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Immersed disks, slicing numbers and

concordance unknotting numbers

Brendan Owens and Sašo Strle

We study three knot invariants related to smoothly immersed disks
in the four-ball. These are the four-ball crossing number, which
is the minimal number of normal double points of such a disk
bounded by a given knot; the slicing number, which is the min-
imal number of crossing changes required to obtain a slice knot;
and the concordance unknotting number, which is the minimal un-
knotting number in a smooth concordance class. Using Heegaard
Floer homology we obtain bounds that can be used to determine
two of these invariants for all prime knots with crossing number
ten or less, and to determine the concordance unknotting num-
ber for all but thirteen of these knots. As a further application
we obtain some new bounds on Gordian distance between torus
knots. We also give a strengthened version of Ozsváth and Szabó’s
obstruction to unknotting number one.

1. Introduction

The unknotting number u(K) of a knot K in S3 is the minimal number
of crossing changes required to convert it to an unknot. The trace of a
regular homotopy realizing the crossing changes yields a normally immersed
annulus A in S3 × [0, 1] with a singularity for each crossing change. We say
a surface is normally immersed if the immersion is proper (sends precisely
boundary to boundary) and the only singularities are normal double points
(also known as normal crossings), that is to say, transverse double points
in the interior of the surface. Since the other boundary of A is an unknot,
we can complete A to a normally immersed disk Δ in B4 with boundary
K and u(K) double points. Minimising the number of double points in any
such disk with boundary K gives a concordance invariant of K, the 4-ball
crossing number c∗(K) [11, 18, 33], also referred to as the 4-dimensional clasp
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number. Recall that K and K ′ are concordant if they cobound a properly
embedded annulus in S3 × I. A knot K is slice if it is concordant to the
unknot or equivalently if it bounds a smoothly embedded disk in B4 — such
a disk is called a slice disk or a nullconcordance.

We show in Proposition 2.1 that any normally immersed disk in B4 can
be factored into a concordance, followed by the trace of a regular homotopy,
followed by a nullconcordance; thus it is natural to consider two intermediate
invariants. The first is the slicing number us(K) [1, 14, 24, 32, 33], which is
the minimal number of crossing changes required to obtain a slice knot. A
set of such crossing changes clearly gives rise to a normally immersed disk,
obtained by capping off the trace of the crossing-change homotopy by a slice
disk.

The second intermediate invariant is the concordance unknotting number
uc(K), which is the minimal unknotting number of any knot in the concor-
dance class of K. Noting that a normal double point may be resolved at the
cost of increasing the genus of the immersed surface by one, we have the
following inequalities:

(1) u(K) ≥ uc(K), us(K) ≥ c∗(K) ≥ g∗(K) ≥ |σ(K)|/2,

where g∗(K) denotes the smooth four-ball genus of K, σ(K) denotes the
signature, and the last inequality is due to Murasugi [19]. In this article we
develop some tools to calculate these invariants, and we determine each of
us and c∗ for all prime knots with 10 or fewer crossings, and uc for all but
three knots up to 9 crossings and all but ten 10-crossing knots. Our results
make use of Montesinos’ trick [17], which implies that the double branched
cover of an unknotting number one knot is given by a half-integer surgery
on a knot in S3, and also theorems of Cochran and Lickorish [7], Ozsváth
and Szabó [28], and Ni and Wu [21].

Theorem 2.2 is a refinement of [7, Theorem 3.7] concerning a four-
manifold bounded by the double branched cover of a knot and determined
by an immersed disk bounded by the knot. From it we obtain the follow-
ing result, which shows that the slicing number obstruction given in [24,
Theorem 2] in fact applies to the four-ball crossing number.

Theorem 1. Suppose that K bounds a normally immersed disk with r+
positive double points and r− = σ(K)/2 negative double points. Then the
branched double cover Σ(K) bounds a positive-definite smooth four-manifold
X with b2(X) = 2(r+ + r−) whose intersection form QX is of half-integer
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surgery type, with exactly r+ of the diagonal entries odd, and detQX divides
detK with quotient a square.

Recall that a quadratic form over the integers is of half-integer surgery
type if with respect to some basis for the lattice it is represented by a matrix
of the form [

A I
I 2I

]
,

where I denotes the identity matrix.
In case of c∗(K) = 1, we obtain an explicit obstruction in terms of the

correction terms of the double branched cover of K. Recall that the set of
spinc structures on a three-manifold Y is an affine copy of H1(Y ;Z), with
additional structure given by conjugation of spinc structures, fixed points of
which arise from spin structures on Y . When Y is the double cover of S3

branched along a knot, there is a canonical identification of Spinc(Y ) with
the homology group of Y by using the unique spin structure as the origin;
we use this implicitly throughout. Recall also that for a spinc structure s
on a rational homology three-sphere Y , Ozsváth and Szabó [26] defined the
correction term or d-invariant, d(Y, s), as the absolute grading of a particular
subgroup of the Heegaard Floer homology group of (Y, s). The d-invariants
are rational numbers which are computable in many cases.

Corollary 2. Let K ⊂ S3 be a knot with four-ball crossing number one.
Suppose K has signature two and let Y = Σ(K) be the double branched
cover of K. Then for some factorisation detK = rs2 there exists an order
rs subgroup H ≤ Spinc(Y ) and an epimorphism φ : H → Z/rZ such that the
normalized d-invariants

d̃t = −d(Y, t) + i2/2r −
{
0 i ≡ (r − 1)/2 (mod 2)

1/2 i ≡ (r + 1)/2 (mod 2)

for i = 0, . . . , (r − 1)/2 and for every t ∈ φ−1(i) satisfy

(i) positivity: d̃t ≥ 0;

(ii) evenness: d̃t ∈ 2Z.

If there exists an epimorphism φ as above, we say that Y admits a positive
even subgroup matching.

If K has signature zero, then at least one of ±Σ(K) admits a positive
even subgroup matching.
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Note that by conjugation invariance of d-invariants, the constraint given
in Corollary 2 extends to −(r − 1)/2 ≤ i ≤ (r − 1)/2. This applies to Theo-
rems 3 and 4 below as well.

The following theorem concerning manifolds given as half-integer surgery
on a knot in S3 is an extension of results of Ozsváth and Szabó [28], where
the first three conditions are established.

Theorem 3. Suppose that a rational homology sphere Y , with |H1(Y )| = r
odd, is given by r/2 surgery on a knot in S3. Then there exists a group
isomorphism

φ : Spinc(Y ) → Z/rZ

such that the normalized d-invariants

d̃i = −d(Y, φ−1(i)) + i2/2r −
{
0 i ≡ (r − 1)/2 (mod 2)

1/2 i ≡ (r + 1)/2 (mod 2)

for i = 0, . . . , (r − 1)/2 satisfy the following conditions:

(i) positivity: d̃i ≥ 0;

(ii) evenness: d̃i ∈ 2Z;

(iii) symmetry:

d̃2j = d̃2j+1 for 0 ≤ j ≤ (r − 5)/4 if r ≡ 1 (mod 4),

d̃2j−1 = d̃2j for 1 ≤ j ≤ (r − 3)/4 if r ≡ −1 (mod 4);

(iv) monotonicity: d̃i ≤ d̃i+1 for 0 ≤ i < (r − 1)/2;

(v) boundedness: d̃i+1 ≤ d̃i + 2 for 0 ≤ i < (r − 1)/2.

If there exists an isomorphism φ satisfying the conditions of Theorem 3
we say that Y admits a positive even symmetric monotone matching. In case
the manifold Y is an L-space the normalized d-invariants d̃i of Theorem 3
are given by the torsion coefficients defined using the Alexander polynomial
of the surgery knot, as in Theorem 1.2 of [30]. Conditions (iv) and (v) follow
easily in that case.

For many examples previously obstructed using the symmetry condition,
the monotonicity condition may be substituted. In fact, we have not yet
found an example which is obstructed by symmetry but not by monotonicity,
or vice versa. More interestingly perhaps, the obstruction given by conditions
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(i), (ii) and (iv) of Theorem 3 extends over rational homology cobordisms
as in the following statement.

Theorem 4. Suppose that a rational homology sphere Y , with |H1(Y )| odd,
is rational homology cobordant to positive half-integer surgery on a knot
in S3. Then for some factorisation |H1(Y )| = rs2 there exists an order rs
subgroup H ≤ Spinc(Y ) and an epimorphism φ : H → Z/rZ such that the
d-invariants of Y are constant on the fibers of φ. Moreover, the normalized
d-invariants

d̃i = −d(Y, φ−1(i)) + i2/2r −
{
0 i ≡ (r − 1)/2 (mod 2)

1/2 i ≡ (r + 1)/2 (mod 2)

for i = 0, . . . , (r − 1)/2 satisfy the following conditions:

(i) positivity: d̃i ≥ 0;

(ii) evenness: d̃i ∈ 2Z;

(iii) monotonicity: d̃i ≤ d̃i+1 for 0 ≤ i < (r − 1)/2.

Here we are using d(Y, φ−1(i)) to denote the constant value of the d-
invariant on the fiber φ−1(i) for i ∈ Z/rZ. If there exists an epimorphism φ
satisfying the conditions of Theorem 4 we say that Y admits a positive even
monotone subgroup matching.

Applying these results to knots and keeping track of signs we obtain

Corollary 5. Let K ⊂ S3 be a knot with unknotting number one. If K has
signature two, then the double branched cover Σ(K) admits a positive even
symmetric monotone matching. If K has signature zero, then at least one of
±Σ(K) admits a positive even symmetric monotone matching.

Suppose K has concordance unknotting number one. If K has signa-
ture two, then Σ(K) admits a positive even monotone subgroup matching.
If K has signature zero, then at least one of ±Σ(K) admits a positive even
monotone subgroup matching.

For each of the inequalities in (1) except for us ≥ c∗ there exist examples
for which the inequality is strict. One may ask whether in fact us(K) =
c∗(K) for all knots. We will see in Section 4 that this equality holds for
all prime knots with 10 or fewer crossings. Another question which seems
to be open is whether the slicing number us is a concordance invariant. It
turns out these questions are related to a generalisation of Fox’s slice-ribbon
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question, which asks whether every slice knot is in fact ribbon (admits a
slice disk which is ribbon). A properly embedded or immersed surface in
B4 is called ribbon if the restriction of the radial distance function is Morse
without local maxima.

Proposition 6. Let c∗r(K) denote the minimal number of double points in
a normally immersed ribbon disk bounded by K in B4, and let SRC be the
Slice-Ribbon Conjecture, which states that all slice knots are ribbon. Then:

c∗ = c∗r ⇐⇒ SRC and us = c∗

and moreover

us = c∗ ⇐⇒ us is a concordance invariant.

In the last two sections of the paper we consider examples. We compute
the slicing number and four-ball crossing number for all prime knots of
ten crossings or fewer, and the concordance unknotting number for all but
thirteen of these knots. We also obtain some new bounds on Gordian distance
between torus knots.

Acknowledgements.We are grateful to Josh Greene for a helpful comment
about L-spaces which led us to condition (v) in Theorem 3, and to Frank
Swenton who helped us to use his Kirby Calculator software [35] to produce
and manipulate knot diagrams. We thank Maciej Borodzik who suggested
we look at Gordian distances between torus knots. We thank the anonymous
referees for helpful suggestions to improve the exposition.

2. Geometric constructions

In this section we collect some results regarding normally immersed surfaces
in B4, and prove Theorem 1, Corollary 2, and Proposition 6.

Recall that a crossing change in a link L may be recorded by placing
a framed arc or equivalently a band connecting two arcs of the link. The
crossing change operation consists of replacing the two arcs of the band on
L with a full positive twist as in Figure 1.

Proposition 2.1. Let F be a connected surface normally immersed in
S3 × I with L = F ∩ (S3 × {0}) �= ∅. After an isotopy rel boundary we may
assume that F ∩ (S3 × [0, 1/3]) is a concordance, F ∩ (S3 × [1/3, 2/3]) is the
trace of a regular homotopy, and F ∩ (S3 × [2/3, 1]) is a smoothly embedded
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−→

Figure 1: Encoding a crossing change with a band.

ribbon surface (that is, the projection to the interval on this part of the sur-
face is a Morse function without local minima).

In particular, if F is an immersed disk, then it can be factored into
a concordance, followed by the trace of a regular homotopy, followed by a
ribbon nullconcordance.

Proof. After a preliminary isotopy we may assume the projection to the
interval is a Morse function h on F whose critical points are distinct from
the double points. Then generic level sets F ∩ (S3 × {t}) are smooth links
in the three-sphere, and a sequence of diagrams of such links gives a “movie
presentation” of the surface F . Neighborhoods of double points of F in
the movie presentation of F relative to h correspond to crossing changes.
Successive frames in the movie picture of F are then obtained by crossing
changes, Morse moves and isotopies. Finally, after an isotopy of the surface
supported in a small neighborhood of all index zero and two critical points,
we may arrange that all the minima of h occur before and all the maxima
occur after all the saddle and double points. We let F ′ ⊂ F be a subsurface
bounded by two regular level sets that contains all the saddle and double
points of F , but no minima and maxima.

A complete description of the surface F ′ can be encoded in a single
diagram of the link L′ which is the lower boundary of F ′; thus L′ consists of
L and the unlink of co-attaching circles for handles of index zero. Following
the movie we encode each crossing change encountered by adding a red band
as in Figure 1 and each addition of a handle of index one (a band move) by
adding a blue one. By shortening the arcs and pulling the rest of L′ along
we can construct a diagram for L′ relative to which the added colored bands
lie in a plane, are nonoverlapping, and intersect L′ only in attaching arcs. It
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is clear from this picture that we can now implement the crossing changes
and band moves in any order we desire.

Since F is connected we can first modify L′ by one blue band move (1-
handle addition) for each of the components corresponding to the boundaries
of handles of index zero, so that each becomes connected to a component of
L. This forms a concordance, which is the first stage of factorisation. The
second stage of factorisation consists of all the crossing changes encoded by
the red bands. The remaining handles of index one (blue bands) and two
form a ribbon surface which is the last stage of factorisation. �

It follows from the above proposition that the four-ball crossing num-
ber of a knot is equal to the minimal slicing number of any knot in its
concordance class:

(2) c∗(K) = min
K′ concordant to K

us(K
′).

Proof of Proposition 6. A knot K is slice if and only if c∗(K) = 0, and is
ribbon if and only if c∗r(K) = 0; thus c∗ = c∗r implies SRC. It was observed by
Shibuya [33] and Rudolph [32] (and follows easily from Proposition 2.1) that
c∗r(K) is equal to ur(K) which is the minimal number of crossing changes
from K to a ribbon knot. Note that SRC implies us = ur. The equivalence

c∗ = c∗r ⇐⇒ SRC and us = c∗

now follows by considering equalities among the quantities c∗, c∗r , ur and us.
Finally, the nontrivial part of the equivalence

us = c∗ ⇐⇒ us is a concordance invariant

follows easily from Proposition 2.1 via (2). �
The following theorem implies Theorem 1 and may be used to give a

new proof of [24, Theorem 2], noting that the trace of a homotopy given
by a crossing change sequence from K to a slice knot J may be glued to a
slice disk for J to give an immersed disk Δ in B4 bounded by K. There is
a sign error in Remark 3.5 of that paper: changing a positive (respectively
negative) crossing in K results in a positive (respectively negative) double
point of Δ.

Theorem 2.2. Let Δ be a normally immersed disk in the four-ball with
r double points and boundary K. Then the double branched cover Σ(K) of
K bounds a manifold with b2 = 2r and signature σ(K) + 2r+, where σ(K)
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denotes the signature of K and r+ the number of positive double points in Δ.
Moreover, the intersection pairing of this manifold is of half-integer surgery
type and the number of odd squares in such a representation of the pairing
is equal to r+.

Proof. We follow the construction in [7, Theorem 3.7] where all the prop-
erties except those in the last sentence of the theorem are established. We
briefly recall the construction. Blow up B4 at every double point of Δ to
obtain W = B4#rCP2 with an embedded disk Δ̃ and let W̃ be the dou-
ble branched cover of W with branch set Δ̃. Then b1(W̃ ) = 0 and hence

b2(W̃ ) = 2r via an Euler characteristic computation, and the signature for-
mula follows from the G-signature theorem, as in the proof of [7, Theo-
rem 3.7]. We exhibit below a collection of 2r independent homology classes

in H2(W̃ ;Z) with the claimed type of pairing. It follows then from [24,

Proposition 2.4] that the pairing on W̃ is of the same type.
Let p be a double point of Δ and let B be a small ball around p; we may

assume Δ intersects the boundary of B in two great circles. Denote by E
the total space of the degree one disk-bundle over S2 that replaces B after
the blow-up at p. The proper transform of Δ thus contains two fibres of E
and in the double branched cover W̃ the zero section of E lifts to a sphere
S of self-intersection two.

Choose a loop C in Δ that is the image of an arc connecting the two
points in the disk mapping to p under the immersion to Δ. We may assume
C does not contain any other double point of Δ. Choose a (short) vector
vp transverse to both sheets of Δ at p and extend it to a (short enough)
nonvanishing normal vector field v to Δ along C. Then C and its pushoff Cv

along v cobound an embedded annulus A. Since the first homology of the
complement of Δ is generated by the meridian μ of Δ, it follows that Cv is
homologous to k[μ] for some k ∈ Z. Choose |k| disjoint curves L ⊂ Δ−B,
parallel to a component of Δ ∩ ∂B, and let F0 be an embedded surface
bounded by Cv ∪ L that intersects Δ only in L. Then F0 ∪A is a surface
(with possible self-intersections) with boundary C ∪ L. We may replace it by
a surface F with the same boundary and only (transverse) self-intersections
along the boundary.

In the blow-up process we replace B by E and F by F ′ = F − intB.
By making B smaller if necessary we may further assume that F ′ ∩ ∂E is a
section s0 of E over an arc in the base sphere connecting the branch points.
Extend s0 to a section Σ of E that intersects the zero section transversely
in one point. Then the preimage F̃ ′ of F ′, in the branched double cover
W̃ , is a normally immersed surface with boundary the preimage s̃0 of s0,
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since it is the double of F ′ along the part of its boundary that lies in Δ.
Similarly, s̃0 separates the preimage Σ̃ of Σ into two “hemispheres”. Hence
F̃ ′ and one hemisphere of Σ̃ form a closed normally immersed surface F̃
in W̃ . By construction the intersection number of F̃ with S is ±1, so they
represent a dual pair of homology classes. Since the sphere S is contained in
the preimage of E, spheres corresponding to different double points clearly
represent different classes which are disjoint. Thus we obtain 2r homology
classes with the required form of intersection pairing.

To determine the parity of the self-intersection of F̃ construct a pushoff
as follows. Choose a short nonvanishing normal vector field u along each
component of ∂F in Δ so that the pushoff ∂Fu ⊂ Δ is an embedding of ∂F
disjoint from ∂F . Extend u to a normal vector field to F that is transverse to
F . Again we may assume that Fu ∩ ∂B is a section s′0 of E over an arc in the
base sphere connecting the branch points and extend s′0 to a section Σ′ of E
that intersects the zero section transversely in one point. The preimage of
Fu − intB along with a half of the preimage of Σ′ then determines a pushoff
F̃ ′ of F̃ in W̃ . Note that any intersections between F and Fu contribute
an even number to the intersection number I = F̃ · F̃ ′ thus the parity of I
depends on the intersections between the lifts of Σ and Σ′. If p is a positive
double point, then s′0 can be thought of as s0 rotated by a small angle, so
multiplied by a unit complex number ξ close to 1. Hence we can choose Σ′

to be ξΣ and the contribution of the lifts of Σ and Σ′ to I is ±1. If on the
other hand p is a negative double point, then the pushoff s′0 at the endpoints
of the arc lies on the opposite sides of s0 and this additional linking between
the lifts of s0 and s′0 contributes another ±1 to I making it even in this
case. �

The proof of Theorem 1 is now immediate upon recalling that by a
standard algebraic topology argument (see for example [25, Lemma 2.1])
the determinant of the intersection form of a four-manifold bounded by
a rational homology sphere divides the order of the first homology of the
boundary (which for the double branched cover of a knot is equal to the
determinant of the knot) with quotient a square.

Proof of Corollary 2. If σ(K) = 2 and K bounds an immersed disk in the
four-ball with one double point, then it must be a negative double point.
This follows from Proposition 2.1 and the fact that changing a positive
crossing cannot decrease the signature (see [7, Proposition 2.1], also [34,
Theorem 5.1]). According to Theorem 1, the double branched cover Y of
K bounds a positive definite four-manifold X with intersection form Q =
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[
a 1
1 2

]
which presents a cyclic subgroup of H1(Y ;Z). As noted above, the

determinant r of Q divides detK = |H1(Y ;Z)| with quotient a square, s2,
and the image of the restriction homomorphism Spinc(X) → Spinc(Y ) has
order rs. For each spinc structure t on Y that extends over X it follows from
[26, Theorems 1.2 and 9.6] that

(3) d̃(Y, t) := −d(Y, t) + min
s

c1(s)
2 − 2

4

is a nonnegative even integer, where the minimum is taken over all s ∈
Spinc(X) that restrict to t. Changing the spinc structure on X by a torsion
element does not change the square of its Chern class. The formula follows
by noting that the minimum computes the d-invariant of a spinc structure
on r/2 surgery on the unknot [27, Corollary 1.5]. By the recursive formula
for correction terms of lens spaces given in [26], with the labelling shifted by
(r + 1)/2 so that the spin structure on the lens space is labelled by i = 0,
these are

(4) d(S3
r/2(O), i) = i2/2r −

{
0 i ≡ (r − 1)/2 (mod 2)

1/2 i ≡ (r + 1)/2 (mod 2)
.

(Alternatively, one can compute the minimum in (3) directly using a suitable
set of short characteristic covectors for the form Q as in [25] or [28].)

If σ(K) = 0, then at least one of K or its mirror K bounds a disk with a
positive double point (and no other double points) to which the above may
be applied. �

3. Heegaard-Floer obstructions to (concordance) unknotting
number one

In this section we prove Theorems 3 and 4 and Corollary 5.

Proof of Theorem 3. The first three conditions in the theorem are due to
Ozsváth and Szabó [28]. For completeness we give a proof of all five based
on the formula of Ni and Wu [21, Proposition 1.6] for d-invariants of a
positive Dehn surgery on a knot K in the three-sphere: for p, q > 0, we have

(5) d(S3
p/q(K), i) = d(S3

p/q(O), i)− 2max{V�i/q�, H�(i−p)/q�},

for i = 1, . . . , p− 1, where i enumerates relative spinc structures on the com-
plement of K and O denotes the unknot. We define normalized d-invariants
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as

(6) d̃i := −d(S3
p/q(K), i) + d(S3

p/q(O), i) = 2max{V�i/q�, H�(i−p)/q�},

for i = 0, . . . , p− 1.
The sequences Vj and Hj (j ∈ Z) are determined by the knot Floer

chain complex C = CFK∞(K) of K and we recall their construction. In
[29] Ozsváth and Szabó define quotient complexes A+

j = C{k ≥ 0 or l ≥ j}
and B+

j = B+ = C{k ≥ 0}, where (k, l) ∈ Z⊕ Z denotes the bidegree on C,

and U -equivariant maps v+j : A+
j → B+ and h+j : A+

j → B+. The U -action

lowers the bidegree by (1, 1) and v+j is the obvious projection to the quo-

tient complex; we will not need the description of h+j but note that it is
essentially the projection to C{l ≥ j}. The homology of B+ is isomorphic
to HF+(S3) ∼= T + = Z[U,U−1]/UZ[U ]. Similarly there is a T + summand,
which we denote T +

j , in the homology of A+
j (noting that the homology of

C is isomorphic to HF∞(S3) ∼= T = Z[U,U−1], and the projection from C
to A+

j induces an isomorphism on homology in high degrees). Since both v+j
and h+j induce isomorphisms on the chain level in sufficiently high degrees,

their induced maps on homologies, restricted to T +
j , are given by multiplica-

tion by UVj and UHj . Moreover, for j greater than the genus of K, A+
j = B+

and hence Vj = 0 in this range. We restrict our analysis to Vj for j ≥ 0 as
these determine H−j (see below) and all of these together are the only values
of V ’s and H’s relevant to (5).

We first show that H−j = Vj for j ≥ 0. (See also [22, §5.2].) As noted in
[31, Corollary 2.3], if n is a large positive integer, then Vi = 0 for i > n/2 and
Hi−n = 0 for i ≤ n/2, and thus the normalized d-invariants d̃i of S

3
n(K) are

equal to either 2Vi for i ≤ n/2 or 2Hi−n for i > n/2. Since in the case of an
integer surgery i = 0 corresponds to a spin structure, conjugation invariance
d̃i = d̃n−i of (normalized) d-invariants yields the stated equality.

Next we claim that Vj − 1 ≤ Vj+1 ≤ Vj for all j. LetKj denote the kernel
of the projection A+

j → A+
j+1. Since the U -action on the left complex in the

U -equivariant short exact sequence

0 → Kj → A+
j → A+

j+1 → 0

is trivial, it follows that in homology the map from T +
j+1 is trivial and the

map into T +
j can contain in its image only the kernel of the U -action. Hence

the map T +
j → T +

j+1 is either the identity or multiplication by U . This proves
the claim.



Immersed disks 1119

We now specialize to p/q = r/2. At this point we know that Vj (j ≥ 0)
is a nonincreasing and Hj (j ≤ 0) a nondecreasing sequence of nonnegative
integers which yields the first two conditions. From the monotonicity proper-
ties of Vj and Hj and the fact that V0 = H0 it follows that d̃2i = d̃2i+1 = 2Vi

and d̃r−2i = d̃r−2i+1 = 2H−i for small i ≥ 0. Note that in this labelling of
spinc structures the spin structure is labelled by i = (r + 1)/2. We claim
that the symmetry condition above extends to the spin structure from both
ends. Denote by � the largest value of i for which V�i/2� ≥ H�(i−r)/2�. If
� ≥ (r + 1)/2, then the symmetry condition holds up to the spin structure
whereas for � < (r + 1)/2 it holds above it. In both cases using conjugation
invariance of d-invariants it follows that the symmetry holds on both sides
of the spin structure.

Next note that the monotonicity conditions on Vj and Hj imply that d̃i
is nonincreasing up to the spin structure (the symmetry shows us that d̃2i =
d̃2i+1, and the inequality d̃2i+1 ≤ d̃2i+2 in this range follows immediately
from (6)) and nondecreasing after that. Moreover, since Vj and Hj can jump
by at most 1, the last condition also follows.

Finally we substitute for d(S3
r/2(O), i) using (4). The isomorphism φ

accounts for the fact that the given labelling of spinc structures on Y may
not agree with the one assumed above. �

Proof of Theorem 4. Let Y ′ = S3
l/2(C) with l > 0 and odd, and letW denote

the rational homology cobordism with ∂W = Y � −Y ′. Let X denote the
surgery nullcobordism bounded by Y ′; this is given by a Kirby diagram with
framing (l + 1)/2 on C and framing 2 on a meridian of C. The restriction
map from Spinc(X) to Spinc(Y ′) is surjective since H2(X;Z) is torsion-
free. We need to understand the image of the restriction map Spinc(W ) →
Spinc(Y )× Spinc(Y ′), or equivalently from Spinc(X ∪W ). This image is
conjugation invariant, and it has an odd number of elements, since it is
affine isomorphic to a subgroup of H2(Y ;Z)⊕H2(Y ′;Z). Thus it contains
a conjugation-fixed element, which is the pair of spin structures on the two
boundary components. It follows that it suffices to understand the restriction
map on H2. Our goal is to understand the image of H2(X ∪W ;Z) in each
of H2(Y ′;Z) and H2(Y ;Z) separately; we will see in particular that the
torsion subgroup of H2(X ∪W ;Z) restricts trivially to Y ′ and may restrict
nontrivially to Y .

Let ΛX = (H2(X;Z), QX) denote the intersection lattice of X, with dual
lattice Λ∗

X which is H2(X;Z) with the induced pairing. Let Λ = (H2(X ∪
W ;Z)/Tors , QX∪W ) denote the intersection lattice of the manifold X ∪W
bounded by Y , and let Λ∗ be its dual lattice (which is H2(X ∪W ;Z)/Tors
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with the induced pairing). We have natural inclusions

ΛX ⊂ Λ ⊂ Λ∗ ⊂ Λ∗
X ,

the last of which comes from the restriction mapH2(X ∪W ;Z) → H2(X;Z).
Let r be the determinant of Λ (that is, the order of Λ∗/Λ) and let t be the in-
dex of ΛX in Λ. Using the long exact sequence of the pair (X,Y ′) we see that
Λ∗
X/ΛX

∼= H2(Y ′;Z) is cyclic of order l = rt2. The image of H2(X ∪W ;Z)
in H2(Y ′;Z) is the index t subgroup H ′ ∼= Λ∗/ΛX ⊂ Λ∗

X/ΛX .
Using the long exact sequence of the pair (X ∪W,Y ), as in for exam-

ple [25], the order of H2(Y ;Z) is rs2 for some s. Moreover, the image H of
H2(X ∪W ;Z) inH2(Y ;Z) has order rs, the image T of the torsion subgroup
of H2(X ∪W ;Z) in H has order s, and H/T ∼= Λ∗/Λ ∼= Z/rZ. The com-
posite surjectionH2(X ∪W ;Z) → Λ∗ → Λ∗/Λ ∼= Z/rZ thus factors through
each of H and H ′.

Given a spinc structure on X ∪W , its restriction to Y may be changed
by any given element of T using the action of the torsion subgroup ofH2(X ∪
W ;Z), leaving the restriction to Y ′ unchanged. Since d-invariants are spinc

rational homology cobordism invariants [26], this proves the first statement
of the theorem. Choose a labelling Spinc(Y ′) ∼= Z/rt2Z as in Theorem 3. For
each i ∈ Z/rZ choose a spinc structure si ∈ Spinc(X ∪W ) whose restriction
to Y ′ is labelled by ti, and let φ(si|Y ) = i. From the discussion above, this
is the quotient homomorphism H → H/T composed with an automorphism
of Z/rZ. Then

d(Y ′, ti) = d(Y, si|Y )
and the second conclusion of the theorem now follows from the conclusion
of Theorem 3 applied to Y ′. �

Note that since in the above proof we are using the conclusions of The-
orem 3 on a subgroup of spinc structures on the surgery manifold, we lose
the symmetry and boundedness conditions from Theorem 3.

In the proof of Corollary 5 we need to know whether the double branched
cover of an unknotting number one knot is a positive or a negative surgery on
some knot. The exact information is given by the following signed refinement
of Montesinos’ trick, which is proved in [28, Theorem 8.1]. However, we only
need to pin down the sign in case the signature is nonzero and we give an
alternative argument for that.

Lemma 3.1. Let K be a knot in S3 with determinant l and unknotting
number one. Suppose that either
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(i) K has signature two, or

(ii) K has signature zero and may be unknotted by changing a positive
crossing to a negative crossing.

Then Σ(K) = S3
l/2(C).

Proof of (i). If the signature of K is two, then Y = Σ(K) is the boundary of
a spin four-manifold W with signature two. Indeed, W can either be taken
to be the double branched cover of a Seifert surface for K pushed into the
four-ball or the manifold from Theorem 1. In the latter case note that since
by [7, Theorem 3.7]H1(W ;Z/2Z) = 0 and the intersection form is even (only
changing a negative crossing can unknot K), the manifold is spin. Moreover,
since σ(K) = 2, det(K) ≡ −1 (mod 4) by [19, Theorem 5.6], and thus the
surgery manifold X, corresponding to the positive surgery, that ±Y bounds,
is also spin with signature two. If −Y were the positive surgery, then W ∪X
would be a closed spin manifold of signature four, a contradiction. �

Proof of Corollary 5. Suppose K is a knot with unknotting number one and
let Y = Σ(K). If K has signature zero, then either Y or Σ(K) = −Y is a
positive surgery on a knot; if necessary we replaceK by its mirror so that Y is
a positive surgery. If K has signature two, then it follows from Lemma 3.1(i)
that Y is a positive surgery. In each case we then apply Theorem 3.

Now suppose K is concordant to a knot K ′ with unknotting number one.
The argument in the preceding paragraph may be applied to K ′, which has
the same signature as K, and we then apply Theorem 4, using the fact that
the double branched cover W of a concordance between K and K ′ gives a
rational homology cobordism between Σ(K) and Σ(K ′). �

4. Low crossing number examples

Table 2 lists the determinant, unknotting number, concordance unknotting
number, slicing number, four-ball crossing number, four-ball genus and half
of the absolute value of the signature for knots with up to 9 crossings, with
incomplete information for three knots. In this section we describe how the
previously unknown values in the table have been obtained.

The slicing number of 74 was determined by Livingston [14] and the four-
ball crossing number of 816 was determined by Murakami and Yasuhara [18].
Apart from the values of uc, us and c∗, the data in the table is taken from
[6].
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For any knot for which the unknotting number is equal to the four-ball
genus, it follows from (1) that u = uc = us = c∗ = g∗. Also any slice knot has
uc = us = c∗ = g∗ = 0. We have highlighted the knots in Table 2 for which
neither of these situations apply, and we give some details about each in
what follows.

At the end of the section we give a brief account of the computation of
the invariants in Table 3 of knots with 10 crossings.

4.1. Calculation of d-invariants

For the knots we consider in this section, we calculate the correction terms
of the double branched cover using various methods from [26] and [28]. The
recursive formula in [26, Section 4.1] may be used to compute d-invariants
of lens spaces, which are the double branched covers of 2-bridge knots and
links. More generally, we compute d-invariants using the intersection forms
of sharp four-manifolds, as we recall now.

Let Y be a rational homology 3-sphere, and suppose Y (smoothly)
bounds a positive-definite four-manifold X with intersection form Q. Then
it follows from [26, Theorems 1.2, 9.6] that for each s ∈ Spinc(X), we have

c1(s)
2 − b2(X)

4
≥ d(Y, s|Y )(7)

and
c1(s)

2 − b2(X)

4
≡ d(Y, s|Y ) (mod 2).(8)

We say that X is sharp if every spinc structure on Y = ∂X admits an
extension over X with equality in (7); in this case we may use the inter-
section form on X to calculate the correction terms of Y . When Y is the
double branched cover of an alternating knot K, it is shown in [28] that
the Goeritz matrix of an alternating diagram of K is the intersection form
of a sharp manifold bounded by Y . A method is given in the same paper
to exhibit sharp four-manifolds bounded by the double branched covers of
certain nonalternating knots via exact triangles; this applies in particular to
K = 10158 which we will consider in Subsection 4.7.

Suppose then that a positive-definite symmetric integer matrix G = (gij)
of rank n is the intersection form of a sharp four-manifold X bounded by
Y . Call ξ = (ξ1, . . . , ξn) a characteristic covector for G if

ξi ≡ gii (mod 2), i = 1, . . . , n,
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and denote the set of all characteristic covectors by Char(G); these repre-
sent first Chern classes of spinc structures on X. The set Char(G)/2GZn is
then affine isomorphic to Spinc(Y ). Using a computer, we partition the set
of characteristic covectors ξ = (ξ1, . . . , ξn) with gii ≤ ξi < −gii into cosets
of Char(G)/2GZn, and use the Smith normal form of G to record the
affine group structure of Char(G)/2GZn. We also minimise the quantity
(ξTQ−1ξ − n)/4 on each of these finite sets of coset representatives; the re-
sulting rational numbers associated to Spinc(Y ) are the d-invariants.

4.2. Application of Theorem 1.

In applications, one wishes to determine whether a given rational homol-
ogy sphere Y may bound a positive-definite 4-manifold whose intersection
form is of half-integer surgery type. One can obstruct a given form using
the d-invariants of Y , together with (7) and (8). There are finitely many
positive-definite forms of a given rank and determinant, and a complete list
of representatives may be found using the theory of reduced forms, see for
example [5, 10]. For more details on how to write down a complete list of
positive-definite forms of half-integer type, with a given rank and determi-
nant, see [23].

4.3. Knots with u = c∗

If a knot has u = c∗, then these also are equal to uc and us by (1). Using
Theorem 1 in place of [24, Theorem 2] we may adapt Corollaries 3 and 4 of
[24] to conclude that 74, 816, 95, 915, 917 and 931 all have u = c∗ = 2 and 910,
913, and 938 have u = c∗ = 3. For the reader’s convenience we will recall how
the argument goes for one example. Consider K = 910. This is a two-bridge
knot with determinant 33 and signature four. The correction terms of the
double branched cover Y = L(33, 23) comprise a function

dY : Z/33Z → Q,

well-defined up to a group automorphism of the domain, which may be
computed using the recursion formula from [26]. The number of negative
double points in a normally immersed disk in the four-ball bounded by
K is bounded below by half the signature (this follows for example from
Theorem 2.2). We wish to show that there does not exist such a disk with
2 double points; since the signature is four, these would both have to be
negative and we may apply Theorem 1. Existence of such a disk then implies
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that Y bounds a positive-definite four-manifold X with b2 = 4 and with an
even intersection form of half-integer surgery type. The determinant of this
form has to be 33 since by the long exact cohomology sequence of the pair
(X,Y ) it divides the order of H2(Y ;Z) with quotient a square. There turn
out to be exactly two such forms, which are represented by the matrices⎛⎜⎜⎝

6 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
4 2 1 0
2 4 0 1
1 0 2 0
0 1 0 2

⎞⎟⎟⎠ .

Letting Char(Q) denote the set of elements of Z4 with even coefficients,
the quotient of Char(Q) by the image of 2Q for each matrix Q above is
isomorphic to Z/33Z. We may then compute the function

mQ : Z/33Z → Q

j �→ min

{
ξTQ−1ξ − 4

4

∣∣∣∣ ξ ∈ Char(Q), [ξ] = j

}
.

(It suffices to consider vectors ξ with entries bounded in absolute value
by the corresponding diagonal element of Q, and minimise over the finite
equivalence classes of such vectors.) Using [26] we have that if Y bounds X
with intersection form Q, then there exists an automorphism φ of Z/33Z
such that for each j ∈ Z/33Z, the difference

mQ(j)− dY (φ(j))

is a nonnegative even integer. From inspection of dY and each of the mQ it
is straightforward to see that no such φ exists. Indeed the correction terms
of Y are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, −23
33 ,

7
33 , − 3

11 , − 5
33 ,

19
33 , − 1

11 , − 5
33 ,

13
33 , − 5

11 , −23
33 ,

−1
3 ,

7
11 ,

7
33 ,

13
33 ,

13
11 ,

19
33 ,

19
33 ,

13
11 ,

13
33 ,

7
33 ,

7
11 ,

−1
3 , −23

33 , − 5
11 ,

13
33 , − 5

33 , − 1
11 ,

19
33 , − 5

33 , − 3
11 ,

7
33 , −23

33

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ;

the order of the list corresponds to the group structure, but we will not need
this for this example.

For the first matrix above we find there exists j with mQ(j) = −9/11,
and for the second there exists j withmQ(j) = −7/11. None of the correction
terms of Y have the property that −9/11− dY (j) or −7/11− dY (j) is a
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nonnegative even integer. We conclude that K has c∗ ≥ 3, and in fact since
K can be unknotted by three crossing changes in its alternating diagram,
that u(K) = c∗(K) = 3.

For the knot K = 818, the homology group of Y = Σ(K) is isomorphic
to Z/3Z⊕ Z/15Z. The signature of this knot is zero. The only factorisation
45 = rs2 for which there is an epimorphism from an order rs subgroup of
Z/3Z⊕ Z/15Z onto Z/rZ is r = 5 and s = 3. The d-invariants of the unique
order 5 subgroup of Spinc(Y ) may be calculated as in [28, Proposition 3.2]
to be

[0, 4/5,−4/5,−4/5, 4/5].

This subgroup gives a full set of representatives for the order 5 quotient of
any of the possible order 15 subgroups of Spinc(Y ). Thus by Corollary 2, if
c∗(K) = 1 there would exist a positive even matching between these numbers
(up to overall sign change) and the d-invariants of 5/2 surgery on the unknot,
which are

[0,−2/5, 2/5, 2/5,−2/5].

No such matching exists; in fact no integral matching exists, so that Y is
obstructed by the linking form from bounding a topological manifold with

intersection form Q =

(
3 1
1 2

)
. We conclude that u = c∗ = 2 for this knot.

Similar reasoning applies to the knot 940 for which the homology group
is Z/5Z⊕ Z/15Z and the d-invariants on the unique Z/3Z subgroup are
[−1/2, 5/6, 5/6], while those of 3/2 surgery on the unknot are [−1/2, 1/6, 1/6].

The knot K = 949 has signature four and determinant 25. If c∗(K) =
2, then as in the proof of Corollary 2, K must bound an immersed disk
with 2 negative (and no positive) double points. Now by Theorem 1, Σ(K)
bounds a positive-definite even form of half-integer surgery type of rank 4
and determinant 1 or 25. However no such forms exist (this may be checked
as in [23, §6]) and we conclude that u = c∗ = 3.

4.4. Knots with uc = us = c∗ = 1

The knots 810 and 937 each have uc = us = 1 as may be seen from Figure 2:
the former is concordant to the trefoil and is one crossing change from 31#31,
the latter is concordant to 41 and gives 61 after changing the indicated
crossing. Comparing with the proof of Proposition 2.1 one may observe that
in each case the crossing change and the concordance combine to give an
immersed disk with a single double point.
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4.5. Knots with uc = 2, us = c∗ = 1

The knots listed in Table 1 each have us = 1 as may be seen by changing
the crossing circled in Figure 2; in each case the slice knot thus obtained is
given in the table.

Knot d̃ Slice knot

83 06, 2, 0, 2 61

84 05, 2, 0, 23 61

86 07, 2, 0, 23 61

812 08, 2, 0, 24, 4 61

98 07, 2, 0, 24, 4, 2, 4 61

925 011, 2, 0, 24, 4, 2, 44, 6 61

929 09, 2, 0, 26, 4, 2, 44, 63 31#31

932 011, 2, 0, 26, 4, 2, 44, 64, 8 61

Table 1: Data for knots with uc = 2 and us = 1, and with cyclic H1(Σ(K)).
In the second column of the table we have used an abbreviated notation in
which for example 06 stands for 0, 0, 0, 0, 0, 0.

We consider first the knot K = 83, which is the two-bridge knot S(17, 4)
with determinant 17 and signature zero. The d-invariants may be computed
using either the recursive formula from [26] or the Goeritz matrix from an
alternating diagram as in [28]. In cyclic group order starting at the spin
structure these are

[0, 4
17 ,

16
17 ,

2
17 ,− 4

17 ,− 2
17 ,

8
17 ,− 8

17 ,−16
17 ,−16

17 ,− 8
17 ,

8
17 ,− 2

17 ,− 4
17 ,

2
17 ,

16
17 ,

4
17 ].

Since the determinant is square-free we are looking for a positive even match-
ing on the whole group; we must compare these d-invariants with those of
17/2 surgery on the unknot which are[

0,− 8
17 ,

2
17 ,− 4

17 ,
8
17 ,

4
17 ,

18
17 ,

16
17 ,

32
17 ,

32
17 ,

16
17 ,

18
17 ,

4
17 ,

8
17 ,− 4

17 ,
2
17 ,− 8

17

]
.



Immersed disks 1127

Knot det u uc us c∗ g∗
|σ|
2

Knot det u uc us c∗ g∗
|σ|
2

31 3 1 1 1 1 1 1 98 31 2 2 1 1 1 1

41 5 1 1 1 1 1 0 99 31 3 3 3 3 3 3

51 5 2 2 2 2 2 2 910 33 3 3 3 3 2 2

52 7 1 1 1 1 1 1 911 33 2 2 2 2 2 2

61 9 1 0 0 0 0 0 912 35 1 1 1 1 1 1

62 11 1 1 1 1 1 1 913 37 3 3 3 3 2 2

63 13 1 1 1 1 1 0 914 37 1 1 1 1 1 0

71 7 3 3 3 3 3 3 915 39 2 2 2 2 1 1

72 11 1 1 1 1 1 1 916 39 3 3 3 3 3 3

73 13 2 2 2 2 2 2 917 39 2 2 2 2 1 1

74 15 2 2 2 2 1 1 918 41 2 2 2 2 2 2

75 17 2 2 2 2 2 2 919 41 1 1 1 1 1 0

76 19 1 1 1 1 1 1 920 41 2 2 2 2 2 2

77 21 1 1 1 1 1 0 921 43 1 1 1 1 1 1

81 13 1 1 1 1 1 0 922 43 1 1 1 1 1 1

82 17 2 2 2 2 2 2 923 45 2 2 2 2 2 2

83 17 2 2 1 1 1 0 924 45 1 1 1 1 1 0

84 19 2 2 1 1 1 1 925 47 2 2 1 1 1 1

85 21 2 2 2 2 2 2 926 47 1 1 1 1 1 1

86 23 2 2 1 1 1 1 927 49 1 0 0 0 0 0

87 23 1 1 1 1 1 1 928 51 1 1 1 1 1 1

88 25 2 0 0 0 0 0 929 51 2 2 1 1 1 1

89 25 1 0 0 0 0 0 930 53 1 1 1 1 1 0

810 27 2 1 1 1 1 1 931 55 2 2 2 2 1 1

811 27 1 1 1 1 1 1 932 59 2 2 1 1 1 1

812 29 2 2 1 1 1 0 933 61 1 1 1 1 1 0

813 29 1 1 1 1 1 0 934 69 1 1 1 1 1 0

814 31 1 1 1 1 1 1 935 27 3 [2, 3] 2 2 1 1

815 33 2 2 2 2 2 2 936 37 2 2 2 2 2 2

816 35 2 2 2 2 1 1 937 45 2 1 1 1 1 0

817 37 1 1 1 1 1 0 938 57 3 3 3 3 2 2

818 45 2 2 2 2 1 0 939 55 1 1 1 1 1 1

819 3 3 3 3 3 3 3 940 75 2 2 2 2 1 1

820 9 1 0 0 0 0 0 941 49 2 0 0 0 0 0

821 15 1 1 1 1 1 1 942 7 1 1 1 1 1 1

91 9 4 4 4 4 4 4 943 13 2 2 2 2 2 2

92 15 1 1 1 1 1 1 944 17 1 1 1 1 1 0

93 19 3 3 3 3 3 3 945 23 1 1 1 1 1 1

94 21 2 2 2 2 2 2 946 9 2 0 0 0 0 0

95 23 2 2 2 2 1 1 947 27 2 [1, 2] 1 1 1 1

96 27 3 3 3 3 3 3 948 27 2 [1, 2] 1 1 1 1

97 29 2 2 2 2 2 2 949 25 3 3 3 3 2 2

Table 2: Invariants of knots with at most 9 crossings. Knots for which cal-
culation of us, uc or c

∗ is nontrivial are highlighted.
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Since the signature is zero we are free to switch the sign of the first list
above. We find there are two positive even matchings φ : Z/17Z → Z/17Z.
The first is multiplication by 5 and applies to the list above, and the second
is multiplication by 3 and applies to the list with the opposite sign. Both
result in the same ordered list of d̃ invariants as in Theorem 4 which are

0, 0, 0, 0, 0, 0, 2, 0, 2.

This fails monotonicity and so uc(K) = u(K) = 2.
Similar analysis applies to each of the knots listed in Table 1.

4.6. Knots with unknown values

The knots 947 and 948 have us = 1 as may be seen by changing a crossing
as in Figure 2, resulting in 61 and 820 respectively.

We next consider K = 935, which is the pretzel knot P (3, 3, 3). This
has signature two and H1(Σ(K)) ∼= Z/3Z⊕ Z/9Z. We give two proofs that
uc(K) > 1. The d-invariants (multiplied by 18) are⎡⎣−9 19 −5 27 7 7 27 −5 19

3 −5 7 3 19 19 3 7 −5
3 −5 7 3 19 19 3 7 −5

⎤⎦ .

Here the rectangular array shows the group structure with the invariant
coming from the spin structure in the top left position. There are four sub-
groups of order 9; none of these admits an epimorphism onto Z/3Z with
constant d-invariant on fibres. This is easy to see since the d-invariant of the
spin structure is not repeated in any other spinc structure. Thus there does
not exist a positive even subgroup matching, so by Corollary 5 we see that
uc(K) > 1.

We may also use a result from [24] based on Donaldson’s diagonalisation
theorem [8] to show that in fact c∗(K) > 1. Combining the proof of [24,
Corollary 5] with Theorem 1 we find that any normally immersed disk in
B4 bounded by the knot 74 has at least two negative double points.1 Since
74 is the P (1, 3, 3) pretzel, we obtain K = 935 from it by changing a positive
crossing. Thus an immersed disk bounded by K gives rise to one for 74 with

1There is an oversight in the proof of [24, Corollary 5]: using the notation therein,
there is more than one embedding of the lattice L′

n in Zm, however the conclusion
that the orthogonal complement does not contain a finite index sublattice of half-
integer type is correct for any such embedding.
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one additional positive double point. We conclude that c∗(K) > 1; moreover,
if c∗(K) = 2, then any immersed disk realising this bound has two negative
double points. An argument of Traczyk [36] using the Jones polynomial
shows that 935 cannot be unknotted by changing two negative crossings.
However as we see from Figure 3 it is possible to go from 935 to the slice knot
820, which incidentally is the pretzel P (3, 2,−3), by two crossing changes.
Thus us = c∗ = 2 for this knot.

4.7. Knots with 10 crossings.

Table 3 lists invariants for 10 crossing knots; we have omitted slice knots
or knots for which uc, us and c∗ are computable from (1). Here we briefly
indicate how the data in the table was compiled.

The knots 1019, 1020, 1024, 1036, 1068, 1069, 1086, 1097, 10105, 10109, 10116,
10121, 10122, 10144, 10163, 10165 are obstructed from having c∗ = 1; 1053,
10101 and 10120 are similarly obstructed from having c∗ = 2. This follows as
in Corollaries 2 and 3 of [24], using Theorem 1 in place of [24, Theorem 2].

The knots 1040, 1065, 1067, 1074, 1077, 10103 and 10106 are concordant to
unknotting number one knots [15] and hence have uc = 1.

All remaining knots in Table 3 with slice genus one are obstructed from
having concordance unknotting number one by Theorem 4, with the excep-
tion of 10158, which is not obstructed from being concordant to a knot with
determinant 5s2 and unknotting number one. The correction terms of the
double branched cover of 10158 were computed using the method from [28].

For all knots in Table 3 with u > c∗ (or u unknown), we have found an
appropriate set of crossing changes to convert to a slice knot. For the most
part these are exhibited in the minimal diagram listed in [6]; the exceptions
are shown in Figure 3.

5. Gordian distances between torus knots.

The Gordian distance dG(K1,K2) between two knots K1 and K2 in the
three-sphere is the smallest number of crossing changes required to convert
K1 into K2. Note that this notion generalizes the unknotting number, since
u(K) = dG(K,U). The trace of the regular homotopy realizing the crossing
changes is a normally immersed annulus in S3 × [0, 1], or in other words
an immersed concordance, with one normal double point for each crossing
change. It is natural to consider a weaker measure of distance between knots:
we define the crossing number distance d∗(K1,K2) to be the minimal number
of double points in a normally immersed concordance between K1 and K2.
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83 84 86

810 812 98

925 929 932

937 947 948

Figure 2: Crossing changes giving slice knots, and band moves giving con-
cordances to unknotting number one knots.
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935

1011 1052

1070 1079

Figure 3: Crossing changes in nonminimal diagrams giving slice knots.

Arguing as in Proposition 2.1 this is the same as the concordance Gordian
distance, in other words the minimum of dG(K

′
1,K

′
2) where K

′
i is concordant

to Ki for i = 1, 2. As in the case of embedded concordances, an immersed
concordance between K1 and K2 is equivalent to an immersed disk in the
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Knot det u uc us c∗ g∗
|σ|
2

Knot det u uc us c∗ g∗
|σ|
2

104 27 2 2 1 1 1 1 1079 61 [2, 3] [2, 3] 1 1 1 0

106 37 3 [2, 3] 2 2 2 2 1081 85 2 2 1 1 1 0

1011 43 [2, 3] [2, 3] 1 1 1 1 1083 83 2 2 1 1 1 1

1012 47 2 2 1 1 1 1 1086 85 2 2 2 2 1 0

1013 53 2 2 1 1 1 0 1089 99 2 2 1 1 1 1

1015 43 2 2 1 1 1 1 1090 77 2 2 1 1 1 0

1016 47 2 2 1 1 1 1 1093 67 2 2 1 1 1 1

1019 51 2 2 2 2 1 1 1094 71 2 2 1 1 1 1

1020 35 2 2 2 2 1 1 1096 93 2 2 1 1 1 0

1024 55 2 2 2 2 1 1 1097 87 2 2 2 2 1 1

1028 53 2 2 1 1 1 0 10100 65 [2, 3] [2, 3] 2 2 2 2

1029 63 2 2 1 1 1 1 10101 85 3 3 3 3 2 2

1034 37 2 2 1 1 1 0 10103 75 3 1 1 1 1 1

1036 51 2 2 2 2 1 1 10105 91 2 2 2 2 1 1

1037 53 2 2 1 1 1 0 10106 75 2 1 1 1 1 1

1038 59 2 2 1 1 1 1 10108 63 2 2 1 1 1 1

1040 75 2 1 1 1 1 1 10109 85 2 2 2 2 1 0

1041 71 2 2 1 1 1 1 10110 83 2 2 1 1 1 1

1043 73 2 2 1 1 1 0 10112 87 2 2 1 1 1 1

1045 89 2 2 1 1 1 0 10115 109 2 2 1 1 1 0

1047 41 [2, 3] [2, 3] 2 2 2 2 10116 95 2 2 2 2 1 1

1051 67 [2, 3] [2, 3] 1 1 1 1 10117 103 2 2 1 1 1 1

1052 59 2 2 1 1 1 1 10120 105 3 3 3 3 2 2

1053 73 3 3 3 3 2 2 10121 115 2 2 2 2 1 1

1054 47 [2, 3] [2, 3] 1 1 1 1 10122 105 2 2 2 2 1 0

1057 79 2 2 1 1 1 1 10125 11 2 2 1 1 1 1

1058 65 2 2 1 1 1 0 10126 19 2 2 1 1 1 1

1061 33 [2, 3] [2, 3] 2 2 2 2 10130 17 2 2 1 1 1 0

1064 51 2 2 1 1 1 1 10135 37 2 2 1 1 1 0

1065 63 2 1 1 1 1 1 10138 35 2 2 1 1 1 1

1067 63 2 1 1 1 1 1 10144 39 2 2 2 2 1 1

1068 57 2 2 2 2 1 0 10148 31 2 2 1 1 1 1

1069 87 2 2 2 2 1 1 10151 43 2 2 1 1 1 1

1070 67 2 2 1 1 1 1 10158 45 2 [1, 2] 1 1 1 0

1074 63 2 1 1 1 1 1 10162 35 2 2 1 1 1 1

1076 57 [2, 3] [2, 3] 2 2 2 2 10163 51 2 2 2 2 1 1

1077 63 [2, 3] 1 1 1 1 1 10165 39 2 2 2 2 1 1

Table 3: Invariants of knots with 10 crossings. Only knots for which calcu-
lation of us, uc or c

∗ is nontrivial are listed.
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four-ball bounded by −K1#K2 (one obtains a disk from a concordance by
drilling out an arc which avoids the double points, and reverses this by
adding a (3, 1)-handle pair).

There has been a great deal of interest in Gordian distances between
torus knots, see for example [4, 9]. The pair T3,10 and T5,6 seem to be an
interesting example since Baader showed in [2] that they cobound a genus
one cobordism in S3 × [0, 1]. As far as we can tell previously known bounds
for this pair were

2 ≤ dG(T3,10, T5,6) ≤ 11,

with the lower bound coming from Levine-Tristram signatures as detailed
below and the upper bound coming from a theorem of Feller [9, Theorem 2]
which implies that each of these knots has an unknotting sequence of crossing
changes with T3,5 as an intermediate stage.

Example 5.1. Any normally immersed concordance between the torus knots
K1 = T3,10 and K2 = T5,6 has at least three double points, including at least
one of each sign. It is possible to convert K1 into K2 via 5 crossing changes.
Thus the Gordian distance between these knots satisfies

3 ≤ d∗(K1,K2) ≤ dG(K1,K2) ≤ 5.

Proof. For a complex number z of modulus 1 the Levine-Tristram signature
σz(K) and nullity ηz(K) of a knot K are defined to be the signature and
nullity of (1− z)V + (1− z)V T , where V is a Seifert matrix for K. The
signature σz agrees for concordant knots K1 and K2 provided z is not a
root of the Alexander polynomial of either knot [12]. Moreover, the nullity
ηz(K) vanishes if z is not a root of the Alexander polynomial of K. Also
the sum σz + ηz is unchanged or increases (respectively decreases) by two
if a positive (resp. negative) crossing is changed (see for example [3, §4.2]).
Using [13] we compute Levine-Tristram signatures and nullities of K1 and
K2 finding

σ−1(K1) = σζ(K1) = −14, σ−1(K2) = −16, σζ(K2) = −12,

where ζ = e4πi/5; moreover, these values are not roots of the Alexander poly-
nomial for either of K1 or K2. It follows from Proposition 2.1 that at least
one double point of each sign is required in a normally immersed concordance
between K1 and K2. We will show that Theorem 1 obstructs the possibility
of such a concordance with two double points.
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We letK = K1#−K2 and suppose thatK bounds a normally immersed
disk in the four-ball with two double points. By the signature data mentioned
above, there must be one double point of each sign. The double branched
cover of the torus knot Tp,q is the Brieskorn manifold M(2, p, q) [16]. This
is the boundary of a negative-definite plumbing tree according to [20, Theo-
rems 2.1 and 5.1], which is sharp according to results from [27], enabling us
to compute the correction term invariants of these Brieskorn manifolds and
hence by additivity of Y = Σ(K).

We find that the maximal value taken by the d-invariant on Spinc(Y ) is
11/10. Noting that the determinant of K is 15 which is square-free, there are
two possible formsQX as in Theorem 1 to consider, namely those represented
by

Q1 =

⎛⎜⎜⎝
3 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

⎞⎟⎟⎠ , Q2 =

⎛⎜⎜⎝
8 0 1 0
0 1 0 1
1 0 2 0
0 1 0 2

⎞⎟⎟⎠ .

Neither of these can be the intersection form of a smooth four-manifold
whose boundary has 15 spinc structures, one of whose d-invariants is 11/10;
this can be shown using [26, Theorems 1.2, 9.6]. Similar examples are worked
out in more detail in [23].

Finally we observe following Baader [2] that the band moves in Figure 4
convert betweenK1 andK2. We perform an isotopy on the resulting diagram
of K2 by “sliding a band”: move both “ends” of one of the bands past
the next band (requiring 4 crossing changes to get past) and then one full
revolution around the diagram so that the bands sit on a subdiagram as
shown in Figure 5. Simplifying this subdiagram and applying one further
crossing change gives us back the standard diagram of K1. Keeping track of
signs, we see that one may convert K1 to K2 by changing 2 positive crossings
to negative and 3 negative crossings to positive. �

The method of “sliding bands” to get upper bounds on Gordian distance
may be applied to many of Baader’s cobordisms. Indeed it may be used to
show that

(9) dG(T2a+1,4a+6, T2a+3,4a+2) ≤ 4a+ 1

for all a ≥ 1. To see this, draw a diagram of T2a+3,4a+2 as in Figure 4, as
the closure of the braid on 4a+ 2 strands given by a “(2a+ 3)/(4a+ 2)
twist”: the top strand passes over all of the other 4a+ 1 strands, and this is
repeated 2a+ 3 times. Add two band moves to resolve the middle crossing
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in each of the rightmost two sets of 4a+ 1 crossings, again as in Figure 4;
following Baader, these bands convert the diagram to one of T2a+1,4a+6.
Sliding the band on the left a times around the diagram, in a clockwise
direction, leads to both bands appearing together as in Figure 5. This process
involves 4a crossing changes: each time the band goes around the torus it
has to “pass through” the other band, requiring two crossing changes of
each sign. The bands can then be removed using a single crossing change;
in total we see that one may obtain T2a+3,4a+2 from T2a+1,4a+6 by changing
a total of 4a+ 1 crossings: 2a positive to negative, and 2a+ 1 negative to
positive. By comparison the results of Feller [9] give upper bounds which
are quadratic in a. For each pair of torus knots listed in (9) we expect the
method of Example 5.1 to give the same lower bound of 3 for the crossing
number distance, so the range of possibilities is growing linearly in a.

Figure 4: A genus one cobordism between T5,6 and T3,10.

Figure 5: Two band moves realising a crossing change.
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[28] P. Ozsváth and Z. Szabó, Knots with unknotting number one and Hee-
gaard Floer homology, Topology 44 (2005), no. 4, 705–745.
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