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Stability and Fourier-Mukai transforms

on higher dimensional elliptic fibrations

Wu-yen Chuang and Jason Lo

We consider elliptic fibrations with arbitrary base dimensions, and
generalise most of the results in [Lo1, Lo2, Lo5]. In particular,
we check universal closedness for the moduli of semistable objects
with respect to a polynomial stability that reduces to PT-stability
on threefolds. We also show openness of this polynomial stabil-
ity. On the other hand, we write down a criterion under which
certain 2-term polynomial semistable complexes are mapped to
torsion-free semistable sheaves under a Fourier-Mukai transform.
As an application, we construct an open immersion from a mod-
uli of complexes to a moduli of Gieseker stable sheaves on higher
dimensional elliptic fibrations.
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1. Introduction

Since its first introduction, Fourier-Mukai transforms have been proved to
provide a useful method to study moduli problems on a variety X in terms
of moduli on the Fourier-Mukai partner Y . For example, Bridgeland [Bri1]
showed that ifX is a relatively minimal elliptic surface, then Hilbert schemes
of points on Y are birationally equivalent to moduli of stable torsion-free
sheaves on X. If X is an elliptic threefold, then Bridgeland-Maciocia [BriM]
showed that any connected component of a complete moduli of rank-one
torsion-free sheaves is isomorphic to a component of the moduli of stable
torsion-free sheaves on Y . We will mention only some works in this direction,
and refer the readers to [BBR] for more details and a more comprehensive
survey.

Since Bridgeland’s introduction of stability conditions on triangulated
categories [Bri2], there have been interests in understanding stable objects
in the bounded derived category of coherent sheaves D(X) of a variety
X and their moduli spaces. Using Fourier-Mukai transforms, it is possi-
ble to transform certain moduli problems for complexes on X to mod-
uli problems for sheaves on Y . Recent related works along this direction
include: Bernardara-Hein [BH] and Hein-Ploog [HP] for elliptic K3 sur-
faces, Maciocia-Meachan [MM] for rank-one Bridgeland stable complexes on
Abelian surfaces, Minamide-Yanagida-Yoshioka [MYY, MYY2] for Bridge-
land stable complexes on Abelian and K3 surfaces, the second author for
K3 surfaces [Lo4] and elliptic threefolds [Lo5].

1.1. Overview of results

In this paper, we consider elliptic fibrations π : X → S where the dimension
of the base S is at least two, together with a dual fibration π̂ : Y → S. We
generalise most of the results in [Lo5], where the dimension of the base was
exactly two. For many of the results in [Lo5], their proofs carry over to
the higher dimensional case without any change; we restate these results in
Section 3. For some of the other results in [Lo5], however, we need to modify
their proofs in major ways in order to prove them in higher dimensions. The
first such result is Theorem 3.16, which roughly says that, if F is a reflexive
WIT1 sheaf on an elliptic fibration, then it satisfies the vanishing condition

Ext1D(X)(BX ∩W0,X , F ) = 0.
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The threefold version of this theorem appeared as [Lo5, Theorem 2.19].
To prove Theorem 3.16 for arbitrary base dimension, we need Lemma 3.15, a
result on the codimensions of the sheaves E xtp(E,A), for any reflexive sheaf
E and any coherent sheaf A on X; this lemma is proved using a spectral
sequence. Theorem 3.16 allows us to identify the type of 2-term complexes
E that are mapped to torsion-free sheaves (in particular, we need H−1(E)
to be torsion-free and reflexive).

Back in the case of elliptic threefolds in [Lo5], we considered complexes
that were both σ-semistable and σ̃-semistable, where σ was a polynomial
stability of type ‘V2’, and σ̃, being the dual stability of σ, was a polynomial
stability of type ‘V3’. In Section 4, we consider polynomial stability con-
ditions on higher dimensional varieties, particularly two classes which we
call type W1 and type W2. Stabilities of type W1 generalise the stabilities
of type V2 on threefolds from [Lo3], and include PT-stability (studied in
[Lo1, Lo2]); on the other hand, stabilities of type W2 generalise those of
type V3 on threefolds from [Lo3]. We push most of the results in [Lo1, Lo2]
to higher dimensions, including universal closedness for the moduli stack of
PT-semistable objects, which is stated here as Theorem 4.10. Theorem 4.10
implies openness of semistability of type W1, which is stated as Corol-
lary 4.11. Having openness allows us to speak of moduli stacks of polynomial
semistable complexes.

In Section 4.2, we study the condition of H−1(E) being torsion-free and
reflexive when E is a 2-term complex with cohomology sitting at degrees
−1 and 0. We show that, when σ is a polynomial stability of type W1, this
condition is an open property for flat families of σ-semistable complexes.
As a consequence, we construct an open immersion from a moduli stack of
polynomial stable complexes on X to a moduli stack of stable sheaves on
Y in Theorem 4.26. And, as a byproduct of the machinery we develop in
Section 4.2, we show that objects in the category D described in [BMT,
Section 7.2] form moduli stacks, whether they are of types (a), (b) or (c).
In Theorem 4.23, we show that a particular class of objects in D of type (c)
occur as the stable objects with respect to a polynomial stability.

In Theorem 5.1 of Section 5, we construct an equivalence of categories
between a category CX of 2-term complexes on X and a category C′Y of
torsion-free sheaves on Y . This theorem describes the objects in D(X) and
D(Y ) that we need to add in order to turn the aforementioned open immer-
sion of stacks into an isomorphism of stacks.

Finally, in Section 6, we consider torsion-free sheaves on X that are
taken to codimension-1 sheaves on Y under Fourier-Mukai transformations.
Again, we generalise the threefold result [Lo5, Corollary 5.9], so that we



1050 W.-y. Chuang and J. Lo

have an equivalence between the category of line bundles of fibre degree 0
on X, and the category of line bundles supported on sections of π̂. These
results resemble some of the results obtained using the spectral approach
due to Friedman-Morgan-Witten, but do not make use of Fitting ideals.

We note that, although the conditions we impose on the Fourier-Mukai
transforms we consider (properties (i) through (vi) in Section 2.2) may seem
artificial, they are all satisfied by the elliptic threefolds considered in [BriM,
Section 9], and also by the Weierstrass fibrations of any dimension considered
in [BBR].

Acknowledgements. We would like to thank Jungkai Chen for raising a
question leading to this paper. We also thank the referee for the thorough re-
view and useful comments and suggestions. W.Y.C. was supported by NSC
grant 101-2628-M-002-003-MY4 and a fellowship from the Kenda Founda-
tion. J.L. Would like to thank the Taida Institute for Mathematical Sciences
and the National Center for Theoretical Sciences (North) for the hospitality
throughout his visits, during which part of this work was completed.

2. Preliminaries and notation

2.1. Notation

For a smooth projective variety X, we will always write D(X) to denote its
bounded derived category. Given a t-structure on D(X) with A as the heart,
we will write D≤0A (X) (resp. D≥0A (X)) to denote the subcategory of D(X)
consisting of complexes E such that Hi

A(E) = 0 for all i > 0 (resp. for all
i < 0), where Hi

A(−) denotes the i-th cohomology functor with respect to
the aforementioned t-structure. The cohomology functor Hi

Coh(X)(−) with

respect to the standard t-structure will be simply denoted by H i(−).

2.2. The setup

Let us fix the following setting for the rest of the article. We will assume
that π : X → S is a morphism satisfying:

(i) π is projective and flat;

(ii) X,S are smooth projective varieties;

We will also assume that there exists another fibration π̂ : Y → S (which
might be isomorphic to π) such that:
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(iii) the fibration π̂ also satisfies properties (i) and (ii);

(iv) Y is a fine, relative moduli of stable sheaves on the fibres of X, while
X itself is also a fine, relative moduli of stable sheaves on the fibres of
Y , and dimX = dimY ;

(v) the universal families from (iv) give us a pair of Fourier-Mukai trans-
forms Ψ : D(X) → D(Y ) and Φ : D(Y ) → D(X) such that ΦΨ =
idD(X)[−1] and ΨΦ = idD(Y )[−1].

As in [Lo5], we introduce the following notations: we write f to denote
the Chern character of the structure sheaf of a smooth fibre of π, i.e. the
‘fibre class’ of π. Then for any object E ∈ D(X), we define the fibre degree
of E to be

d(E) = c1(E) · f,
which is the degree of the restriction of E to the generic fibre of π. For the
rest of this article, for any coherent sheaf E, we write r(E) to denote its
rank, and when r(E) > 0, we define

μ(E) = d(E)/r(E),

which is the slope of the restriction of E to the generic fibre.
We further assume:

(vi) For any E ∈ D(Y ), we have

(2.1)

(
r(ΦE)
d(ΦE)

)
=

(
c a
d b

)(
r(E)
d(E)

)

for some element (
c a
d b

)
∈ SL2(Z)

where a > 0. Therefore, Y is a relative moduli of stable sheaves of rank
a and degree b on fibres of π.

As a result of assumption (vi), we also have, for any E ∈ D(X),

(2.2)

(
r(ΨE)
d(ΨE)

)
=

(
−b a
d −c

)(
r(E)
d(E)

)
.

And hence (taking into account assumption (iv)) X is a relative moduli of
stable sheaves of rank a and degree −c on fibres of π̂.
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Remark 2.1. The elliptic surfaces studied by Bridgeland [Bri1] and the el-
liptic threefolds studied by Bridgeland-Maciocia [BriM, Section 8] all possess
properties (i) through (vi) above.

For any complex E ∈ D(X), we write Ψi(E) to denote H i(Ψ(E)), i.e.
the cohomology of Ψ(E) with respect to the standard t-structure on D(Y );
if E is a sheaf sitting at degree 0, we have that Ψi(E) = 0 unless 0 ≤ i ≤ 1,

i.e. Ψ(E) ∈ D
[0,1]
Coh(Y )(Y ). The same statements hold for Φ and Y . A complex

E is called Ψ-WITi if Ψ(E) = Ê[−i] for some coherent sheaf Ê on Y .
We also define the following full subcategories of Coh(X), all of which

are extension-closed:

TX = {torsion sheaves on X}
FX = {torsion-free sheaves on X}

W0,X = {Ψ-WIT0 sheaves on X}
W1,X = {Ψ-WIT1 sheaves on X}
BX = {E ∈ Coh(X) : r(E) = d(E) = 0}

Coh(X)r>0 = {E ∈ Coh(X) : r(E) > 0}.

And for any s ∈ R, we define

Coh(X)μ>s = {E ∈ Coh(X)r>0 : μ(E) > s}
Coh(X)μ=s = {E ∈ Coh(X)r>0 : μ(E) = s}
Coh(X)μ<s = {E ∈ Coh(X)r>0 : μ(E) < s}.

We define the corresponding full subcategories of Coh(Y ) similarly.
For any nonnegative integer i ≤ dim (X), we write Coh≤i(X) to de-

note the subcategory of Coh(X) consisting of coherent sheaves supported
in dimension i or lower, and write Coh≥i(X) to denote the subcategory
of Coh(X) consisting of coherent sheaves without subsheaves supported in
dimension at most i− 1. For integers 0 ≤ d′ < d ≤ dim (X), the category
Coh≤d′(X) is a Serre subcategory of Coh≤d(X), and so we can form the
quotient category Cohd,d′(X) := Coh≤d(X)/Coh≤d′(X). For objects F in
Cohd,d′(X), we write pd,d′(F ) to denote the reduced Hilbert polynomial of
F , modulo polynomials over Q of degree at most d′ − 1.
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3. Complexes and Fourier-Mukai transforms

In this section, we collect many technical results on Fourier-Mukai trans-
forms between D(X) and D(Y ), which will be used to relate moduli stacks
on X and Y .

All the lemmas and theorems in this section except Lemma 3.15 have
appeared in [Lo5, Section 2.4] before, where they were proved for the case
of X being a threefold (i.e. when the base S is of dimension two). For
Lemma 3.1 through Theorem 3.14, all their proofs in the threefold case in
[Lo5] generalise in a straightforward manner to higher dimensions, and so we
refer the readers to [Lo5] for their proofs. Lemma 3.15 is the new technical
result we need for higher dimensions; it is an integral part of the proof of
Theorem 3.16.

Lemma 3.1. [Lo5, Lemma 2.2]. If we define

B◦X := {E ∈ Coh(X) : Hom(BX , E) = 0},

then (BX ,B◦X) is a torsion pair in Coh(X).

Lemma 3.2. [Bri1, Lemma 6.2] Let E be a sheaf of positive rank on X. If
E is Ψ-WIT0, then μ(E) ≥ b/a. If E is Ψ-WIT1, then μ(E) ≤ b/a.

Lemma 3.3. [Lo5, Lemma 2.6] If T is a Ψ-WIT1 torsion sheaf on X, then
T ∈ BX .

Remark 3.4. [Lo5, Remark 2.7] Given any E ∈ Db(X), we have r(ΨE) =
−b · r(E) + a · d(E). So when E has positive rank, μ(E) = b/a is equivalent
to r(ΨE) = 0. In other words, if E is a Ψ-WIT1 sheaf on X of positive rank
with μ(E) = b/a, then Ê is a torsion sheaf on Y .

Lemma 3.5. [Lo5, Lemma 2.8] Suppose E is a Ψ-WIT0 sheaf on X and
r(E) > 0. Then μ(E) > b/a.

Lemma 3.5 is slightly stronger than the second part of Lemma 3.2.

Lemma 3.6. [Lo5, Lemma 2.9] Suppose T ∈ BX . Then Ψ0(T ),Ψ1(T ) are
both torsion sheaves and lie in BY .

Lemma 3.7. [Lo5, Lemma 2.11] Let E be a nonzero Ψ-WIT0 sheaf of any
rank on X such that E ∈ B◦X . Then Ê is a nonzero torsion-free sheaf.



1054 W.-y. Chuang and J. Lo

Lemma 3.8. [Lo5, Lemma 2.10] We have an equivalence of categories

FX ∩ {E∈Coh(X) : Ext1(BX∩W0,X , E)=0} ∩W1,X
Ψ[1]→ B◦Y ∩W0,Y .(3.1)

In order to prove Lemma 3.8, we need the following Lemma 3.9 and
Lemma 3.10:

Lemma 3.9. [Lo5, Lemma 2.11] Let F be a Φ-WIT0 sheaf on Y . Then F̂
is a torsion-free sheaf on X if and only if Hom(BY ∩W0,Y , F ) = 0.

Lemma 3.10. [Lo5, Lemma 2.12] Let F be a Φ-WIT0 sheaf on Y . Then

Hom(BY ∩W1,Y , F ) ∼= Ext1(BX ∩W0,X , F̂ ).

Lemma 3.11. [Bri1, Lemma 6.4] Let E be a torsion-free sheaf on X such
that the restriction of E to the general fibre of π is stable. Suppose μ(E) <
b/a. Then E is Ψ-WIT1.

Lemma 3.12. [Lo5, Lemma 2.14] The functor Ψ[1] restricts to an equiva-
lence of categories

W1,X ∩ Coh(X)r>0 ∩ Coh(X)μ<b/a
Ψ[1]→ W0,Y(3.2)

∩ Coh(Y )r>0 ∩ Coh(Y )μ>−c/a.

Lemma 3.13. [Lo5, Lemma 2.15] The functor Ψ[1] restricts to an equiva-
lence of categories

W1,X ∩ Coh(X)r>0 ∩ Coh(X)μ=b/a
Ψ[1]→ W0,Y ∩ (TY \ BY ).(3.3)

Theorem 3.14. [Lo5, Theorem 2.17] Suppose F is a coherent sheaf on X
such that F is torsion-free, Ψ-WIT1 and F̂ restricts to a torsion-free sheaf
on the generic fibre of π̂. Then F̂ is a torsion-free sheaf if and only if

(3.4) Ext1(BX ∩W0,X , F ) = 0.

Lemma 3.15. Let X be a smooth projective variety, E a reflexive sheaf on
X, and A any coherent sheaf on X. Then codimE xtq(E,A) ≥ q + 2 for all
q > 0.

Proof. Consider the two derived functors F,G : D(X) → D(X) where
F (−) := RH om(−, ωX) and G(−) := RH om(−, A). Then for any complex



Stability and Fourier-Mukai transforms 1055

C, we have (G ◦ F )(C) ∼= C
L
⊗ (A⊗ ω∗X). By [Huy, Proposition 2.66] (also

see [HL, Lemma 1.1.8]), for any coherent sheaf C on X, we have a spectral
sequence

(3.5) Ep,q
2 := E xtp(E xt−q(C, ωX), A) ⇒ Hp−q(C

L
⊗A′) ,

where A′ := A⊗ ω∗X .
Since E is reflexive, we have E = E xt0(C, ωX) for some coherent sheaf

C by [HL, Proposition 1.1.10]. As in the argument in [HL, p.6], the term
Ep,0

2 fits in the short exact sequences

0 → Ep,0
3 → Ep,0

2 → Ep+2,−1
2

(since Ep,q
2 = 0 for q > 0). In fact, we have a short exact sequence

0 → Ep,0
r+1 → Ep,0

r → Ep+r,−(r−1)
r for all r ≥ 2.

Since we also have Ep,0∞ = Hp(C
L
⊗A′) = 0 for p > 0, we have

dimEp,0
2 ≤ max {dimEp+2,−1

2 , dimEp,0
3 }

≤ max {dimEp+2,−1
2 , dimEp+3,−2

3 , dimEp,0
4 }

...

≤ max
r≥2

{dimEp+r,−(r−1)
r }.

So it suffices for us to show that E
p+r,−(r−1)
r , for p ≥ 0 and r ≥ 2, has codi-

mension at least p+ r. It further suffices for us to show that for any coherent
sheaves E,F on X, we have codimE xtp(E,F ) ≥ p for any p > 0.

Write F0 := F . For each integer i ≥ 0, we take any surjection OX(mi)
⊕ri

� Fi for some mi � 0 and ri, and let Fi+1 be the kernel. Hence we have a
short exact sequence

(3.6) 0 → Fi+1 → OX(mi)
⊕ri → Fi → 0

for any i ≥ 0, where Fi+1 is necessarily torsion-free.
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Applying the functor E xtp(E,−) to (3.6) when i = 0, we obtain an exact
sequence

E xtp(E,OX(m0))
⊕r0 → E xtp(E,F0) → E xtp+1(E,F1).

By [HL, Proposition 1.1.6(i)], we have codimE xtp(E,OX(m0)) ≥ p. Hence
it suffices to show codimE xtp+1(E,F1) ≥ p.

Applying the functor E xtp+1(E,−) to (3.6) when i = 1, we obtain an
exact sequence

E xtp+1(E,OX(m1))
⊕r1 → E xtp+1(E,F1) → E xtp+2(E,F2),

where codimE xtp+1(E,OX(m1)) ≥ p+ 1 by [HL, Proposition 1.1.6(i)] again.
Hence it suffices to show codimE xtp+2(E,F2) ≥ p, and so on.

SinceX is smooth of dimension n, the sheaf E has homological dimension
at most n, and so E xtp+r(E,Fr) = 0 whenever p+ r > n. Hence we are done.

�

Theorem 3.16. Suppose π : X → S is an elliptic fibration whose fibers are
all Cohen-Macaulay curves with trivial dualising sheaves. If F is a reflexive
Ψ-WIT1 sheaf on X, then F satisfies Ext1(BX ∩W0,X , F ) = 0.

Proof. We would like to show Ext1(A,F ) = 0 for any A ∈ BX ∩W0,X . Using
Serre duality, we have Ext1(A,F ) = Extn−1(F,A⊗ ωX). Consider the local-
to-global spectral sequence for Ext,

(3.7) Ep,q
2 = Hp(X,E xtq(F,A⊗ ωX)) ⇒ Extp+q(F,A⊗ ωX).

Since F is reflexive, by Lemma 3.15 we have codimE xtq(E,A⊗ ωX) ≥
q + 2 for all q > 0. Therefore the only nonvanishing term in Ep,q

2 for p+ q =
n− 1 is En−1,0

2 = Hn−1(X,E xt0(F,A⊗ ωX)) and we have a surjection

(3.8) Hn−1(X,E xt0(F,A⊗ ωX)) � Extn−1(F,A⊗ ωX).

We can further assume the support of π∗A is a reduced scheme, following
[Lo5, Theorem 2.19, Step 2]. Let C := supp(π∗A) and the support of A is
contained in a subscheme D which fits into the Cartesian diagram

(3.9) D

π
��

� � ι �� X

π
��

C � � �� S
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First note that we have

Hn−1(X,H om(F,A⊗ ωX)) ∼= Hn−1(D, Ā)

where Ā is a coherent sheaf on D satisfying ι∗Ā = H om(F,A⊗ ωX). We
apply the Leray spectral sequence to π and obtain

Ep,q
2 = Hp(C,Rqπ∗(Ā)) ⇒ Hp+q(D, Ā).

Since all the fibres are 1-dimensional, the only nonvanishing terms in Ep,q
2 for

p+ q = n− 1 are such that (p, q) = (n− 1, 0), (n− 2, 1). Since A ∈ BX , the
dimension of D is at most n− 1. If the dimension of D is strictly less than
n− 1, then the dimension of C is at most n− 3. In this case there is nothing
to prove. Hence it suffices to assume that dim(D) = n− 1 and dim(C) =
n− 2. And we have Hn−2(C,R1π∗(Ā)) ∼= Hn−1(D, Ā). Now it suffices to
show that the dimension of the support of R1π∗(Ā) is at most n− 3. It is
equivalent to showing that R1π∗(Ā) has codimension at least 1 in C, i.e.

(3.10) for a general closed point s ∈ C,we have R1π∗(Ā)⊗ k(s) = 0.

By generic flatness [SPA, 052B], Ā is flat over an open dense subscheme
of C. Now, let s ∈ C be a general closed point, g be the fibre π−1(s), and
Ā|s be the (underived) restriction of Ā to the fibre g over s. By cohomology
and base change [Har1, Theorem III 12.11], we have

R1π∗(Ā)⊗ k(s) ∼= H1(g, Ā|s).

So the theorem would be proved if we can show that H1(g, Ā|s) = 0.
By our assumptions, the fibre g :=π−1(s) is a projective Cohen-Macaulay

curve with trivial dualising sheaf. Using Serre duality, we have

(3.11) H1(g, Ā|s) ∼= Ext1g(Og, Ā|s) ∼= Homg(Ā|s,Og).

Denote by Ψs the induced Fourier-Mukai transform on the fibres
D(Xs) → D(Ys). Following [Lo5, Theorem 2.19, Step 4], where [BBR, Propo-
sition A.85, (6.3), Proposition 6.1] are applied, we can similarly show that
A|s is Ψs-WIT0 for a general closed point s ∈ C.

Since F is reflexive, it is locally free outside a (n− 3)-dimensional closed
subset Z of X. So its locally free locus is still open and nonempty in C.
Following [Lo5, Theorem 2.19, Step 5], we can show F |s is Ψs-WIT1 for a
general closed point s ∈ C.
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Now we have, for a general s ∈ C,

Homg(Ā|s,Og) = Homg(H om(F,A⊗ ωX)|s,Og)
∼= Homg(A|s, F |s),

which must vanish since A|s is Ψs-WIT0 and F |s is Ψs-WIT1. This completes
the proof of the theorem. �

Theorem 3.16 combined with Lemmas 3.11, 3.12, and Theorem 3.14 gives
the following:

Corollary 3.17. Suppose π : X → S is an elliptic fibration whose fibres
are all Cohen-Macaulay with trivial dualising sheaves. Then for any reflexive
sheaf F with μ(F ) < b/a such that its restriction to the generic fibre of π is
stable, we have F is Ψ-WIT1 and F̂ is torsion-free and stable with respect
to some polarisation on Y .

Proof. Take any reflexive sheaf F as described. Then F is Ψ-WIT1 due to
Lemma 3.11 and we have r(F̂ ) �= 0 by Lemma 3.12. Then F̂ is torsion-free by
Theorem 3.14 and Theorem 3.16. By [BriM, Lemma 9.5] and [BriM, Lemma
2.1], F̂ is stable on Y with respect to some polarisation. �

4. Moduli of stable complexes

In this section, we will construct an open immersion from a moduli of 2-
term complexes on X to a moduli space of Gieseker stable sheaves on Y .
Throughout this section, suppose n ≥ 3 and consider the following heart of
a t-structure

Ap = 〈Coh≤n−2(X),Coh≥n−1(X)[1]〉.
The heart is obtained from Coh(X) by tilting once.

In the following, we make use of polynomial stability conditions on the
derived category Db(X) in the sense of Bayer [Bay]. Included in Appendix A
are some basics on polynomial stability conditions.

We consider two different types of polynomial stability conditions, W1
and W2, on X. For either of these types, we require that no two of the stabil-
ity vectors ρi are collinear. We impose the following additional assumptions:

• For W1: we have ρ0, ρ1, . . . , ρn−2,−ρn−1,−ρn ∈ H, as well as φ(ρ0) >
φ(−ρn), φ(−ρn−1) > φ(−ρn), and φ(−ρn) > φ(ρi) for 1 ≤ i ≤ n− 2.

• For W2: we have ρ0, ρ1, . . . , ρn−2,−ρn−1,−ρn ∈ H, as well as
φ(−ρn−1) > φ(−ρn), and φ(ρi) > φ(−ρn) for 0 ≤ i ≤ n− 2.
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Figures 1 and 2 below illustrate possible configurations of the ρi for sta-
bilities of types W1 and W2. Note, for instance, that under our definition it
is possible for a polynomial stabiliity of type W1 to have φ(ρ0) > φ(−ρn−1).

������−ρn−1
�

�
�

��
ρ0

�
�
�
�
�
��

−ρn

����	ρn−2







�ρ1

Figure 1: A possible configuration of the ρi for W1.

������−ρn−1
�

�
�

���
ρ0









�

−ρn

�
�
�
��


�
�
�
�
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Figure 2: A possible configuration of ρi for W2.

Using the terminology from [Lo3], when X is of dimension three, sta-
bilities of type W1 coincide with stabilities of type V2 (which includes PT
stability, a stability that was studied in [Lo1, Lo2]), while stabilities of type
W2 coincide with stabilities of type V3.

The following Lemma 4.1 is analogous to [Lo2, Proposition 2.24], with
essentially the same proof.

Lemma 4.1. Let σ be a polynomial stability condition of type W1 and
E ∈ Ap a 2-term complex with nonzero rank. Then conditions (1) through
(3) below hold if E is σ-semistable:

(1) H−1(E) is a μ-semistable torsion-free sheaf;

(2) H0(E) is 0-dimensional;
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(3) HomD(X)(Ox, E) = 0 for any x ∈ X, where Ox is the skyscraper sheaf
at the closed point x.

When ch0(E) and ch1(E) are relatively prime, E is σ-semistable if and only
if (1) through (3) hold.

Remark 4.2. As in the case of PT-semistability on threefolds, if E ∈
Ap is σ-semistable where σ is of type W1, then H−1(E) is semistable in
Cohn,n−2(X) (see [Lo2, Section 3.1]).

With the same proof as in [Lo3, Lemma 3.2], we have:

Lemma 4.3. Let σ̃ be a polynomial stability condition of type W2 and
E ∈ Ap be a σ̃-semistable 2-term complex with nonzero rank. Then H−1(E)
is a μ-semistable reflexive sheaf.

Remark 4.4. We do not make any significant use of polynomial stabilities
of type W2 in this article. Suppose σ is a polynomial stability of type W1.
In the case of threefolds as in [Lo5], in order for Ψ to take a σ-semistable
complex E ∈ D(X) to a stable sheaf, we assumed additionally that E is
σ̃-semistable with σ̃ of type W2, and that E satisfies property (P) (see
Section 4.3 below). In this article, however, we find that the additional re-
quirement of E being σ̃-semistable can be replaced by the more general
condition of H−1(E) being reflexive — see Section 4.4.

4.1. Openness of stabilities of types W1 and W2

When σ is a polynomial stability, we want to speak of moduli stacks of σ-
semistable objects. In order for these moduli stacks to exist, we need to show
that being σ-semistable is an open property for flat families of complexes.
We do this for polynomial stabilities of type W1 below.

To begin with, by Lemma 4.1 and Remark 4.2, we have the following
analogue of [Lo2, Proposition 3.1], with essentially the same proof:

Proposition 4.5. For flat families of objects in Ap of nonzero rank, prop-
erties (1), (2) and (3) in Lemma 4.1 together form an open condition.

The proof of [Lo2, Lemma 3.2] also carries over to the case of stabilities
of type W1, giving us:
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Lemma 4.6. Fix an ch0 > 0. Let σ be a polynomial stability on D(X) of
type W1. For any ch1, ch2, . . . , chn, define the set of injections in Ap

S := {E0 ↪→ E :E0 is a maximal destabilising subobject of E in Ap

w.r.t. σ, where E has properties (1), (2) and (3)

and ch(E) = ch}.

Then the set

Ssub := {E0 : E0 ↪→ E is in S}.

is bounded.

To be precise, we list here how the results in [Lo1] generalise to stabilities
of type W1 in higher dimensions:

Lemma 4.7. [Lo1, Lemma 3.2] Let E ∈ Ap be an object of rank zero, and
σ be a polynomial stability of type W1. Suppose E is of dimension n− 1 and
E is σ-semistable; then:

(a) if φ(ρ0) > φ(−ρn−1), then H0(E) must be 0-dimensional;

(b) if φ(ρ0) < φ(−ρn−1), then E = H−1(E)[1].

If E is of dimension at most n− 2, then E is σ-semistable iff E = H0(E)
is a Gieseker semistable sheaf.

Note that, in case (a) above, we do not necessarily know that H−1(E)
is a Gieseker semistable sheaf. This is different from the case of PT stability
on threefolds.

Lemma 4.8. [Lo1, Proposition 3.4] Let σ be a polynomial stability of type
W1, and ch a fixed Chern character where ch0 �= 0. Then the set of σ-
semistable obejcts E ∈ Ap of Chern character ch is bounded.

For the next proposition, we write k for the ground field of the variety
X, R for an arbitrary discrete valuation ring over k, with uniformiser π and
field of fractions K. We will also write XR := X ⊗k R, XK := XR ⊗R K and
Xm := X ⊗k R/πm for any positive integer m. We denote by ι : Xk ↪→ XR

and j : XK ↪→ XR the closed and open immersions of the central and generic
fibres of XR → SpecR, respectively.
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Proposition 4.9. [Lo1, Proposition 4.2] Let X be a smooth projective va-
riety of dimension n over k. Given any object

EK ∈ 〈Coh≤d(XK),Coh≥n(XK)[1]〉

where 0 ≤ d < n, there exists an object Ẽ ∈ Db(XR) such that:

• the generic fibre j∗(Ẽ) ∼= EK in Db(XK);

• the central fibre Lι∗(Ẽ) ∈ 〈Coh≤d(Xk),Coh≥n(Xk)[1]〉.

The other technical results in [Lo1, Lo2] that generalise to our case of
stabilities of type W1, which will be used to prove that they give open
properties for complexes, are listed here:

(i) All the results in [Lo1, Section 5] and [Lo2, Proposition 2.1] hold for
X of arbitrary dimension, and for hearts of the form

Ap
m := 〈Coh≤d(Xm),Coh≥d+1(Xm)[1]〉;

these results have nothing to do with stability. Also, [Lo2, Lemma 2.2]
and [Lo2, Corollary 2.3] both hold for stabilities of type W1 on X of
any dimension.

(ii) [Lo2, Proposition 2.4] holds for X of any dimension n, when Coh3,1 is
replaced with Cohn,1 in its statement. The proof of the general case
relies on Lemma 4.1.

(iii) [Lo2, Proposition 2.5] holds for X of any dimension n, when the cate-
gory

〈Coh≤0(XK),Coh≥3(XK)[1]〉

is replaced with the category

〈Coh≤0(XK),Coh≥n(XK)[1]〉,

and Coh3,1 is replaced with Cohn,1 in its statement.

(iv) [Lo2, Proposition 2.6] holds forX of any dimension n and for stabilities
of type W1, when Coh3,1 is replaced with Cohn,1 in its statement; in
the proof, the use of the reduced Hilbert polynomial p3,1 is replaced
with pn,1.
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(v) All the results in [Lo2, Section 2.2] hold for any heart of the form

〈Coh≤d(X),Coh≥d+1(X)[1]〉 ⊂ D(X),

where X is of arbitrary dimension n and 1 ≤ d ≤ n. (These results
only depend on those in [Lo1, Section 5]; see (i) above.)

As a consequence of (v) above, we have the following valuative criterion
for universal closedness for stabilities of type W1, which generalises [Lo2,
Theorem 2.23] to higher dimensions:

Theorem 4.10 (Valuative criterion for universal closedness). Fix
any polynomial stability σ of type W1. Then, given any σ-semistable ob-
ject EK ∈ Ap(XK) such that ch0(EK) �= 0, there exists E ∈ Db(XR), a flat
family of objects in Ap over SpecR, such that j∗E ∼= EK and Lι∗E is σ-
semistable.

With the same proof as in [Lo2], we immediately obtain the following
result, generalising [Lo2, Proposition 3.3]:

Corollary 4.11 (Openness of stabilities of type W1). Let S be a
Noetherian scheme over k, and E ∈ Db(X ×Spec k S) be a flat family of ob-
jects in Ap over S with ch0 �= 0. Let σ be a polynomial stability of type W1
on Db(X), and suppose s0 ∈ S is a point such that Es0 is σ-semistable. Then
there is an open set U ⊆ S containing s0 such that for all points s ∈ U , the
fibre Es is σ-semistable.

4.2. Openness of H−1 being reflexive

Given a polynomial stability σ of type W1, since σ-semistability is an open
property for flat family of complexes, we have a moduli stack Mσ of σ-
semistable complexes. In order to send the objects parametrised by Mσ

to semistable sheaves via Fourier-Mukai transform using the results from
Section 3, we need to restrict to an open substack of σ-semistable objects E
where H−1(E) is a reflexive sheaf. To this end, we will show the following:

Theorem 4.12. For flat families of 2-term complexes E ∈ D(X) satisfy-
ing:

• H−1(E) is torsion-free,

• H0(E) ∈ Coh≤0(X),
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• H i(E) = 0 for all i �= −1, 0, and

• Hom(Coh≤0(X), E) = 0,

the property that H−1(E) is a reflexive sheaf is an open property.

The proof of Theorem 4.12 will consist of two steps:

Step 1. We show, that for complexes E satisfying the hypotheses of Theo-
rem 4.12, the property of H−1(E) being reflexive is equivalent to the
following dimension requirements on the cohomology sheaves of the
derived dual E∨:

dimHn−1(E∨) ≤ 0,

dimHn−2(E∨) ≤ 1,

...

dimH2(E∨) ≤ n− 3.(4.1)

Step 2. We show that the requirements (4.1) form an open condition for flat
families of complexes satisfying the hypotheses of Theorem 4.12.

We begin with the easy observation:

Lemma 4.13. For a 2-term complex E such that H−1(E) has homologi-
cal dimension at most n− 1 and H i(E) = 0 for all i �= −1, 0, we have the
equivalence

HomD(X)(Coh≤0(X), E) = 0 ⇔ Hn(E∨) = 0.

Proof. Since H−1(E) has homological dimension at most n− 1, we have

E∨ ∈ D
[0,n]
Coh(X)(X). Note that Hom(Coh≤0(X), E) = 0 is equivalent to

Hom(kx, E) = 0 for all x ∈ X, where kx denotes the skyscraper sheaf of
length one supported at the closed point x. Now, for any x ∈ X we have
Hom(kx, E) ∼= Hom(E∨, kx[−n]), and so the lemma follows. �

Corollary 4.14. If E ∈ Ap is a σ-semistable object where σ is of type W1,
then Hn(E∨) = 0, i.e. the right-most cohomology of E∨ is at degree n− 1
or lower.

Proof. This follows from Lemma 4.13, and the fact that φ(ρ0) > φ(−ρn) for
stabilities of type W1. �
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Now, we use the characterisation of reflexive sheaves in [HL, Section 1.1]
to finish Step 1:

Lemma 4.15. For a 2-term complex E ∈ D(X) such that H−1(E) is
torsion-free, H i(E) = 0 for i �= −1, 0 and such that Hn(E∨) = 0, we have
that H−1(E) is reflexive if and only if the conditions (4.1) are satisfied.

Proof. Since E has cohomology only at degrees −1 and 0, it fits in an exact
triangle in D(X)

H−1(E)[1] → E → H0(E) → H−1(E)[2].

Dualising, we obtain the exact triangle

(4.2) (H0(E))∨ → E∨ → (H−1(E)[1])∨ → (H0(E))∨[1],

the long exact sequence of cohomology of which gives us the isomorphisms

H i(E∨) ∼= H i((H−1(E)[1])∨) ∼= E xti−1(H−1(E),OX)(4.3)

for 1 ≤ i ≤ n− 2,

as well as the exact sequence

(4.4) 0 → Hn−1(E∨) → Hn−1((H−1(E)[1])∨) → Hn(H0(E)∨) → 0.

Note that the middle term Hn−1((H−1(E)[1])∨) in (4.4) is isomorphic to
the sheaf E xtn−2(H−1(E),OX).

Now, from [HL, Proposition 1.1.10], we know that H−1(E), being a
torsion-free sheaf, is reflexive if and only if dimE xtq(H−1(E),OX) ≤ n−
q − 2 for all q > 0, i.e. if and only if dimE xtq(H−1(E),OX) ≤ n− q − 2 for
1 ≤ q ≤ n− 2; that E xtn−1(H−1(E),OX) = 0 follows from Hn(E∨) = 0 and
the long exact sequence of cohomology of (4.2), while E xtn(H−1(E),OX) =
0 follows from H−1(E) being torsion-free. From the isomorphisms (4.3),
we have that dimE xtq(H−1(E),OX) = dimHq+1(E∨) for 1 ≤ q ≤ n− 3;
that dimE xtn−2(H−1(E),OX) = dimHn−1(E∨) follows from the exact se-
quence (4.4) and the observation that Hn(H0(E)∨) is a 0-dimensional sheaf.
The lemma then follows. �
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Consider the following conditions for complexes E ∈ D≤0Coh(X)(X):

dimH0(E) ≤ 0,

dimH−1(E) ≤ 1,

...

dimH−n+3(E) ≤ n− 3.(4.5)

These are the same conditions as (4.1), except that E∨ has been replaced by
E, and the indices have been shifted. The following lemma completes Step
2 above:

Lemma 4.16. The conditions (4.5) form an open property for flat families
of complexes in D≤0Coh(X)(X).

Proof. Let S be a noetherian scheme, and suppose E ∈ D(X × S) is an S-
flat family of complexes in D≤0Coh(X)(X). By using a flattening stratification
on the cohomology sheaves of E and semicontinuity, we see that the locus of
S over which the fibres of E satisfy (4.5) is a constructible set. It remains to
show that this locus is stable under generisation. To this end, let us suppose
that S = SpecR where R is a discrete valuation ring, and that Lι∗E satisfies
the conditions (4.5). We need to show that j∗E also satisfies (4.5). Suppose
E is represented by the complex

E• = [· · · → Ei di

→ · · · → E−1 d−1

→ E0 → 0 → · · · ]

where Ei = 0 for i > 0. Consider the spectral sequence

(4.6) Ep,q
2 := Lpι∗(Hq(E)) ⇒ Lp+qι∗(E).

Since L0ι∗H0(E) ∈ Coh≤0(Xk) by assumption, by semicontinuity we have
that j∗H0(E) ∼= H0(j∗E) ∈ Coh≤0(XK). Also, since

(4.7) supp(Lι∗F ) = supp(ι∗F ) for any F ∈ Coh(XR),

it follows that Liι∗H0(E) ∈ Coh≤0(Xk) for all i.
We now proceed by induction to show that Lpι∗Hq(E) ∈ Coh≤−q(Xk)

for all p ≤ 0 and −n+ 3 ≤ q ≤ 0. The case q = 0 is already checked
above. Suppose d ≤ 0 is an integer such that, for all d ≤ m ≤ 0, we have
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Lpι∗Hm(E) ∈ Coh≤−m(Xk) for all p. We want to show that

(4.8) Lpι∗Hd−1(E) ∈ Coh≤−d+1(Xk) for all p ≤ 0.

Now, we have

dimL0ι∗Hd−1(E) = max {dim (im (d−2,d2 )), dimE0,d−1
3 },

dimE0,d−1
3 = max {dim (im (d−3,d+1

3 )), dimE0,d−1
4 },

...

On the other hand, we have:

• dim (im (d−s,d−2+s
s )) ≤ −(d− 2 + s) for all s ≥ 2 from our induction

hypothesis,

• E0,d−1
t = E0,d−1∞ for t ≥ −(d− 1) + 2, and

• E0,d−1∞ ∈ Coh≤−d+1(Xk) by assumption.

Putting all these together, we get that dimL0ι∗Hd−1(E) ≤ −d+ 1. Apply-
ing (4.7) once more, we obtain (4.8).

In particular, we have shown that L0ι∗Hq(E) ∈ Coh≤−q(Xk) for all
−n+ 3 ≤ q ≤ 0. By semicontinuity, we have Hq(j∗E) ∼= j∗Hq(E) ∈
Coh≤−q(XK) for all −n+ 3 ≤ q ≤ 0, thus proving the lemma. �

Proof of Theorem 4.12. The theorem now follows from Lemmas 4.13, 4.15
and 4.16. �

Lemma 4.17 below is likely well-known, but we note that the proof of
Lemma 4.16 can be easily adapted to show it. Following the notation in [HL,
Section 1.1], given a coherent sheaf E of dimension d on a smooth projective
variety X of dimension n, if we write c := n− d as the codimension of E,
then we say E satisfies condition Sk,c (where k ≥ 0) if:

depth(Ex) ≥ min {k, dim (OX,x)− c} for all x ∈ supp(E).

This generalises Serre’s condition Sk.

Lemma 4.17. For a flat family of coherent sheaves on X, being Sk,c is an
open property.
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Remark 4.18. For a torsion-free sheaf on X, being S2 is equivalent to
being S2,0, which in turn is equivalent to being reflexive by [HL, Proposi-
tion 1.1.10]. Therefore, by Lemma 4.17, being reflexive is an open property
for a flat family of coherent sheaves on X.

Lemma 4.19. Suppose E ∈ D(X) is such that E∨ ∈ D
[0,n]
Coh(X)(X). Then we

have the vanishing

(4.9) Hom(Coh≤1(X), E) = 0

if and only if Hn(E∨) = 0 and Hn−1(E∨) ∈ Coh≤0(X). Therefore, the van-
ishing (4.9) is an open property for flat families of complexes E satisfying

E∨ ∈ D
[0,n]
Coh(X)(X).

In Theorem 4.23 below, we will show how Lemma 4.19 implies the ex-
istence of moduli stacks for objects in the category D described in [BMT,
Section 7.2].

Proof. Take any E ∈ D(X) such that E∨ ∈ D
[0,n]
Coh(X)(X). Suppose we have

Hom(Coh≤1(X), E) = 0. In particular, we have Hom(Coh≤0(X), E) = 0;
this, together with the fact that the right-most cohomology of E∨ is at de-
gree n, implies Hn(E∨) = 0. Next, suppose dimHn−1(E∨) ≥ 1. Then there
exists a nonzero morphism of sheaves α : Hn−1(E∨) → T where T is a pure
1-dimensional sheaf. Let θT : T → TDD be the natural map of sheaves as
in [HL, Lemma 1.1.8] (here, (−)D is the dual in the sense of [HL, Def-
inition 1.1.7]); since T is pure, we have that θT is an injection by [HL,
Proposition 1.1.10]. In particular θT is an isomorphism, since if T is a pure
d-dimensional sheaf, we have a short exact sequence 0 → T → TDD → Q →
0, where Q is at most (d− 2)-dimensional. Then the composition θTα is
nonzero.

By [HL, Proposition 1.1.10] again, we see that TD itself is 1-dimensional,
reflexive, S2,n−1, and pure. Then by [HL, Proposition 1.1.6(ii)], we have the
vanishing E xtn(TD,OX) = 0, and so

(TD)∨ ⊗ ωX
∼= E xtn−1(TD, ωX)[−n+ 1] ∼= TDD[−n+ 1].

Therefore, we have

0 �= θTα ∈ Hom(E∨, TDD[−n+ 1])

∼= Hom(E∨, (TD)∨ ⊗ ωX)

∼= Hom(TD ⊗ ω∗X , E)∗,
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contradicting our assumption that Hom(Coh≤1(X), E)=0. HenceHn−1(E∨)
must lie in Coh≤0(X).

For the converse, suppose E ∈ D(X) satisfies E∨ ∈ D
[0,n]
Coh(X)(X), and is

such that Hn(E∨) = 0 and Hn−1(E∨) ∈ Coh≤0(X). We want to show the
vanishing Hom(Coh≤1(X), E) = 0. By the same argument as in the proof
of Lemma 4.13, we know that Hn(E∨) = 0 implies Hom(Coh≤0(X), E) = 0.
So it remains to show that Hom(T,E) = 0 for any pure 1-dimensional sheaf
T on X. Suppose there is a nonzero morphism α : T → E for some pure
1-dimensional sheaf T . Since T is pure, it is S1,n−1 [HL, Section 1.1], and
E xtn(T,OX) = 0 by [HL, Proposition 1.1.6(ii)]; as a result, we have T∨ ∼=
TD[−n+ 1] where TD is again pure of dimension 1. Hence

0 �= α ∈ Hom(T,E) ∼= Hom(E∨, T∨) ∼= Hom(E∨, TD[−n+ 1])

which is impossible since Hn(E∨) = 0 and Hn−1(E∨) ∈ Coh≤0(X).
The last part of the lemma follows from semicontinuity for sheaves. �

Lemma 4.20. Let F be a torsion-free sheaf on X. Then

F is reflexive ⇔ Hom(Coh≤n−2(X), F [1]) = 0.

Proof. Suppose F is reflexive. Then we can find a short exact sequence in
Coh(X)

0 → F → E → G → 0

where E is locally free and G is torsion-free [Har2, Proposition 1.1]. Applying
HomX(T,−) to the short exact sequence for an arbitrary T ∈ Coh≤n−2(X),
we obtain the exact sequence

Hom(T,G) → Hom(T, F [1]) → Hom(T,E[1])

where Hom(T,G)=0 and Hom(T,E[1])∼=Ext1(T,E)∼=Extn−1(E, T⊗ωX)∼=
Hn−1(X,E∗ ⊗ T ⊗ ωX), which vanishes because T is supported in dimension
at most n− 2. Hence Hom(Coh≤n−2(X), F [1]) = 0.

For the converse, suppose F is a torsion-free sheaf satisfying the vanish-
ing Hom(Coh≤n−2(X), F [1]) = 0. Then we have a short exact sequence in
Coh(X)

0 → F → F ∗∗ → T → 0

where T ∈ Coh≤n−2(X). This short exact sequence must be split by our
hypothesis, forcing T = 0, i.e. F is reflexive. �
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The following technical result will also be needed when it comes to con-
structing moduli stacks in the next section:

Lemma 4.21. Let σ be a polynomial stability of type W1, and E ∈ Ap a
σ-semistable object. If H−1(E) is reflexive, then Hom(Coh≤1(X), E) = 0.
When X is a threefold, the converse also holds.

Proof. By Corollary 4.14 and Lemma 4.19, we just have to showHn−1(E∨) ∈
Coh≤0(X), which indeed holds by Lemma 4.15. That the converse holds
when X is a threefold is easy. �

Combining Lemma 4.21 and a couple of results from [Lo4], we obtain:

Lemma 4.22. Let X be a threefold, and let σ, σ̃ be polynomial stabilities of
type W1 and W2 on D(X), respectively. Let E ∈ Ap be a σ-semistable object
where ch0(E) �= 0, and ch0(E), ch1(E) are coprime. Then the following are
equivalent:

(i) E is σ̃-stable;

(ii) E is σ̃-semistable;

(iii) Hom(Coh≤1(X), E) = 0.

Proof. Suppose E is as described. Suppose E is also σ̃-semistable. Then
H−1(E) is reflexive by [Lo3, Lemma 3.2], and so we have Hom(Coh≤1(X), E)
= 0 by Lemma 4.21. Hence (ii) implies (iii).

Now, suppose the vanishing Hom(Coh≤1(X), E) = 0 holds. By [Lo3,
Lemma 3.10], we have that H−1(E) is μ-stable. By [Lo3, Lemma 3.5], we
get that E is σ̃-stable, hence σ̃-semistable. Hence (iii) implies (i).

Hence (i), (ii) and (iii) are equivalent. �

In [BMT, Section 7.2], Bayer-Macr̀ı-Toda considers a category D of two-
term complexes, that appear to be closely related to tilt-semistable objects
(see [BMT, Lemmas 7.2.1, 7.2.2]). For the following proposition, let R be a
discrete valuation ring over k, with ι, j as before. Also, let Bω,B be as defined
in [BMT, Sections 3.1] and let D ⊂ Bω,B be the set of objects E satisfying
one of the following conditions [BMT, Sections 7.2]:

(a) H−1(E) = 0 and H0(E) is a pure sheaf of dimension ≥ 2 that is slope-
semistable with respect to ω.

(b) H−1(E) = 0 and H0(E) is a sheaf of dimension ≤ 1.
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(c) H−1(E) is a torsion-free slope-semistable sheaf andH0(E)∈Coh≤1(X).
If μω,B(H

−1(E)) < 0, we have Hom(Coh≤1(X), E) = 0.

Theorem 4.23. Suppose X is a threefold, and ch a fixed Chern character
where ch0 �= 0. For flat families of objects E in Ap of Chern character ch, the
property that H−1(E) is μ-semistable is an open property. As a consequence,
objects of Chern character ch in D form a moduli stack.

Proof. The argument for openness is the same as the second half of the proof
of [Lo2, Proposition 3.1], except that here we use the slope μ instead of the
reduced Hilbert polynomial p3,1.

For the second assertion of the lemma, note that being in the heart Bω,B

is an open property for complexes (by [ABL, Example 1(2), Appendix A]),
as is being in Ap (by [Tod, Lemma 3.14]). Therefore, for a fixed Chern
character ch where ch0 �= 0, we have a moduli stack of objects E ∈ Bω,B

with Chern character ch such that H0(E) ∈ Coh≤1(X). By Lemma 4.19,
the property that Hom(Coh≤1(X), E) = 0 is also an open property for flat
families of complexes in Ap. Therefore, the moduli stack of objects of type
(c) in D exists, regardless of whether μ(H−1(E)) < 0 or not. �

Remark 4.24. Suppose X is a threefold, ch0 �= 0, ch1 are coprime with
ch1 · ω2/ch0 < 0, and σ, σ̃ are polynomial stabilities of types W1 and W2,
respectively. Suppose E ∈ D(X) is such that H0(E) ∈ Coh≤0(X). Then by
Lemmas 4.1 and 4.22, we have the following implications:

E ∈ D is of type (c) ⇔ E is σ̃-stable ⇒ E is σ-stable

In other words, the moduli of objects in D of type (c) with μω,B < 0 and
0-dimensional H0 can be described as the moduli of σ̃-stable objects.

4.3. An open immersion of moduli stacks

Fix a Chern character ch where ch0 �= 0, and a polynomial stability σ of
type W1. By Corollary 4.11, there exists a moduli stack Mσ of σ-semistable
objects of Chern character ch. By Lemma 4.1 and Theorem 4.12, we have
an open substack Mσ,R ⊆ Mσ parametrising the complexes E ∈ D(X) such
that H−1(E) is reflexive.

For any Noetherian scheme B over the ground field k and any B-flat
family of complexes EB on X, define the following property (P) for fibres
Eb of EB, b ∈ B:
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(P) The restriction (H−1(Eb))|s of the cohomology sheaf H−1(Eb) to the
fibre π−1(s) is a stable sheaf for a generic point s ∈ S.

We have:

Proposition 4.25. Property (P) is an open property for flat families of
complexes in Ap.

Proof. The proof of the threefold case, which was done in two parts in [Lo5,
Lemma 3.5, Lemma 3.6], generalises to the case of n ≥ 3 in a straightforward
manner. �

As a result of Proposition 4.25, we have another open substack Mσ,R,P ⊂
Mσ,R consisting of complexes E ∈ D(X) in Mσ,R such that H−1(E)|s is a
stable sheaf for a generic point s ∈ S.

Overall, we have the following open immersions of stacks of complexes:

(4.10) Mσ,R,P ⊂ Mσ,R ⊂ Mσ.

Suppose we have fixed our Chern character ch so that, for the complexes
E ∈ D(X) parametrised by Mσ, we have μ(H−1(E)) < b/a. Then:

Theorem 4.26. Let π be as in Theorem 3.16. We have an open immersion
of moduli stacks

(4.11) Mσ,R,P � � �� Ms ,

where Ms denotes the moduli stack of Gieseker stable torsion-free sheaves
on Y , with respect to some polarisation.

The proof of this theorem is the same as that of the threefold case,
namely [Lo5, Theorem 3.1], except for the very last step where we invoke
Lemma 4.21 to show the vanishing Hom(Coh≤1(X), E) = 0. We reproduce
the proof here since it is short, and also for clarity.

Proof. Take any E ∈ Ap corresponding to a point in Mσ,R,P . By Corol-

lary 3.17, we know that H−1(E) is Ψ-WIT1 and Ĥ−1(E) is torsion free. The
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Fourier-Mukai transform Ψ takes the exact triangle in D(X)

H−1(E)[1] → E → H0(E) → H−1(E)[2]

to a short exact sequence of coherent sheaves on Y

0 → Ĥ−1(E) → Ê → Ĥ0(E) → 0 .

Since H0(E) is supported on a finite number of points, it follows that Ĥ0(E)
is supported on a finite number of fibres by [BBR, Proposition 6.1]. Using

[BriM, Lemma 9.5] we know that Ĥ−1(E) restricts to a stable sheaf on a
generic fibre. Therefore Ê is stable when restricted to a generic fibre of π̂.

By [BriM, Lemma 2.1], if Ê is a torsion-free sheaf that restricts to a
stable sheaf on a generic fibre, then Ê is stable with respect to a suitable
polarisation on Y . Therefore it remains to show that Ê is torsion free.

Suppose Ê is not torsion-free. Denote by T its maximal torsion subsheaf,

which would be nonzero. Since Ĥ−1(E) is torsion free, we have an injection

T ↪→ Ĥ0(E) and T is Φ-WIT1. The inclusion T ↪→ Ê gives a nonzero element
in

HomY (T, Ê) ∼= HomX(ΦT,ΦÊ) ∼= HomX(T̂ , E) .

Since Ĥ0(E) is supported on a finite number of fibres, so is T , and so
dimT ≤ 1. However, by Lemma 4.21, we have Hom(Coh≤1(X), E) = 0, a
contradiction. Hence Ê must have been torsion-free to begin with. �

4.4. Comparison with the threefold case

Let σ be a polynomial stability of type W1 throughout the rest of this
section.

In the theorem we have just proved, Theorem 4.26, we embed the moduli
stack Mσ,R,P into a moduli stack of stable sheaves. Recall that Mσ,R,P

parametrises σ-semistable objects E ∈ Ap (of fixed ch where ch0 �= 0) such
that H−1(E) is torsion-free and reflexive, and E satisfies property (P).

On the other hand, in [Lo5, Theorem 3.1], where X is a threefold, we
embed a moduli stack Mσ,σ̃,P into a moduli stack of stable sheaves. There,
Mσ,σ̃,P parametrises σ-semistable objects E ∈ Ap such that E is also σ̃-
semistable (σ̃ being a polynomial stability of type W2), and satisfies prop-
erty (P).

Given an object E ∈ Ap on a threefold X, if E is σ̃-semistable, then
H−1(E) is torsion-free and reflexive by [Lo3, Lemma 3.2]. Therefore, whenX
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is a threefold, the stack Mσ,R,P contains Mσ,σ̃,P as a substack, i.e. our The-
orem 4.26 appears more general than [Lo5, Theorem 3.1]. By Lemma 4.22,
however, we know that Mσ,R,P and Mσ,σ̃,P coincide when we assume that
ch0 �= 0, ch1 are coprime.

5. Moduli of rank-one torsion-free sheaves

Throughout this section, suppose that n = dimX ≥ 3, and π is as in The-
orem 3.16. Let us first recall the following theorem, which holds in higher
dimensions with the same proof:

Theorem 5.1. [Lo5, Theorem 4.1] The functor Ψ induces an equivalence
between the following two categories:

(i) the category CX of objects E in

〈BX ∩W0,X ,B◦X ∩W1,X [1]〉

satisfying

Hom(BX ∩W0,X , E) = 0,

such that H−1(E) has nonzero rank, μ(H−1(E)) < b/a, and H−1(E)
restricts to a stable sheaf on the generic fibre of π;

(ii) the category C′Y of torsion-free sheaves F on Y such that μ(F ) > −c/a,
and F restricts to a stable sheaf on the generic fibre of π̂, and such
that in the unique short exact sequence

0 → A → F → B → 0

where A is Φ-WIT0 and B is Φ-WIT1, we have B ∈ BY . (Note that,
this is equivalent to requiring B to be a torsion sheaf by Lemma 3.3.)

Under the above equivalence of categories, we have A = Ĥ−1(E) and B =

Ĥ0(E).

Let C′Y denote the category of torsion-free sheaves F on Y such that
μ(F ) > −c/a, and F restricts to a stable sheaf on the generic fibre of π̂.
Note that C′Y ⊆ C′Y .



Stability and Fourier-Mukai transforms 1075

Take any F in C′Y . Consider the short exact sequence

0 → A → F → B → 0

where A is Φ-WIT0 and B is Φ-WIT1. Suppose F is rank-one; then either
r(A) = 0 or r(A) = 1. If r(A) = 0, then A = 0 since F is torsion-free. Then
F is Φ-WIT1, and so μ(F ) ≤ −c/a by Lemma 3.2 (or, rather, its analogue
on Y ), a contradiction. Hence r(A) = 1, in which case B must be torsion,
i.e. F lies in C′Y . Thus we have:

Lemma 5.2. The rank-one objects of C′Y are the same as the rank-one
objects in C′Y , which are exactly the rank-one torsion-free sheaves with μ >
−c/a on Y .

Remark 5.3. Suppose an object E ∈ CX maps to an object F ∈ C′Y under

Ψ. Then r(F ) = r(Ĥ−1(E)) = −r(Ψ(H−1(E)) = r(Ψ(E)) = −b · r(E) + a ·
d(E). Hence, by Lemma 5.2, the category of objects E in CX satisfying −b ·
r(E) + a · d(E) = 1 form a moduli space that is isomorphic to the moduli
of rank-one torsion-free sheaves on Y . In other words, the three conditions
for complexes E on X in the definition of CX (except for those conditions
on the Chern classes of E), namely

• E ∈ 〈BX ∩W0,X ,B◦X ∩W1,X [1]〉;
• Hom(BX ∩W0,X , E) = 0; and

• H−1(E) restricts to a stable sheaf on the generic fibre of π

should, in some sense, correspond to a of stability condition for complexes.

6. Pure codimension-1 sheaves

In this section, we study coherent sheaves supported in codimension 1 via
Fourier-Mukai transforms. Our main goal is to produce Theorem 6.13, an
equivalence between the category of line bundles of fibre degree 0 on X
and the category of line bundles supported on sections of the dual elliptic
fibration Y , which generalises [Lo5, Corollary 5.9] to higher dimensions.
The proofs of many results in [Lo5, Section 5] leading to [Lo5, Corollary 5.9]
only hold for elliptic surfaces or threefolds; we rewrite their proofs for higher
dimensional elliptic fibrations.

Before we come to the results, let us write P for the universal family on
Y ×X as in [BriM, Section 8.4], and write Q := RH omOY ×X

(P, π∗XωX)[n−
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1], so that Ψ can be taken as the integral transform D(X) → D(Y ) with
kernel Q. Note that [BriM, Lemma 8.4] holds whenever dimS ≥ 1 (as is
[Bri1, Lemma 6.5]). Therefore, Q is a sheaf that is flat over both X and Y .

Throughout this section, let S be of any dimension at least 1, i.e. the
dimension of X is at least 2.

Lemma 6.1. If F is a pure codimension-1 sheaf on Y that is flat over S,
then F is Φ-WIT0, lies in B◦Y , and F̂ is torsion-free.

Proof. Suppose F is as described. We first show that F is Φ-WIT0. The
argument is essentially the same as that in [Lo5, Remark 5.6], but we rewrite
the proof slightly for clarity: by [Bri1, Lemma 6.5], it suffices to show that
Hom(F,Qx) = 0 for all x ∈ X. Take any nonzero morphism of sheaves F

α→
Qx in Coh(Y ), for any x ∈ X. Then the support of im (α) is contained in
π̂−1(π(x)) ∩ supp(F ). Since Qx is a stable 1-dimensional sheaf on π̂−1(π(x)),
the sheaf im (α) cannot be 0-dimensional. If im (α) is a 1-dimensional sheaf,
then F |π(x) is 1-dimensional, and by the flatness of F over S, we see that F
has nonzero rank, a contradiction. Hence F is Φ-WIT0.

Next, we show that F ∈ B◦Y . Take any nonzero A ∈ BY , and consider

a morphism A
β→ F in Coh(Y ). Since im (β) ∈ BY , we can replace A by

im (β) and assume β is an injection. Since F is a pure sheaf, A itself must
also be pure and of codimension 1. This, along with A ∈ BY , implies that the
support of A contains a fibre of π̂. Therefore, the support of F also contains
a fibre of π̂; by flatness of F over S, we get that F has nonzero rank, again
a contradiction.

Lastly, that F̂ is torsion-free follows from Lemma 3.8. �

The following is an analogue of [Lo5, Proposition 5.7] when we do not
require the dimension of S to be 1-dimensional:

Proposition 6.2. Let DX and D′Y be the following categories:

DX := {E ∈ Coh(X) : E is torsion-free with positive rank,(6.1)

flat over S, μ(E) = b/a, Ext1(BX ∩W0,X , E) = 0,

and E|s is WIT1 for all s ∈ S}
D′Y := {F ∈ Coh(Y ) : F is pure of codimension 1, flat over S} .

Then the functor Ψ[1] : D(X) → D(Y ) induces an equivalence of categories
DX → D′Y .
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Proof. Take any nonzero F ∈ D′Y . Since F is flat over S, it cannot lie in

BY . By Lemmas 3.8, 3.13 and 6.1, we obtain that F is Φ-WIT0, and that F̂
is torsion-free with positive rank, μ(F̂ ) = b/a and Ext1(BX ∩W0,X , F̂ ) = 0.
Since the restriction of F to each fibre π̂−1(s) is a 0-dimensional sheaf, hence
Φs-WIT0, by [BBR, Corollary 6.2], we have that F̂ is flat over S. Also by
[BBR, Corollary 6.2], we have F̂ |s is Ψs-WIT1 for all s ∈ S. Hence F̂ ∈ DX .

Next, take any E ∈ DX . By [BBR, Corollary 6.2], we know E is Ψ-WIT1

and Ê is flat over S. By Lemma 3.13, the transform Ê is a torsion sheaf but
does not lie in BY . Hence Ê is of codimension 1. By Lemma 3.8, Ê does not
have any subsheaf in BY , and so does not have any subsheaf of codimension
2 or greater, i.e. Ê is a pure sheaf. Hence Ê lies in D′Y . �

Definition 6.3. [BBR, Definitions 6.8, 6.10] A Weierstrass fibration is an
elliptic fibration π : X → S such that all the fibres of π are geometrically
integral Gorenstein curves of arithmetic genus 1, and there is a section σ :
S → X of π such that σ(S) does not contain any singular point of the fibres.

Note that, any fibre of a Weierstrass fibration as defined above neces-
sarily has trivial dualising sheaf [RMGP, Section 1.1], and so a Weierstrass
fibration in this sense satisfies the hypothesis of Theorem 3.16.

Remark 6.4. By [BBR, Proposition 6.51], when b = 0 and π, π̂ are Weier-
strass fibrations, every sheaf in DX is fiberwise torsion-free and semistable.

Remark 6.5. Proposition 6.2 reduces to the second equivalence of cate-
gories for elliptic surfaces in [Lo5, Proposition 5.7].

The following result was stated only for elliptic surfaces and threefolds
in [Lo5], but its proof works as long as dimS ≥ 2:

Lemma 6.6. [Lo5, Lemma 5.8] Suppose F is a pure codimension-1 sheaf on
Y that is flat over S. Then π̂ restricts to a finite morphism π̂ : supp(F ) → S,
and F ∈ B◦Y . Furthermore, if d(F ) = 1, then supp(F ) is a section of π̂ : Y →
S, and F is a line bundle on supp(F ).

Lemma 6.7. Suppose a = 1, b = 0 and π is a Weierstrass fibration. Take
any F ∈ D′Y such that d(F ) = 1. Then E := F̂ fits in a short exact sequence
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in Coh(X)

(6.2) 0 → E → E∗∗ → T → 0

where E∗∗ is a Ψ-WIT1 line bundle whose semistability locus is all of S, and
T is also Ψ-WIT1 and lies in BX . Moreover, E∗∗ lies in DX .

Proof. From the formula (2.1) and Proposition 6.2, we know that E is a
rank-one torsion-free sheaf. Since the double dual L := E∗∗ is a rank-one
reflexive sheaf and X is smooth, it is a line bundle [Har2, Proposition 1.9].
Note that, since T has codimension at least 2, we have T ∈ BX . We now
show that L is Ψ-WIT1:

Consider the short exact sequence in Coh(X):

0 → L0 → L → L1 → 0

where Li ∈ Wi,X . Suppose L is not Ψ-WIT1; then L0 �= 0 and must be rank-
one torsion-free, implying L1 is Ψ-WIT1 and torsion, and so L1 ∈ BX by
Lemma 3.3. Now, applying Ψ to (6.2) and taking the long exact sequence,
we obtain an injection 0 → Ψ0(L) → Ψ0(T ). Since T ∈ BX , by Lemma 3.6,

we have that Ψ0(T ) is a torsion sheaf. Hence Ψ0(L) = L̂0 and Ψ0(T ) are
both torsion, Φ-WIT1 sheaves, and must lie in BY by Lemma 3.3 again.
Hence L0 ∈ BX , and L itself lies in BX , which is a contradiction. Therefore,
we obtain that L must be Ψ-WIT1. By Theorem 3.16, we obtain Ext1(BX ∩
W0,X , L) = 0 as well.

On the other hand, applying Ψ to the exact sequence (6.2) and then
taking the long exact sequence, we obtain an injection Ψ0(T ) ↪→ Ê = F .
Lemma 6.1, however, tells us that F ∈ B◦Y . Hence Ψ0(T ) must vanish, i.e. T
is in fact Ψ-WIT1.

It remains to show that the semistability locus of L is all of S. Take any
closed point s ∈ S. Then the restriction L|s is a rank-one locally free (hence
torsion-free and μ-semistable, since every fibre of a Weierstrass fibration is
integral by assumption) sheaf on Xs. Hence, by [BBR, Proposition 6.51],
the restriction F |s is Ψs-WIT1 (and μ-semistable) for all s ∈ S, and the
semistability locus of F is the entirety of S. This completes the proof of the
lemma. �

Remark 6.8. Using the same notation as in Lemma 6.7 and its proof, we
can tensor every term in (6.2) with L∗ to see that E ⊗ L∗ is isomorphic
to the ideal sheaf IC of some subscheme C ⊆ X of codimension at least 2,
while T ⊗ L∗ ∼= OC . Since T is Ψ-WIT1 by Lemma 6.7, all its subsheaves
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are Ψ-WIT1 as well. Therefore, when X is a threefold, T cannot have any
0-dimensional subsheaves, i.e. T is a pure 1-dimensional sheaf if nonzero, in
which case C would be a pure 1-dimensional closed subscheme of X.

Lemma 6.9. Let a, b, π be as in Lemma 6.7. Let E be a rank-one torsion-
free sheaf on X with μ(E) = 0. Then E satisfies the vanishing condition
(3.4) if and only if the cokernel T of the canonical injection E ↪→ E∗∗ is
Ψ-WIT1.

Proof. To begin with, suppose E satisfies (3.4). Let L := E∗∗. By the same
argument as in Lemma 6.7, we obtain that L is Ψ-WIT1. Then E itself is
Ψ-WIT1, since it is a subsheaf of L. By Lemma 3.8, we have Ê ∈ B◦Y . Since
we have an injection Ψ0(T ) ↪→ Ê, we get Ψ0(T ) = 0, and so T is Ψ-WIT1.

For the converse, suppose T is Ψ-WIT1. We still have that L is Ψ-WIT1.
For any A ∈ BX ∩W0,X , we have the exact sequence

Hom(A, T ) → Ext1(A,E) → Ext1(A,L)

from (6.2). Since A is Ψ-WIT0 and T is Ψ-WIT1, we have Hom(A, T ) = 0.
On the other hand, Ext1(A,L) = 0 by Theorem 3.16. Hence Ext1(A,E)
vanishes, and the lemma is proved. �

Remark 6.10. Take any E ∈ DX of rank one, and suppose dimX = 2.
The cokernel of E ↪→ E∗∗ is 0-dimensional, and so must be zero since it is Ψ-
WIT1 by Lemma 6.9. Hence E is locally free. The equivalence of categories in
Proposition 6.2 thus reduces to the last equivalence in [Lo5, Proposition 5.7].

Lemma 6.11. Let T be a Ψ-WIT1 coherent sheaf of codmension at least
2 on X. Then dim (π∗T ) = dim (T )− 1, i.e. for a general closed point s ∈
supp(π∗T ), the restriction T |s is 1-dimensional.

Proof. Since π is a fibration of relative dimension 1, it suffices to show
dim (π∗T ) ≤ dim (T )− 1. Suppose dim (π∗T ) = dim (T ) = n− 2. Then for a
general closed point s ∈ S1 := supp(π∗T ), the restriction T |s is 0-dimensional.
Let ι denote the closed immersion S1 ↪→ S, and

ιX : XS1
↪→ X, ιY : YS1

↪→ Y

be the corresponding closed immersions obtained after base change. We have
T = ιX∗T̃ for some coherent sheaf T̃ on XS1

. Since

T̂ [−1] ∼= Ψ(T ) = Ψ(ιX∗T̃ ) ∼= ιY ∗(ΨS1
(T̃ ))
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by base change (see [BBR, (6.3) and Proposition A.85]), we see that T̃ itself
is ΨS1

-WIT1. By [BBR, Corollary 6.3], for any closed point s ∈ S1 we have

(6.3) (Ψ1
S1
(T̃ ))|s ∼= Ψ1

s(T̃ |s).

For a general closed point s ∈ S1, however, the restriction T̃ |s is a 0-
dimensional sheaf (since dim T̃ = dimT = dim (π∗T ) by assumption), which
is Ψs-WIT0. Hence the right-hand side of (6.3) vanishes for a general s ∈ S1,
and so the left-hand side of (6.3) also vanishes for a general s ∈ S1. Since T̃
is ΨS1

-WIT1, this implies that T̃ |s vanishes for a general s ∈ S1, contradict-
ing our assumption that S1 is the support of π∗T . Therefore, it must be the
case that dim (π∗T ) ≤ dim (T )− 1. �

Lemma 6.12. Let a, b, π be as in Lemma 6.7. Any rank-one object in DX

is a locally free sheaf.

Proof. Let E be any rank-one object in DX , and let T be as in (6.2). The
argument in the proof of Lemma 6.7 shows that all the terms in (6.2) are
Ψ-WIT1, and that E∗∗ ∈ DX . Thus we obtain a short exact sequence in
Coh(Y )

(6.4) 0 → Ê → Ê∗∗ → T̂ → 0

in which all the terms are Φ-WIT0.
By Proposition 6.2 and Lemma 6.6, we know that we have a section

θ : S → supp(Ê∗∗) of π̂. And, if we write κ for the closed immersion θ(S) ↪→
Y , then Ê∗∗ ∼= κ∗A for some line bundle A on θ(S). Applying the same

argument to Ê, we see that supp(Ê) = supp(Ê∗∗), and Ê ∼= κ∗A′ for some
line bundle A′ on θ(S).

Now, by Lemma 6.11, we have dim (π∗T ) ≤ n− 3. Since Ê∗∗ is supported
on a section of π̂, and the support of T̂ is contained in the support of Ê∗∗, for
any closed point s ∈ supp(π∗T ), the restriction T̂ |s must be 0-dimensional.
Hence dim T̂ ≤ n− 3. On the other hand, we can write T̂ = κ∗T ′ for some
coherent sheaf T ′ on supp(Ê∗∗). Then T ′ has codimension at least 2 as a
coherent sheaf on θ(S), and we have a short exact sequence

0 → κ∗A′ → κ∗A → κ∗T ′ → 0 in Coh(Y ),

which gives a short exact sequence

(6.5) 0 → A′ → A → T ′ → 0 in Coh(θ(S)).
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However, in the short exact sequence (6.5), both A′ and A are reflexive
sheaves, while T ′ has codimension at least 2 on θ(S), contradicting [Har2,
Corollary 1.5] if T̂ is nonzero. Hence T̂ must vanish, i.e. E itself is a line
bundle on X. �

Putting the above results together, we obtain:

Theorem 6.13. Let a, b, π be as in Lemma 6.7. The equivalence (6.1) in
Proposition 6.2 restricts to an equivalence

{line bundles of fibre degree 0 on X}(6.6)

↔ {F ∈ Coh(Y ) : F is pure of codimension 1, flat over S, d(F ) = 1}
= {τ∗L : τ is a section of π̂, L ∈ Pic(S)}.

Proof. First, we show that the rank-one objects in the category DX are
exactly the line bundles of fibre degree 0 on X. That any rank-one object
in DX is a line bundle of fibre degree 0 follows from Lemma 6.12. That any
line bundle of fibre degree 0 lies in DX follows from [BBR, Proposition 6.51]
and Theorem 3.16.

That the second the third categories above are equivalent follow from
Lemma 6.6. �

Appendix A. Polynomial stability conditions

Polynomial stability was defined on Db(X) by Bayer for any normal projec-
tive variety X [Bay, Theorem 3.2.2]. While the central charge for a Bridge-
land stability condition takes values in C, the central charge for a polynomial
stability condition takes values in the abelian group C[m] of polynomials
over C.

The polynomial stability conditions we concern ourselves with in this
paper consist of the following data, where X is a smooth projective n-fold:

1) the heart Ap = 〈Coh≤n−2(X),Coh≥n−1(X)[1]〉, and
2) a group homomorphism (the central charge) Z : K(X) → C[m] of the

form

Z(E)(m) =

n∑
d=0

∫
X
ρdH

d · ch(E) · U ·md

where
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a) the ρd ∈ C are nonzero, satisfy ρ0, . . . , ρn−2 ∈ H, ρn−1, ρn ∈ −H,
and their configurations are of either type W1 or W2 as defined in
the beginning of Section 4,

b) H ∈ Amp(X)R is an ample class, and
c) U = 1 +N where N ∈ A∗(X)R is concentrated in positive degrees.

The configuration of the ρi is compatible with the heart Ap, in the sense
that for every nonzero E ∈ Ap, we have Z(E)(m) ∈ H for m � 0. So there
is a uniquely determined function germ φ(E) such that

Z(E)(m) ∈ R>0e
iπφ(E)(m) for all m � 0.

This allows us to define the notion of semistability for objects in Ap. We
say that a nonzero object E ∈ Ap is Z-semistable (resp. Z-stable) if, for any
nonzero subobject G ↪→ E in Ap, we have φ(G)(m) ≤ φ(E)(m) for m � 0
(resp. φ(G)(m) < φ(E)(m) for m � 0). We also write φ(G) � φ(E) (resp.
φ(G) ≺ φ(E)) to denote this. Harder-Narasimhan filtrations for polynomial
stabilities exist [Bay, Section 7]. The reader may refer to [Bay] for more on
the basics of polynomial stability.
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Mukai and Nahm Transforms in Geometry and Mathematical
Physics, Progress in Mathematics, Vol. 276, Birkhäuser, 2009.
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