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Geometric inequalities and rigidity

theorems on equatorial spheres

Lan-Hsuan Huang and Damin Wu

We prove rigidity for hypersurfaces with boundary in the unit
sphere S

n+1 with scalar curvature R ≥ n(n− 1). Under appropri-
ate boundary conditions, the hypersurfaces are shown to be part
of the equatorial spheres. The lower bound n(n− 1) is critical in
the sense that the hypersurface may contain geodesic points and
some natural differential operators are fully degenerate at geodesic
points. We overcome the difficulty by studying the geometry of
level sets of a height function, via new geometric inequalities. Some
rigidity results of hyperplanes and generalized cylinders are also
obtained for hypersurfaces with boundary and with nonnegative
scalar curvature in Euclidean space.

1. Introduction

Hypersurfaces in S
n+1 of either constant scalar curvature or constant mean

curvature have been extensively studied in the literature. The pioneering
work of S.-Y. Cheng and S.-T. Yau [4] classifies hypersurfaces that have
constant scalar curvature and nonnegative sectional curvature. They intro-
duced a self-adjoint operator which has been used by other people to study
hypersurfaces of constant scalar curvature, under various conditions (see, for
example, [1, 12]).

In this paper, we consider hypersurfaces M with nonempty boundary in
S
n+1 for n ≥ 2 with scalar curvature R ≥ n(n− 1). We prove rigidity of M

under a suitable boundary condition. The lower bound n(n− 1) is a critical
value because R ≥ n(n− 1) implies that H2 ≥ |A|2 by Gauss equation, so
it is possible for the mean curvature to change signs at the geodesic points.
From an analytic aspect, several geometric operators, such as Cheng–Yau’s
operator, the linearized scalar curvature operator, and the scalar curvature

The authors were partially supported by National Science Foundation through
DMS-1308837. The first named author was also partially supported by DMS-
1452477.

185



186 L.-H. Huang and D. Wu

flow, are no longer globally elliptic or parabolic and are fully degenerate
at the geodesic points. Thus the theory of maximum principle is not appli-
cable to those operators. (We remark that if one assumes M is contained
in the hemisphere and has constant scalar curvature, then the desired strict
ellipticity automatically holds; hence, M is a sphere by applying the Alexan-
drov reflection principle (see N. Korevaar [11]).) In this article, we develop
a different approach using new geometric inequalities and the level sets of
hypersurfaces, motivated by our recent work for complete hypersurfaces in
Euclidean space [10].

Another motivation of this paper comes from Min–Oo’s problem. Let
M be an n-dimensional compact Riemannian manifold of scalar curvature
R ≥ n(n− 1) with boundary ∂M . Suppose ∂M is isometric to the unit
sphere S

n−1 and is totally geodesic in M . The problem asks whether M
is isometric to the hemisphere S

n
+. Recently the counter-examples for the

general statement are provided by S. Brendle, F. Marques, and A. Neves [3].
Nevertheless, there have been many interesting positive results in various
settings. F. Hang and X. Wang [7, 8] proved the conjecture under the con-
dition that, either g is conformal to the standard sphere metric, or the Ricci
curvature satisfies Ric ≥ (n− 1)g. By assuming positive Ricci curvature on
M and an isoperimetric condition on the boundary, M. Eichmair proved the
conjecture in three dimensions [6]. We refer to a survey by Brendle [2] and
the references therein.

In an early work [9], we confirmed the conjecture if M is a hypersurface
with boundary in either Euclidean space or the hyperbolic space, by apply-
ing the strong maximum principle to the mean curvature operator. It is a
natural continuation to study the case when M is a hypersurface in S

n+1.
However, the method in [9] does not apply to the spherical case largely due
to the failure of ellipticity as discussed above. We overcome the difficulty
by a geometric argument and obtain the following result. Denote by S

k a
k-dimensional unit sphere in the unit sphere S

n+1 and by S
k
+ the (closure)

of the k-dimensional hemisphere in S
n+1.

Theorem 1. Let n ≥ 2. Let M be a connected, embedded, two-sided hyper-
surface in S

n+1 with boundary ∂M . Suppose int(M) is Cn+1 and M is C1

up to boundary. Suppose M and ∂M satisfy the following conditions:

1) M satisfies R ≥ n(n− 1);

2) ∂M is a great (n− 1)-sphere S
n−1;

3) M is tangent to a great n-sphere S
n at ∂M .
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Then M is the hemisphere S
n
+.

Theorem 1 confirms Min–Oo’s problem for hypersurfaces in S
n+1 under

a slightly weaker boundary condition, namely, ∂M is not assumed totally
geodesic in M . Theorem 1 is implied by the following more general result.

Theorem 2. Let n ≥ 2. Let M be a connected, embedded, and two-sided
hypersurface in S

n+1 with boundary ∂M . Suppose int(M) is Cn+1 and M is
C1 up to boundary. Suppose M and ∂M satisfy the following conditions:

1) M satisfies R ≥ n(n− 1);

2) ∂M is contained in S
n
+;

3) M is tangent to S
n
+ at ∂M from the region enclosed by ∂M .

Then M is a portion of the hemisphere S
n
+.

We remark that ∂M is a C0 submanifold, but we do not need any ad-
ditional regularity of ∂M . The interior regularity that int(M) ∈ Cn+1 is
needed to apply the Sard theorem in Lemma 3.7. It is of interest whether
the regularity assumption can be weakened to int(M) ∈ C2.

The key ingredient is a geometric inequality for the level sets of a height
function in M , that holds for a large class of ambient spaces.

Theorem 3. Let (N, g) be an n-dimensional Riemannian manifold. Sup-
pose M is a C2 hypersurface in the product manifold (N × R, g + dt2) with
a unit normal vector field ν. Let Σ = M ∩ t−1(ε) be a regular level set in
M , and let η be a unit normal to Σ ⊂ (N × {ε}, g). Consider the conformal
metric φ−2(g + dt2) on N × R for a positive function φ ∈ C1(N × R). De-
note by Ā the shape operator of M in (N × R, φ−2(g + dt2)) with respect to
φν and by ĀΣ the shape operator Σ in (N × {ε}, φ−2(·, ε)g) with respect to
φη. Denote by H̄, H̄Σ the corresponding mean curvature scalars. Then the
following inequality holds on Σ

H̄
[〈ν, η〉H̄Σ + (n− 1)〈ν, ∂t〉φt

]
(1.1)

≥ 1

2

(
H̄2 − |Ā|2)+ n

2(n− 1)

[〈ν, η〉H̄Σ + (n− 1)〈ν, ∂t〉φt

]2
,

where φt = ∂φ/∂t, and 〈·, ·〉 is taken with respect to g + dt2. The equality
in (1.1) holds at p ∈ Σ if and only if M and Σ satisfy the following conditions
at p ∈ Σ:
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(i) Σ is umbilic at p in (N × {ε}, φ−2(·, ε)g). Denote by κ the principle
curvature of Σ.

(ii) M ⊂ (N × R, φ−2g) has principal curvature 〈ν, η〉κ+ 〈ν, ∂t〉φt with mul-
tiplicity at least n− 1.

As an independent result, we show rigidity for hypersurfaces with bound-
ary in R

n+1 with nonnegative scalar curvature. Let P+ be a half-hyperplane
in R

n+1, e.g. {(x1, . . . , xn, 0) ∈ R
n+1 : x1 ≥ 0}.

Theorem 4. Let n ≥ 2. Let M be a connected, embedded, two-sided hy-
persurface in R

n+1 with nonnegative scalar curvature and with nonempty
boundary ∂M (the boundary need not be bounded). Suppose int(M) is Cn+1

and M is C1 up to boundary. Suppose that ∂M ⊂ P+ and M is tangent to
a hyperplane at ∂M from the region enclosed by ∂M in P+. Then M is the
portion of either a hyperplane or a generalized cylinder.

The paper is organized as follows. The geometric inequalities are de-
rived in Section 2. The rigidity theorem for hypersurfaces in the sphere is
proved in Section 3 and the Euclidean case is proved in Section 4. In Sec-
tion 5, we demonstrate by two examples that the condition in Theorem 2
and Theorem 4 that M is tangent at ∂M from the region enclosed by ∂M
is necessary.

Acknowledgement. In an earlier version of this paper, we proved a weaker
version of Theorem 1 using the mean curvature flow. We would like to thank
Gerhard Huisken and Tom Ilmanen for helpful discussions along that direc-
tion. We also thank Pengzi Miao for his helpful comments and kind en-
couragement. The first author is grateful to Panagiota Daskalopoulos for
discussions and to the Albert Einstein Institute for their hospitality and
generous support. The second author would like to thank Jianguo Cao and
Brian Smyth for the conversations.

2. Geometric inequalities

2.1. Product manifolds

Consider the product manifold (N × R, g + dt2), where (N, g) is a n-
dimensional Riemannian manifold. Let M be a C2 hypersurface in the
product manifold N × R endowed with the induced metric gM , and let
Σ = M ∩ t−1(ε) be a regular level set. Let ν and η be vector fields in the
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tangent space of N × R along Σ such that ν is a unit normal to M , and η
is a unit normal to Σ and ∂t. Denote by A the shape operator of M with
respect to ν, and by AΣ the shape operator of Σ ⊂ N × {ε} with respect to
η. Let H and HΣ be the corresponding mean curvature scalars. The mean
curvature is defined as the trace of the shape operator; equivalently, the
negative divergence of the unit normal vector field.

Lemma 2.1. Let (e1, e2, . . . , en) be an orthonormal frame in the neighbor-
hood of a point in Σ in M such that (e2, . . . , en)|Σ are tangent to Σ. For
i, j = 2, . . . , n,

Ai
j = 〈ν, η〉(AΣ)

i
j

where the inner product 〈·, ·〉 is with respect to g + dt2.

Proof. Note that ν = 〈ν, η〉η + 〈ν, ∂t〉∂t. For i, j = 2, . . . , n, because 〈η, ej〉 =
0, 〈∂t, ej〉 = 0, and ∂t is parallel along ei, we have

〈∇eiν, ej〉 = 〈∇ei (〈ν, η〉η + 〈ν, ∂t〉∂t) , ej〉 = 〈ν, η〉〈∇eiη, ej〉.
�

Proposition 2.2 ([10]). Let A = (aij) be a real n× n matrix with n ≥ 2.
Denote

σ1(A) =

n∑
i=1

aii, σ1(A|1) =
n∑

i=2

aii, σ2(A) =
∑

1≤i<j≤n
(aiiajj − aijaji).

Then, we have

σ1(A)σ1(A|1) = σ2(A) +
n

2(n− 1)
[σ1(A|1)]2 +

∑
1≤i<j≤n

aijaji

+
1

2(n− 1)

∑
2≤i<j≤n

(aii − ajj)
2.

In particular, if A is a symmetric matrix, then

σ1(A)σ1(A|1) ≥ σ2(A) +
n

2(n− 1)
[σ1(A|1)]2

with the equality holds if and only if a22 = · · · = ann and aij = 0 for all
1 ≤ i < j ≤ n.
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Theorem 2.3. Let M be a C2 hypersurface in the product manifold (N ×
R, g + dt2), and let Σ = M ∩ t−1(ε) be a regular level set. Denote by ν a
unit normal to M in N × R, and let H be the corresponding mean curvature.
Denote by η a unit normal to Σ in N × {ε}, and let HΣ be the corresponding
mean curvature. Then we have the following inequality on Σ

〈ν, η〉HHΣ ≥ 1

2
R(gM )− 1

2
R(g)(2.1)

+ 〈ν, η〉2Ricg(η, η) + n

2(n− 1)
〈ν, η〉2H2

Σ,

where the inner product 〈·, ·〉 is with respect to the metric g + dt2. The equal-
ity holds at p ∈ Σ if and only if the following holds at p ∈ Σ:

(i) Σ is umbilic in N × {ε}. Denote by κ the principal curvature of Σ.

(ii) M ⊂ N × R has principal curvature 〈ν, η〉κ with multiplicity at least
n− 1.

Proof. By Lemma 2.1, Proposition 2.2, and 2σ2(A) = H2 − |A|2,

〈ν, η〉HHΣ ≥ 1

2
(H2 − |A|2) + n

2(n− 1)
〈ν, η〉2H2

Σ.

The desired inequality then follows by applying the Gauss equation to M in
N × R

R(g + dt2) = 2Ricg+dt2(ν, ν) +R(gM )−H2 + |A|2.
and the curvature formulas of a product metric

R(g + dt2) = R(g), Ricg+dt2(ν, ν) = Ricg(ν
′, ν ′),

where ν ′ = ν − 〈ν, ∂t〉∂t = 〈ν, η〉η. �

Applying Theorem 2.3 to Euclidean space Rn+1, we recover the formula
in [10, Theorem 2.2].

Corollary 2.4. Let M be a C2 hypersurface in the Euclidean space R
n+1.

Let Σ = M ∩ {xn+1 = ε} be a regular level set. If ν and η are unit normal
vectors to M ⊂ R

n+1 and Σ ⊂ {xn+1 = ε}, respectively, let H and HΣ be
the corresponding mean curvature scalars. Denote by R the induced scalar
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curvature of M . Then

〈ν, η〉HHΣ ≥ 1

2
R+

n

2(n− 1)
〈ν, η〉2H2

Σ,

where the equality holds at p ∈ Σ if and only if the following conditions hold
at p ∈ Σ:

(i) Σ is umbilic in {xn+1 = ε}. We denote the principal curvature of Σ by
κ.

(ii) M has a principal curvature 〈ν, η〉κ with multiplicity at least n− 1.

2.2. Conformal metrics

We now generalize the geometric inequality to the conformal product met-
rics. Theorem 3 follows by Lemma 2.5 and Proposition 2.2 below.

Let us first recall a general formula for the shape operator under con-
formal transformation. Let g, ḡ be two Riemannian metrics on a (n+ 1)-
dimensional manifold X that are related by

ḡ = φ−2g.

Let M ⊂ X be a two-sided hypersurface. If ν is a unit normal vector with
respect to g, then ν̄ = φν is a unit normal with respect to ḡ. If Ā and A
are the corresponding shape (1, 1) tensors, then, with respect to a frame
{e1, . . . , en} of M ,

(2.2) Āi
j = φAi

j + ν(φ)δij ,

and the corresponding mean curvature scalars H̄ and H are related by

H̄ = φH + nν(φ).(2.3)

We now apply the above discussion to a hypersurface M ⊂ N × R and
a regular level set Σ = M ∩ t−1(ε). Consider the product metric g + dt2 on
N × R. Let ν and η be the unit normals to M ⊂ N × R and to Σ ⊂ N × {ε},
respectively. Let A and AΣ be the corresponding shape operator and let H
and HΣ be the corresponding mean curvature scalars.

Let N × R be endowed with the conformal metric ḡ = φ−2(g + dt2). De-
note by Ā and ĀΣ the shape operators of M ⊂ N × R and Σ ⊂ N × {ε}
with respect to the conformal metric, respectively. Let H̄, H̄Σ be the corre-
sponding mean curvature scalars.
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Lemma 2.5. Let (e1, e2, . . . , en) be an orthonormal frame with respect to
g + dt2 in a neighborhood of M that contains Σ such that (e2, . . . , en)|Σ are
tangent to Σ. The following holds on Σ, for i, j = 2, . . . , n,

Āi
j = 〈ν, η〉(ĀΣ)

i
j + 〈ν, ∂t〉(∂tφ)δij ,

where 〈·, ·〉 is with respect to g + dt2.

Proof. By (2.2) and Lemma 2.1, for i, j = 2, . . . , n,

Āi
j = φAi

j + ν(φ)δij = φ〈ν, η〉(AΣ)
i
j + ν(φ)δij

= 〈ν, η〉(ĀΣ)
i
j − φ〈ν, η〉η(φ)δij + ν(φ)δij .

The identity follows by ν = φ〈ν, η〉η + 〈ν, ∂t〉∂t. �

For the spherical metric gS = φ−2g0 on R
n+1, we have the following

corollary, where

φ =
1 +

∑n+1
i=1 (x

i)2

2
.

Corollary 2.6. Let M be a C2 hypersurface in (Rn+1, gS). Let Σ = M ∩
{xn+1 = ε} be a regular level set. Let ν and η be unit normal vectors to
M ⊂ (Rn+1, g0) and Σ ⊂ (Rn × {xn+1 = ε}, g0|{xn+1=ε}), respectively. Let H
and HΣ be the mean curvature scalars with respect to φν and φη, respectively.
Then

H
[
g0(ν, η)HΣ + (n− 1)g0(ν, ∂n+1)x

n+1
]

≥ 1

2
[R− n(n− 1)] +

n

2(n− 1)

[
g0(ν, η)HΣ + (n− 1)g0(ν, ∂n+1)x

n+1
]2

,

where the equality holds at p ∈ Σ if and only if the following conditions hold
at p ∈ Σ:

(i) Σ is umbilic in (Rn × {ε}, gS). We denote the principal curvature of Σ
by κ.

(ii) M has a principal curvature g0(ν, η)κ+ g0(ν, ∂n+1)φn+1 in (Rn+1, gS)
with multiplicity at least n− 1.

Note that the geometric inequality for the hyperbolic space also appears
in [5] after a preprint of this article was available on the arXiv.
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3. Rigidity in spheres

Consider the the spherical metric gS = φ−2g0 on R
n+1 where

φ =
1 +

∑n+1
i=1 (x

i)2

2
.(3.1)

The stereographic projection from S
n+1 with a point removed onto (Rn+1, gS)

gives an isometry. For u ∈ C2(Rn), let H(u) be the mean curvature of the
graph of xn+1 = u(x1, . . . , xn) in (Rn+1, gS) with respect to the upward unit

normal vector φν, where ν = (−Du,1)√
1+|Du|2 . By (2.3) and direct computation,

H(u) is a quasi-linear elliptic operator:

H(u) =
1 + |x|2 + u2

2

n∑
i,j=1

(
δij − uiuj

1 + |Du|2
)

uij√
1 + |Du|2

+
n√

1 + |Du|2
(
u−

n∑
i=1

xiui

)
.

We apply the maximum principle for the mean curvature H(u) (see [9, Ap-
pendix A]) and compare with the graph of h(x) = v · x for some constant
vector v ∈ R

n. The graph of h is a great n-sphere in (Rn+1, gS) and in par-
ticular has zero mean curvature. For a > 0, define Xa = {(x1, . . . , xn) ∈ R

n :
0 ≤ x1 < a}.

Lemma 3.1. Let W be an open subset in Xa for some a > 0, and let ∂W
be the boundary of W in Xa. Let u ∈ C2(W ) ∩ C1(W ) satisfy that, for a
constant vector v ∈ R

n, u(x) = v · x and Du = v on ∂W . If H(u) ≥ 0 in
W , then u(x) > v · x somewhere in W , unless u ≡ v · x in W .

Proof. Denote by h(x) = v · x on Xa. Suppose on the contrary that u ≤ h
on W and u is not identically equal to h. If u = h at a point in W , then the
graph of h is tangent to the graph of u from above, which contradicts the
strong maximum principle since H(u) ≥ H(h) = 0. Thus u < h in W . Let
B ⊂W be an open ball such that ∂W ∩ ∂B �= ∅. Because u < h in B and
u(q) = h(q) at q ∈ ∂W ∩ ∂B, the Hopf boundary point lemma implies that
Du(q) �= Dh(q) (see, for example, [9, p. 359]). However, it contradicts the
boundary condition. �

In the following rigidity proposition, we use the geometric inequality
from Corollary 2.6 to obtain mean curvature comparison between the level



194 L.-H. Huang and D. Wu

sets of u and the level sets of some special functions. The central idea is that
the assumption on the scalar curvature and mean curvature of the graph
implies certain control on the convexity of its level sets.

Proposition 3.2. Let W be an open subset in Xa for some a > 0. Denote
by ∂W the boundary of W in Xa. Let u ∈ C2(W ) ∩ C1(W ) be a bounded
function that satisfies u(x) = v · x and Du = v on ∂W for some v ∈ R

n.
Suppose that the graph of u in (Rn+1, gS) satisfies R ≥ n(n− 1). If either
H(u) ≥ 0 or H(u) ≤ 0 everywhere in W , then u(x) = v · x in W , and in
particular H(u) ≡ 0.

Proof. Since the rotation about the origin is a rigid motion in (Rn+1, gS),
we may assume that v = 0. We also assume H(u) ≥ 0 in W ; otherwise,
replace u by −u. Suppose on the contrary that u is not identically zero. For
b > 0 fixed and for the parameter λ, define a family of superlinear functions
ψλ(x) = λ(x1)

1+b. Because of the boundary condition of u and that u is
bounded, for sufficiently large λ we have ψλ > u inW . For a fixed a0 ∈ (0, a),
continuously decrease λ until, for the first time, ψλ(p) = u(p) at some p =
(p1, . . . , pn) ∈W ∩Xa0

. By Lemma 3.1, we know u(p) > 0 and hence λ > 0.
Either the graphs of u and ψλ are tangent over p (so Du(p) = Dψλ(p))
or p ∈ {(x1, . . . , xn) ∈ R

n : x1 = a0}. In the latter case, since p is the first
contact point,

∂x1
u(p) = lim

t→0+

u(p)− u(p− t∂x1
)

t

≥ lim
t→0+

ψλ(p)− ψλ(p− t∂x1
)

t
= ∂x1

ψλ(p) = (1 + b)λpb1.

In both cases, |Du|(p) ≥ (1 + b)λpb1 > 0.
Let ε = u(p). Consider the level set Σ = {(x1, . . . , xn) ∈ u−1(ε) ∩W and

xn+1 = ε}. Because |Du|(p) > 0, Σ is C2 near p. Let η = (Du, 0)/|Du|, so
φη is a unit normal to Σ in ({xn+1 = ε}, gS

∣∣
{xn+1=ε}). Let HΣ be the corre-

sponding mean curvature. Since H(u) ≥ 0 and R ≥ n(n− 1), Corollary 2.6
implies that

0 ≤ g0(ν, η)HΣ + (n− 1)g0(ν, ∂n+1)x
n+1

= − |Du|√
1 + |Du|2HΣ +

(n− 1)u√
1 + |Du|2 .
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Thus, at p,

HΣ ≤ (n− 1)u

|Du| ≤ (n− 1)
ψλ(p)

(1 + b)λpb1
= (n− 1)

p1
1 + b

.

Let Σ̃ := {(x1, . . . , xn) ∈ ψ−1λ (ε) and xn+1 = ε} be the level set of ψλ, which

is a hyperplane in {xn+1 = ε}. By (2.3), the mean curvature H
˜Σ of Σ̃ ⊂

({xn+1 = ε}, gS
∣∣
{xn+1=ε}) with respect to φ∂x1

is

H
˜Σ(p) = (n− 1)(∂x1

φ)(p) = (n− 1)p1.

On the other hand, by comparison principleHΣ ≥ H
˜Σ at p since Σ̃ is tangent

to Σ at p toward their common normal vector φ∂x1
at p. A contradiction. �

We shall apply the above proposition to hypersurfaces with R ≥ n(n− 1)
in the unit sphere S

n+1 that satisfy certain boundary conditions. Denote
by S

k the k-dimensional great sphere in S
n+1 and by S

k
+ the (closure of)

hemisphere.

Definition 3.3. Let M be a hypersurface in S
n+1. Suppose that ∂M is

contained in a great sphere S
n ⊂ S

n+1.

1) For an open subset Γ ⊂ ∂M , we say that M is tangent to the great
sphere S

n along Γ ⊂ ∂M if M is locally a graph of u on S
n near Γ such

that u = 0, |Du| = 0 on Γ. Furthermore, we say that p ∈ Γ is a strictly
convex boundary point if there is a normal neighborhood N of p in M
such that exp−1p (N) is contained in a half space in TpM , and the only
point in the closure of exp−1p (N) that intersects the boundary of the
half-space is exp−1p (p).

2) Suppose that ∂M is contained in the hemisphere S
n
+, then M is said

to be tangent to S
n
+ at ∂M from the the region enclosed by ∂M if

∂M encloses an open subset V ⊂ S
n
+ so that M is locally the graph

of a bounded function u in a collar neighborhood of ∂V in V with
u = 0, |Du| = 0 on ∂V .

Remark 3.4. If p is a convex boundary point, then M locally near p lies
in one side of a great n-sphere S

n. Equivalently, there is a stereographic
projection Φ which sends this great n-sphere onto the hyperplane {x1 = 0}
in R

n+1 such that Φ(M) is locally a graph of u in some open subset W ⊂ Xa

such that u = 0 and |Du| = 0 on ∂W and ∂W ∩ {(x1, . . . , xn) ∈ R
n : x1 =

0} = Φ(p), where ∂W is the boundary of W in Xa.
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Remark 3.5. If M satisfies (2) in Definition 3.3, then there exists a stereo-
graphic projection Φ such that Sn+ is mapped via Φ onto the closed half-space
{(x1, . . . , xn) ∈ R

n : x1 ≥ 0}, and there is an open subset U ⊂ {(x1, . . . , xn) ∈
R
n : x1 ≥ 0} such that Φ(∂M) = ∂U , and Φ(M) is locally a graph of a

bounded function u in a collar neighborhood of ∂U in U such that u = 0
and |Du| = 0 on ∂U .

Corollary 3.6. Let M be a connected, embedded, two-sided hypersurface in
S
n+1 with boundary ∂M . Suppose int(M) is C2 and M is C1 to the boundary.

Suppose that M is tangent to the great sphere S
n along an open subset Γ ⊂

∂M . If p ∈ Γ is a strictly convex boundary point and, in a neighborhood of p
in M , the scalar curvature R ≥ n(n− 1) and the mean curvature is weakly
convex, then a neighborhood of p in M is contained in S

n.

Proof. Consider the isometric image Φ(M) in (Rn+1, gS) via the stereo-
graphic projection Φ in Remark 3.4. For some a > 0, M is locally the graph
of u in an open subset W ⊂ Xa so that the graph of u has R ≥ n(n− 1)
and is weakly mean convex in W with u = 0, |Du| = 0 on ∂W . By Proposi-
tion 3.2, u ≡ 0 in W . �

For a general hypersurface with R ≥ n(n− 1) in S
n+1 without the a

priori mean curvature assumption, we need to analyze the points where
the mean curvature may change signs. By Gauss equation, R ≥ n(n− 1)
implies H2 ≥ |A|2, where A is the shape operator of M ⊂ S

n+1 and H is the
mean curvature. Hence the set of (interior) points with zero mean curvature
is identical to the set of (interior) geodesic points M0 = {p ∈ int(M) : A =
0 at p}.

The following lemma gives a useful characterization of M0. The proof is
analogous to the proof for hypersurfaces in Euclidean space due to R. Sack-
steder [13] (cf. Lemma 4.3 below).

Lemma 3.7. Let M be a Cn+1 hypersurface in S
n+1 (possibly with bound-

ary). Let M ′
0 be a non-empty connected component of M0. Then M ′

0 is con-
tained in a great n-sphere S

n of Sn+1 so that M is tangent to the sphere S
n

at every point of M ′
0.

Proof. Consider Sn+1 as the unit sphere centered at the origin in Euclidean
space R

n+2. Define the (generalized) Gauss map ν : int(M)→ S
n+1 by as-

signing to p ∈ int(M) the unit vector normal to M in TpS
n+1 ⊂ TpR

n+2.
Since M is of Cn+1, the map ν is of Cn. By direct computation, the rank
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of ν is zero at any point of M0. By Sard Theorem, the image ν(M0) has 1-
dimensional Hausdorff measure zero in S

n+1. It follows that ν(M0) is totally
disconnected in S

n+1. Hence, ν(M ′
0) consists of a single point, denoted by

ν0. Because the position vector x(p) ∈ R
n+2 is orthogonal to ν0 at p ∈M ′

0, it
implies that M ′

0 lies in the hyperplane that passes through the origin and is
orthogonal to ν0. HenceM ′

0 is contained in the intersection of the hyperplane
and the sphere, which is a great n-sphere in S

n+1 orthogonal to ν0. �
The above lemma says that the components where the mean curvature

changes signs are flat. It allows us to employ a replacement argument, which
is the key to remove the mean curvature assumption in Proposition 3.2.

Proposition 3.8. Let W be an open subset in Xa for some a > 0. Denoted
by ∂W the boundary of W in Xa. Let u ∈ Cn+1(W ) ∩ C1(W ) satisfy u(x) =
v · x and Du = v on ∂W for some v ∈ R

n. If the graph of u in (Rn+1, gS)
satisfies R ≥ n(n− 1), then u(x) ≡ v · x in W .

Proof. By Proposition 3.2, it suffices to prove that the mean curvature does
not change signs. In fact, we shall show that H(u) ≡ 0 in W . Suppose on the
contrary that H(u) is not identically zero. We may without loss of general-
ity assume that {x ∈W : H(u) > 0 at x} is non-empty, and let Ω be a con-
nected component. Write {(x1, . . . , xn) ∈ R

n : x1 < a} \ Ω = U0 ∪ (∪k>0Uk)
as the disjoint union of the connected components where U0 is the com-
ponent that contains the half-space {(x1, . . . , xn) ∈ R

n : x1 < 0}. We show
that u can be replaced in each Uk (k > 0) by the graph of a great n-sphere.

By Proposition A.2, each ∂Uk is connected. Because the graph of u over
∂Uk is contained in M0 ∪Graph(u|∂W ), by Lemma 3.7 and the boundary
condition of u, Graph(u|∂Uk

) is contained in a great n-sphere S
n such that

the graph of u is tangent to the great n-sphere. Hence there is a unique
hk ∈ C∞(Uk) for each k > 0 where hk is a graph function of some great n-
sphere such that u = hk, Du = Dhk on ∂Uk (see Appendix B). Furthermore
D2u = D2hk on ∂Uk ∩W since the shape operators of the graphs are both
zero over ∂Uk ∩W .

Define the function ũ in W0 := {(x1, . . . , xn) ∈ R
n : x1 < a} \ U0 such

that ũ = u in Ω and ũ = hk in Uk for each k > 0. Then ũ is C2(W0) ∩
C1(W0), and the graph of ũ satisfies R ≥ n(n− 1) and is weakly mean con-
vex everywhere, with strict mean convex H(ũ) > 0 in Ω.

We show that such ũ cannot exist. If ∂W0 intersects ∂W or if ∂W0 is
unbounded, then ũ(x) = ṽ · x and Dũ = ṽ on ∂W0 on ∂W0 for some ṽ ∈
R
n, and hence by Proposition 3.2, the graph of ũ must have zero mean

curvature, but it contradicts that H(ũ) > 0 in Ω. If ∂W0 does not intersect
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∂W and is bounded, there there is y = (y1, . . . , yn) ∈ ∂W0 with y1 > 0 such
that W0 ⊂ {(x1, . . . , xn) ∈ R

n : x1 ≥ y1 > 0}. By Lemma B.1, (y, ũ(y)) is a
strictly convex boundary point, and hence by Corollary 3.6, the graph of ũ is
contained in the great n-sphere, which contradicts that H(ũ) > 0 in Ω. �

Proof of Theorem 2. Using a stereographic projection Φ in Remark 3.5, there
is an open subset U = {(x1, . . . , xn) : x1 > 0} such that Φ(∂M) = ∂U and
Φ(M) is locally the graph of u in a collar neighborhood of U such that
u = 0, |Du| = 0 on ∂U . Let I = {(0, a) ⊂ R

+ : u ≡ 0 on U ∩Xa}. The inter-
val I is closed by continuity of u. By Proposition 3.8, I is non-empty and
open. This implies that I = R

+ and hence u ≡ 0 on U ; that is, M is con-
tained in the great n-hemisphere. �

4. Rigidity in Euclidean space

The arguments in the previous section can be applied to hypersurfaces with
boundary in Euclidean space, which extends our earlier work for complete
hypersurfaces in Euclidean space [10]. We also refine some results in [10].
In this section, H(u) is the mean curvature of the graph of u in Euclidean

space with respect to the upward unit vector ν = (−∇u,1)√
1+|∇u|2 :

H(u) =

n∑
i,j=1

(
δij − uiuj

1 + |Du|2
)

uij√
1 + |Du|2 .

Recall Xa = {(x1, . . . , xn) ∈ R
n : 0 ≤ x1 < a}. By the strong maximum

principle for the mean curvature operator in the same way as in Lemma 3.1,
we have the following lemma.

Lemma 4.1 (Cf. [10, Proposition 3.1]). Let W be an open subset in Xa

for some a > 0, and let ∂W be the boundary of W in Xa. Let u ∈ C2(W ) ∩
C1(W ) satisfy that u(x) = v · x+ b and Du = v on ∂W ∩B(p) for some
v ∈ R

n, b ∈ R. If H(u) ≥ 0 in W , then u(x) > v · x+ b somewhere in W ,
unless u ≡ v · x+ b in W .

Proposition 4.2 (Cf. [10, Lemma 3.5]). Let W be an open subset in
Xa, and let ∂W be the boundary of W in Xa. Let u ∈ C2(W ) ∩ C1(W )
be bounded and satisfy u(x) = v · x+ b and Du = v on ∂W for some v ∈
R
n, b ∈ R. Suppose the graph of u in the Euclidean space Rn+1 satisfies R ≥ 0

and either H(u) ≥ 0 or H(u) ≤ 0 in W . Then one of the following holds:
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1) u(x) = v · x+ b in W ; that is, the graph of u is contained in a hyper-
plane.

2) The graph of u is a generalized cylinder.

In particular, if ∂W is bounded, then (1) must hold because a nontrivial
generalized cylinder cannot satisfy the required boundary condition.

Proof. Because rotation and translation are rigid motions in Euclidean space,
we may assume v = 0 and b = 0. We also assume H(u) ≥ 0, for otherwise
replace u by −u.

For an arbitrary fixed a0 ∈ (0, a) such that W ∩Xa0
is not empty, if u

is not identically zero in W ∩Xa0
, then by Lemma 4.1, u > 0 at some point

in W ∩Xa0
. Let ψλ(x) = λx1 for some λ ∈ R

n. Because of the boundary
condition of u and that u is bounded, ψλ > u for λ sufficiently large. We
continuously decrease λ until that the graphs of ψλ and u touch for the first
time at p ∈W ∩Xa0

. By Lemma 4.1, we have u(p) > 0 and hence λ > 0.
Also since the graph of ψλ(x) has zero mean curvature, it cannot be tangent
to the graph of u at an interior point by maximum principle, and thus
p ∈ {(x1, . . . , xn) ∈ R

n : x1 = a0}.
Since p is the first contact point,

|Du|(p) ≥ ∂x1
u(p) ≥ ∂x1

ψλ(p) = λ > 0.

Let Σ = u−1(u(p)) the level set in W and Σ̃ = ψ−1λ (u(p)). Note that Σ is C2

near p since |Du|(p) > 0. Let HΣ be the mean curvature scalar of Σ of the
unit normal vector η := (∇u, 0)/|∇u|. By comparison principle, since Σ̃ is
tangent to Σ at p toward the common normal vector ∂x1

at p and the mean
curvature of Σ̃ is zero, we have HΣ ≥ 0 at p.

On the other hand, by Corollary 2.4 (with R ≥ 0, H(u) ≥ 0, 〈ν, η〉 < 0),
we obtain HΣ ≤ 0. We then conclude that HΣ = 0 and furthermore Σ is
identical to Σ̃ by strong maximum principle, which also implies that W ⊃
{(x1, . . . , xn) ∈ R

n : x1 = a0}. By varying a0, it implies that the graph of u
depends only on x1 and hence is a generalized cylinder. �

We follow the replacement argument as in Proposition 3.8 and remove
the mean convexity assumption. In particular, our result includes generalized
cylinders that may not be weakly mean convex. Let M be a hypersurface in
Euclidean space with nonnegative scalar curvature. By the Gauss equation,
the mean curvatureH is zero only at the geodesic points. Recall the following
result



200 L.-H. Huang and D. Wu

Lemma 4.3 ([13], see also [10, Lemma 3.6]). Suppose M is a Cn+1

hypersurface in R
n+1 (possibly with nonempty boundary). Denote by M0 =

{p ∈ int(M) : A = 0 at p} the set of interior geodesic points. Let M ′
0 be a

connected component of M0. Then M ′
0 lies in a hyperplane which is tangent

to M at every point in M ′
0.

Proposition 4.4 (Cf. [10, Proposition 3.8]). Let W be an open subset
in Xa, and let ∂W be the boundary of W in Xa. Let u ∈ Cn+1(W ) ∩ C1(W )
be bounded and satisfy u(x) = v · x+ b and Du = v on ∂W for some v ∈ R

n

and b ∈ R. Suppose the graph of u in the Euclidean space R
n+1 satisfies

R ≥ 0. Then either one of the following holds:

1) u(x) = v · x+ b in W ; that is, the graph of u is contained in a hyper-
plane.

2) The graph of u is a generalized cylinder.

In particular, if ∂W is bounded, then (1) must hold because a nontrivial
generalized cylinder cannot satisfy the boundary assumption.

Proof. By Euclidean rigid motion, we may assume v = 0 and b = 0. IfH(u) ≥
0 or H(u) ≤ 0, then Proposition 4.2 applies. If H(u) changes signs, let Ω be
a connected component of {x ∈W : H(u) �= 0 at x}. Write {(x1, . . . , xn) ∈
R
n : x1 < a} \ Ω = U0 ∪ (∪k>0Uk) as the disjoint union of connected compo-

nents, where U0 is the component that contains {(x1, . . . , xn) ∈ R
n : x1 < 0}.

By Proposition A.2, ∂Uk is connected. Note either ∂Uk intersects with ∂W
or ∂Uk contains only points in W . By Lemma 4.3 and the boundary con-
dition of u, the graph of u on ∂Uk lies in a hyperplane, say the graph of a
linear function hk, so that the graph of u is tangent to the hyperplane.

We define ũ in W0 := {(x1, . . . , xn) ∈ R
n : x1 < a} \ U0 by ũ = u in Ω

and ũ = hk in Uk. Clearly ũ ∈ C1(W0). To see that ũ ∈ C2(W0), we note
that D2u = 0 on ∂Ω ∩W because the shape operator of the graph of u is
zero there. Therefore, ũ satisfies the assumptions in Proposition 4.2. This
implies that Ω = {(x1, . . . , xn) ∈ R

n : c1 < x1 < c2} for some constants c1, c2
and ũ = u is a function of x1 in Ω. We repeating the argument for other
connected components. For the set of points with zero mean curvature, we
apply Lemma 4.3. It implies that u is a function that depends only on x1
and hence (2) holds. �

Theorem 4. Let M be a connected, embedded, two-sided hypersurface in
R
n+1 with R ≥ 0 and with non-empty boundary ∂M . Suppose int(M) is
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Cn+1 and M is C1 up to boundary. Suppose that ∂M is contained in the hy-
perplane {xn+1=0} and ∂M=∂U for some open subset U⊂{(x1, . . . , xn)∈
R
n : x1 > 0} such that M is locally the graph of a bounded function u in a

collar neighborhood of ∂U in U with u = 0 and |Du| = 0 on ∂U . Then M is
a portion of either the hyperplane {xn+1 = 0} or a generalized cylinder. In
particular, if ∂M is bounded, then M must be a portion of the hyperplane.

Proof. Consider the interval I = (0, a] ⊂ R
+ such that either u = 0 in U ∩

Xa or the graph of u is a generalized cylinder on U ∩Xa. It is closed by
continuity of u. By Proposition 4.4, I is non-empty and open and hence
I = R

+. �

5. Examples

In this section, we shall present two examples to demonstrate that the
boundary conditions in Theorem 2 and Theorem 4 are necessary.

Figure 1: The left figure indicates the graph of the function r = f(z) in R
3

in Example 5.1 where r =
√

x2 + y2. The right figure indicates the graphs
of z = u(r) and z = v(r) in S

3 in Example 5.2. The surfaces are obtained by
rotating the curves about the z-axis.

Let us first consider the boundary conditions in Theorem 4. In particular,
if ∂M is bounded, the assumption says that M is tangent to the hyperplane
at ∂M from the region enclosed by ∂M . This condition is necessary, as
shown in the following example that M has nonnegative scalar curvature
but is tangent to ∂M from the region outside of ∂M .
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Example 5.1. Consider the surface in Euclidean space (R3, g0):

M = {(x, y, z) ∈ R
3 |

√
x2 + y2 − f(z) = 0},

where

f(z) = (
√
z + 1)

√
1− z2 for all 0 ≤ z ≤ 1.

Clearly, the surface M is obtained by rotating the curve f(z) about the z-
axis. Note thatM has nonnegative Gauss curvature, because f(z) is concave.
Furthermore, M is smooth with boundary

∂M = {(x, y, 0) ∈ R
3 | x2 + y2 = 1}.

Next, we consider the assumption in Theorem 2 that M is tangent to
a great Sn+ at ∂M from the region enclosed by ∂M (see Definition 3.3 and
Remark 3.5). The following example shows that the assumption cannot be
removed.

Example 5.2. Consider R3 with the spherical metric gS , i.e.,

gS =
4g0

(1 + x2 + y2 + z2)2
,

where g0 is the Euclidean metric and (x, y, z) are the Cartesian coordinates.
We denote r =

√
x2 + y2. Fix a ∈ (0, 1). For r ∈ (a, 1),

u(r) =
1√
2

(
−2√1− r − r√

1− a
+ 2
√
1− a+

a√
1− a

)
.

For r ∈ [0, 1],

v(r) = u(1) +
√

1− r2 =

√
1− a

2
+

√
1− r2.

Let M be the surface which is the union of graph of u over [a, 1] and the
graph of v over [0, 1]. We claim that M is a C2 surface of scalar curvature
R ≥ 2 in (R3, gS) and that R = 2 holds at and only at the boundary points.

Note that the graph of v is a portion of the unit 2-sphere centered at
(r, z) = (0,

√
(1− a)/2). With respect to the upward unit normal, the graph
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of v has principal curvatures

κ1 = κ2 = − [u(1)]2

2
= −1− a

4
.

Hence,R = 2 + 2κ1κ2 > 2 on the graph of v. For the function u, obviously we
have u ∈ C∞([a, 1)) ∩ C0([a, 1]). In addition, u satisfies the following prop-
erties:

u(a) = 0, u′(a) = 0, u′(r) > 0 for all a < r < 1, and(5.1)

u′′(r) > u′[1 + (u′)2], for all a ≤ r < 1.(5.2)

With respect to the upward unit normal, the principle curvatures of the
graph of u are given by

λ1 =
1√

1 + (u′)2

[
u− ru′ +

1 + u2 + r2

2

u′′

1 + (u′)2

]

λ2 =
1√

1 + (u′)2

[
u− ru′ +

1 + u2 + r2

2

u′

r

]

=
1√

1 + (u′)2

[
u+ u′

1 + u2 − r2

2

]
.

Since r ≤ 1, by (5.1) we have that λ2 ≥ 0 and λ2 = 0 if and only if r = a.
Applying (5.2) to λ1 yields that

u− ru′ +
1 + u2 + r2

2

u′′

1 + (u′)2

> u− ru′ +
1 + u2 + r2

2
u′ = u+ u′

u2 + (r − 1)2

2
≥ 0.

It follows that λ1 > 0. Therefore, R = 2 + 2λ1λ2 ≥ 2 on the graph of u,
where R = 2 if and only if r = a. Obviously M is smooth at the interior
points of graph u and graph v. It is elementary to verify that M is of C2 at
the intersection curve (r, z) = (1,

√
(1− a)/2) of the two graphs. Thus, the

claim is proved.
Finally, we can perturb M to obtain a smooth surface. Because R > 2 in

a neighborhood of the intersection curve, we can perturb M locally near the
intersection curve to get a smooth surface M̃ in (R3, gS) with R ≥ 2. Also,

M̃ is identical to M away from a neighborhood of the intersection curve.
Hence, the smooth surface M̃ satisfies R ≥ 2 but the boundary is tangent
from the exterior. �
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Appendix A. Topological properties

We denote by H̃k(X) the kth reduced homology group of a topological space
X with coefficients in Z. Note that H̃0(X) is a free abelian group, and the
rank of H̃0(X) plus 1 is the number of path-connected components of X.
Hence, H̃0(X) = 0 if and only if X is path-connected. We recall the following
result in [10], which follows from the Mayer-Vietoris sequence.

Lemma A.1 ([10, Lemma A.1]). Let X be a contractible topological
space. Let U, V be two subsets of X so that X = int(U) ∪ int(V ) (the inte-
riors of U and V may intersect). Then

H̃0(U ∩ V ) ≈ H̃0(U)⊕ H̃0(V ),

where ≈ stands for the group isomorphism. In particular, if U and V are
path-connected, then U ∩ V is also path-connected.

Proposition A.2 ([10, Proposition A.3]). Let X be a contractible locally-
connected topological space. Let Ω ⊂ X be a non-empty connected open sub-
set. Let X \ Ω = ∪Uk be the disjoint union of connected components. Then
∂Uk is connected.

We include our proof here and also fix some minor typos in [10, Propo-
sition A.3].

Proof. Note that each Uk is open and ∂Uk ⊂ ∂Ω. By replacing Ω with
Ω ∪ (∪k �=k0

Uk) (which is also closed and connected), we may assume that
X \ Ω = U is connected. Let Σ = ∂Ω = ∂U . Suppose on the contrary that
Σ is not connected. There exist non-empty disjoint open subsets E,F in
X so that both E and F intersect Σ and Σ ⊂ E ∪ F . By discarding some
components of E and F if necessary, we assume that every component of
E and F intersect Σ, and note they also intersect Ω and hence Ω. There-
fore, Ω ∪ (E ∪ F ) is connected and hence path-connected since it is an open
subset (and hence locally-connected). Similarly, U ∪ (E ∪ F ) is also path-
connected. However, it contradicts Lemma A.1, which implies that E ∪ F is
path-connected:

H̃0(E ∪ F ) ∼= H̃0(Ω ∪ (E ∪ F ))⊕ H̃0(U ∪ (E ∪ F )).

�



Geometric inequalities and rigidity theorems 205

Appendix B. Spherical geometry

We include some facts on the geometry of Rn+1 endowed with the spherical
metric gS = φ−2g0 where

φ =
(1 +

∑n+1
i=1 (xi)

2)

2
.

By the stereographic projection, (Rn+1, gS) is isometric to S
n+1 with a point

removed. Let (x1, . . . , xn+1) be the Cartesian coordinates in R
n+1 and |x|2 =∑n+1

i=1 x2i . A hypersurface S in (Rn+1, gS) is isometric to a great n-sphere in
S
n+1 if and only if either one of the following holds:

1) S is a hyperplane through the origin; that is, the graph of

h(x1, . . . , xn) = b1x1 + · · ·+ bnxn

for some (b1, . . . , bn) ∈ R
n.

2) S is a sphere centered at (a1, . . . , an+1) ∈ R
n+1 of radius

√
1 + |a|2;

that is, the union of the graphs h± where |a| = a21 + · · ·+ a2n+1 and

h±(x1, . . . , xn) = an+1 ±
√√√√1 + |a|2 −

n∑
i=1

(xi − ai)2.

Lemma B.1. Let p = (p1, . . . , pn+1) ∈ R
n+1 with p1 > 0. Then there ex-

ists a unique great n-sphere S such that S passes through p and S \ {p} ⊂
{(x1, . . . , xn+1) : x1 < p1}. As a consequence, if p is the boundary point of a
hypersurface that lies in the half space {(x1, . . . , xn+1) : x1 ≥ p1}, then p is
a strictly convex boundary point.

Proof. The sphere centered at (a1, p2, . . . , pn+1) of radius√
1 + a21 + p22 + · · ·+ p2n+1

with

a1 =
p1
2
− 1

2p1
(1 + p22 + · · ·+ p2n+1)

satisfies the desired properties. �
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