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Homotopy properties of horizontal path

spaces and a theorem of Serre in

subriemannian geometry

Francesco Boarotto and Antonio Lerario

We discuss homotopy properties of endpoint maps for horizontal
path spaces, i.e. spaces of curves on a manifold M whose veloci-
ties are constrained to a subbundle Δ ⊂ TM in a nonholonomic
way. We prove that for every 1 ≤ p < ∞ these maps are Hurewicz
fibrations with respect to the W 1,p topology on the space of tra-
jectories.

We prove that the space of horizontal curves joining any two
points (with the induced W 1,p topology) has the homotopy type
of a CW-complex and its inclusion into the standard path space
(i.e. with no nonholonomic constraints) is a homotopy equivalence.
We derive topological implications on the local structure of these
spaces (even near abnormal curves, whose possible existence is not
excluded from our constructions).

We consider indeed the more general class of affine control sys-
tems, for which the above theorems hold for all 1 ≤ p < pc (here
pc > 1 depends only the step of the system).

We study critical points of geometric costs for these affine con-
trol systems, proving that if the base manifold is compact and
there are no abnormal trajectories, then the number of their criti-
cal points is infinite (we use Lusternik-Schnirelmann category com-
bined with the Hurewicz property). In the special case where the
control system is subriemannian this result can be read as the
corresponding version of Serre’s theorem.
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1. Introduction

In this paper we study homotopy properties of the set of those curves on a
manifold M whose velocities are constrained in a nonholonomic way (these
curves are called horizontal). The nonholonomic constraint is made explicit
by requiring that the curves should be tangent to a totally nonintegrable
distribution (for example a contact distribution, whose horizontal curves
are called legendrian). More generally we will allow affine constraints, by
considering a set of vector fields F = {X0, X1, . . . , Xd} and defining a hori-
zontal curve γ : I = [0, 1] → M to be an absolutely continuous curve (hence
differentiable almost everywhere) solving the equation:

(1) γ̇ = X0(γ) +

d∑
i=1

uiXi(γ), γ(0) = x

for functions u1, . . . , ud called controls (x ∈ M is a point that we fix from
the very beginning).

The vector field X0 is special (it plays the role of a “drift”) and in
many interesting cases, like the subriemannian, it is assumed to be zero; the
remaining vector fields satisfy the totally nonintegrable Hörmander condi-
tion: a finite number of their iterated brackets should span the whole tangent
space TM (this is also called the bracket generating condition).

The regularity we impose on the controls determines the topology on
the space Ω of all horizontal curves (called also trajectories). In this paper
we will assume u = (u1, . . . , ud) ∈ Lp(I,Rd) for some 1 < p < ∞ (thus we
consider theW 1,p topology on the space of trajectories). The correspondence
between a curve and its controls defines local coordinates on Ω, which in turn
becomes a Banach manifold modeled on Lp = Lp(I,Rd) (in fact this manifold
is just the open subset of Lp consisting of all controls whose corresponding
trajectory is defined on the whole interval I, see the Appendix of this paper
or [23] for more details); as a byproduct of this identification we will often
replace a curve with the d-tuple of controls describing it in local coordinates.
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Figure 1: A picture of the continuous inclusions (from left to right) of the
various W 1,p([0, 1]) spaces.

The endpoint map is the map that associates to each trajectory its final
point:

F : Ω → M γ �→ γ(1).

This map is differentiable (smooth in the W 1,2 case [2]), and the set:

Ω(y) = F−1(y)

with the induced topology coincides with the set of horizontal curves joining
x to y. In the riemannian case, these spaces are well understood and their
topological properties are related to those of the manifold M via the path
fibration (see [9, 15]), which in our setting we discuss below.

The uniform convergence topology on Ω has been studied in [25] and the
W 1,1 in [13]. For the scopes of calculus of variations the case W 1,p with p > 1
is especially interesting as the analysis becomes more pleasant: for example
the p-th power of the Lp norm becomes a C1 function and one can apply
classical techniques from critical point theory to many problems of interest.
Also, it is worth recalling that already in the subriemannian case not all
topologies on Ω are equivalent a priori: for example in the W 1,∞ case the
so-called rigidity phenomenon appear: some curves might be isolated (up to
reparametrization) in the W 1,∞ topology [10].

The key property for studying the topology of horizontal path spaces is
the homotopy lifting property for the endpoint map. Our first result gener-
alizes the main results from [13, 25], proving that there exists pc > 1 (de-
pending on F) such that endpoint map is a Hurewicz fibration for the W 1,p

topology for all 1 ≤ p < pc (i.e. F has the homotopy lifting property with
respect to any space for these topologies).

Theorem (The endpoint map is a Hurewicz fibration). There exists
an interval [1, pc) ⊆ [1,∞) (depending on F), such that if p ∈ [1, pc) the
Endpoint map F : Ω → M is a Hurewicz fibration for the W 1,p topology on
Ω. Moreover if X0 = 0 then pc = ∞.
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It is remarkable that the subriemannian case (X0 = 0) has the Hurewicz
fibration property for all 1 ≤ p < ∞, as in general if X0 	= 0 the endpoint
map can fail to have the homotopy lifting property for some finite p < ∞,
as shown in the next example [5].

Example 1. Consider M = R
2 with coordinates (x1, x2) and:

X0 = x21∂x2
, X1 = ∂x1

, X2 = xk1∂x2
, k ≥ 3

We consider on Ω the function u �→ J(u) = ‖u‖22, which is continuous for
every p ≥ 2 for the W 1,p topology. Let us also consider the function c1 :
R
2 × R

2 → R:

c1(x, y) = inf{J(γ) ∈ Ω | γ(0) = x, γ(1) = y}.

In [5, Proposition 2.1] it is proved that there exists K > 0 such that for all
w ∈ R and all z < 0:

c1((0, w), (0, w)) = 0 and c1((0, w), (0, z)) ≥ K.

Consider now the path gs = (0,−s) and let u0 ∈ Ω be a lift for g0 (i.e.
F (u0) = g0). Now this path (a homotopy of inclusions of a single point)
cannot be lifted: an existence of such a lift would be a continuous path us
on Ω with us ∈ Ω(gs), and in particular:

lim
s→0

J(us) = 0,

which contradicts the fact that J |Ω(gs) ≥ K > 0 for all s > 0.

Our proof of the previous theorem is much inspired from [13, 25] and
in fact consists in a simple (but important) modification of the proof from
[25]. This theorem has important consequences for the topology of fibers of
the endpoint map.

Theorem (The homotopy type of the fiber). Any two fibers of the
endpoint map, endowed with the W 1,p topology (p < pc), are homotopy equiv-
alent. Moreover each fiber Ω(y) has the homotopy type of a CW -complex and
its inclusion in the ordinary space of curves (i.e. curves without the nonholo-
nomic constraint) is a homotopy equivalence.

We should stress at this point that the space Ω(y) might be highly
singular, because of the possible existence of abnormal curves (curves γ such
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that the differential dγF is not a submersion). The existence of these curves
is not excluded in our setting. It is remarkable that even if abnormal curves
might influence the differential structure of Ω(y), still its homotopy remains
very controlled: any two fibers of F are homotopy equivalent, regardless
them being singular or regular, and what is known for the homotopy of the
standard loop space can be deduced also for our horizontal one.

Corollary (Some topological implications). For every k ∈ N , every
1 ≤ p < pc and every y ∈ M the following isomorphism between homotopy
groups holds for the W 1,p topology:

πk(Ω(y)) � πk+1(M).

Moreover if M is compact and simply connected, then the Lusternik-
Schnirelmann category of the space Ω(y) is infinite.

Once there is some information available for the topology of Ω(y), it
can be used to study critical points of functionals, the classical example
being the study of geodesics between two points. A celebrated theorem of
Serre [27] states that if a riemannian manifold M is compact, then every
two points are joined by infinitely many geodesics; the proof of this theorem
essentially uses the topology of Ω(y) to force the existence of critical points
of the Energy functional, which in the riemannian case are exactly geodesics.

More generally one can study critical points of the p-Energy Jp : u �→
‖u‖pp on Ω(y) for affine control systems on regular fibers Ω(y): as long as
1 < p < pc this function is C1 (Lemma 9) and when restricted to Ω(y) it
satisfies the Palais-Smale condition (Proposition 10). These two properties
allow to use classical results to force the existence of critical points.

Theorem (On the critical points for the p-Energy). Let y be a regular
value for the endpoint map of the control system (1), 1 < p < pc and consider
f = Jp|Ω(y). If the base manifold M is compact then f has infinitely many
critical points.

As a corollary, we thus obtain a subriemannian version of the Serre’s
theorem: given x and any regular point y for the endpoint map on a com-
pact subriemannian manifold there are infinitely many geodesics connecting
them. In some cases (e.g. contact or fat distributions) the assumption of y
being a regular value may be dropped: in these situations there are no abnor-
mal curves other than the trivial ones, and our arguments are essentially not
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affected (here the fact that Ω(y) has the homotopy type of a CW-complex
plays a crucial role, see the end of the proof of Theorem 16).

1.1. Related work

The problem of understanding the topology of the space of maps with some
restrictions on their differential goes back to the works on immersions of
S. Smale [28], for the case of curves on a manifold the author considers
spherical-type constraints on the velocities (i.e. immersions and regular ho-
motopies). Hurewicz properties for endpoint maps of affine control systems
were studied first by A. V. Sarychev [25] for the uniform convergence topol-
ogy and by J. Dominy and H. Rabitz [13] for the W 1,1 topology. The quan-
titative study of the interaction between the topology of the horizontal loop
space and the set of geodesics was initiated by the second author together
with A. Agrachev and A. Gentile in [4]. In the contact case a “local” version
of Serre’s theorem was investigated by the second author and L. Rizzi in
[20] (the authors perform an asymptotic count of the number of geodesics
between two point on a contractible contact manifold, using the relation
between a subriemannian manifold and its nilpotent approximation).

1.2. Structure of the paper

Section 2.1 is devoted to the proof of the Hurewicz fibration property (Theo-
rem 4): the crucial ingredient is the construction of a continuous cross-section
for the endpoint map (Proposition 2). The topological implications are dis-
cussed in Section 2.2. In Section 3 we study critical points of geometric
costs: the Palais-Smale property is proved in Proposition 10 and applica-
tions via Lusternik-Schnirelmann method are discussed in Section 3.2. The
subriemannian case is discussed in Section 4. The Appendix contains some
additional technical results, mostly known to experts.
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2. Homotopy properties of the endpoint map

2.1. Some preliminary results

Lemma 1. Let 0 < β < p
p−1 and for every j = 1, . . . , N define the map ρj :

R
N → Lp([0,∞)) by: ρj(r) = 0 if rj = 0 and ρj(r) = χjrj |rj |

−β otherwise
(χj is the characteristic function of the interval [|rj−1|

β , |rj−1|
β + |rj |

β] and
r0 = 0). Then the map ρj is continuous.

Proof. The only needed verification is continuity at zero:

lim
rj→0

‖χjrj |rj |
−β‖p = lim

rj→0

(∫ |rj−1|β+|rj |β

|rj−1|β

∣∣∣rj |rj |−β∣∣∣p dt
)1/p

= lim
rj→0

|rj |
β+p−βp

p = 0

since β + p− βp > 0. �

Proposition 2 (The cross-section). Given the manifold M and the fam-
ily of vector fields F , there exists an interval [1, pc) ⊂ [1,∞) such that for
every 1 ≤ p < pc every point in M has a neighborhood W and a continuous
map:

σ̂ : W ×W → Lp([0,∞),Rd)× R

(x, y) �→ (σ(x, y), T (x, y))

such that F
T (x,y)
x (σ(x, y)) = y and σ̂(x, x) = (0, 0) for every x, y ∈ W . More-

over, if X0 = 0 then pc = ∞.

Proof. We first work out the case X0 = 0 and p > 1 (the case p = 1 and
X0 = 0 is a special case of [13, Lemma 1], whose notation we follow closely).
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Given the vector fields {Y1, . . . , Yk} define inductively Q1(Y1) = eY1 and:

Qν(Y1, . . . , Yν) = eYν ◦Qν−1(Y1, . . . , Yν−1)

◦ e−Yν ◦ (Qν−1(Y1, . . . , Yν−1))
−1, ν ≥ 1.

Given a real number r we define also:

P ν(Y1, . . . , Yν , r) = Qν(rY1, . . . , rYν).

It follows from the Baker-Campbell-Hausdorff formula that, for r sufficiently
small,

P ν(Y1, . . . , Yν , r
1/ν) = er adYν ···adY2Y1+higher order terms in r.

The bracket generating condition on F implies that (see [18, Section 2.1] or
the proof of [13, Lemma 1]) every point in M has a neighborhood W and a
continuous1 map φ : W ×W → R

n such that φ(x, x) = 0 for all x ∈ W and:

(2)

(
n∏

k=1

P νk(Xk1
, . . . , Xkνk

, φk(x, y))

)
(x) = y ∀x, y ∈ W.

Now we notice that the product in (2) can be written as:

(
n∏

k=1

P νk(Xk1
, . . . , Xkνk

, φk(x, y))

)
=

N∏
j=1

eφaj
(x,y)Xbj

where N is a given number and aj , bj ∈ {1, . . . , d} for j = 1, . . . , N (these
numbers are fixed and depend on the neighborhood W only).

Given p > 1 choose β satisfying the hypothesis of Lemma 1. Using the
notation of Lemma 1 we can now interpret y = (

∏N
j=1 e

φkj
(x,y)Xkj )(x) as the

solution at time:

T (x, y) =

N∑
j=1

|φkj
(x, y)|β

1The k-th component of φ = (φ1, . . . , φn) is the νk-th root of a C1 function.
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of the control problem with initial datum y(0) = x and control:

σ(x, y) =

( ∑
{j | kj=1}

ρj(φkj
(x, y)),

∑
{j | kj=2}

ρj(φkj
(x, y)),

. . . ,
∑

{j | kj=d}

ρj(φkj
(x, y))

)
.

By Lemma 1 it follows that the map σ̂ = (σ, T ) defined in this way is con-
tinuous: each component is the sum of compositions of continuous functions
(T (x, y) is continuous since β > 0) and σ̂(x, x) = (0, 0).

For the case X0 	= 0 we notice that the proof of [13, Lemma 1] produces
indeed the continuity of the cross section for some 1 < p < pc (as we will see,
a lower bound for pc in this case is given by σ/(σ − 1), where σ is the step
of the distribution F). We simply check the needed details. The sequence of
exponentials (2) now has to be replaced with [13, Equation 6.a] (using the
same notation as the mentioned paper):

(3)

(
n∏

k=1

Rνk(X0, Xk1
, . . . , Xkνk

,±φkj
(x, y), φkj

(x, y), . . . , φkj
(x, y))

)
.

The construction in [13] works in such a way that given α > νk/2, using
BCH formula, Rνk can be written as the exponential of a series of terms
from {φ2α

k1
X0, . . . , φ

2α
kν
X0, φk1

Xk1
, . . . , φkν

Xkν
} and their Lie brackets. We

choose thus α > σ/2 which guarantees α > νk/2 for all k = 1, . . . , n. The
product in (3) can thus be regarded as the solution at time T =

∑
j νkφ

2α
kj

of
a control problem with initial datum y(0) = x and locally constant controls
σ = (σ1, . . . , σd) taking values on an interval of length φ2α

kj
. The continuity

of the final time T follows from the fact that α > 0; for the continuity of the
corresponding σ we argue as in [13, Appendix C]. Each component of σ is
the concatenation of some fixed number of locally constant controls (some
of them can possibly be zero) each one defined on an interval of length φ2α

kj

and taking a value proportional to φ1−2α
kj

. Then it is enough to check the

continuity of this control at zero for the Lp-topology. If we choose p < 2α
2α−1

then:

lim
φkj
→0

∫ c+φ2α
kj

c

∣∣∣φ1−2α
kj

∣∣∣p dt = lim
φkj
→0

φ2α+p−2pα
kj

= 0.
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(Notice in particular that, because of the way we chose α, a lower bound for
pc is given by σ/(σ − 1).) �

Proposition 3 (Rescaled concatenation). Let p ∈ [1,∞), then the map
C : Lp(I)× Lp([0,+∞))× R → Lp(I) defined below is continuous:

C(u, v, T )(t) =

⎧⎪⎨
⎪⎩

(T + 1)u(t(T + 1)) 0 ≤ t <
1

T + 1

(T + 1)v((T + 1)t− 1),
1

T + 1
< t ≤ 1.

Moreover (extending the definition componentwise to controls with value in
R
d) we also have F 1+T

x (u ∗ v) = F 1
x (C(u, v, T )) for every x ∈ M (here u ∗ v

denotes the usual concatenation).

Proof. As Lp(I)× Lp([0,+∞))× R is a metric space, it is sufficient to prove
that if (uk, vk, Tk) → (u, v, T ), then ‖C(uk, vk, Tk)− C(u, v, T )‖p → 0.

Assume for simplicity that Tk ≥ T (we can split the sequence {Tk}k∈N
into two monotone subsequences and work the case Tk ≤ T separately, it is
completely analogous). Start with:

‖C(uk, vk, Tk)− C(u, v, T )‖pp(4)

=

∫ 1/(Tk+1)

0
|(Tk + 1)uk(t(Tk + 1))− (T + 1)u(t(T + 1))|pdt

+

∫ 1/(T+1)

1/(Tk+1)
|(Tk + 1)vk(t(Tk + 1)− 1)− (T + 1)u(t(T + 1))|pdt

+

∫ 1

1/(1+T )
|(Tk + 1)vk(t(Tk + 1)− 1)− (T + 1)v(t(T + 1)− 1)|pdt.

Fix ε > 0 and let g be a smooth function compactly supported on [0, 3/2)
such that ‖g − u‖p ≤ ε. Observe that for k sufficiently large we have ‖uk −
g‖p ≤ ‖u− uk‖p + ε ≤ 2ε. We can bound the first integral in (4) as:
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∫ 1/(Tk+1)

0
|(Tk + 1)uk(t(Tk + 1))− (T + 1)u(t(T + 1))|pdt(5)

≤ 22(p−1)
(∫ 1/(Tk+1)

0
|(Tk + 1)uk(t(Tk + 1))− (Tk + 1)g(t(Tk + 1))|pdt

+

∫ 1/(Tk+1)

0
|(Tk + 1)g(t(Tk + 1))− (T + 1)g(t(T + 1))|pdt

+

∫ 1/(Tk+1)

0
|(T + 1)g(t(T + 1))− (T + 1)u(t(T + 1))|pdt

)
≤ 22(p−1)

(
|Tk + 1|p−1‖uk − g‖pp + |T + 1|p−1‖u− g‖pp

+

∫ 1/(Tk+1)

0
|(Tk + 1)g(t(Tk + 1))− (T + 1)g(t(T + 1))|pdt

)
.

Since g is uniformly continuous in [0, 1], the last integral in (5) can also be
made as small as we wish as k → ∞ as it is evident from:

∫ 1/(Tk+1)

0
|(Tk + 1)g(t(Tk + 1))− (T + 1)g(t(T + 1))|pdt

≤ 2p−1
(∫ 1/(Tk+1)

0
|(Tk + 1)g(t(Tk + 1))− (Tk + 1)g(t(T + 1))|p

+

∫ 1/(Tk+1)

0
|(Tk + 1)g(t(T + 1))− (T + 1)g(t(T + 1))|p

)
.

The third integral in (4) is formally the same as the one just handled; a
similar reasoning proves that it goes to zero as k → ∞. We are left to deal
with the middle one. In this case as k → ∞ by the dominated convergence
theorem we have both

∫ 1/(T+1)

1/(Tk+1)
|vk(t(Tk + 1)− 1)|pdt = |Tk + 1|p−1

∫ (Tk+1)/(T+1)

0
|v(z)|pdz → 0

and

∫ 1/(T+1)

1/(Tk+1)
|(T + 1)u(t(T + 1))|pdt = |T + 1|p−1

∫ 1

(T+1)/(Tk+1)
|u(z)|pdz → 0.
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Finally this yields:∫ 1/(T+1)

1/(Tk+1)
|(Tk + 1)vk(t(Tk + 1)− 1)− (T + 1)u(t(T + 1))|pdt

≤ 2p−1

(
|Tk + 1|p−1

∫ (Tk−t)/(T+1)

0
|v(z)|pdz

+ |T + 1|p−1
∫ 1

(T+1)/(Tk+1)
|u(z)|pdz

)
,

and with this we can eventually conclude that:

lim
k→∞

‖C(uk, vk, Tk)− C(u, v, T )‖pp = 0.

�

2.2. The Hurewicz fibration property and its consequences

Theorem 4. There exists an interval2 [1, pc) ⊆ [1,∞), such that if p ∈
[1, pc) the Endpoint map F : Ω → M is a Hurewicz fibration for the W 1,p

topology on Ω. Moreover if X0 = 0 then pc = ∞.

Remark 1. In general the family of vector fields {X1, . . . , Xd} generating
the distribution cannot be chosen such that d = rank(Δ) (some topological
obstructions might occur), unless we restrict to a small contractible neigh-
borhood in M . The correspondence A : L2(I,Rd) → Ω associating to a con-
trol its trajectory might not be injective, but still it is a Hurewicz fibration:
the fibers of this map are convex sets and the map μ : Ω → L2(I,Rd) giving
the minimal control [2] is a continuous section of this fibration (the reader
is referred to [19] for a detailed discussion of this map). In particular, the
Hurewicz fibration property for F ◦A implies the Hurewicz fibration prop-
erty for F and we can reduce to study the case F : Lp(I,Rd) → M (this is
the definition we considered, using the control system in (1)).

Proof. Recall that Hurewicz fibration means that F has the homotopy lifting
property with respect to every space Z. By Hurewicz uniformization theorem
[16], it is enough to show that the homotopy lift property holds locally,
i.e. every point x ∈ M has a neighborhood W such that F |F−1(W ) has the
homotopy lifting property with respect to any space.

2Depending on (M,X0, X1, . . . , Xd).
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The case p = 1 is proved in [13], thus let 1 < p < pc, W and σ̂ be given
as in Proposition 2. Consider a continuous map g : Z × I → W and a lift
g̃0 : Z → Ω such that F (g̃0(z)) = g(z, 0) for all z ∈ Z. We define the lifting
homotopy g̃ : Z × I → Ω by:

g̃(z, s) = C(g̃0(z), σ(g(z, 0), g(z, s)), T (g(z, 0), g(z, s))︸ ︷︷ ︸
σ̂(g(z,0),g(z,s))

)

(here C is defined as in Proposition 3 componentwise).
The defined function g̃ is the composition of continuous functions (by

Propositions 2 and 3). Moreover by the second assertions in Propositions 2
and 3:

F (g̃(z, s)) = g(z, s) ∀(z, s) ∈ Z × I,

which proves the claim. �

2.3. The homotopy type of the fibers

As a consequence of Theorem 4 all fibers of F (even the singular fibers)
have the same homotopy type [29]. Moreover, by the long exact homotopy
sequence of Hurewicz fibrations [29] one also obtains the following isomor-
phisms between homotopy groups:

(6) πk(Ω(y)) � πk+1(M) ∀k ≥ 0

In the case the domain of the Hurewicz fibration is contractible we can
be more precise about the homotopy type of the fiber.

Theorem 5. For every p < pc and y ∈ M the space Ω(y) with the W 1,p

topology has the homotopy type of a CW-complex. In particular the inclu-
sion Ω(y) ↪→ Ω(y)std in the standard loop space with the W 1,p topology is a
homotopy equivalence.

Proof. First we recall that given the Hurewicz fibration F : U → M (in fact
any Hurewicz fibration with Ω contractible), then any two fibers are homo-
topy equivalent to:

ΩM = {loop spaces in M based at x with the compact-open topology}.
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The Hurewicz fibration condition is indeed equivalent [7] to the existence of
a map:

λ : {(u, ω) ∈ U ×M I |F (u) = ω(0)} → UI

where3 the map λ satisfies:

λ(u, ω)(0) = u and F (λ(u, ω)(t)) = ω(t).

The map η : ΩM → F−1(y) defined by η(ω) = λ(x, ω)(1) is proved to be a
homotopy equivalence in [13, Lemma 2].

The inclusion i : Ω(x)std ↪→ ΩM is a weak homotopy equivalence: the
corresponding Hurewicz fibrations of endpoint maps for Ω(x)std with the
W 1,p and ΩM with the compact open topology give rise to two long exact
sequence of homotopy groups; the map i induces an isomorphism between
these long exact sequences.

The space ΩM has the homotopy type of a CW-complex [22, Corollary
2] and Ω(x)1,pstd also have the homotopy type of a CW-complex, since it is a
Banach manifold modeled on a metrizable space. In particular [22, Lemma
1] the weak homotopy equivalence Ω(x)std ↪→ ΩM is indeed a homotopy
equivalence.

Finally, Ω(y) has the homotopy type of a CW-complex, since:

Ω(y) ∼ Ω(x) ∼ ΩM ∼ Ω(x)std

(the first homotopy equivalence follows from the fact that all fibers of a
Hurewicz fibration have the same homotopy type) and consequently:

Ω(y) ↪→ Ω(y)std is a homotopy equivalence.

�

Corollary 6. If the base manifold M is compact and simply connected,
then for every p < pc (where pc is given by Theorem 4) and every y ∈ M the
Lusternik-Schnirelmann category of the space Ω(y) with respect to the W 1,p

topology is infinite.

Proof. Let 1 < p < pc be given by Theorem 4. Then Ω(y) and Ω(y)std are
homotopy equivalent by the previous theorem (no matter the W 1,p topology,

3 for a topological space X we denoted by XI the space of paths in ω : I → X
endowed with the compact-open topology.
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as long as p < pc). Since the cup length of the W 1,2-ordinary loop space of a
compact simply connected manifold is infinite (see [26, Corollary 20] or the
classical work of Serre [27]), so it is for Ω(y) with the W 1,p-topology. The
cup-length is a lower bound for the Lusternik-Schnirelmann category, hence
the result follows. �

A sufficiently small neighborhood of a nonsingular point in Ω(y) looks
like a Hilbert space (hence it is contractible), but the structure near an ab-
normal curve can be fairly more complicated. This local structure is sharp-
ened by the following result.

Corollary 7. Every point γ ∈ Ω(y) (in particular an abnormal curve) has
a neighborhood U such that the inclusion U ↪→ Ω(y) is homotopic to a con-
stant.

Proof. Since Ω(y) has the homotopy type of a CW-complex by Theorem 5
above, then the result follows from [14, Proposition 5.1.2]. �

3. Critical points of geometric costs

3.1. The regularity of the Energy

For p > 1 we define the p-Energy Jp : L
p(I,Rd) → R by (for simplicity we

omit to make explicit the dependence of Jp on p, when it will be clear from
the context):

Jp(u) =

d∑
i=1

‖ui‖
p
p, u = (u1, . . . , ud).

To simplify notations below we will simply denote Lp = Lp(I,Rd), also we
will omit the subscript notation for u = (u1, . . . , ud) when not needed (the
corresponding equations should thus be interpreted componentwise).

We will need the following result on Nemytskii operators.

Theorem 8 (Theorem 2.2 [3]). Let g : I × R → R be a function such
that (i) the function v �→ g(t, v) is continuous for almost every t ∈ I; (ii)
the function t �→ g(t, v) is measurable for all v ∈ R. Assume also there exists
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a, b > 0 such that:

|g(t, v)| ≤ a+ b|v|α, α =
p

q
.

Then the map u(·) �→ g(·, u(·)) (a Nemytskii operator) is continuous from
Lp(I) to Lq(I).

As a corollary we derive the following elementary lemma.

Lemma 9. The map u �→ u|u|p−2 is a continuous map from Lp(I) to
L

p

p−1 (I). In particular, if y is a regular value of the Endpoint map, then
f = J

∣∣
Ω(y)

is a C1 function.

Proof. The continuity of u �→ u|u|p−2 is immediate from the previous The-
orem. Now, if y is a regular value of the Endpoint, the differential duf
coincides with duJ |TuΩ(y) thus to prove that it is differentiable with continu-
ous derivative it is enough to prove it for J . The differential duJ as a linear
functional on Lp(I,Rd) is easily computed to be (componentwise):

〈duJ, h〉 =

∫ 1

0
pu(t)|u(t)|p−2h(t)dt, for all h ∈ Lp,

i.e. duJ = pu|u|p−2 ∈ Lq = (Lp)∗, then the result is clear from the previous
claim. �

Proposition 10 (Palais-Smale condition). Let y be a regular value of
the Endpoint map and p > 1. Then the function f = J |Ω(y) satisfies the
Palais-Smale condition, i.e. any sequence {γk}k∈N ⊂ Ω(y) on which f is
bounded and such that dγk

f → 0 has a convergent subsequence.

Proof. Consider the differential duF of the endpoint map at a point u. Using
the notations of Theorem 22 we can write it, for any v ∈ Lp as:

(duF )v =

∫ 1

0
Mu(1)Mu(s)

−1Bu(s)v(s)ds.

Denote by w1(t;u), . . . , wn(t;u) the rows of the matrix Mu(1)Mu(t)
−1Bu(t);

notice that for j = 1, . . . , d we have wj(·;u) ∈ Lq. If u ∈ Ω(y), then we can
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write:

TuΩ(y) = ker duF = span{w1(·;u), . . . , wn(·;u)}
⊥;

as the latter is a linear subspace, we also deduce:

TuΩ(y)
⊥ = span{w1(·;u), . . . , wn(·;u)}.

In particular, for any u ∈ Ω(y), TuΩ(y) is a closed subspace of codimension
n in Lp and therefore it is complemented, i.e. there exists a closed and finite
dimensional subspace Wu such that

(7) Lp = TuΩ(y)⊕Wu;

finally, observe that there exists a continuous linear projection πu : Lp → Wu

subordinated to this splitting, that is ker(πu) = TuΩ(y), see [11, Chapter 2].

Let now {uk}k∈N ⊂ Ω(y) be a bounded sequence such that duk
f → 0.

Since duf = (duJ)|TuΩ(y) then by definition of the projections πuk
we have:

〈duk
J, (Id− πuk

)v〉 → 0, ∀v ∈ Lp.

The space Lp is uniformly convex, hence reflexive by the Milman-Pettis
theorem; the sequence {uk} is bounded by assumption and invoking Banach-
Alaoglu we deduce the existence of a subsequence {ukl

}l∈N and u ∈ Lp such
that ukl

⇀ u. Furthermore, observe that if q = p∗ = p
p−1 is the conjugate

exponent of p, then:

duJ = pu|u|p−2 ⇒ ‖duJ‖
q
q = ‖u‖pp.

By the above discussion, up to subsequences, we may thus assume that
‖uk‖p < C and uk ⇀ u in Lp. There exists then K ∈ N sufficiently large so
that for any norm-one v ∈ Lp and k > K the following holds:

(8) |〈duk
J, πuk

(v)〉| ≤ |〈duk
J, v〉|+ |〈duk

J, v − πuk
(v)〉| < C + 1.

It is well-known [11, Section 3] that the splitting in (7) induces a dual split-
ting on Lq, namely for any u ∈ Ω(y) we have

Lq = (TuΩ(y))
∗ ⊕W ∗

u ;

moreover the adjoint operator π∗uk
is still a projection with kernel W⊥

uk

and range (Tuk
Ω(y))⊥ ∼= W ∗

uk

∼= Lq/W⊥
uk

= span{w1(·;uk), . . . , wn(·;uk)}. In
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particular, (8) shows that

‖π∗uk
(duk

J)‖q < C + 1, ∀k > K.

Write:

π∗uk
(duk

J) =

n∑
j=1

aj,kwj(·;uk);

since the projections have finite ranges, and all norms are equivalent on
finite-dimensional spaces, by the above we deduce that there exists C ′ > 0
so that

(9)
∑
j,l

aj,kal,k〈wj(·;uk), wl(·;uk)〉 = ‖π∗uk
(duk

J)‖22 < C ′.

Because of Lemma 24 and Theorem 19 and the fact that uk → u weakly in
Lp, then for every j = 1, . . . , n the function wj(·;uk) : [0, 1] → R

d converges
strongly (and hence in any Lp norm) to a function wj : [0, 1] → R

d. Also,
F (u) = y and since y is a regular value, then {w1, . . . , wn} is a linearly
independent set.

By (9) we have
∑

j,l aj,kal,k〈wj , wl〉 < C ′, which tells the sequence:

⎧⎨
⎩zk =

∑
j

aj,kwj

⎫⎬
⎭

k∈N

⊂ span{w1, . . . , wn} is bounded.

Since span{w1, . . . , wn} is finite dimensional we can then assume zk → z;
since {w1, . . . , wn} is a linearly independent set then the sequences {aj,k}k∈N
for j = 1, . . . , n are bounded and we can assume they converge. Consequently
also π∗uk

(duk
J) → z (all this up to subsequences).

Finally we have:

lim
k→∞

‖duk
J − z‖q ≤ lim

k→∞

(
‖duk

J − π∗uk
(duk

J)‖q
)

+ lim
k→∞

(
‖π∗uk

(duk
J)− z‖q

)
= 0.

This proves that uk|uk|
p−2 = duk

J
Lq

−→ z (up to subsequences), and the re-
sult follows now from the next Lemma 11. �
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Lemma 11. Let {un}n∈N ⊂ Lp such that:

un|un|
p−2 Lq

−→ z.

Then un
Lp

−→ z|z|(2−p)/(p−1).

Proof. Consider the Nemytskii operator N : Lq → Lp defined by v �→
v|v|(2−p)/(p−1). Since: ∣∣∣v|v| 2−p

p−1

∣∣∣ ≤ |v|
1

p−1 = |v|
p

p−1
· 1
p

then N ∈ C0(Lq, Lp) by Theorem 8. In particular un = N(un|un|
p−2)

Lp

−→
N(z), and the claim follows. �

3.2. Critical points

Theorem 12. Let y be a regular value for the endpoint map of the control
system (1), 1 < p < pc (where pc is given by Theorem 4) and consider f =
Jp|Ω(y). Then f has infinitely many critical points.

Proof. The first part of the proof follows the lines of the classical argu-
ment. Assume first that the fundamental group of M is infinite. Then by
(6) Ω(y) has infinitely many components. Lemma 9 tells that f is C1 and
Proposition 10 that it satisfies the Palais-Smale condition. Assume that one
component of Ω(y) does not contain any critical point of f . Then we can
apply the deformation lemma [12, Lemma 3.2] and conclude that f needs
to be unbounded from below, which is in contradiction with the definition
f = Jp|Ω(y) ≥ 0.

Assume now the fundamental group ofM is finite. Let us call r : M → M
the universal covering map. Then M is also compact, and the structure F
can be lifted to a structure F = {X0, . . . , Xd} by setting:

dxrXi(x) = Xi(r(x)).

Let x be a lift of x and {y1, . . . , yk} be the lifts of y (here k = #π1(M), the
number of sheets of the covering map). Denote by Ω the set of horizontal
curves on M leaving from x, by F the corresponding endpoint map and by
Ω(y) the set of horizontal curves on M between x and y ∈ M . We denote by
r : Ω → Ω the smooth map that associates to a horizontal trajectory γ on M
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the trajectory r ◦ γ on M . Notice that in coordinates this map is the identity
maps on controls (hence it is a local diffeomorphism), and in particular:

J(γ) = J(r(γ)).

Moreover, by construction the following diagram is commutative:

M M

Ω(y) Ω(y)

r

F

r

F

and since r and r are local diffeomorphism, then y is a regular value of F .
If we prove the statement for M , then we are done: in fact given a critical

point u for the geometric cost f = J |Ω(y) then r(u) is a critical point for f
(hence we would obtain an infinite numbers of distinct critical points for f).
To see this fact let us use the Lagrange multiplier formulation: u is a critical
point of f if and only if there exists λ ∈ T ∗yM such that:

λ ◦ duF = duJ.

Using the commutativity of the above diagram, and the fact that r is a local
diffeomorphism we see that this implies the existence of a λ ∈ T ∗yM such
that

(10) λ ◦ dr(u)F ◦ dur = dr(u)J ◦ dur :

in fact

dr(u)J ◦ dur = duJ

= λ ◦ duF

= λ ◦ dr(F (u))r
−1 ◦ dF (u)r ◦ duF

= λ ◦ dr(u)F ◦ dur.

On the other hand, being r a local diffeomorphism, dur is also an iso-
morphism of vector spaces; consequently simplifying it from (10) we can
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write:

λ ◦ dr(u)F = dr(u)J

which tells exactly that r(u) is a critical point for f .
We are left with the case M compact and simply connected. Let y be a

regular value of the endpoint map and consider the horizontal path space
Ω(y) endowed with the W 1,p topology (recall that we are assuming 1 < p <
pc with pc given by Theorem 4). Since y is a regular value of the Endpoint
map, Ω(y) is a smooth Banach manifold modeled on Lp = Lp([0, 1],Rd) (here
d is the rank of the distribution). The function f is C1 (by Lemma 9) and
it satisfies the Palais-Smale condition (by Proposition 10 above), hence the
results follows from Corollary 6 and the following Proposition.

Proposition 13 (Corollary 3.4 from [12]). Let Ω(y) be Banach mani-
fold and f ∈ C1(Ω(y),R) bounded from below and satisfying the Palais-Smale
condition. Then f has at least as many critical points as the Lusternik-
Schnirelmann category of Ω(y). �

4. The subriemannian case

In this section we discuss applications of the previous results to the subrie-
mannian case, in particular we will always make the assumption X0 = 0.

4.1. Geodesics

Given two points x, y in a subriemannian manifold M , a subriemannian
geodesic is a curve γ : I → M satisfying the following properties: (i) it is
absolutely continuous; (ii) its derivative (which exists almost everywhere)
belongs to the subriemannian distribution; (iii) it is parametrized by con-
stant speed; (iv) γ(0) = x and y(1) = y; (v) it is locally length minimizer, i.e.
for every t ∈ [0, 1] there exists δ(t) > 0 such that γ|[t−δ(t),t+δ(t)] has minimal
length among all horizontal curves joining γ(t− δ(t)) with γ(t+ δ(t)).

Proposition 14. Let y be a regular value of the Endpoint map centered
at x. For every p > 1 all critical points of f = Jp

∣∣
Ω(y)

are subriemannian

geodesics joining x to y.

Proof. First let us notice that curves that are locally Jp-minimizers are
parametrized by constant speed and are locally length minimizer (the proof
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of this fact is the same as the classical proof for p = 2 as in [21, Section 12]
and essentially uses the fact that

(∫
|u|

)p
≤

∫
|u|p with equality if and only if

|u| ≡ c). Also, being locally length minimizer and parametrized by constant
speed implies that globally the parametrization is with constant speed.

Let us consider the equation for u ∈ Lp to be a critical point of f =
Jp|F−1(y) (using Lagrange multipliers rule):

(11) ∃λ ∈ T ∗yM such that λ ◦ duF = pu|u|p−2.

In particular since a critical point u of f is a local length minimizer (this can
be seen by considering variations of only a small portion of the corresponding
curve), we must have |u| ≡ c > 0 and we can rewrite (11) as:

∃η =
λ

pc
∈ T ∗yM such that η ◦ duF = u,

which is the equation for the critical points of J2 on Ω(y).
Thus if y is a regular value of the Endpoint map, the critical points of

J2 and Jp on Ω(y) are the same; since critical points of J2
∣∣
Ω(y)

are subrie-

mannian geodesics joining x to y (see [2, Section 4]), the result follows. �

As a corollary of Proposition 14 and Theorem 12, we obtain the subrieman-
nian version of Serre’s theorem.

Theorem 15 (Subriemannian Serre’s Theorem). If y is a regular
value of the endpoint map centered at a point x in a compact subriemannian
manifold, the set of subriemannian geodesics joining x and y is infinite.

4.2. The contact case

In the contact case we can remove from the subriemannian Serre’s theorem
the regularity assumption on the two points. In fact the same proof works in
the slightly more general case of fat distributions (see [23] for more details
on these distributions), as the only property that we are going to use is that
there are no nontrivial abnormal curves.

Theorem 16. For every two points on a compact, contact subriemannian
manifold the set of subriemannian geodesics joining them is infinite.

Proof. We prove that Jp (with p > 1) has infinitely many critical points
when restricted to each Ω(y). Because of Theorem 12 the only case that we
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have to cover is the case the final point y is the same point as the initial
point x (in which case it is not a regular value for F ).

Recall that on a contact manifold there are no nontrivial abnormal ex-
tremals (i.e. critical points of the Endpoint map), see [2, 23], the trivial one
being the one with zero control.

The case when the base manifold is not simply connected can be treated
as in the proof of Theorem 12: if the fundamental group is infinite, then only
one of the infinitely many components of Ω(x) contains the zero control; if
the fundamental group is finite, we pass to the universal cover (which is still
compact) and notice that the projection of a geodesic is still a geodesic (no
matter if it is a singular point of the Endpoint map, as in the subrieman-
nian case geodesics are locally length minimizers and length is preserved by
projection).

Thus we assume our manifold M is compact and simply connected. Con-
sider F̃ , the restriction to Lp\{0} of the Endpoint map centered at x. Then
F̃−1(x) is a smooth Banach manifold and:

Ω(x) = F̃−1(x) ∪ {0}

(Ω(x) has its only singularity at zero).
We prove that the Lusternik-Schnirelmann category of F̃−1(x) is infinite.

Combining this with the fact that the p-Energy f : F̃−1(x) → R is C1 and
satisfies Palais-Smale for every level c > 0 (by [19, Theorem 19]), implies
that f has infinitely many critical points.

Assume that the Lusternik-Schnirelmann category of F̃−1(x) is finite
and let U1, . . . , Uk be contractible open sets covering F̃−1(x). By Corollary
7 there exists an open neighborhood U0 of the zero control (the singular point
of Ω(x)) such that the inclusion U0 ↪→ Ω(x) is homotopic to a constant map.
As a consequence {U0, . . . , Uk} would be an open cover of Ω(x) made of sets
contractible in Ω(x), hence Lusternik-Schnirelmann category of Ω(x) would
be finite, contradicting Corollary 6. �

5. Appendix

In this section we collect a list of technical results that we use in the proofs.
Most of these results are well known to experts, but it is often not easy to
find an appropriate reference. Some proofs are adaptations from [30] to the
general case p ∈ (1,∞).
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Lemma 17 (Gronwall inequality). Assume ϕ : [0, T ]→R to be a bounded
nonnegative measurable function, α : [0, T ] → R to be a nonnegative inte-
grable function and B : [0, T ] → R to be non decreasing such that

ϕ(t) ≤ B(t) +

∫ t

0
α(τ)ϕ(τ)dτ, ∀t ∈ [0, T ];

then

ϕ(t) ≤ B(t)e
∫ t

0
α(τ)dτ , ∀t ∈ [0, T ].

Proposition 18. Let T > 0 be fixed. Then the domain of the endpoint map
is open in Lp([0, T ],Rd).

Proof. The strategy of the proof consists in showing that if v belongs to a
sufficiently small neighborhood of u in Lp([0, T ],Rd), then the corresponding
trajectories γu and γv remain uniformly close. It is not restrictive to prove the
theorem for small T > 0, which in turn allows us to work inside a coordinate
chart. Also, we assume that the vector fields Xi, i = 0, 1, . . . , d have compact
support in R

n; Lemma 3.2 in the aforementioned paper yields that they are
therefore globally Lipschitzian. For any t ∈ [0, T ] we have the following:

‖γu(t)− γv(t)‖ ≤

∥∥∥∥∥
∫ t

0
(X0(γu(τ))−X0(γv(τ)))dτ

+

∫ t

0

d∑
i=1

vi(τ)(Xi(γu(τ))−Xi(γv(τ)))dτ

−

∫ t

0

d∑
i=1

(vi(τ)− ui(τ))Xi(γu(τ))dτ

∥∥∥∥∥
≤ C

∫ t

0

(
1 +

d∑
i=1

|ui(τ)|

)
‖γu(τ)− γv(τ)‖dτ + hv(t),

with

hv(t) =

∥∥∥∥∥
∫ t

0

d∑
i=1

(vi(τ)− ui(τ))Xi(γu(τ))dτ

∥∥∥∥∥ .
By Hölder inequality we obtain

hv(t) ≤ C ′T 1/q‖u− v‖p, ∀t ∈ [0, T ];
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moreover we deduce that for any ε > 0 there exists a neighborhood U of u in
Lp([0, T ],Rd) such that hv(t) ≤ ε, for any v ∈ U and t ∈ [0, T ]. We conclude
using Gronwall inequality that

‖γu(t)− γu(v)‖ ≤ εeC(T+T 1/qK), ∀t ∈ [0, T ].

�

Theorem 19. Let u = (u1, . . . , ud) ∈ Lp([0, T ],Rd) be a control in the do-
main of the endpoint map F , and let γu be the corresponding solution to

(7). Let (un)n∈N be a sequence in Lp([0, T ],Rd). If un
Lp

⇀ u, then for n large
enough γun

is well-defined on [0, T ] and moreover γun
converges to γu, uni-

formly on [0, T ].

Proof. It suffices to prove the proposition when T is close to zero; this in turn
permits to work in a coordinate chart, that is we may suppose the vector
fields Xi to have compact support in R

n. Moreover, let K be a compact
neighborhood of x such that there exists C > 0 for which

‖Xi(z1)−Xi(z2)‖ ≤ C‖z1 − z2‖

holds for any z1, z2 ∈ K and any i = 0, 1, . . . , d. For all t ∈ [0, T ] we have:

‖γu(t)− γun
(t)‖ ≤

∫ t

0
‖(X0(γu(τ))−X0(γun

(τ))‖dτ

+

∫ t

0

d∑
i=1

|un,i(τ)|‖Xi(γu(τ))−Xi(γun
(τ))‖dτ

+

∫ t

0

d∑
i=1

|un,i(τ)− ui(τ)|‖Xi(γu(τ))‖dτ

≤ C

∫ 1

0

(
1 +

d∑
i=1

|un,i(τ)|

)
‖γu(τ)− γun

(τ)‖dτ + hn(t),

where

hn(t) =

∫ t

0

d∑
i=1

|un,i(τ)− ui(τ)|‖Xi(γu(τ))‖dτ.

The uniform boundedness principle of Banach and Steinhaus ensures that
supn∈N ‖un‖p ≤ M ; if we can prove that hn tends uniformly on [0, T ] to
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the zero function, then we would finish the argument using the Gronwall
inequality.

Observe that hn tends pointwise to the zero function; it is also uniformly
1/q-Hölderian, where q = p

p−1 , indeed if L = supi supp∈Rn ‖Xi(p)‖ we have

‖hn(t1)− hn(t2)‖ ≤ L

∫ t2

t1

d∑
i=1

(|un,i(τ)|+ |ui(τ)|)dτ

≤ L(M + ‖u‖p)|t1 − t2|
1/q.

The proof is then concluded by the next lemma. �

Lemma 20 (Uniform convergence of Hölderian maps). Let {fk}k∈N :
[a, b] → R

n be a uniformly α-Hölderian sequence of functions which con-
verges pointwise to a limit function f . Then f is α-Hölderian and fk → f
uniformly on [a, b].

Proof. The relation ‖fk(x)− fk(y)‖ ≤ M |x− y|α immediately yields that
the limit function f is also α-Hölderian.

Next, let ε > 0 be arbitrary and let accordingly ρ =
(

ε
3M

)1/α
. As [a, b]

is compact, it can be covered by a finite collection {Bi}
l
i=1 of balls of radius

ρ, whose centers will be denoted by xi; this means that for any x ∈ [a, b]
there exists i ∈ {1, . . . , l} such that |x− xi| ≤ ρ. Let K ∈ N be such that
‖fk(xi)− f(xi)‖ ≤ ε/3 for all i = 1, . . . , l if k > K. The following holds true
for k ∈ N sufficiently large:

‖fk(x)− f(x)‖ ≤ ‖fk(x)− fk(xi)‖+ ‖fk(xi)− f(xi)‖+ ‖f(xi)− f(x)‖

≤ 2M |x− xi|
α +

ε

3
≤ ε,

and this finishes the proof. �

We turn now to the issue of the differentiability of the endpoint map
F , i.e. we want to determine its Fréchet differential and prove some of its
continuity properties.

Proposition 21. Let u be in the domain of the endpoint map

F : Lp([0, T ],Rd)

and let γu be the associated trajectory. Then for any bounded neighborhood U
of u in Lp([0, T ],Rd), there exists a constant C = C(U) such that whenever
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v, w ∈ U and t ∈ [0, T ] we have

‖γv(t)− γw(t)‖ ≤ C‖v − w‖p.

Proof. Using (7) we derive the following estimate

‖γv(t)− γw(t)‖ ≤

d∑
i=1

∫ t

0
|vi − wi|‖Xi(γv(s))‖ds(12)

+

∫ t

0
‖X0(γv(s))−X0(γw(s))‖ds

+

d∑
i=1

∫ t

0
|wi|‖Xi(γv(s))−Xi(γw(s))‖ds.

Theorem 19 ensures that γv and γw take values in a compact K which
depends just on U4; as X0, X1, . . . , Xd are smooth, we have the existence of
a constant M such that for all v, w ∈ U and for all i ∈ 1, . . . , d there holds

‖Xi(γv)‖ ≤ M,

‖Xi(γv)−Xi(γw)‖ ≤ M‖γv − γw‖, ∀t ∈ [0, T ];

lastly we may assume that U is contained in a ball of radius R, that is
‖w‖p ≤ R for all w ∈ U . We proceed with the estimate in (12) as

‖γv(t)− γw(t)‖ ≤ B‖v − w‖p

+M

∫ t

0

(
1 +

d∑
i=1

|wi|

)
‖γv(s)− γw(s)‖ds, ∀t ∈ [0, T ],

where B = MT 1/q; finally, Gronwall inequality yields

‖γv(t)− γw(t)‖ ≤ BeM(T+RT 1/q)‖v − w‖p, ∀t ∈ [0, T ].

�

4By Banach-Alaoglu U is sequentially weakly compact, hence weakly compact
by the Eberlein-Smulian theorem. On the other hand theorem 19 implies that for
any ε > 0, whenever u, v belong to a sufficiently small open set, ‖γu(t)− γv(t)‖ ≤ ε
on [0, T ]. The statement follows since whenever we cover U with a collection of
open sets of arbitrary small size, we may always extract a finite subcover and then
proceed via the triangular inequality.
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We fix now some notations used in the next theorem: let Au(t) =
dX0(γu) +

∑d
i=1 uidXi(γu), Bu(t) = (X1(γu), . . . , Xd(γu)), and let Mu be

the n× n matrix solution of M ′
u = AuMu satisfying Mu(0) = I; we have

Theorem 22 (Differentiability of the endpoint map). The endpoint
map F is Lp-Fréchet differentiable; its differential at u is the linear map
dF (u) : Lp → R

n defined by

(duF )v =

∫ T

0
Mu(T )Mu(s)

−1Bu(s)v(s)ds.

Proof. Let u ∈ Lp([0, T ],Rd) be fixed in the domain of F . Let us consider a
neighborhood U of u in Lp; without loss of generality we may assume that
there exists R > 0 such that ‖v‖p ≤ R for any v ∈ U . Let γu and γu+v be
the solutions to (7) with respect to the controls u and u+ v respectively.
We have

γ̇u+v − γ̇u = X0(γu+v)−X0(γu) +

d∑
i=1

viXi(γu+v)(13)

+

d∑
i=1

ui(Xi(γu+v)−Xi(γu)).

For all i = 0, 1, . . . , d there hold the expansions

Xi(γu+v)−Xi(γu) = dXi(γu)(γu+v − γu)

+

∫ 1

0
(1− t)d2Xi(tγu + (1− t)γu+v)(γu+v − γu, γu+v − γu)dt,

Xi(γu+v) = Xi(γu) +

∫ 1

0
(1− t)dXi(tγu + (1− t)γu+v)(γu+v − γu)dt;

plug the above into (13) to rewrite that equation as

(14) ω̇ = Auω +Buv + ξ,
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where ω(t) = γu+v(t)− γu(t) and

ξ(t) =

d∑
i=1

vi(t)

∫ 1

0
(1− s)dXi(sγu + (1− s)γu+v)(γu+v − γu)ds

+

∫ 1

0
(1− s)d2X0(sγu + (1− s)γu+v)(γu+v − γu, γu+v − γu)ds

+

d∑
i=1

ui(t)

∫ 1

0
(1− s)d2Xi(sγu + (1− s)γu+v)(γu+v − γu, γu+v − γu)ds.

We have ‖v‖p ≤ R for all v ∈ U ; the previous proposition and the estimate

‖sγu(s) + (1− s)γu+v(s)‖ ≤ ‖γu(s)‖+ (1− s)‖γu+v(s)− γu(s)‖

≤ ‖γu(s)‖+ CR

imply that there exists a compact K⊂R
n such that sγu(s)+(1−s)γu+v(s)∈

K for any s ∈ [0, 1] and any v ∈ U . Since the Xi are smooth, again by the
proposition above we have we the estimate

‖ξ(t)‖ ≤ c1‖v‖p

d∑
i=1

|vi(t)|+ c2‖v‖
2
p

(
1 +

d∑
i=1

|ui(t)|

)
.

We solve (14) to obtain

ω(t) =

∫ t

0
Mu(t)Mu(s)

−1Bu(s)v(s)ds+

∫ t

0
Mu(t)Mu(s)

−1ξ(s)ds;

in particular for t = T∥∥∥∥γu+v(T )− γu(T )−

∫ T

0
Mu(T )Mu(s)

−1(s)Bu(s)v(s)ds

∥∥∥∥(15)

≤ C ′

(
c1‖v‖p

∫ T

0

d∑
i=1

|vi(s)|ds+ c2‖v‖
2
p

∫ T

0
(1 +

d∑
i=1

|ui(s)|)ds

)

≤ C ′
(
c1T

1/q + c2(T + ‖u‖pT
1/q)

)
‖v‖2p.

The map

Fu : Lp � v �→

∫ T

0
Mu(T )Mu(s)

−1Bu(s)v(s)ds ∈ R
n
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is evidently linear and by (15) also continuous. It then follows that the
endpoint map F is differentiable at u and duFu = Fu. �

Theorem 23. Let u = (u1, . . . , ud) ∈ Lp([0, T ],Rd) be a control in the do-
main of the endpoint map F . Let (un)n∈N be a sequence in Lp([0, T ],Rd)

such that un
Lp

⇀ u for some u ∈ Lp([0, T ],Rd). Then dun
F → duF .

The proof of this theorem needs a series of preliminary lemmas; for
s ∈ [0, T ], set Nu(s) = Mu(T )Mu(s)

−1. Since Nu(s)Mu(s) = Mu(T ), upon
differentiation and using the definition of Mu, we obtain N ′

u(s)Mu(s) +
Nu(s)Au(s)Mu(s) = 0, that is

N ′
u(s) = −Nu(s)Au(s), Nu(T ) = I.

Lemma 24. Let {un}n∈N and u be as in the statement of theorem 23. Then
Nun

→ Nu uniformly on [0, T ].

Proof.

Nu(t)−Nun
(t)(16)

=

∫ t

0

(
Nun

(s)(dX0(γun
(s)) +

d∑
i=1

un,idXi(γun
(s)))

−Nu(s)(dX0(γu(s)) +

d∑
i=1

ui(s)dXi(γu(s)))

)
ds

=

∫ t

0

(
(Nun

(s)−Nu(s))dX0(γu(s)) +Nu(s)(dX0(γun
(s))

− dX0(γu(s))) + (Nun
(s)−Nu(s))

d∑
i=1

un,i(s)dXi(γun
(s))

+Nu(s)

d∑
i=1

un,i(s)(dXi(γun
(s))− dXi(γu(s)))

+Nu(s)

d∑
i=1

(un,i(s)− ui(s))dXi(γu(s))

)
ds.

By virtue of theorem 19, γun
→ γu uniformly on [0, T ]; moreover if

hn(t) =

∫ 1

0
Nu(s)

d∑
i=1

(un,i(s)− ui(s))dXi(γu(s))ds,
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then ‖hn‖ → 0 uniformly on [0, T ] by lemma 20: indeed the sequence {hn}n∈N
is 1/q- Hölderian and converges pointwise to 0, moreover the factor Nu(s)
does not depend on n. Then (16) can be estimated for n sufficiently large as

‖Nu(t)−Nun
(t)‖ ≤ C

∫ t

0
‖Nu(s)−Nun

(s)‖ds+ ε,

and the theorem follows using the Gronwall inequality, as desired. �

Proof of theorem 23. Theorem 22 yields that the differential of the endpoint
map at the point w has the form

(dwF )v =

∫ T

0
Nw(s)Bw(s)v(s)ds.

We know from theorem 19 that γun
→ γu uniformly on [0, T ]; then Bun

→ Bu

uniformly on [0, T ]. As lemma 24 shows that also Nun
→ Nu uniformly on

[0, T ], we deduce that

dun
Fv → duFv

uniformly on [0, T ], for any v ∈ Lp([0, T ],Rd), and this finishes the proof. �
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