curvature. Andrews [4] has
considered a flow which takes any compact hypersurface with principal cur-
vatures greater than

√
c with c > 0 in a Riemannian background space with

sectional curvatures at least −c, and converges to a round point in finite
time.

The volume-preserving versions of these flows are the flows (1.1)–(1.2)
with an extra term F̄ (t) which balances the contraction. In the case of
volume-preserving mean curvature flow, Huisken [33] showed that convex
hypersurfaces remain convex for all time and converge exponentially fast
to round spheres (the corresponding result for curves in the plane is due to
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Gage [25]), while Andrews [7] extended this result to the smooth anisotropic
mean curvature flow, and McCoy showed similar results for the surface area
preserving mean curvature flow [43] and the mixed volume preserving mean
curvature flows [44]. The volume-preserving flow has been used to study
constant mean curvature surfaces between parallel planes [12, 13] and to
find canonical foliations near infinity in asymptotically flat spaces arising in
general relativity [34] (Rigger [47] showed analogous results in the asymp-
totically hyperbolic setting). While for convex curvature flows with general
extra terms, the hypersurfaces may contract, converge or expand in terms
of the magnitude of the extra terms [37, 38]. If the initial hypersurface is
sufficiently close to a fixed Euclidean sphere (possibly non-convex), Escher
and Simonett [24] proved that the flow converges exponentially fast to a
round sphere, a similar result for average mean convex hypersurfaces with
initially small traceless second fundamental form is due to Li [39]. For a gen-
eral ambient manifold, Alikakos and Freire [2] proved long time existence and
convergence to a constant mean curvature surface under the hypotheses that
the initial hypersurface is close to a small geodesic sphere and that it sat-
isfies some non-degenerate conditions. Cabezas-Rivas and Miquel exported
the Euclidean results of [12, 13] to revolution hypersurfaces in a rotation-
ally symmetric space [18], and showed the same results as Huisken [33] for
a hyperbolic background space [17] by assuming the initial hypersurface is
horospherically convex (the definition will be given later).

On the other hand, there are few results on speeds different from the
mean curvature: McCoy [45] proved the convergence to a sphere for a large
class of functions F homogeneous of degree one (including the case F = Hβ

m

with mβ = 1), Makowski showed that the mixed volume preserving curva-
ture flow for a function F homogeneous of degree one, starting with a com-
pact and strictly horosphere-convex hypersurface in the hyperbolic space ex-
ponentially converges to a geodesic sphere [41], and the volume preserving
curvature flow in Lorentzian manifolds for F as a function with homoge-
neous of degree one exponentially converges to a hypersurface of constant
F -curvature [42] (moreover, stability properties and foliations of such a hy-
persurface were also examined). In 2010 Cabezas-Rivas and Sinestrari [19]
studied the deformation of convex hypersurfaces in R

n+1 by a speed of the
form (1.4) for some power β ≥ 1/m. In this way F is a homogeneous func-
tion of the curvatures with a degree mβ ≥ 1. In particular, they proved the
following
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Theorem 1.1. For m ∈ {1, . . . , n}, mβ ≥ 1 there exists a positive constant
C = C(n,m, β) < 1/nn such that the following holds: If the initial hypersur-
face of Rn+1 is pinched in the sense that

(1.5) K(p) > CHn(p) > 0 for all p ∈ Mn,

then the flow (1.1)–(1.3) with F given by (1.4), has a unique and smooth
solution for all times, inequality (1.5) remains true everywhere on the evolv-
ing hypersurfaces Mt for all t > 0 and the Mt’s converge, exponentially in
the C∞-topology, to a round sphere enclosing the same volume as M0.

However, the results of [19] do not closely relate to the ambient space,
we face the challenges of extending the above results to hypersurface in more
general ambient spaces. But not every Riemannian manifold is well suited
to deal with the situation analogous to the setting in Euclidean spaces. We
want to consider the case that the ambient space is a simply connected Rie-
mannian manifold of constant sectional curvature κ(< 0) whose flow behaves
quite differently compared to the Euclidean space to a certain extent.

Set a =
√|κ|. The ambient space Nn+1

κ is isometric to the hyperbolic
space H

n+1
κ of radius 1/a:

H
n+1
κ :=

{
p ∈ Ln+2 : 〈p, p〉 = − 1

a2

}
.

Here (Ln+2, 〈·, ·〉) denotes the (n+ 2)-dimensional Lorentz-Minkowski space.
To consider the flow (1.1)–(1.3) in Nn+1

κ is then equivalent to considering
the flow (1.1)–(1.3) in H

n+1
κ . Now, it is necessary to provide some definitions

as in [14, 17] as follows.

Definition 1.2. A horosphere H of Hn+1
κ is the limit of a geodesic sphere

of Hn+1
κ as its center goes to the infinity along a fixed geodesic ray.

Definition 1.3. An horoball H is the convex domain whose boundary is
a horosphere.

Definition 1.4. A hypersurface M of Hn+1
κ is said to be convex by horo-

spheres (h-convex for short) if it bounds a domain Ω satisfying that for
every p ∈ M = ∂Ω, there is a horosphere H of Hn+1

κ through p such that Ω
is contained in H of Hn+1

κ bounded by H.

Remark 1.5. In fact, Currier in [22] showed that h-convex immersions of
smooth compact hypersurfaces are embedded spheres, and Borisenko and
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Miquel in [14] showed that horosphere H of H
n+1
κ is weakly (strictly) h-

convex if and only if all its principal curvatures are (strictly) bounded from
below by a at each point.

Most of the literature mentioned above requires a pinching condition on
the initial hypersurface, so that parabolic maximum principles, an impor-
tant tool in the investigation of evolution equations, can be used to deduce
that they can converge and become spherical in shape as the final time is
approached under these flows. It is well-known that in hyperbolic spaces the
negative curvature of the background space produces terms such that the
maximum principles either fail or become more subtle for our flow (1.1)–
(1.3). So for our purposes a challenge in the hyperbolic ambient setting is
how to find a suitable pinching condition on the initial hypersurfaces. How-
ever in the hyperbolic space there is an intuitive example, as pointed out by
Cabezas-Rivas and Miquel in [17]: a geodesic sphere, moving outward in the
radial direction with the speedHβ

m, its normal curvature decreases, and it be-
comes nearer and nearer to that of a horosphere, but it never gets h-convex.
This fact leads us to hope for the result by choosing a suitable convex hyper-
surface which is sufficiently positively curved to overcome the obstructions
from the negative curvature imposed by the ambient spaces like that of space
of Cabezas-Rivas and Sinestrari [19]. More precisely, denote the shifted sec-
ond fundamental form by h̃ij := hij − agij , then the shifted mean curvature

H̃ = H − na and the shifted Gauß curvature K̃ = det{h̃ji}. In this paper the
shifted geometric quantities are distinguished by a tilde. Compared with the
pinching condition K(p) > CHn(p) > 0 on the initial hypersurface in Theo-
rem 1.1, which is analogous to the initial pinching condition in Chow [20] and
Schulze [51], it is natural to impose a pinching condition: K̃ > C∗H̃n > 0
on the initial hypersurfaces of Hn+1

κ , where C∗ is a suitable positive con-
stant. It is shown in Section 4 that the condition K̃ > C∗H̃n > 0 on a closed
hypersurface implies in particular the h-convexity of the hypersurface. The
aim of this paper is to achieve such extension of the above Theorem 1.1 of
Cabezas-Rivas and Sinestrari [19] in the hyperbolic case. Precisely, we prove
the following

Theorem 1.6 (main theorem). For m ∈ {1, . . . , n}, mβ ≥ 1 there exists
a positive constant C∗ = C∗(a, n,m, β) < 1/nn such that the following holds:
If the initial hypersurface of Hn+1

κ is pinched in the sense that

(1.6) K̃(p) > C∗H̃n(p) > 0 for all p ∈ Mn,
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then the flow (1.1)–(1.3) with F given by (1.4), has a unique and smooth
solution for all times, inequality (1.6) remains true everywhere on the evolv-
ing hypersurfaces Mt for all t > 0 and the Mt’s converge, exponentially in
the C∞-topology, to a geodesic sphere of Hn+1

κ enclosing the same volume
as M0.

Our analysis follows the framework of [19], we make modifications to
consider our problem for the background space. The rest of the paper is
organized as follows: Section 2 first gives some useful preliminary results
employed in the remainder of the paper. Section 3 contains details of the
short time existence of the flow (1.1)–(1.3) and the induced evolution equa-
tions of some important geometric quantities and the corresponding shifted
quantities, this requires only minor modifications of Euclidean case due to
the background curvature. In Section 4 applying the maximum principle to
the evolution equation of the shifted quantity K̃/H̃n gives that if the initial
hypersurface is pinched good enough then this is preserved for t > 0 as long
as the flow (1.1)–(1.3) exists. This is a fundamental step in our procedure
as in most of the literature quoted above. Furthermore, Section 5 proves
the uniform bound of the speed F by following a method which was firstly
used by Tso [54]. Using more sophisticated results for fully nonlinear el-
liptic and parabolic partial differential equations, Section 6 obtains uniform
bounds on all derivatives of the curvature and proves long time existence of
the flow (1.1)–(1.3). Finally Section 7, following the idea in [3], obtains the
lower bound for H̃, which we infer from a Harnack inequality due to Krylov
([35]), the estimates obtained so far will then allow us to prove that these
evolving hypersurfaces converge to a geodesic sphere of Hn+1

κ smoothly and
exponentially.

2. Notations and preliminary results

From now on, we use the same notation as in [18, 31, 50] in local coordinates
{xi}, 1 ≤ i ≤ n, near p ∈ Mn and {yα}, 0 ≤ α, β ≤ n, near F (p) ∈ H

n+1
κ . De-

note by a bar all quantities on H
n+1
κ , for example by ḡ = {ḡαβ} the metric,

by ḡ−1 = {ḡαβ} the inverse of the metric, by ∇̄ the covariant derivative,
by Δ̄ the rough Laplacian, and by R̄ = {R̄αβγδ} the Riemannian curvature
tensor. Components are sometimes taken with respect to the tangent vec-
tor fields ∂α(=

∂
∂yα ) associated with a local coordinate {yα} and sometimes

with respect to a moving orthonormal frame eα, where ḡ(eα, eβ) = δαβ . The
corresponding geometric quantities on Mn will be denoted by g (the in-
duced metric), g−1,∇,Δ,R, ∂i and ei. Then further important quantities



328 S. Z. Guo, G. H. Li, and C. X. Wu

are the second fundamental form A(p) = {hij} and the Weingarten map
W = {gikhkj} = {hij} as a symmetric operator and a self-adjoint operator
respectively. The eigenvalues λ1(p) ≤ · · · ≤ λn(p) of W are called the prin-
cipal curvatures of X(Mn) at X(p). The mean curvature is given by

H := trW = hii =

n∑
i=1

λi,

the squared norm of the second fundamental form by

∣∣A∣∣2 := tr(W tW ) = hijh
j
i = hijhij =

n∑
i=1

λ2
i ,

and Gauß-Kronecker curvature by

K := det(W ) = det{hij} =
det{hij}
det{gij} =

n∏
i=1

λi.

More generally, the mth elementary symmetric functions Em are given by

Em(λ) =
∑

1≤i1<···<im≤n
λi1 · · ·λim , for λ = (λ1, . . . , λn) ∈ R

n,

and the mth mean curvatures Hm are given by (1.4). Since Hm is homo-
geneous of degree m, the speed F is homogeneous of degree mβ in the
curvatures λi. Denote the vector (λ1, . . . , λn) of Rn by λ and the positive
cone by Γ+ ⊂ R

n, i.e.

Γ+ = {λ = (λ1, . . . , λn) : λi > 0, ∀ i}.

It is clear that H, K, Hm, F may be viewed as functions of λ, or as functions
of A, or as functions of W , or also functions of space and time on Mt. Since
the differentiability properties of these functions are the same in our setting,
we do not distinguish between these notions and write always these functions
the same letters in all cases. We use the notation

Ḟ i :=
∂F

∂λi
, Ḟ ij :=

∂F

∂hij
, and Ḟ j

i :=
∂F

∂hij
.

If B, C are matrices, we write

Ḟ (B) := Ḟ j
i B

i
j and F̈ (B,C) :=

∂2F

∂hji∂h
l
k

Bj
iC

l
k.
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Finally, if F ∈ C2(Γ+) is concave, then F is also concave as a curvature
function depending on {hij}.

We note some important properties of Hm (see [19] for a simple deriva-
tion).

Lemma 2.1. Let 1 ≤ m ≤ n be fixed.

i) The mth roots H
1/m
m are concave in Γ+.

ii) For all i, ∂Hm

∂λi
(λ) > 0, where λ ∈ Γ+.

iii) H
1/m
m ≤ H

n
; equivalently, F ≤

(
H

n

)mβ

.

iv) tr(Ḟ ) ≥ mβ F 1− 1

mβ .

v) Hm, as a function of hij, is also a homogeneous polynomial of degree

m; in addition, as a function on M , it satisfies ∇j

(
∂Hm

∂hij

)
= 0 for

any i ∈ {1, . . . , n}, where ∇ is the covariant derivative on M .

The following algebraic property proved by Schulze in ( [51], Lemma2.5)
will be needed in the later sections.

Lemma 2.2. For any ε > 0 assume that λi ≥ εH > 0, i = 1, . . . , n, at some
point of an n-dimensional hypersurface. Then at the same point there exists
a δ = δ(ε, n) > 0 such that

n
∣∣A∣∣2 −H2

H2
≥ δ

(
1

nn
− K

Hn

)
.

Consider the functions as in [17]:

sκ(x) =
sinh(ax)

a
, cκ(r) = s′κ(x),

taκ(x) =
sκ(x)

cκ(x)
, coκ(x) =

1

taκ(x)
.

Denote rp the function “distance to p” in H
n+1
κ and use the notation

∂rp = ∇̄rp. and denote the component of ∂rp by ∂�rp tangent to Mt, which

satisfies ∂�rp = ∇(rp|Mn). Define the inner radius ρ− and the circumradius
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radius ρ+ by

ρ+(t) = inf{r : Br(q) encloses Mt for some q ∈ H
n+1
κ },

ρ−(t) = sup{r : Br(q) is enclosed by Mt for some q ∈ H
n+1
κ },

where Br(q) is the geodesic ball of radius r with center at q. The following
well-known result for h-convex hypersurfaces in H

n+1
κ will be applied in later

sections.

Lemma 2.3. Let Ω be a compact h-convex domain, o the center of an inball
of Ω, ρ− its inner radius, and ρ+ its circumradius radius. Furthermore let
τ := taκ(

ρ−
2 ), then

i) the maximal distance max d(o, ∂Ω) between o and the points in ∂Ω
satisfies the inequality

max d(o, ∂Ω) ≤ ρ− + a
ln(1 +

√
τ)2

1 + τ
< ρ− + a ln 2.

ii) For any interior point p of Ω, 〈ν, ∂rp〉 ≥ ataκ(dist((p, ∂Ω)), where dist
denotes the distance in the ambient space H

n+1
κ .

iii) There exists a constant C = C(a) > 0 such that

ρ+ ≤ C (ρ− +
√
ρ−) .

Proof. See ([14], Theorem3.1) for the proof of i) and ii) in the Lemma. As
a consequence of i) and ii), iii) has been proved by Makowski (see ([41],
Theorem5.2). �

In our analysis we need some a priori estimates on the Hölder norms
of the solutions to elliptic and parabolic partial differential equations in
Euclidean spaces. We recall that, in the case of a function depending on
space and time, there is a suitable definition of Hölder norm which is adapted
to the purposes of parabolic equations (see e.g. [40]). In addition to the
standard Schauder estimates for linear equations, we use in the paper some
more recent results which are collected here. The estimates below hold for
suitable classes of weak solutions; for the sake of simplicity, we state them
in the case of a smooth classical solution, which is enough for our purposes.

Given r > 0, we denote by Br the ball of radius r > 0 in R
n centered at

the origin. First we recall a well known result due to Krylov and Safonov,
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which applies to linear parabolic equations of the form

(2.1)

(
aij(x, t)DiDj + bi(x, t)Di + c(x, t)− ∂

∂t

)
u = f

in Br × [0, T ], for some T > 0. We assume that aij = aji and that aij is
uniformly elliptic; that is, there exist two constants λ, Λ > 0 such that

(2.2) λ|v|2 ≤ aij(x, t)vivj ≤ Λ|v|2

for all v ∈ R
n and all (x, t) ∈ Br × [0, T ]. Then the following estimate holds

[36, Theorem 4.3]:

Theorem 2.4. Let u ∈ C2(Br × [0, T ]) be a solution of (2.1), where the
coefficients are measurable, satisfy (2.2) and

|bi|, |c| ≤ K1 for all i = 1, . . . , n,

for some K1 > 0. Then, for any 0 < r′ < r and any 0 < δ < T we have

‖u‖Cα(Br′×[δ,T ]) ≤ C
(‖u‖C(Br×[0,T ]) + ‖f‖L∞(Br×[0,T ])

)
for some constants C > 0 and α ∈ (0, 1) depending on n, λ, Λ, K1, r, r′

and δ.

Next we quote a result for fully nonlinear elliptic equations, which is due
to Caffarelli. We consider the equation

(2.3) F (D2u(x), x) = f(x), x ∈ Br.

Here F : S ×Br → R, where S is the set of the symmetric n× n matrices.
The nonlinear operator F is called uniformly elliptic if there exist Λ ≥ λ > 0
such that

(2.4) λ||B|| ≤ F (A+B, x)− F (A, x) ≤ Λ||B||

for any x ∈ Br and any pair A,B ∈ S such that B is nonnegative definite.

Theorem 2.5. Let u ∈ C2(Br) be a solution of (2.3), where F is continu-
ous and satisfies (2.4). Suppose in addition that F is concave with respect to
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D2u for any x ∈ Br. Then there exists ᾱ ∈ (0, 1) with the following property:
if, for some K2 > 0 and α ∈ (0, ᾱ) , we have that f ∈ Cα(Ω) and that

F (A, x)− F (A, y) ≤ K2|x− y|α(||A||+ 1), x, y ∈ Br, A ∈ S,

then, for any 0 < r′ < r, we have the estimate

‖u‖C2+α(Br′ ) ≤ C(||u||C(Br) + ||f ||Cα(Br) + 1)

where C > 0 only depends on n, λ, Λ, K2, r and r′.

The above result follows from Theorem 3 in [15] (see also Theorem 8.1 in
[16] and the remarks thereafter). It generalizes, by a perturbation method, a
previous estimate, due to Evans and Krylov, about equations with concave
dependence on the hessian. In contrast with Evans-Krylov result (see e.g.
inequality (17.42) in [28]), Theorem 2.4 gives an estimate in terms of the
Cα-norm of f rather than the C2-norm, and this is essential for our purposes.

Finally, we recall an interior Hölder estimate, due to Di Benedetto and
Friedman [23, Theorem 1.3], for solutions of the degenerate parabolic equa-
tion

(2.5)
∂v

∂t
−Di

(
aij(x, t,Dv)Djv

d
)
= f(x, t, v,Dv),

being d > 1.

Theorem 2.6. Let v ∈ C2(Br × [0, T ]) be a nonnegative solution of (2.5),
where aij satisfies (2.2). Let c1, c2, N > 0 be such that

|f(x, t, v,Dv)| ≤ c1|Dvd|+ c2,

and

sup
0<t<T

‖v( · , t)‖2L2(Br)
+ ‖Dvd‖2L2(Br×[0,T ]) ≤ N.

Then for any 0 < δ < T and 0 < r′ < r, we have

‖v‖Cα(Br′×[δ,T ]) ≤ C,

for suitable C > 0, α ∈ (0, 1) depending only on n,N, λ,Λ, δ, c1, c2, r and r′.
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3. Short time existence and evolution equations

This section first considers short time existence for the initial value prob-
lem (1.1).

Theorem 3.1. Let X0 : M
n → H

n+1
κ be a smooth closed hypersurface with

the mean curvature is strictly bounded from below by na everywhere. Then
there exists a unique smooth solution Xt of problem (1.1), defined on some
time interval [0, T ), with T > 0.

Proof. We can argue exactly as in [19, Theorem 3.1]. Although the assump-
tions on the initial hypersurface and the ambient background space in that
paper are different, the proof applies to our case as well. �

Proceeding now exactly as in [27, 31, 41] we derive some evolution equa-
tions on Mt from the basic equation (1.1).

Proposition 3.2. For the ambient space Nn+1 = H
n+1
κ , on any solution

Mt of (1.1) the following hold:

∂tg = 2(F̄ − F )A,(3.1)

∂tg
−1 = −2(F̄ − F )g−1W ,(3.2)

∂tν = X∗(∇F ),(3.3)

∂t(dμt) = (F̄ − F )Hdμt,(3.4)

∂tA = ΔḞA+ F̈ (∇·W ,∇·W ) +
[
trḞ (AW ) + a2tr(Ḟ )

]
A(3.5)

+
[
F̄ − (mβ + 1)F

]
AW + a2

[
F̄ − (mβ + 1)F

]
g,

∂tW = ΔḞW + F̈ (∇·W ,∇·W ) +
[
trḞ (AW ) + a2tr(Ḟ )

]
W(3.6)

− [
F̄ + (mβ − 1)F

]
W 2 + a2

[
F̄ − (mβ + 1)F

]
Id.

Proof. The first fourth evolution equations under (1.1) follow from straight-
forward computation as in §3 of [31], and valid for in arbitrary Riemannian
manifolds.

The evolution of A can be calculated from the definition of A:

∂thij = − ∂

∂t
〈∇̄X∗(∂i)X∗(∂j), ν〉.

= −〈∇̄X∗(∂t)∇̄X∗(∂i)X∗(∂j), ν〉 −
〈
∇̄X∗(∂i)X∗(∂j),

∂ν

∂t

〉
.

= −〈∇̄X∗(∂i)∇̄X∗(∂t)X∗(∂j), ν〉 − R̄ (X∗(∂i),X∗(∂t),X∗(∂j), ν)
− 〈∇̄X∗(∂i)X∗(∂j),X∗(∇F )〉
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= −〈∇̄X∗(∂i)∇̄X∗(∂j)((F̄ − F )ν), ν〉+ (F − F̄ )R̄i0j0 −∇∇∂i
∂j
F

∂i∂jF −∇∂i
∂jF − (F − F̄ )〈∇̄X∗(∂i)X∗(∂k), ν〉hkj − (F̄ − F )R̄i0j0

= Hess∇F (∂i, ∂j) + (F̄ − F )hikh
k
j − (F̄ − F )R̄i0j0.

Note that the definition of Ḟ and F̈ allow us to write Hess∇F as follows:

Hess∇F (∂i, ∂j) = ∇i∇jF = ∇i(Ḟ
l
k∇jh

k
l )

= Ḟ l
k∇i∇jh

k
l + F̈ l

k
n
m∇ih

m
n ∇jh

k
l

= Ḟ kl∇i∇jhkl + F̈ l
k
n
m∇ih

m
n ∇jh

k
l .

Recall a form of Simons’ identity [52], which is a consequence of the Gauß
and Codazzi equations:

∇i∇jhkl = ∇k∇lhij + hijhkph
p
l − hiph

p
l hkj + hilhkph

p
j − hiph

p
jhkl

+ R̄ikjph
p
l + R̄iklph

p
j + R̄plkjh

p
i + R̄pjlih

p
k + R̄0k0lh

ij − R̄0i0jh
p
kl

+ ∇̄iR̄0lkj + ∇̄kR̄0jli,

where ν is arranged to be e0. Therefore

∂thij = Ḟ kl∇k∇lhij + F̈ l
k
n
m∇ih

m
n ∇jh

k
l(3.7)

+ Ḟ kl
{
hijhkph

p
l − hiph

p
l hkj + hilhkph

p
j − hiph

p
jhkl

+ R̄ikjph
p
l + R̄iklph

p
j + R̄plkjh

p
i + R̄pjlih

p
k + R̄0k0lh

ij − R̄0i0jh
p
kl

+ ∇̄iR̄0lkj + ∇̄kR̄0jli

}
+ (F̄ − F )hikh

k
j − (F̄ − F )R̄i0j0.

Also note that in our case where the background space is a hyperbolic space,
the ambient space is locally symmetric (∇̄R̄ = 0) and the Riemannian cur-
vature tensor takes the form

(3.8) R̄αβγδ = −a2 (ḡαγ ḡβδ − ḡαδ ḡβγ) .

Since F is a homogeneous function of the Weingarten map W of degree mβ,
then

(3.9) ḞW = mβF

Then, the relations (3.8) with ∇̄R̄ = 0 and (3.9) apply to (3.7) to give:

∂thij = Ḟ kl∇k∇lhij + F̈ l
k
n
m∇ih

m
n ∇jh

k
l + Ḟ l

kh
k
ph

p
l hij + a2Ḟ k

k hij

+
[
F̄ − (mβ + 1)F

]
hikh

k
j + a2

[
F̄ − (mβ + 1)F

]
gij .
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Hence in compact notation we have (3.5).
Finally recalling that W = g−1A we have

∂tW = g−1∂tA+ ∂tg
−1A

= ΔḞW + F̈ (∇·W ,∇·W ) +
[
trḞ (AW ) + a2tr(Ḟ )

]
W

+
[
F̄ + (mβ − 1)F

]
W 2 + a2

[
F̄ − (mβ + 1)F

]
Id− 2(F̄ − F )W 2

= ΔḞW + F̈ (∇·W ,∇·W ) +
[
trḞ (AW ) + a2tr(Ḟ )

]
W

− [
F̄ + (mβ − 1)F

]
W 2 + a2

[
F̄ − (mβ + 1)F

]
Id,

which is (3.6). �
In the next theorem, we derive the evolution of any homogeneous func-

tion of the Weingarten map W defined on an evolving hypersurface Mt of
H

n+1
κ under the flow (1.1).

Theorem 3.3. If G is a homogeneous function of the Weingarten map W
of degree α, then the evolution equation of G under the flow (1.1) in H

n+1
κ

is the following

∂tG = ΔḞG− Ḟ G̈(∇·W ,∇·W ) + ĠF̈ (∇·W ,∇·W )

+ α
[
trḞ (AW ) + a2tr(Ḟ )

]
G− [

F̄ + (mβ − 1)F
]
ĠW 2

+ a2
[
F̄ − (mβ + 1)F

]
tr(Ġ).

Proof. The definition of Ġ and G̈ allow us to write Hess∇G as follows:

Hess∇G = ĠHess∇W + G̈(∇·W ,∇·W ),

which gives

ΔḞG = Ḟ g−1Hess∇G = ĠΔḞW + Ḟ G̈(∇·W ,∇·W).

Therefore, by (3.6)

∂tG = Ġ∂tW

= ĠΔḞW + ĠF̈ (∇·W ,∇·W ) +
[
trḞ (AW ) + a2tr(Ḟ )

]
ĠW

− [
F̄ + (mβ − 1)F

]
ĠW 2 + a2

[
F̄ − (mβ + 1)F

]
tr(Ġ)

= ΔḞG− Ḟ G̈(∇·W ,∇·W ) + ĠF̈ (∇·W ,∇·W )

+ α
[
trḞ (AW ) + a2tr(Ḟ )

]
G− [

F̄ + (mβ − 1)F
]
ĠW 2

+ a2
[
F̄ − (mβ + 1)F

]
tr(Ġ),
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where Euler’s relation ĠW = αG is used in the last line. �

An immediate application of the theorem above is to obtain the evolution
equations for H, and F .

Proposition 3.4. For the ambient space Nn+1 = H
n+1
κ , on any solution

Mt of (1.1) the following hold:

∂tH = ΔḞH + tr
[
F̈ (∇·W ,∇·W )

]
+

[
trḞ (AW ) + a2tr(Ḟ )

]
H(3.10)

− (
F̄ + (mβ − 1)F

)|A|2 + na2
[
F̄ − (mβ + 1)F

]
,

∂tF = ΔḞF + (F − F̄ )
[
trḞ (AW )− a2tr(Ḟ )

]
.(3.11)

For the proof of the main theorem, as mentioned in the introduction,
it is convenient for us to define some suitable perturbations of the second
fundamental form. Define the shifted second fundamental form

h̃ij = hij − agij .

Denote Ã (resp. W̃ ) the matrix whose entries are h̃ij (resp. h̃ij), Then λ̃i

given by

λ̃i = λi − a, i ∈ 1, . . . , n,

are the eigenvalues of W̃ . Denote the elementary symmetric functions of the
λ̃i by Ẽr, 1 ≤ r ≤ n. From the definition it follows that

H̃ = trW̃ = Ẽ1 =

n∑
i=1

λ̃i = H − na,

∣∣Ã∣∣2 = tr(W̃ tW̃ ) =

n∑
i=1

λ̃2
i =

∣∣A∣∣2 + na2 − 2Ha,

K̃ = det W̃ = det{h̃ij} =

n∏
i=1

λ̃i.

It is easy to check that

∇kh̃ij = ∇khij ,

and therefore the Codazzi equation holds for ∇kh̃ij .
The following theorem is easily obtained from (3.1), (3.2), (3.5) and (3.6)

by the definitions of Ã and W̃ .
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Theorem 3.5. For the ambient space Nn+1 = H
n+1
κ , on any solution Mt

of (1.1) the following hold:

∂tÃ = ΔḞ Ã+ F̈ (∇·W̃ ,∇·W̃ ) +
[
F̄ − (mβ + 1)F

]
AW̃(3.12)

+ a
[
(mβ + 1)F − F̄

]
Ã+ trḞ (ÃW̃ )A.

∂tW̃ = ΔḞ W̃ + F̈ (∇·W̃ ,∇·W̃ ) +
[
(1−mβ)F − F̄

]
W W̃(3.13)

+ a
[
(mβ + 1)F − F̄

]
W̃ + trḞ (ÃW̃ )W .

Proof. By (3.1) and (3.5)

∂tÃ = ∂tA− a ∂tg

= ΔḞA+ F̈ (∇·W ,∇·W ) +
[
trḞ (AW ) + a2tr(Ḟ )

]
A

+
[
F̄ − (mβ + 1)F

]
AW + a2

[
F̄ − (mβ + 1)F

]
g − 2a(F̄ − F )A

= ΔḞ Ã+ F̈ (∇·W̃ ,∇·W̃ ) +
[
trḞ (ÃW̃ ) + 2amβ F

]
A

+
[
F̄ − (mβ + 1)F

]
AW̃ + a

[
F̄ − (mβ + 1)F

]
A

+ a2
[
F̄ − (mβ + 1)F

]
g − 2a(F̄ − F )A

= ΔḞ Ã+ F̈ (∇·W̃ ,∇·W̃ ) +
[
F̄ − (mβ + 1)F

]
AW̃

+ a
[
(mβ + 1)F − F̄

]
Ã+ trḞ (ÃW̃ )A,

where the third line follows by the relation

trḞ (AW ) = trḞ (ÃW̃ ) + 2amβ F − a2tr(Ḟ ).

Then (3.12) and (3.2) together imply (3.13). �

The evolution equation (3.13) of W̃ applies to give the evolution of any
homogeneous function of the W̃ defined on an evolving hypersurface Mt of
H

n+1
κ under the flow (1.1).

Theorem 3.6. If P is a homogeneous function of the shifted Weingarten
map W̃ of degree γ , then the evolution equation of P under the flow (1.1)
in H

n+1
κ is the following

∂tP = ΔḞP − Ḟ P̈ (∇·W ,∇·W ) + Ṗ F̈ (∇·W ,∇·W ) +
[
(1−mβ)F − F̄

]
Ṗ W̃ 2

+ 2a γ
(
F − F̄

)
P + trḞ (ÃW̃ )ṖW .

An immediate application of the theorem above is to obtain the evolution
equations for H̃, and H̃n and K̃.
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Proposition 3.7. For the ambient space Nn+1 = H
n+1
κ , on any solution

Mt of (1.1) the following hold:

∂tH̃ = ΔḞ H̃ + tr
[
F̈ (∇·W̃ ,∇·W̃ )

]− (
F̄ + (mβ − 1)F

)|Ã|2(3.14)

+ 2a(F − F̄ )H̃ + trḞ (ÃW̃ )H,

∂tH̃
n = ΔḞ H̃

n − n(n− 1)H̃n−2|∇H̃|2
Ḟ
+ nH̃n−1tr

[
F̈ (∇·W̃ ,∇·W̃ )

]
(3.15)

+ n
(
(1−mβ)F − F̄

)
H̃n−1|Ã|2 + 2an(F − F̄ )H̃n

+ n trḞ (ÃW̃ )H̃n + an2trḞ (ÃW̃ )H̃n−1,

∂tK̃ = ΔḞ K̃ − Ḟ ¨̃K(∇·W̃ ,∇·W̃ ) + ˙̃KF̈ (∇·W̃ ,∇·W̃ )(3.16)

+
[
(1−mβ)F − F̄

] ˙̃KW̃ 2 + 2an
(
F − F̄

)
K̃

+ trḞ (ÃW̃ ) ˙̃KW .

Furthermore, (3.16) can be rewritten as

Lemma 3.8. For the ambient space Nn+1 = H
n+1
κ , on any solution Mt

of (1.1) the following holds:

∂tK̃ = ΔḞ K̃ − (n− 1)

n

∣∣∣∇K̃
∣∣∣2
Ḟ

K̃
+

K̃

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

(3.17)

− H̃2n

nK̃

∣∣∣∇(K̃H̃−n)
∣∣∣2
Ḟ
+ K̃ trb̃

(
F̈ (∇W̃ ,∇W̃ )

)
+

[
(1−mβ)F − F̄

]
K̃H̃ + 2an

(
F − F̄

)
K̃

+ ntrḞ (ÃW̃ )K̃ + atrḞ (ÃW̃ )K̃tr(b̃),

where b̃ := W̃ −1.

Proof. Note that

(3.18) ˙̃K = K̃b̃,

this implies

(3.19) ˙̃KW̃ 2 = K̃H̃,

and

(3.20) ˙̃KF̈ (∇·W̃ ,∇·W̃ ) = K̃b̃F̈ (∇·W̃ ,∇·W̃ ) = K̃ trb̃

(
F̈ (∇W̃ ,∇W̃ )

)
.
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A direct calculation as for example in Lemma 3.2 of [20] gives

(3.21) − Ḟ ¨̃K(∇·W̃ ,∇·W̃ ) = −

∣∣∣∇K̃
∣∣∣2
Ḟ

K̃
− K̃ trḞ

(
∇b̃∇W̃

)
and

−K̃ trḞ

(
∇b̃∇W̃

)
=

K̃

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

(3.22)

+

∣∣∣∇K̃
∣∣∣2
Ḟ

nK̃
− H̃2n

nK̃

∣∣∣∇(K̃H̃−n)
∣∣∣2
Ḟ
.

Therefore, identities (3.19), (3.20), (3.21) and (3.22) together apply to (3.16)
to give (3.17). �

4. Preserving pinching

To control the pinching of the principal curvatures along the flow (1.1) of
Euclidean spaces, Schulze, in [51], following an idea of Tso [54], looked at a
test function Q = K/Hn, which was also considered in [19]. An analogous
quantity which is the quotient Q̃ = K̃/H̃n is more natural for our flow.
By the arithmetic-geometric mean inequality, Q̃ ≤ 1/nn on Mt and equality
holds at a point in Mt if and only if λ̃1 = · · · = λ̃n, i.e, λ1 = · · · = λn at the
point. Thus, the only hypersurfaces such that Q̃ = 1/nn are the geodesic
spheres. The rest of this section consists of showing the inequality Q̃ ≥ C > 0
remains under the evolution.

Lemma 4.1. For the ambient space Nn+1 = H
n+1
κ , on any solution Mt

of (1.1) the following holds:

∂tQ̃ = ΔḞ Q̃+
(n+ 1)

nH̃n

〈
∇Q̃,∇H̃n

〉
Ḟ
− (n− 1)

nK̃

〈
∇Q̃,∇K̃

〉
Ḟ

(4.1)

− H̃n

nK̃

∣∣∣∇Q̃
∣∣∣2
Ḟ
+

Q̃

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

+ Q̃ trb̃− n

H̃
Id

(
F̈ (∇W̃ ,∇W̃ )

)
+

[
(mβ − 1)F + F̄

] Q̃
H̃

(
n
∣∣Ã∣∣2−H̃2

)
+ aQ̃trḞ (ÃW̃ )

(
tr(b̃)− n2

H̃

)
.
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Proof. By (3.15) and (3.17)

∂tQ̃ =
1

H̃n
∂tK̃ − 1

H̃2n
∂tH̃

n(4.2)

=
ΔḞ K̃

H̃n
− K̃

H̃2n
ΔḞ H̃

n − (n− 1)

n

∣∣∣∇K̃
∣∣∣2
Ḟ

K̃H̃n

− Q̃

n

∣∣∣∇Q̃
∣∣∣2
Ḟ
+ n(n− 1)

Q̃

H̃2

∣∣∣∇H̃
∣∣∣2
Ḟ

+
Q̃

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

+ Q̃ trb̃− n

H̃
Id

(
F̈ (∇W̃ ,∇W̃ )

)

+
[
(mβ − 1)F + F̄

] Q̃
H̃

(
n
∣∣Ã∣∣2−H̃2

)
+ aQ̃trḞ (ÃW̃ )

(
tr(b̃)− n2

H̃

)
.

Furthermore, the first derivative and second derivative term in (4.2) can be
computed as follows, the equality

∇
(

K̃

H̃n

)
=

∇K̃

H̃n
− K̃

H̃2n
∇H̃n

implies

ΔḞ

(
K̃

H̃n

)
=

ΔḞ K̃

H̃n
− 2

〈
∇H̃n,∇K̃

〉
Ḟ

H̃2n
(4.3)

+ 2
K̃

H̃3n

∣∣∇H̃n
∣∣2
Ḟ
− K̃

H̃2n
ΔḞ H̃

n,

〈
∇

(
K̃

H̃n

)
,∇H̃n

〉
Ḟ

=

〈
∇H̃n,∇K̃

〉
Ḟ

H̃n
− K̃

H̃2n

∣∣∇H̃n
∣∣2
Ḟ
,(4.4)

and

〈
∇

(
K̃

H̃n

)
,∇K̃

〉
Ḟ

=

∣∣∇K̃
∣∣2
Ḟ

H̃n
− K̃

H̃2n

〈
∇H̃n,∇K̃

〉
Ḟ
.(4.5)
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From (4.3), (4.4) and (4.5), it follows

ΔḞ K̃

H̃n
− K̃

H̃2n
ΔḞ H̃

n − (n− 1)

n

∣∣∣∇K̃
∣∣∣2
Ḟ

K̃H̃n
(4.6)

= ΔḞ

(
K̃

H̃n

)
+

(n+ 1)

nH̃n

〈
∇

(
K̃

H̃n

)
,∇H̃n

〉
Ḟ

− (n− 1)

nK̃

〈
∇

(
K̃

H̃n

)
,∇K̃

〉
Ḟ

− n(n− 1)
K̃

H̃n+2

∣∣∇H̃
∣∣2
Ḟ
.

Thus, equation (4.6) applies to (4.2) to give (4.1). �

In order to apply the maximum principle to (4.1) and show that
minp∈Mt

Q̃(p, t) is non-decreasing in time some preliminary inequalities are
needed in the sequel. The following elementary property is a consequence of
([19], Lemma 4.2) (see also [20] and [51]).

Lemma 4.2. Given ε ∈ (0, 1/n), there exists a constant C = C(ε, n) ∈
(0, 1/nn) such that, for any λ̃ = (λ̃1, . . . , λ̃n) ∈ R

n with λ̃i > 0 for all i =
1, . . . , n,

K̃(λ̃) > CH̃n(λ̃),

then, we have

λ̃1 > εH̃(λ̃).

The following estimate which is a stronger version of Lemma2.3 (ii) in
[31] can be viewed as a generalization of Cabezas-Rivas and Miquel in [19].

Lemma 4.3. If H̃ > 0 and the inequality W̃ > εH̃Id is valid with some
ε > 0 at a point on a hypersurface immersed in H

n+1
κ , then ε ≤ 1/n and

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2 ≥ n− 1

2
ε2H̃2

∣∣∣∇W̃
∣∣∣2 .

Proof. The proof of the Lemma can be argued exactly as in ([19], Lemma4.1),
only by defining W̃ := W − a Id at a point on a hypersurface immersed in
H

n+1
κ . �

Also as in [19], the preceding two lemmas allow us to prove the pinching
estimate for our flow, which is one of the key steps in the proof of our main
result.
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Theorem 4.4. There exists a constant C∗ = C(n,m, β) ∈ (0, 1/nn) with
the following property: if X : M×(0, T )→H

n+1
κ , with t∈(0, T ), is a smooth

solution of (1.1)–(1.2), with F given by (1.4) for some β > 1/m, such that

• the initial immersion X0 satisfies (1.6) with the constant C∗,

• the solution Mt = X(M, t) satisfies H̃ > 0 for all times t ∈ (0, T ),

then the minimum of K̃/H̃n on Mt is nondecreasing in time.

Proof. The assumption H̃ > 0 on initial hypersurface ensures that the quo-
tient Q̃ is well-defined for t ∈ (0, T ). For proof of the theorem, it is sufficient
to prove that the minimum of Q̃ (denote by Q̃) is nondecreasing in time.
First, by (1.6), λ̃1 > 0 on Mt for t = 0, then this implies that λ̃1 > 0 on
Mt for t ∈ (0, T ). In fact, suppose to the contrary that there exists a first
time t0 > 0 at which λ̃1 = 0 at some point, then Q̃(t0) = 0. On the other
hand, since the theorem holds in the h-convex case, Q̃(t) is nondecreasing
in (0, t0), so it cannot decrease from C∗ to zero which gives a contradiction.
Now applying the maximum principle to equation (4.1) for Q̃ gives

∂tQ̃ ≥ Q̃

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

+ Q̃ trb̃− n

H̃
Id

(
F̈ (∇W̃ ,∇W̃ )

)
(4.7)

+
[
(mβ − 1)F + F̄

] Q̃
H̃

(
n
∣∣Ã∣∣2−H̃2

)
+ aQ̃trḞ (ÃW̃ )

(
tr(b̃)− n2

H̃

)
.

≥ Q̃

{
1

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

−
∣∣∣∣b̃− n

H̃
Id

∣∣∣∣
∣∣∣F̈ (∇W̃ ,∇W̃ )

∣∣∣
+

[
(mβ − 1)F + F̄

] 1
H̃

(
n
∣∣Ã∣∣2−H̃2

)
+ atrḞ (ÃW̃ )

(
tr(b̃)− n2

H̃

)}
.

The various terms appearing here can be estimated as follows, as in [19,
Theorem 4.3]. The h-convexity of Mt implies that the third term of RHS
in inequality (4.7) can be dropped with the strictly h-convexity on Mt. The
last term can also be dropped by the arithmetic-harmonic mean inequality,

n∑
i=1

b̃ii −
n2

H̃
≥ 0
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on Mt. It remains to estimate the first two terms of RHS in inequality (4.7),
now proceeding exactly as in [19], [20] and [51], choose orthonormal frame
which diagonalizes W̃ so that∣∣∣H̃∇W̃ − W̃ ∇H̃

∣∣∣2
Ḟ ,b̃

=
∑
i,m,n

Ḟ i 1

λ̃m

1

λ̃n

(
H̃∇ih̃

n
m − h̃nm∇iH̃

)2
(4.8)

≥ 1

H̃2

∑
i,m,n

Ḟ i
(
H̃∇ih̃

n
m − h̃nm∇iH̃

)2

where λ̃m ≤ H̃ was used in the last inequality by strictly h-convexity of
Mt, i.e., λ̃m > 0 for any m. Now the property that each Ḟ i is positive in the
interior of the positive cone can be used. More precisely, for any ε ∈ (0, 1/n],
we set

Ξε := {λ̃ = (λ̃1, . . . , λ̃n) ∈ R
n : min

1≤i≤n
λ̃i ≥ ε(λ̃1 + · · ·+ λ̃n) > 0 },

and

W1(ε) = min{Ḟ i(λ̃) : 1 ≤ i ≤ n, λ̃ ∈ Ξε, |λ̃| = 1}.
By homogeneity of Ḟ i with degree mβ − 1 and Lemma 2.1 ii), exactly as in
the formula at the top of p.453 of [19], the following inequality holds:

Ḟ i(λ̃) ≥ W1(ε)|λ̃|mβ−1, λ̃ ∈ Ξε,

where W1(ε) is an increasing positive function of ε. This estimation, h-
convexity of a hypersurface and Lemma 4.3 together imply that the in-
equality (4.8) can be estimated as follows:∣∣∣H̃∇W̃ − W̃ ∇H̃

∣∣∣2
Ḟ ,b̃

≥ n− 1

2
W1(ε)ε

2|W̃ |mβ−1
∣∣∣∇W̃

∣∣∣2 ,(4.9)

for some ε ∈ (0, 1/n).

The term
∣∣∣F̈ (∇W̃ ,∇W̃ )

∣∣∣ is smooth as long as λ̃i > 0 for any i, homo-

geneous of degree mβ − 2 in λ̃i and quadratic in ∇W̃ . Thus the following

estimation of the term
∣∣∣F̈ (∇W̃ ,∇W̃ )

∣∣∣ can be derived as in [19, inequality

(4.7)]: For any ε ∈ (0, 1/n), there exists a constant W2(ε) such that, at any
point where W̃ ≥ εH̃Id,

(4.10)
∣∣∣F̈ (∇W̃ ,∇W̃ )

∣∣∣ ≤ W2(ε)|W̃ |mβ−2
∣∣∣∇W̃

∣∣∣2 ,
where W2(ε) is decreasing in ε.
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A next step is to show that
∣∣∣b̃− n

H̃
Id

∣∣∣ is small if the principal curvatures

are pinched enough. It is clear that∣∣∣∣b̃− n

H̃
Id

∣∣∣∣ ≤ √
nmax

{(
1

λ̃1

− n

H̃

)
,

(
n

H̃
− 1

λ̃n

)}
.

Since for some ε ∈ (0, 1/n)

(4.11) λ̃1 ≥ εH̃,

then

(4.12)
1

λ̃1

− n

H̃
≤ 1− εn

εH̃
.

On other hand, (4.11) gives

(4.13) λ̃n ≤ (1− (n− 1)ε) H̃

which implies that

(4.14)
n

H̃
− 1

λ̃n

≤ (n− 1) (1− nε)

H̃ (1− (n− 1)ε)
.

This combines with estimate (4.12) to give

(4.15)

∣∣∣∣b̃− n

H̃
Id

∣∣∣∣ ≤ N (ε)

H̃
,

where

N (ε) =

⎧⎪⎪⎨
⎪⎪⎩

√
n(1− εn)

ε
, 0 < ε ≤ 1

2(n− 1)
,

√
n(n− 1) (1− nε)

(1− (n− 1)ε)
,

1

2(n− 1)
< ε <

1

n
.

Thus, the inequalities H̃ < H,
∣∣H∣∣2 ≤ n

∣∣W ∣∣2, estimations (4.8), (4.9), (4.10)
and (4.15) together give:

1

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

−
∣∣∣∣b̃− n

H̃
Id

∣∣∣∣ ∣∣∣F̈ (∇W̃ ,∇W̃ )
∣∣∣(4.16)

≥ 1

H̃
|W |mβ−2

∣∣∣∇W̃
∣∣∣2 ((n− 1)

2
√
n

W1(ε)ε
2 −W2(ε)N (ε)

)
.

To achieve our purpose by application of the maximum principle, it is nec-

essary that F (ε) :=
(
(n−1)
2
√
n
W1(ε)ε

2 −W2(ε)N (ε)
)
is non-negative on Mt.
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In fact, N (ε) is a strictly decreasing function of ε; in addition, N (ε) is
arbitrarily large as ε goes to zero and tends to zero as ε goes to 1/n by
definition, W1(ε) is increasing and W2(ε) is decreasing. Therefore, F (ε) is a
strictly increasing function of ε, it is negative as ε goes to zero and positive
as ε goes to 1/n. So there exists a unique value ε0 ∈ (0, 1/n) such that

(4.17) F (ε0) = 0.

By Lemma 4.2 there exists a constant C∗ ∈ (0, 1/nn) satisfies Q̃(λ̃) > C∗

such that λ̃1 > εH̃(λ̃) with a ε0 ∈ (0, 1/n) given by (4.17). Thus, if Q̃ > C∗ ≥
0 everywhere on the initial hypersurface, applying the maximum principle
for Q̃ implies that ∂tQ̃ ≥ 0, i.e., Q̃ is nondecreasing in time. This guarantees
that Q̃ > C∗ is preserved under the Hβ

m-flow in H
n+1
κ . �

Theorem 4.4 asserts that inequality Q̃ > C∗ holds for all t ∈ [0, T ), fur-
thermore, the definition of C∗ together with Lemma 4.2 shows that

(4.18) λ̃i ≥ ε0H̃ on M × [0, T ) for each i,

where ε0 is given by (4.17), which implies

(4.19) λi ≥ ε0H on M × [0, T ) for each i.

5. Upper bound on F

In this section uniform bounds from above on the speed for the flow and
for the curvature of the hypersurface are derived, depending only on the
initial data. The bounds on curvatures together with the estimates in the
next section will imply the long time existence of the flow by well-known
arguments. In order to achieve this, the method is to study the evolution
under (1.1) of the function

(5.1) Zt =
F

Φ− ε
.

Here Φ = sκ(rp)〈ν, ∂rp〉, which could be seen as “support function” of Mn

in H
n+1
κ , and ε is a constant to be chosen later. The method used to obtain

these bounds is very robust, and applies to the Gauss curvature flow in [54],
the flow with a general class of speeds in [3], volume-preserving anisotropic
mean curvature flow [7], the mixed volume preserving mean curvature flows
in [44], mixed volume preserving curvature flow in [45], volume preserving
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mean curvature flow in the hyperbolic space in [17] and volume preserving
flow by powers of the mth mean curvature in [19].

Given a function f : R → R, f(rp) will mean f ◦ rp. An extension of [17,
Lemma 2.1] will be needed later.

Lemma 5.1. In H
n+1
κ ,

〈∇̄X∂rp , Y 〉 = ∇̄2rp(X,Y ) =

{
0 if X = ∂rp
coκ(rp)〈X,Y 〉 if 〈X, ∂rp〉 = 0,

(5.2)

Δ̄Ḟ rp = tr(Ḟ )coκ(rp).(5.3)

Moreover, if f : R −→ R is a C2 function,

Δ̄Ḟ (f(rp)) = f ′′(rp)|∂rp |2Ḟ + f ′(rp) Δ̄Ḟ rp.(5.4)

And, for the restriction of rp to a hypersurface M of Hn+1
κ , one has

ΔḞ rp = −trḞ (W )〈ν, ∂rp〉+ coκ(rp)
(
tr(Ḟ ) − |∂�rp |2Ḟ

)
.(5.5)

ΔḞ (f(rp)) = f ′′(rp) |∂�rp |2Ḟ + f ′(rp) ΔḞ rp(5.6)

= (f ′′(rp)− f ′(rp) coκ(rp))|∂�rp |2Ḟ
+ f ′(rp) (tr(Ḟ ) coκ(rp)− trḞ (W )〈ν, ∂rp〉).

Proof. First (5.2) and (5.3) follow from [46] (see also [29]), and (5.4) fol-
lows from a direct calculation. On the other hand, the Gauß and Codazzi
equations give the following:

Hess∇̄rp(X,Y ) = ∇̄2rp(X,Y ) = 〈∇̄X∂rp , Y 〉
= 〈∇X∇rp, Y 〉+A(X,Y )

〈
∂rp , ν

〉
= ∇2rp(X,Y ) +A(X,Y )

〈
∂rp , ν

〉
= Hess∇rp(X,Y ) +A(X,Y )

〈
∂rp , ν

〉
,

Combining this with (5.2) gives (5.5). (5.5) gives (5.6) by a direct calculation.
�
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Corollary 5.2. For t ∈ [0, T ) and any constant ε,

∂tZ = ΔḞZ +
2 〈∇Z,∇Φ〉Ḟ

Φ− ε
− F̄

Φ− ε

(
trḞ (AW )− a2tr(Ḟ )

)
(5.7)

− cκ(r)
Z

Φ− ε
F̄ − ε

Z

Φ− ε
trḞ (AW )− a2tr(Ḟ )Z

+ (1 +mβ)cκ(r)Z
2.

Proof. Using (1.1) and (5.2) a direct calculation gives

(5.8) ∇̄t(sκ(rp)∂rp) = cκ(rp)(F̄ − F )ν,

which implies that

(5.9) ∂tΦ = sκ(rp)〈∂rp ,∇F 〉+ cκ(rp)(F̄ − F )

by combining (3.4). On the other hand, a direct calculation gives

ΔḞΦ =
〈
ν, ∂rp

〉
ΔḞ sκ(rp) + 2

〈∇sκ(rp),∇〈ν, ∂rp〉
〉
Ḟ

(5.10)

+ sκ(rp)ΔḞ 〈ν, ∂rp〉.
Taking f = sκ and using (5.6) give

(5.11) ΔḞ (sκ(rp)) = − 1

sκ(rp)
|∂�rp |2Ḟ − cκ(rp) trḞ (W )〈ν, ∂rp〉+ tr(Ḟ )

c2κ
sκ

(rp).

Choosing a frame {ei} at p which is normal to ν and tangent to Mt. Direct
computations having into account (5.2) give

〈∇sκ(rp),∇〈∂rp , ν〉〉Ḟ(5.12)

= −cκ(rp)
2

sκ
(rp)

〈
∂rp , ν

〉 |∂�rp |2Ḟ + cκ(rp) Ḟ
i
j A(∂�rp , 〈∂�rp , ej〉ei).

Since

ΔḞ 〈ν, ∂rp〉 = 〈ν, Δ̄Ḟ∂rp〉+ 〈Δ̄Ḟ ν, ∂rp〉+ 2〈∇̄ν, ∇̄∂rp〉Ḟ ,(5.13)

〈ν, ∇̄i∇̄j∂rp〉 =
1

s2κ(rp)
〈∂rp , ei〉〈∂rp , ej〉〈∂rp , ν〉(5.14)

− coκ(rp)hij − co2κ(rp) gij 〈ν, ∂rp〉
+ 2 co2κ(rp)〈∂rp , ei〉〈∂rp , ej〉〈∂rp , ν〉
+ coκ(rp) hij〈ν, ∂rp〉2,

〈∇̄jν, ∇̄i∂rp〉 = coκ(rp) hij − coκ(rp) h(∂
�
rp , 〈∂�rp , ej〉ei),(5.15)
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and

〈∇̄i∇̄jν, ∂rp〉 = 〈∂rp , ek〉 ∇̄k(hij)− 〈ν, ∂rp〉hki hkj ,(5.16)

we have by combining (5.13), (5.14), (5.15) and (5.16)

ΔḞ 〈∂rp , ν〉 =
1

s2κ(rp)

〈
∂rp , ν

〉 |∂�rp |2Ḟ + coκ(rp) trḞ (W )(5.17)

− tr(Ḟ ) co2κ(rp)〈∂rp , ν〉+ 2 co2κ(rp) 〈ν, ∂rp〉|∂�rp |2Ḟ
+ coκ(rp)〈ν, ∂rp〉2 trḞ (W )

− 2 coκ(rp) Ḟ
i
j A(∂�rp , 〈∂�rp , ej〉ei)

+ 〈∂�rp ,∇F 〉 − 〈
∂rp , ν

〉
trḞ (AW ).

From (5.10), (5.11), (5.12) and (5.17) it follows

ΔḞΦ = coκ(rp) trḞ (W ) + sκ(rp)〈∂rp ,∇F 〉 − Φ trḞ (AW ).

Combining this with (5.9) yields

(5.18) ∂tΦ = ΔḞΦ+ Φ trḞ (AW ) + cκ(rp)
(
F̄ − F − trḞ (W )

)
.

From (5.18), (3.11) and (5.1), it follows

∂tZ =
1

Φ− ε

(
ΔḞF + (F − F̄ )

[
trḞ (AW )− a2tr(Ḟ )

])
(5.19)

− F

(Φ−ε)2
(
ΔḞΦ+Φ trḞ (AW )+cκ(rp)

(
F̄−F−trḞ (W )

))
.

Another computation leads to

ΔḞZ =
ΔḞF

Φ− ε
− FΔḞΦ

(Φ− ε)2
− 2

1

Φ− ε
〈∇Z,∇Φ〉Ḟ .(5.20)

Inserting (5.20) into (5.19), a few more computations having into account
trḞ (W ) = mβF by Euler’s relation gives the desired evolution equation (5.7)
of Z. �

To get a finite and independent of t upper bound for Z by application of the
maximum principle, firstly it is necessary to get bounds for rp and

〈
∂rp , ν

〉
.

The following estimate on rp for the preserving volume mean curvature flow
in [17] is also valid in our case with the help of Lemma 2.3 i).
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Lemma 5.3. [17] Let ψ be the inverse of the function s �→ vol(Sn)

∫ s

0
s(�)d�

and ξ the inverse function of s �→ s+ a ln

(
1 +

√
taκ(

s
2)
)2

1 + taκ(
s
2)

. If V0 = vol(Ω0)

and ρ−(t) is the inradius of Ωt, then

(5.21) ξ(ψ(V0)) ≤ ρ−(t) ≤ ψ(V0),

for every t ∈ [0, T ).

An immediate consequence of the lemma above and Lemma 2.3 i) is

Corollary 5.4. For every t ∈ [0, T ), if p, q ∈ Ωt, then

(5.22) dist(p, q) < 2(ψ(V0) + a ln 2).

Now, if pt0 ∈ Ωt for an arbitrary fixed t0 ∈ [0, T ), then using (5.22) gives
an upper bound rpt0

(x) ≤ 2(ψ(V0) + a ln 2) for every x ∈ Mt. Thus, for an
upper bound on F , it is necessary to show that a geodesic ball with fixed
center remains inside the evolving Ωt for a short time.

Lemma 5.5. If B(pt0 , ρt0) ⊂ Ωt0 for some t0 ∈ [0, T ), where ρt0 = ρ−(t0) is
the inradius of Mt0, then there exists some constant τ = τ(a, n,m, β, V0) > 0
such that B(pt0 , ρt0/2) ⊂ Ωt for every t ∈ [t0,min{t0 + τ, T}).

Proof. Proceeding similarly as in [17, Lemma 8], our procedure is to compare
the deformation of Mt by the equation (1.1) with a geodesic sphere shrinking
under the Hβ

m-flow.
For convenience, let rB(t) be the radius at time t of a geodesic sphere

∂B(pt0 , rB(t)) centered at pt0 , evolving under Hβ
m-flow and with the initial

condition rB(t0) = ρt0 . The radius of the evolving geodesic sphere
∂B(pt0 , rB(t)) satisfies

(5.23)
drB(t)

dt
= − comβ

κ (rB(t)).

with the initial condition rB(t0) = ρt0 , this ODE has solution

(5.24)

∫ r

ρt0

tamβ
κ (s)ds = −(t− t0).
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Denote F(r) :=
∫ r
ρt0

tamβ
κ (s)ds. Since F(r) is an increasing function in r,

then for t ≥ t0, rB(t) ≥ ρt0/2 if and only if

t ≤ t0 +

∫ ρt0

ρt0
/2
tamβ

κ (s)ds.

On the other hand, let G(s) = ∫ s
s/2 ta

mβ
κ (u)du, since s �→ taκ(s) is increasing,

then

dG(s)
ds

> 0

which shows that G(s) is an increasing function in s. Now using (5.21), this
gives that if

(5.25) t− t0 ≤
∫ ξ(ψ(V0))

ξ(ψ(V0))/2
tamβ

κ (s)ds =: τ,

then

(5.26) rB(t) ≥ ρt0/2.

For any x ∈ M , let r(x, t) = rpt0
(Xt(x)). From (1.1), it follows

(5.27)
dr

dt
= (F̄ (t)− F )

〈
νt, ∂rpt0

〉
.

If ϕ : R → R is a C2 function, set f(x, t) = ϕ(r(x, t))− ϕ(rB(t)), from (5.23)
and (5.27), it follows

(5.28) ∂tf = ϕ′(rpt0
) (F̄ (t)− F )

〈
νt, ∂rpt0

〉
+ ϕ′(rB)comβ

κ (rB).

On the other hand, from (5.6), it follows

Δf = Δt(ϕ(rpt0
))(5.29)

= (ϕ′′(rpt0
)− ϕ′(rpt0

) coκ(rpt0
)|∂�rp |2

+ ϕ′(rpt0
) (n coκ(rpt0

)−H〈ν, ∂rpt0 〉).
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Therefore, (5.28) can be rewritten as

∂tf =
F

H
Δf + ϕ′(rpt0

)
〈
νt, ∂rpt0

〉
F̄ (t)(5.30)

+ ϕ′(rB)comβ
κ (rB)− n

F

H
ϕ′(rpt0

)coκ(rpt0
)

+
F

H

[
ϕ′(rpt0

) coκ(rpt0
)− ϕ′′(rpt0

)
] |∂�rp |2.

Taking ϕ′(u) = taκ(u) in (5.30) gives

∂tf =
F

H
Δf + taκ(rpt0

)
〈
νt, ∂rpt0

〉
F̄ (t) + comβ−1

κ (rB)(5.31)

− n
F

H
+

F

H

(
1− 1

c2κ
(rpt0

)

)
|∂�rp |2.

Now, set t1 = inf{t>t0; pt0 /∈Ωt}. Because Ωt is h-convex, 2.3 ii) implies〈
νt, ∂rpt0

〉
≥ 0 for any t ∈ [t0, t1]. Thus, (5.31) combines with Lemma 2.1

iii) and the initial condition to give

(5.32)

⎧⎨
⎩

∂tf ≥ F
HΔf + comβ−1

κ (rB)−
(
H
n

)mβ−1
,

f(x, t0) = ϕ(r(x, t0))− ϕ(ρt0) ≥ 0.

Next, set �(t) := minx∈M r(x, t) for any t ∈ [t0, t1] and Θ(t) := {x ∈ M |
r(x, t) = �(t)}. Applying the minimum of f to (5.32) gives

(5.33)

⎧⎨
⎩

∂tfmin ≥ comβ−1
κ (rB)−

(
Hmax

n

)mβ−1
,

fmin(t0) ≥ 0.

Here Hmax = maxx∈Mt
H(x). Note that any point where the minimum of f

is attained is the point where the minimum of r is attained for any t ∈ [t0, t1],
and at the point the hypersurface is tangent to an inball of radius �(t), which
implies that Hmax = ncoκ(�) on any point of Θ(t). Thus, using a standard
comparison principle we conclude that

(5.34) f(x, t) ≥ 0

for any t ∈ [t0, t1] as long as f(x, t) is well defined for t ∈ [0, T ), and it follows

from (5.24) it is positive for t ∈ [t0, t0 +
∫ ξ(ψ(V0))
0 tamβ

κ (s)ds)(⊃ [t0, t0 + τ)).
Then f(x, t) ≥ 0 for any t ∈ [t0,min{t0 + τ, T, t1}).
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To complete the proof, assume that t1 < min{t0 + τ, T}. By (5.34),

r(x, t1 − ζ) ≥ rB(t1 − ζ) for all ζ ∈ (0, t1 − τ ].

Hence by (5.26),

r(x, t1) = lim
ζ→0+

r(x, t1 − ζ) ≥ rB(t1) ≥ ρt0/2,

which is a contradiction with r(x, t1) = rp0
(t1) = 0 by definition of t1. There-

fore, t1 ≥ min{t0 + τ, T}, which, together with (5.34) and (5.26), implies

�(t) ≥ ρt0/2 on [t0,min{t0 + τ, T}),

which concludes the proof. �

The above lemma assists us by allowing us to consider a uniform bound
on the speed of the flow.

Corollary 5.6. For t ∈ [0, T ),

(5.35) F (·, t) < C1 = C1(n,m, β, a,M0),

moreover,

(5.36) Hm(·, t) < C2 := C
1/β
1 .

Proof. For any fixed t0 ∈ [0, T ), let pt0 and ρt0 be as in Lemma 5.5. Then
by Corollary 5.4 and Lemma 5.5, on the hypersurface Mt for every t ∈
[t0,min{t0 + τ, T})

D1 :=
ξ(ψ(V0))

2
≤ rpt0

≤ ξ(ψ(V0)) =: D2.

Moreover, having into account Lemma 2.3 ii),

Φ = sκ(rpt0
)
〈
ν, ∂rpt0

〉
≥ asκ(D1)taκ(D1).

Then, taking the constant ε = asκ(D1)taκ(D1)/2 leads to

(5.37) Φ− ε ≥ ε > 0,

on the same time interval, which ensures Zt =
F

Φ−ε is well-defined.
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Let us go back to equation (5.7), since strict h-convexity holds for each
Mt, F , F̄ and trḞ (AW )− a2tr(Ḟ ) are all positive, which together with

(5.37), the two terms containing F̄ and the term a2tr(Ḟ )Z can be neglected.
Furthermore, note that F is homogeneous of degree mβ, Euler’s relation
and (4.19) together give the following

trḞ (AW ) = Ḟ iλ2
i ≥ ε0HḞ iλi = ε0mβHF.

Now from the above remark,

∂tZ ≤ ΔḞZ +
2 〈∇Z,∇Φ〉Ḟ

Φ− ε
− εε0mβHZ2 + (1 +mβ)cκ(D2)Z

2.(5.38)

On the other hand, from (5.37) and Lemma 2.1 iii) it follows

Z ≤ F

ε
≤ 1

ε

(
H

n

)mβ

.

Applying this to (5.38) gives

∂tZ ≤ ΔḞZ +
2 〈∇Z,∇Φ〉Ḟ

Φ− ε
+

(
(1 +mβ)cκ(D2)− ε1+

1

mβnmβε0Z
1

mβ

)
Z2.

Assume that in (x̄, t̄), t̄ ∈ [t0,min{t0 + τ, T}), Z attains a big maximum
C � 0 for the first time. Then

Z(x̄, t̄) ≥ C(Ψ− ε)(x̄, t̄) ≥ εC,

which gives a contradiction if

C > max
x∈Mn

{
Z(x, t0),

1

ε

(
cκ(D2)(mβ + 1)

nε0εmβ

)mβ
}
.

Thus,

Zt(x) ≤ max
x∈Mn

{
Z(x, t0),

1

ε

(
cκ(D2)(mβ + 1)

nε0εmβ

)mβ
}
,

on [t0,min{t0 + τ, T}).
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From the definition of Zt, the upper bound D2 of ρt it follows

F (x, t) ≤ (sκ(D2)− ε) max
x∈Mn

{
Z(x, t0),

1

ε

(
cκ(D2)(mβ + 1)

nε0εmβ

)mβ
}
,

on [t0,min{t0 + τ, T}). Since t0 is arbitrary, and τ does not depend on t0,
this implies

F (x, t) ≤ (sκ(D2)− ε) max
x∈Mn

{
Z(x, t0),

1

ε

(
cκ(D2)(mβ + 1)

nε0εmβ

)mβ
}

=: C1(n,m, β, a,M0),

on [0, T ), and so (5.36) follows by the definition of F . �
Inserting the estimate (5.35) into (1.2) immediately gives the following

Corollary 5.7. For t ∈ [0, T ),

(5.39) F̄ (t) < C1.

Hence the speed of the evolving hypersurfaces is bounded.

Corollary 5.8. For t ∈ [0, T ),

(5.40)

∣∣∣∣ ∂∂tX(p, t)

∣∣∣∣ < C3 := 2C1.

The curvature of Mt also remains bounded.

Corollary 5.9. For t ∈ [0, T ),

(5.41)
∣∣W ∣∣ < H ≤ C4.

Proof. The homogeneity of F , (4.19) and the inequality Lemma 2.1 iv) imply
that

mβF = Ḟ λi ≥ ε0Htr(Ḟ ) ≥ ε0HmβF 1− 1

mβ .

Thus, by (5.35)

H ≤ 1

ε0
F

1

mβ ≤ 1

ε0
C

1

mβ

1 =: C4,

and so with the h-convexity of Mt∣∣W ∣∣ < C4. �
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6. Long time existence

In this section, it is shown that solution of the initial value problem (1.1) with
the pinching condition (1.6) exists for all positive times. As usual, the first
step is to obtain suitable bounds on the solution on any finite time interval
[0, T ), which guarantees the problem (1.1) has a unique solution on the time
interval such that the solution converges to a smooth hypersurface MT as
t → T . Thus, it is necessary to show that the solution remains uniformly
convex on the finite time interval which ensure the parabolicity assumption
of (1.1).

First it is to show the preserving h-convexity of the evolving hyper-
surface Mt. Recall that Theorem 4.4 and Lemma 4.2 together imply the
uniform h-convexity of Mt, however, comparing with the initial assump-
tions of Theorem 1.6, there is a priori assumption H̃ > 0 in Theorem 4.4.
As Cabezas-Rivas and Sinestrari mentioned in [19], note that for small times
such an assumption holds due to the smoothness of the flow for small times
and the initial pinching condition (1.6), but it is possible that at some pos-
itive time both min K̃ and min H̃ tend to zero such that K̃/H̃n remains
bounded. Thus, to exclude such a possibility, following [19], it is necessary
to complement Theorem 4.4 by establishing positivity of H̃ for the finite
time.

Lemma 6.1. Under the hypotheses of Theorem 4.4,

(6.1) H̃ > 0 for all times t ∈ [0, T ).

Proof. Let us go back to the evolution equation (3.11) of F ,

∂tF = ΔḞF + (F − F̄ )
[
trḞ (AW )− a2tr(Ḟ )

]
.

Since under the hypotheses of Theorem 4.4, the evolving hypersurfaces Mt

remains h-convex for every t ∈ [0, T ), i.e. λi ≥ a on [0, T ), taking a normal
coordinate system at a point where W is diagonal, we have

[
trḞ (AW )− a2tr(Ḟ )

]
=

n∑
i=1

Ḟ i(λ2
i − a2) ≥ 0.
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Then we have the following computation of F :

∂tF ≥ ΔḞF − F̄

n∑
i=1

Ḟ i(λ2
i − a2) = ΔḞF − F̄

n∑
i=1

Ḟ i(λi + a)(λi − a)

≥ ΔḞF − C5

n∑
i=1

Ḟ i(λi − a)

= ΔḞF − C5

n∑
i=1

Ḟ i(λ)λi + C5

n∑
i=1

Ḟ i(λ)a,

where we have used the estimates (5.35) and (5.39) in the last line, and
C5 = C1(C4 + a).

Now by Lemma 2.1 iv) we have
∑n

i=1 Ḟ
i = tr(Ḟ ) ≥ mβ F 1− 1

mβ . Thus,
from the above evolution of F we have

∂tF ≥ ΔḞF − C5mβF + C5mβ F 1− 1

mβ a

≥ ΔḞF − C5mβF + C5mβamβ

= ΔḞF − C5mβ(F − amβ),

where we use the fact that F is homogeneous of degree mβ and that

F 1− 1

mβ (λ) ≥ (amβ)1−
1

mβ , since λ ≥ a and 1− 1
mβ ≥ 0. Now, letting f = F −

amβ , the function f satisfies

∂tf ≥ ΔḞ f − C5mβf.

The parabolic maximum principle and the fact f ≥ 0 now give

f(·, t) ≥ f(·, 0)e−C6t,

where C6 = C5mβ. This also implies that for all times t ∈ [0, T ), f > 0.
Thus,

F (·, t) ≥
(
amβ + f(·, 0)e−C6t

)
.

By Lemma 2.1 iii),

H(·, t) ≥ n (F (·, t)) 1

mβ ≥ n
[
f(·, 0)e−C6t + amβ

] 1

mβ

> na,

which implies H̃ > 0. �
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Corollary 6.2. Let X : M × [0, Tmax) → H
n+1
κ be the solution of (1.1)

with an initial value which satisfies the pinching condition (1.6). Then, the
hypersurfaces Mt are uniformly h-convex on any finite time interval; that
is, for any T < +∞, T ≤ Tmax, we have

inf
M×[0,T )

λ̃i > 0, ∀i = 1, . . . , n.

Therefore, Theorem 4.4 is valid also without the hypothesis that H̃ > 0 for
t ∈ (0, T ). The same holds for the other results that have been obtained until
here under the same assumptions of Theorem 4.4.

Proof. The conclusion follows the argument as in [19, Corollary 6.2], only
with obvious change of λi by λ̃i = λi − a. �

Preserving h-convexity of the evolving hypersurface leads to the follow-
ing lower bound on the global term F̄ (t).

Corollary 6.3. F̄ (t) ≥ amβ for all t ≥ 0.

Since our flow is different from volume preserving mean curvature flow,
we cannot follow the induction argument of Hamilton as in [17, 30–33, 43,
44], etc, to obtain uniform estimates on all orders of curvature derivatives
and hence smoothness and convergence of the Mt for the flow (1.1). Instead
we use a more PDE theoretic approach, following an argument similar to
the one in [19].

Before proceeding further, we adopt a local graph representation for a
h-convex hypersurface as in [17]. For each fixed t0, let pt0 be a center of an
inball of Ωt0 , and S

n the unit sphere in Tpt0
H

n+1
κ . For each t, since Mt is

h-convex, there exists a function r : Sn → R
+ such that Mt can be written

as a map Xt : S
n → H

n+1
κ satisfying

(6.2) Xt(x) = exppt0
r(t, u(t, x))u(t, x),

where u(t, x) =
exp−1pt0

Xt(x)

rpt0
(Xt(x))

and r(t, u(t, x)) = rpt0
(Xt(x)). At least, from

Lemma 5.5 there exists some constant τ = τ(a, n,m, β, V0) > 0 such that
for t ∈ [t0,min{t0 + τ, T}) (near to t0), pt0 ∈ Ωt, and so the map ut : M →
S
n ⊂ Tpt0

H
n+1
κ defined by ut(x) = u(t, x) is a diffeomorphism. On the other



358 S. Z. Guo, G. H. Li, and C. X. Wu

hand, the map

(6.3) X̆t(x) = exppt0
r(t, u(t0, x)) u(t0, x)

is another parametrization of Mt. Incorporating a tangential diffeomorphism
χt = u−1t0 ◦ ut : M → M into the flow (1.1) to ensure that this parametriza-

tion is preserved, that is, if Xt is a solution of (1.1), X̆t satisfies the equation

(6.4)
〈
∂tX̆t, νt

〉
= F̄t − Ft.

X̆t can be considered as a map S
n into H

n+1
κ by using the diffeomorphism

u−1t0 , i.e.,

(6.5) X̆t(u) = exppt0
r(t, u) u for every u ∈ S

n,

where r(u) = rpt0
(X̆t(u)) is a function on S

n. For any local orthonormal
frame {ei} of Sn, let D be the Levi-Civita connection on S

n, a basis {ĕi} of
the tangent space to Mt is given by

(6.6) ĕi = X̆t∗ei = Di(r)∂rpt0
+ sκ(r)τsei, 1 ≤ i ≤ n,

where τs denotes the parallel transport along the geodesic starting from pt0
in the direction of u, and until exppt0

r(u)u. By using Lemma 2.3 and (5.21)
Cabezas-Rivas and Miquel (see p.2078 in [17]) proved that

∣∣∣X̆t∗ei
∣∣∣ < sκ(ψ(V0) + a ln 2)

a taκ(ξ(ψ(V0)))
.

Furthermore, (6.6) implies

∣∣ei(r)∣∣ ≤ ∣∣∣X̆t∗ei
∣∣∣ .

Therefore, both the first derivatives of X̆t and r are bounded independently
of t. The outward unit normal vector of Mt̂ can be expressed as

(6.7) ν =
1

|ξ|

(
sκ(r)∂rp −

n∑
i=1

Direi

)

with ∣∣ξ∣∣ = √
s2κ(r) + |Dr|2.
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After a standard computation, the second fundamental form of Mt can be
expressed as

(6.8) hij = − 1∣∣ξ∣∣
(
sκ(r)DjDir − s2κ(r)cκ(r)σij − 2cκ(r)DirDjr

)
,

and the metric gij is

(6.9) gij = DirDjr + s2κ(r)σij .

From this, the inverse metric can be expressed as

(6.10) gij =
1

s2κ(r)

(
σij − 1∣∣ξ∣∣2DirDjr

)
,

where Dir = σijDjr. Then equations (6.8) and (6.10) imply that
(6.11)

hij = − 1∣∣ξ∣∣sκ(r)
[

1

sκ(r)

(
DjD

ir − DjDlrD
irDlr∣∣ξ∣∣2

)
− cκ(r)

(
δij +

DirDjr∣∣ξ∣∣2
)]

and

(6.12) H = − 1∣∣ξ∣∣sκ(r)
(
ΔSr − 1∣∣ξ∣∣2∇2

Sr(Dr,Dr)

)
+

cκ(r)∣∣ξ∣∣
(
n+

|Dr|2∣∣ξ∣∣2
)
.

Using (6.9) and (6.10) the Christoffel symbols have the expression:

Γk
ij =

1

s2κ(r)

[
DiDjrDlr + sκ(r)cκ(r)

(
Dirσlj +Djrσil −Dlrσij

)]
(6.13)

×
(
σkl − 1∣∣ξ∣∣2DkrDlr

)
.

Lemma 6.4. Let φ := H
1/m
m and

Γ̂ = {λ = (λ1, . . . , λn) : κ1 ≤ H(λ) ≤ κ2, min
1≤i≤n

λi ≥ εH(λ)},

which is a compact symmetric subset of the positive cone Γ+ for two positive
constants κ1 and κ2. There exist constants m2 > m1 > 0 depending only on
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n,M0 such that for every t ∈ [0, T ) and x ∈ Mt there holds

m1 ≤ ∂φ

∂λi
(λ) ≤ m2, i = 1, . . . , n, λ ∈ Γ̂,

as long as the hypersurfaces Mt are strictly h-convex.

Proof. Since ∂φ
∂λi

(λ) > 0 for any λ ∈ Γ̂, and Γ̂ is compact, there exist m2 >
m1 > 0 such that

m1 ≤ ∂φ

∂λi
(λ) ≤ m2, i = 1, . . . , n, λ ∈ Γ̂. �

Lemma 6.5. Let M ⊂ H
n+1
κ be an embedded hypersurface satisfying at ev-

ery point D3 < H < D4, λ1 ≥ εH for given positive constants D3, D4, ε.
Given any p ∈ M , let r be a local graph representation of M over a unit
ball Sn ⊂ TpM . Then r satisfies

||r||C2,α(Sn) ≤ C7(1 + ||F ||Cα(Sn))

for some C7 > 0 and 0 < α < 1 depending only on n,D3, D4, ε and the pa-
rameters β,m in the definition of F .

Proof. We prove the lemma in exactly the same way as [19, Lemma 6.3].

Recalling φ = H
1/m
m and Lemma 2.1 i), φ is concave in Γ+. Then in this

case, the Bellman’s extension φ̄ of φ takes the form

φ̄(λ̄) := inf
λ∈Γ̂

[
φ (λ) +Dφ (λ)

(
λ̄− λ

)]
for any λ̄ ∈ Γ+. Notice that φ is homogeneous of degree one, the extension
simplifies to

φ̄(λ̄) = inf
λ∈Γ̂

Dφ (λ) λ̄.

The Bellman extension preserves concavity, by definition and homogeneity,
since it is the infimum of linear functions. Importantly, φ̄ coincides with
φ on Γ̂ by homogeneity of φ. Furthermore, using the definition of φ̄ and
Lemma 6.4, φ̄ is uniformly elliptic, that is

m1|η̄| ≤ φ̄(λ̄+ η̄)− φ̄(λ̄) ≤ √
nm2|η̄|, for all λ̄, η̄ ∈ R

n, η̄ ≥ 0.

Now the hypotheses imply that the principal curvatures of M at every
point are contained between two fixed positive constants. So M can be
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written as a local graph representation r over a unit ball Sn ⊂ TpM at a
given point p ∈ M with ‖r‖C2 bounded in terms of D4. Let us consider
the function φ̄(λ̄(u)), where λ̄(u) are the principal curvatures of M at the
point (u, r(u)). Since λ̄(u) are the eigenvalues of a matrix depending on
Dr,D2r in view of (6.11), φ̄(λ̄(u)) can be expressed as Φ̄(Dr(u), D2r(u))
for a suitable function Φ̄ = Φ̄(u,A), with (u,A) ∈ S

n × S, S being the set
of symmetric n× n matrices. The dependence of Φ̄ on A is related to the
dependence of Φ̄ on λ̄. In fact, it is well known that the concavity of Φ̄
with respect to λ̄ implies the concavity of Φ̄ with respect to D2r, and that
ellipticity on φ̄ implies the ellipticity condition (2.4) for Φ̄. In addition, Φ̄
is homogeneous of degree one with respect to D2r. Furthermore, if we set
G(u,A) := Φ̄(Dr(u), A) and f(u) = Φ̄(Dr(u), D2r(u)), the above argument
implies that the elliptic equation for r

G(D2r(u), u) = f(u), u ∈ S
n, r ∈ C2(Sn)

satisfies the conditions of Theorem 2.5. This theorem asserts that there exists
α ∈ (0, 1) such that

‖r‖C2,α(Sn) ≤ C(1 + ‖f‖Cα(Sn))

where C depends on n,D3, D4, ε, β.
Our assumptions say that λ̄(u) belongs for every u to the set Γ̂ where

φ̄ and Φ̄ coincide. Thus, f coincides with H
1/m
m = F 1/βm at λ̄(u). Therefore

according to our assumption, the uniform bounds on the curvatures both
from below and above imply that F is bounded from below and above by
two positive constants depending only on n,D3, D4, ε, β. Then ||F 1/βm||Cα

is estimated by ||F ||Cα times a constant depending only on these quantities.
This finishes the proof of Lemma 6.5. �

Theorem 6.6. Let Mt be a solution of (1.1), defined on any finite time
interval [0, T ), with initial condition satisfying (1.6). Then, for any 0 < t0 <
T , α ∈ (0, 1) and every natural number k, there exist constant C8, depending
on n,m, β, a,M0 and C9,k = C9(n,m, β, a,M0, k) such that

‖F‖Cα(M×(t0,T ]) ≤ C8,(6.14)

‖r‖Ck(M×(t0,T ]) ≤ C9,k.(6.15)

Proof. For each fixed t0 ∈ [0, T ),Mt can be locally reparameterized as graphs
over the unit sphere Sn with center pt0 in Tpt0

H
n+1
κ as (6.5). Then, from (6.4),
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(6.5) and (6.7), a short computation yields that the distance function r on
S
n satisfies the following parabolic PDE

∂tr = s−1κ (r)
∣∣ξ∣∣(F̄t − Ft),(6.16)

where the outward normal vector length
∣∣ξ∣∣ is given by the expression (6.7).

The function F = Hβ
m in the coordinate system under consideration is a

function of D2r and Dr. The right hand side of (6.16) is a fully nonlinear
operator, furthermore, observe that (6.16) can be rewritten as

∂tr = −s−1κ (r)
∣∣ξ∣∣Hβ

m + s−1κ (r)
∣∣ξ∣∣F̄t,(6.17)

= s−1κ (r)Hβ−1/m
m

((−∣∣ξ∣∣)mHm

)1/m
+ s−1κ (r)

∣∣ξ∣∣F̄t.

SinceH
β−1/m
m is larger than amβ−1 and bounded above by C

β− 1

m

2 from (5.36),

and r can be bounded independently of t, this implies that s−1κ (r)H
β−1/m
m

are also uniformly Hölder continuous functions. Then, from (6.11) this en-
sures that (6.16) is a linear, strictly parabolic partial differential equation.
However, the higher order regularity does not follow by the general theory
of Krylov and Safonov [36] because the operator is not a concave function of
D2u. Here, we use instead the arguments in [19] who follow the procedure
of [8, 45, 53], which consists of proving first regularity in space at a fixed
time and then regularity in time.

The first step is to derive Cα-estimate (6.14) of F . In the coordinate
system under consideration, (3.11) can be rewritten as

∂tF = aijDiDjF + biDiF + e F, (x, t) ∈ S
n × J,(6.18)

where J = [t0,min{t0 + τ, T}), and the coefficients are given by

aij = β Hβ−1
m cij , bi = −β Hβ−1

m cljΓi
lj(6.19)

and

e = β (F − F̄ )H−1
m

(
trc(AW )− a2tr(c)

)
.

Here

c = {cij} =

{
∂Hm

∂hki
gkj

}
.

Since aij , bi and e F are uniformly bounded on the curvatures both from
above on any finite time interval in view of (5.41) and from below by
h-convexity of Mt, equation (6.18) is uniformly parabolic with uniformly
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bounded coefficients. Then applying Theorem 2.4 to (6.18) gives that for any
0 < r′ < 1 and J ′ = J − t0 there exist some constants D6 > 0 and α ∈ (0, 1)
depending on n,m, β, a,M0 such that

(6.20) ‖F‖Cα(Br′×J ′) ≤ D5‖F‖C0(M×[0,T )) ≤ D6.

Therefore, covering Mt by finite many graphs on balls of radius r′ can
give (6.14).

Furthermore, for any fixed time t∈ [t0, T ), applying (6.14) to Lemma 6.5
on Mt implies that

‖r‖C2,α(M) ≤ D7 := D7(n,m, β, a,M0, k).

From this estimate on r(·, t) for any fixed t, following the procedure of [8,
§3.3, 3.4] or [53, Theorem 2.4] to equation (6.16), a C2,α estimate for r with
respect to both space and time can be obtained. Once C2,α regularity is
established, standard parabolic theory yields uniform Ck estimates (6.15)
for any integer k > 2, which implies uniform Ck estimates (6.15) for any
integer k ≥ 1 with the fact that r and its first order derivatives are uniformly
bounded. �

Theorem 6.7. If M be a closed n-dimensional smooth manifold and X0 :
M → H

n+1
κ be an immersion pinched in the sense of (1.6), then the solution

Mt of (1.1) with initial condition X0, exists, is smooth and satisfies at every
point (1.6) on [0,∞).

Proof. As we know, the preserving pinching condition (1.6) and smooth-
ness throughout the interval of existence follows form Theorem 4.4, and
Lemma 6.1.

On the other hand, it is clear from the expression (6.5) for X̆t that all the
higher order derivatives of X̆t are bounded if and only if the corresponding
derivatives of r are bounded. Thus, uniform Ck estimate (6.15) of r implies
that all the derivatives of X̆t are also uniformly bounded. So the smoothness
of X̆t implies the same smoothness of the reparametrization Xt of X̆t given
by (6.2).

It remains to show that the interval of existence is infinite. Suppose to
the contrary there is a maximal finite time T beyond which the solution
cannot be extended. Then the evolution equation (1.1) implies that

‖X(p, σ)−X(p, τ)‖C0(X0) ≤
∫ σ

τ

∣∣F̄ − F
∣∣ (p, t) dt
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for 0 ≤ τ ≤ σ < T . By (5.35) and (5.39), X(·, t) tends to a unique contin-
uous limit X(·, T ) as t → T . In order to conclude that X(·, T ) represents a
hypersurface MT , next under this assumption and in view of the evolution
equation (3.1) the induced metric g remains comparable to a fix smooth
metric g̃ on Mn:

∣∣∣∣ ∂∂t
(
g(u, u)

g̃(u, u)

)∣∣∣∣ =
∣∣∣∣∂tg(u, u)g(u, u)

g(u, u)

g̃(u, u)

∣∣∣∣ ≤ 2|H||h|g g(u, u)
g̃(u, u)

,

for any non-zero vector u ∈ TMn, so that ratio of lengths is controlled above
and below by exponential functions of time, and hence since the time interval
is bounded, there exists a positive constant C10 such that

1

C10
g̃ ≤ g ≤ C10g̃.

Then the metrics g(t) for all different times are equivalent, and they converge
as t → T uniformly to a positive definite metric tensor g(T ) which is con-
tinuous and also equivalent by following Hamilton’s ideas in [30]. Therefore
using the smoothness of the hypersurfaces Mt and interpolation,

‖X(p, σ)−X(p, τ)‖Ck(X0)

≤ C‖X(p, σ)−X(p, τ)‖1/2C0(X0)
‖X(p, σ)−X(p, τ)‖1/2C2k(X0)

≤ C|σ − τ |1/2,

so the sequence {X(t)} is a Cauchy sequence in Ck(X0) for any k. Therefore
Mt converges to a smooth limit hypersurface MT which must be a compact
embedded hypersurface in H

n+1
κ . Finally, applying the local existence result,

the solution MT can be extended for a short time beyond T , since there is a
solution with initial condition MT , contradicting the maximality of T . This
completes the proof of Theorem 6.7. �

7. Exponential convergence to a geodesic sphere

Observe that, to finish the proof of Theorem 1.6, it remains to deal with the
issues related to the convergence of the flow (1.1): It is proved that solutions
of equation (1.1) with initial conditions (1.6) converge, exponentially in the
C∞-topology, to a geodesic sphere in H

n+1
κ as t approaches infinity.
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The first step is to show that, if a smooth limit exists, it has to be a
geodesic sphere of Hn+1

κ . To address this, let

f =
1

nn
− K̃

H̃n
.

and show that the principal curvatures come close together when time tends
to infinity. Then as remarked in Section 4, f ≥ 0 with equality holding only
at umbilic points, which is the value assumed on a sphere. The following
Lemma is an immediate consequence of the evolution equation (4.1) of Q̃.

Lemma 7.1. The quantity f evolves under (1.1) satisfies

∂tf = ΔḞ f +
(n+ 1)

nH̃n

〈
∇f,∇H̃n

〉
Ḟ

(7.1)

− (n− 1)

nK̃

〈
∇f,∇K̃

〉
Ḟ
− H̃n

nK̃
|∇f |2

Ḟ

−
(

Q̃

H̃2

∣∣∣H̃∇W̃ − W̃ ∇H̃
∣∣∣2
Ḟ ,b̃

+ Q̃ trb̃− n

H̃
Id

(
F̈ (∇W̃ ,∇W̃ )

))

− [
(mβ − 1)F + F̄

] Q̃
H̃

(
n
∣∣Ã∣∣2−H̃2

)
− aQ̃trḞ (ÃW̃ )

(
tr(b̃)− n2

H̃

)
.

Corollary 7.2. Under the conditions of Theorem 1.6,

∂tf ≤ ΔḞ f +
(n+ 1)

nH̃n

〈
∇f,∇H̃n

〉
Ḟ
− (n− 1)

nK̃

〈
∇f,∇K̃

〉
Ḟ

(7.2)

− H̃n

nK̃
|∇f |2

Ḟ
− C11H̃f,

where C11 = δamβC∗.

Proof. Applying the similar argument as in Theorem 4.4, Corollary 6.3,
inequality (1.6) and Lemma 2.2 to (7.1) gives the conclusion. �

In order to obtain the convergence of f , we have to apply the maximum
principal to (7.2). Thus, unlike Lemma 6.1, here we have to get a positive
lower bound for H̃ independence of t (not only just for finite t).
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Lemma 7.3. There exist constants C12 = C12(n, a,m, β,M0) > 0 and τ >
0 such that for all t ∈ [τ,∞)

(7.3) H̃ ≥ C12.

Proof. We derive exactly as in [3, Lemma 7.7]. First, we adopt a local graph
representation as in Lemma 5.5. Let pt0 ∈ Ωt for an arbitrary fixed t0 ∈
[0,∞) as in Lemma 5.5. Let xt ∈ Mt be a point in contact with an enclosing
sphere of radius ρt. Then by Lemma 5.5 and the proof of Corollary 5.6, we
know that there is a constant τ such that

D1 <
ρt0
2

< ρt < D2

on the interval [t0, t0 + τ). This implies that on the same interval

(7.4) sup
x∈Mt

F (x) ≥ F (xt) ≥ comβ
κ (ρt) ≥ comβ

κ (D1).

Let us go back to Equation (6.18). Setting θ = F − amβ , we see that the
evolution equation of θ has the form:

∂tθ = aijDiDjθ + biDiθ + ẽ θ, (x, t) ∈ S
n × [t0, t0 + τ),(7.5)

where aij and bi are given by (6.19), and

ẽ =
(F − F̄ )

[
trḞ (AW )− a2tr(Ḟ )

]
F − amβ

.

The coefficients aij and bi are obviously uniformly bounded in view of The-
orem 6.6. The following shows that the coefficient ẽ is also measurable.

|ẽ| ≤ C13
∑n

i=1 Ḟ
i(λi − a)

F − amβ
≤ C13mβF 1− 1

mβ (F
1

mβ − a)

F − amβ
< +∞,

where we have used Lemma 2.1 iv) and the degree of the homogeneous
function F in the second inequality. Again by the h-convexity of Mt, a

ij is
uniformly bounded from below by a positive constant. This implies that (7.5)
is uniformly parabolic with uniformly bounded coefficients.

Reasoning like in [45, Page 147] and [3, Lemma 7.7], one can apply the
Krylov Harnack inequality ([35, Section 4.2]) to (7.5) together with (7.4) to
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deduce the existence of a positive constant c such that

inf
t0+τ

θ ≥ c
(
comβ

κ (D1)− amβ
)
.

Since t0 is arbitrary, this gives the following result

F − amβ ≥ c
(
comβ

κ (D1)− amβ
)

on [0,∞). From Lemma 2.1 iii), it follows

H ≥ n
[
c
(
comβ

κ (D1)− amβ
)
+ amβ

] 1

mβ

,

which implies

H̃ ≥ C12,

where

C12 = n

{[
c
(
comβ

κ (D1)− amβ
)
+ amβ

] 1

mβ − a

}
> 0.

�

Proposition 7.4. Under the conditions of Theorem 1.6, the rate of con-
vergence of f to 0 as t → ∞ is exponential.

Proof. Applying the similar argument as in Theorem 4.4 and Lemma 7.3
to (7.1) gives

∂tfmax(t) ≤ −C11C12fmax(t).

which implies that

fmax(t) ≤ C14e
−C15t,

where C14 = fmax(0), C15 = C11C12. This proves the proposition. �
Now if t0 can be taken big enough so that Mt can be represented as

graph r for [t0,∞), then since all the derivatives of r are uniformly bounded,
applying Arzel-Ascoli Theorem we conclude that the solution r(t, · ) of (6.3)
starting at rpt0

is defined on [t0,∞) and converges to a unique function

r∞. This implies that X̆t(x) = exppt0
r(t, u(t0, x)) u(t0, x) solves (6.3) and

converges to u �→ exppt0
r∞(u)u. Therefore, the reparametrization Xt of X̆t

given by (6.2) has the same convergence properties. That isX∞ : Sn → H
n+1
κ

and r∞ : Sn → R+ satisfying X∞(u) = expp0
r∞(u)u which implies that X∞
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is an immersion and, since the convergence is smooth and all the hypersur-
faces Xt(S

n) satisfy (1.6), we can assure that S = X∞(Sn) must be a com-
pact embedded hypersurface and satisfy (1.6); in addition, Xt is a solution
of (1.1) starting at rpt0

, and, by uniqueness, Xt coincides on [t0,∞) with
the solution of (1.1).

On the other hand, Proposition 7.4 says that all points on S are umbilic
points. In conclusion, the only possibility is that S represents a geodesic
sphere in H

n+1
κ and, by the volume-preserving properties of the flow, such

sphere has to enclose the same volume as the initial condition X0(M).
Finally, from Proposition 7.4 we can conclude with the standard argu-

ments as in [51, Theorem 3.5], [19, Theorem 7.3] and [41, Corollary 7.3] that
the flow converges exponentially to the geodesic sphere S in H

n+1
κ in the

C∞-topology.
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