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Optimal cobordisms between torus knots

Peter Feller

We construct cobordisms of small genus between torus knots and
use them to determine the cobordism distance between torus knots
of small braid index. In fact, the cobordisms we construct arise as
the intersection of a smooth algebraic curve in C2 with the unit 4-
ball from which a 4-ball of smaller radius is removed. Connections
to the realization problem of An-singularities on algebraic plane
curves and the adjacency problem for plane curve singularities are
discussed. To obstruct the existence of cobordisms, we use Ozsváth,
Stipsicz, and Szabó’s Υ-invariant, which we provide explicitly for
torus knots of braid index 3 and 4.

1. Introduction

For a knot K—a smooth and oriented embedding of the unit circle S1 into
the unit 3-sphere S3—the slice genus g4(K) is the minimal genus of smooth,
oriented surfaces F in the closed unit 4-ball B4 with oriented boundary
K ⊂ ∂B4 = S3. For torus knots, the slice genus is equal to their genus g;
i.e., for coprime positive integers p and q, one has

(1) g4(Tp,q) = g(Tp,q) =
(p− 1)(q − 1)

2
.

More generally, the slice genus is known for knots K that arise as the
transversal intersection of S3 with a smooth algebraic curve Vf in C2, by
Kronheimer and Mrowka’s resolution of the Thom conjecture [KM93, Corol-
lary 1.3]: the surface in B4 ⊂ C2 given as the intersection of B4 with Vf has
genus g4(K); see also Rudolph’s slice-Bennequin inequality [Rud93]. We de-
termine the slice genus for connected sums of torus knots of small braid
index; see Corollary 3.
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The cobordism distance dc(K,T ) between two knots K and T is the
minimal genus of smoothly embedded and oriented surfaces C in S3 × [0, 1]
with boundary K × {0} ∪ T × {1} such that the induced orientation agrees
with the orientation of T and disagrees with the orientation of K. Such a
C is called a cobordism between K and T . Equivalently, dc(K,T ) can be
defined as the slice genus of the connected sum K�− T of K and −T—the
mirror image of T with reversed orientation. Cobordism distance satisfies the
triangle inequality; in particular, dc(K,T ) ≥ |g4(T )− g4(K)| for all knots K
and T . We call a cobordism between two knots algebraic if it arises as the
intersection of a smooth algebraic curve in C2 with B4

2\B4
1
∼= S3 × [0, 1],

where B4
i ⊂ C2 are the 4-balls centered at the origin of radius ri for some

0 < r1 < r2. By the Thom conjecture, algebraic cobordisms between two
knots K and T have genus |g4(T )− g4(K)|. In particular, the existence of
an algebraic cobordism between K and T does determine their cobordism
distance to be |g4(T )− g4(K)|. We call a cobordism C between two knots
K and T optimal if its genus g(C) is |g4(T )− g4(K)|.

We address the existence of algebraic and optimal cobordisms for torus
knots.

Theorem 1. For positive torus knots T2,n and T3,m of braid index 2 and
3, respectively, the following are equivalent.

(I) There exists an optimal cobordism between T2,n and T3,m; i.e.

dc(T2,n, T3,m) = g4(T2,n�− T3,m) = |g4(T3,m)− g4(T2,n)| =
∣∣∣∣m− 1− n− 1

2

∣∣∣∣ .
(II) n ≤ 5m−1

3 .

(III) There exists an algebraic cobordism between T2,n and T3,m.

Theorem 2. For positive torus knots T2,n and T4,m of braid index 2 and
4, respectively, the following are equivalent.

(I) There exists an optimal cobordism between T2,n and T4,m; i.e.

dc(T2,n, T4,m) = g4(T2,n�− T4,m) = |g4(T4,m)− g4(T2,n)| =
∣∣∣∣3m− n− 2

2

∣∣∣∣ .
(II) n ≤ 5m−3

2 .

(III) There exists an algebraic cobordism between T2,n and T4,m.
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Theorem 1 and Theorem 2 are established using the following strategy.
If (II) holds, we provide an explicit construction of the optimal cobordism us-
ing positive braids. In fact, the optimal cobordisms we find, can be seen in S3

as a sequence of positive destabilizations on the fiber surfaces of the larger-
genus knot; see Remark 19. If (II) does not hold, we use the υ-invariant
to obstruct the existence of an optimal cobordism. Here, υ = Υ(1) is one
of a family Υ(t) of concordance invariants introduced by Ozsváth, Stip-
sicz, and Szabó [OSS14], which generalize Ozsváth and Szabó’s τ -invariant
as introduced in [OS03]. Finally, all optimal cobordisms we construct turn
out to be algebraic. We establish a more general result, see Lemma 6, for
all knots that arise as the transversal intersection of S3 with a smooth al-
gebraic curve in C2: the natural way of constructing optimal cobordisms
always yields algebraic cobordisms. This brings us to ask: if there exists an
optimal cobordism between two positive torus knots, does there exist an
algebraic cobordism between them? The proof of Lemma 6 uses realization
results of Orevkov and Rudolph. Using deplumbing, we also construct alge-
braic cobordisms between T2,n and Tm,m+1; see Section 5.2. This is related
to work of Orevkov [Ore12], see Remark 24, and motivated by algebraic
geometry questions; see Section 2.

We now turn to the cobordism distance between torus knots. By gluing
together the optimal cobordisms given in Theorems 1 and 2, we will obtain
the following.

Corollary 3. Let K and T be torus knots such that the sum of their braid
indices is 6 or less. Then we have the following formula for their cobordism
distance.

dc(T,K) = g4(K�− T ) = max{|τ(K)− τ(T )|, |υ(K)− υ(T )|}.

The values of the concordance invariants τ and υ that arise in Corollary 3
are explicitly calculable: For positive torus knots (for their negative coun-
terparts, which are obtained by taking the mirror image, the sign changes),
one has

τ(Tp,q) = −g(Tp,q) = −(p− 1)(q − 1)

2
[OS03, Corollary 1.7],

for coprime positive integers p and q, and

(2)
υ(T2,2k+1) = −k, υ(T3,3k+1) = υ(T4,2k+1) = −2k,
υ(T3,3k+2) = −2k − 1,
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for positive integers k. The υ-values for torus knots of braid index 2 fol-
low, for example, from the fact that υ equals half the signature for alter-
nating knots [OSS14, Theorem 1.14]. The other υ-values in (2) can be de-
rived from the inductive formula for υ provided by Ozsváth, Stipsticz and
Szabó [OSS14, Theorem 1.15]. We do this in Section 6.

Of course, part of the statement of Corollary 3 was known before; for
example in the cases covered by the following remark.

Remark 4. If K and T are positive and negative torus knots, respectively,
one has

dc(T,K) = g4(K�− T ) = g4(K) + g4(T ) = g(K) + g(T )

by the Thom conjecture. If K and T are both positive (both negative)
torus knots of the same braid index, then there exists an optimal cobordism
between them; compare Example 20.

Determining the cobordism distance between all torus knots seems out
of reach. However, a coarse estimation of the cobordism distance between
torus knots was provided by Baader [Baa12].

The study of optimal and algebraic cobordisms between torus knots
seems natural from a knot theoretic point of view. We discuss additional
motivation from algebraic geometry questions in Section 2. Section 3 recalls
the notions of positive and quasi-positive braids. In Section 4 we show that
optimal cobordisms given by quasi-positive braid sequences are algebraic. In
Section 5 optimal cobordisms are constructed and used to prove Theorem 1,
Theorem 2, and Corollary 3. Section 6 provides the Υ-values for torus knots
of braid index 3 and 4.

Acknowledgements. I thank Sebastian Baader for sharing his insight
into cobordisms and for his ongoing support. Thanks also to Adam Levine for
pointing me towards the Υ-invariant, and Immanuel Stampfli and Andrew
Yarmola for valuable suggestions. Finally, I wish to thank the referee for
helpful suggestions and corrections.

2. Algebraic motivation: Plane curve singularities over C

In this section, we discuss motivations to study algebraic and optimal cobor-
disms between torus knots coming from singularity theory. Mathematically,
the rest of the paper is independent of this.
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We consider isolated singularities on algebraic curves in C2 and we de-
note singularities by the function germs that define them. A general ques-
tion asks, what (topological) type of singularities can occur on an alge-
braic curve Vf in C2 given as the zero-set of a square-free polynomial f
in C[x, y] of some fixed degree d; see e.g. Greuel, Lossen, and Shustin’s
work [GLS98]. Even for simple singularities—those corresponding to Dynkin
diagrams [Arn72]—a lot is unknown. For the Ak-singularities—the simple
singularities given by y2 − xk+1—the following bounds were provided by
Gusĕın-Zade and Nekhoroshev

(3)
15

28
d2 +O(d) ≤ k(d) ≤ 3

4
d2 +O(d) [GZN00],

where k(d) denotes the maximal integer k such that Ak occurs on a degree
d curve. In fact, Orevkov improved the lower bound to

(4)
7

12
d2 +O(d) ≤ k(d) [Ore12].

Recall that, for a singularity at p = (p1, p2) ∈ Vf , its link of singularity is
the link obtained as the transversal intersection of Vf with the small 3-sphere

S3
ε = {(x, y) | |x− p1|2 + |y − p2|2 = ε2} ⊂ C2,

for small enough ε > 0; see Milnor [Mil68]. Similarly, the link at infinity of
an algebraic curve Vf is defined to be the transversal intersection of Vf with
the 3-sphere S3

R ⊂ C2 of radius R for R large enough; see e.g. Neumann and
Rudolph [NR87].

Prototypical examples of plane curve singularities are the singularities
fp,q = yp − xq, where p and q are positive integers. They have the torus link
Tp,q as link of singularity. Up to topological type, singularities are determined
by their link of singularity and the links that arise as links of singularities
are fully understood: their components are positive torus knots or special
cables thereof; see e.g. Brieskorn and Knörrer’s book [BK86].

In the algebraic setting it is natural to consider links not only knots.
Algebraic cobordisms between links are defined as for knots. Optimal cobor-
disms are defined via Euler characteristic instead of the genus; see Section 4.

Observation 5. The existence of a singularity on a curve of degree d im-
plies the existence of an optimal cobordism from the link of the singularity
to Td,d. In particular, there exists an optimal cobordism from T2,k(d)+1 to
Td,d.
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Observation 5 motivated our study of optimal cobordisms from T2,n to
Td,d and Td,d+1. In Section 5.2, we show that there exist algebraic cobor-
disms between T2,n and Td,d (Td,d+1) if n ≤ 2

3d
2 +O(d). In particular, no

obvious topological obstruction exists to having k(d) ≥ 2
3d

2 +O(d); com-
pare also [Ore12]. Observation 5 allows to give a knot theoretic proof of the
upper bound in (3); see Remark 27. To establish Observation 5, we note that,
whenever a singularity occurs on an algebraic curve Vf , we get an algebraic
cobordism from the link of the singularity K to the link at infinity T of Vf .
For this, choose a small sphere S3

ε and a large sphere S3
R that intersect Vf

transversally in K and T , respectively. Let Vg be another algebraic curve. By
transversality, Vf and Vg intersects S3

ε and S3
R in the same links as long as g

and f are “close”. To be precise, this is certainly true if g = f + t and t ∈ C

is small. For generic t, Vg is smooth; thus, Vg yields an algebraic cobordism
between K and L. Furthermore, there is an algebraic cobordism from T to
Td,d. This follows by using that the link at infinity of f + s(xd + yd) is Td,d,
for generic s ∈ C, while S3

R � Vf+s(xd+yd) is T for s small enough; and then
arguing as above. Gluing the two algebraic cobordisms together yields an
optimal cobordism from K to Td,d.

A related question asks about the existence of adjacencies between sin-
gularities. Fixing a singularity f , another singularity g is said to be adjacent
to f if there exists a smooth family of germs ft such that f0 ∼= f and g ∼= ft
for small enough non-zero t. There are different notions of equivalence ∼=
yielding different notions of adjacencies. However, as long as g defines a
simple singularity the notions all agree. See Siersma’s work for a discussion
of these notions [Sie74] and compare also with Arnol′d’s work, who was the
first to fully describe adjacency between simple singularities [Arn72, Corol-
lary 8.7]. A modern introduction to singularities and their deformations is
provided by Greuel, Lossen and Shustin [GLS07].

If g is adjacent to f , then there exists an algebraic cobordism between
their links of the singularity (given by Vft+ε for t and ε small as a similar
argument as above shows). The adjacency question is mostly unresolved if
f is not a simple singularity. A natural first case to consider is f = fp,q for
fixed p > 2 and to ask: Given a positive integer q, which An-singularities
are adjacent to fp,q? Theorem 1 and Theorem 2 can be seen as answering
analogs of this question for p equal to 3 and 4, respectively.

3. Braids and (quasi-)positivity

To set notions, we shortly recall Artin’s braid group [Art25]; a nice reference
for braids is Birman’s book [Bir74]. Let us fixe a positive integer n. The
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standard group presentation for the braid group on n strands, denoted by
Bn, is given by generators a1, . . . , an−1 subject to the braid relations

aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ n− 2 and aiaj = ajai for |i− j| ≥ 2.

Elements β of Bn, called braids or n-braids, have a well-defined (alge-
braic) length l(β), given by the number of generators minus the number of
inverses of generators in a word representing β. More geometrically, a n-braid
β can be viewed as an isotopy class of an oriented compact 1-submanifold of
[0, 1]× C such that the projection to [0, 1] is a n-fold orientation-preserving
regular map and β intersects {0} × C and {1} × C in {0} × P and {1} × P ,
respectively, where P is a subset of C consisting of n complex numbers with
pairwise different real part. The above standard generators ai are identified
with the braid that exchanges the ith and i+ 1th (with respect to order
induced by the real order) point of P by a half-twist parameterized by [0, 1]
and the group operations is given by stacking braids on top of each other.
The closure β of β is the closed 1-submanifold in S1 × C obtained by gluing
the top of β ⊂ [0, 1]× C to its bottom. A closed braid β yields a link in S3,
also denoted by β, via a fixed standard embedding of the solid torus S1 × C

in S3. The braid index of a link is the minimal number n such that L arises
as the closure of a n-braid.

Positive braids are the elements of the semi-subgroup Bn,+ that is gener-
ated by all the generators ai. Positive torus links are examples of links that
arise as closures of positive braids: For positive integers p and q, the closure
of (a1a2 · · · ap−1)q is Tp,q, which is a knot, called a positive torus knot, if and
only if p and q are coprime. The braid index of Tp,q is min{p, q}.

Rudolph introduced quasi-positive braids—the elements of the semi-
subgroup of Bn generated by all conjugates of the generators ai; i.e. the
braids given by quasi-positive braid words

∏l
k=1 ωkaikω

−1
k ; compare [Rud83].

A knot or link is called quasi-positive if it arises as the closure of a quasi-
positive braid. A quasi-positive braid β has an associated canonical ribbon
surface Fβ embedded in B4 with the closure of β as boundary, which can be
seen in S3 given by n discs, one for every strand, and l(β) ribbon bands be-
tween the discs. In particular, the Euler characteristic χ of Fβ is n− l(β). By
the slice-Bennequin inequality [Rud93], χ(Fβ) equals χ4(β)—the maximal
Euler characteristic among all oriented and smoothly embedded surfaces F
(without closed components) in B4 such that ∂F ⊂ S3 is the link β.

Rudolph established that all quasi-positive links arise as the transversal
intersection of a smooth algebraic curve in C2 with S3 [Rud83]. Boileau and



1000 Peter Feller

Orevkov proved that this is a characterization of quasi-positive links [BO01,
Theorem 1].

4. Algebraic realization of optimal cobordisms

This section is concerned with establishing the following realization Lemma.

Lemma 6. Let β1 and β2 be quasi-positive n-braid words. If β2 can be
obtained from β1 by applying a finite number of braid group relations, con-
jugations, and additions of a conjugate of a generator anywhere in the braid
word; then there exists an algebraic cobordism C between the links obtained
as the closures of the βi. In fact, C is given as the zero-set of a polynomial
in C[x, y] of the form

yn + cn−1(x)yn−1 + · · ·+ c0(x),

where the ci(x) are polynomials.

Let β1 and β2 be quasi-positive braid words given as in Lemma 6;
i.e. there is a sequence of n-braid words (α1, . . . , αk) starting with β1 ending
with β2 such that αj and αj+1 either define the same conjugacy class in
Bn or αj+1 is obtained by adding a generator ai somewhere in αj . There is
an associated cobordism C between β1 and β2 given (as a handle decom-
position) by 1-handle attachments corresponding to every generator that is
added. The cobordism C is optimal ; i.e. it has Euler characteristic

χ4(β2)− χ4(β1) = l(β1)− l(β2)

and does not have closed components (this is the sensible extension of the
notion of optimal cobordisms to links). In fact, although not made explicit,
the proof of Lemma 6 given below does show that this C is algebraic. All
optimal cobordisms we construct in Section 5 arise as described above. We
see Lemma 6 as evidence that the following question might have a positive
answer.

Question 7. Are the two necessary conditions for the existence of an alge-
braic cobordism between two knots—the knots are quasi-positive and there
exists an optimal cobordism between them—sufficient?

The proof of Lemma 6 occupies the rest of this section and uses Rudolph
diagrams. Only the statement of Lemma 6 is used in the rest of the paper.
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4.1. Rudolph diagrams

To set notation and for the reader’s convenience, we recall the notion of
Rudolph diagrams, following [Rud83] and [Ore96].

For a square-free algebraic function f : C2 → C of the form

yn + cn−1(x)yn−1 + · · ·+ c0(x) ∈ C[x, y],

we study the following subsets of C.
• The finite set B of all x such that some of the n solutions y1, . . . , yn

of f(x, y) = 0 coincide.
• The semi real-analytic set B+ of all x such that the n solutions of

f(x, y) = 0 are all different, but do not have n distinct real parts.
Their union B ∪B+ is denoted by G(f).

Example 8. If f is y2 + x, then B = {0}, B+ = (0,∞), and G(f) = [0,∞).

Let Vf ⊂ C denote the zero-set of f . For an oriented simple closed curve
γ in C\B, the intersection Vf ∩ (γ × C) ⊂ γ × C is a closed n-braid via the
identification γ × C ∼= S1 × C. Similarly, for every oriented arc α in C \B
with endpoints in C \G(f) (which guarantees that at endpoints the n-
solutions have different real parts), the intersection Vf ∩ (α× C) ⊂ α× C

is a n-braid by identifying α× C with [0, 1]× C. Note that for this to be
well-defined, the identification should preserve the order of the real parts in
the second factor. An endpoint-fixing isotopy of two arcs and an isotopy of
two simple closed curves in C \B correspond to an isotopy of braids and
an isotopy of closed braids, respectively. Any choice of convention not made
explicit so far is chosen such that in Example 8 the oriented arc starting at
1− i and ending at 1 + i yields the 2-braid a1.

Let π : C2 → C be the projection to the first coordinate. We will only
consider f such that f = 0 defines a non-singular algebraic curve Vf ⊂ C2

and such that for every x inB the intersection π−1(x) ∩ Vf consists of exactly
n− 1 points; i.e. fixing an x in B gives a polynomial in y with precisely one
repeated root of multiplicity two. Rudolph observed that G(f) = B ∪B+

naturally carries the structure of an oriented, {1, . . . , n− 1}-labeled graph
that describes Vf up to π-preserving smooth isotopy in C2. After a generic
small linear coordinate change (to rule out pathologies), the vertices are
locally given as in Figure 1. The elements of B are the 1-valent vertices. The
edges are the connected components of the semi real-analytic open subset
of B+ given by those x that have precisely n− 1 different real parts among
the real parts of the solutions y1, . . . , yn to f(x, y) = 0. Some of the edges
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Figure 1: Neighborhoods of vertices of G(f).

tend to infinity instead of ending at a vertex. An edge e is labeled as follows.
For x in e ⊂ C, the n solutions yi of f(x, y) can be indexed such that the
index order agrees with the order given by their real parts; i.e.

Re(y1) < · · · < Re(yke
) = Re(yke+1) < · · · < Re(yn)

for some ke in {1, . . . , n− 1}. The edge e is labeled with ke. The edges are
oriented as follows. Pick a small oriented arc α ⊂ C that meets e transver-
sally in a point x. The braid associated with α is either ake

or a−1ke
(the keth

and ke + 1th solution exchange their real-part order while passing through
x). Orient e such that, if the orientation of e followed by the orientation of
γ gives the complex orientation of C, then the braid corresponding to the
transverse arc is aek (rather than for a−1ek ). In particular, edges are oriented
to point away from the 1-valent vertices.

The oriented, labeled graph G(f) describes Vf up to π-preserving iso-
topy; in particular, it describes all closed braids given by intersecting Vf

with cylinders. For a fixed embedded curve in γ in C \B with a marked
start point p /∈ B+, one gets an explicit procedure, how to read off a braid
word for the braid β corresponding to the arc starting and ending at p going
counter-clockwise around γ: by a small isotopy of γ in C \B, we may assume
that γ meets G(f) transversally and in edges only. Starting at p we move
counter-clockwise around γ. Whenever we cross an edge e transversally at
a point x, we write down the generator ake

or its inverse a−1ke
depending on

whether the orientation at x given by G(f) and γ agrees or disagrees with
the complex orientation of C.

The study of the graphs G(f) motivates the following definition. Fix
some surface S with boundary. In fact, we will only consider cases where S
is either

the unit disc D = {x ∈ C | |x| ≤ 1}
or the annulus A = {x ∈ C | 1 ≤ |x| ≤ 2} .
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A Rudolph diagram on S is an oriented, {1, . . . , n− 1}-labeled graph G with
smooth edges (we also allow smooth closed cycles) that enters and exits the
boundary of S transversely and is locally modelled on graphs G(f) coming
from an algebraic function f ∈ C[x, y] as above; i.e. locally around a vertex
G is given as in Figure 1. We denote the set of 1-valent vertices by B ⊂ G. Of
course, a huge source of examples are obtained by embedding (or immersing)
S in C and using this embedding to defineG as the pull back ofG(f) for some
algebraic function f . Any closed curve γ missing 1-valent vertices defines a
closed braid β by isotoping γ to meet G transversally in edges and then
reading off a braid word β for that closure as described in the G(f)-case. A
Rudolph diagram is said to be smooth if it contains only 1-valent vertices.

Example 9. Given a quasi-positive braid word β =
∏

wlailw
−1
l , there ex-

ists a smooth Rudolph diagram on D such that braid word read off when
following S1 = ∂D is β. Figure 2 illustrates how one factor ωaiω

−1 is real-
ized.

4

1

2
3

∂D = S1

Figure 2: Piece of a Rudolph diagram that yields the braid word ωaiω
−1

when following the boundary, for i = 4 and ω = a1a
−1
2 a3.

Orevkov describes which smooth Rudolph diagrams on D arise as G(f).

Proposition 10. [Ore96, Proposition 2.1] Let G be a smooth Rudolph di-
agram on D. There exists an algebraic function

f = yn + cn−1(x)yn−1 + · · ·+ c0(x) ∈ C[x, y]

such that G is isotopic to G(f) ∩D if and only if G(f) contains no closed
cycles.

As pointed out by Orevkov, Rudolph (implicitly) proved such a state-
ment while establishing the main theorem of [Rud83].
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Remark 11. Given a smooth Rudolph diagram G on D one can remove
all closed cycles without changing the closed braids associated with closed
curves in D.

4.2. Rudolph diagrams on the annulus and braid word sequences

For a Rudolph diagram G on A, we denote by β1 and β2 the two braids de-
fined byG via reading off braid words following the inner and outer boundary
of A counter-clockwise starting at 1 and 2, respectively. For β1 and β2 to
be well-defined, we ask that G does not meet 1 or 2, which from now on is
imposed on every Rudolph diagram.

For the proof of Lemma 6, we need the following. If a braid β is obtained
from a braid α as described in Lemma 6, then there exists a Rudolph diagram
on A such that α = β1 and β = β2. The rest of this subsection provides one
way of making this statement precise.

Remark 12. Any Rudolph diagram G on D or A can be isotoped such that
it is outward-oriented, which is defined as follows: All but a finite number of
circles around the origin intersect G transversally in edges. Furthermore, the
finite exceptional circle meet G transversally in edges except in one point x,
which falls in one of two categories. Either x lies in the interior of an edge
and the radial function restricted to that edge has a strict local extremum.
Or x is a vertex and locally around x the Rudolph Diagram G and the
exceptional circle behave as described in Figure 3. Finally, the positive real

i

j

i

i
j

|i− j| ≥ 2 |i− j| = 1

i

j

j

j

i

i

Figure 3: Neighborhoods of vertices of an outward-oriented Rudolph dia-
gram (black) and how they meet their corresponding exceptional circles
(red).

ray [0,∞) meets G transversally in edges and away from the finite number of
exceptional circles. Locally around points in [0,∞) ∩G the radial function
increases on G when following the orientation. An example is provided in
Figure 4.
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[0,∞)[0,∞)

Figure 4: A Rudolph diagram in the annulus (left) is arranged to be
outward-oriented (right). The exceptional circles are indicated by circle seg-
ments (red).

Given an outward-oriented Rudolph diagram G on A, let r1 < · · · < rk
denote the radii corresponding to exceptional circles or points where Gmeets
[0,∞). For s in [1, 2] \ {r1, . . . , rk}, we denote by βs the braid read off when
following the counter-clockwise oriented circle of radius s with s as marked
starting point. We associate to G the following finite sequence of braid words

(5) (βs0 , βs1 , . . . , βsk),

where

1 ≤ s0 < r1 < s1 < r2 < s2 < · · · < rk < sk ≤ 2.

In particular, the sequence (5) starts and ends with β1 and β2, respectively.

Observation 13. For all 0 ≤ l < k, the braid word βsl+1
is obtained from

βsl by one of the following operations, for some 1 ≤ i, j ≤ n− 1 with |i− j| ≥
2:

(i) adding or removing subwords aia
−1
i or a−1i ai;

(ii) performing one braid relation; i.e. replacing aiai±1ai by ai±1aiai±1 or
replacing aiaj by ajai;

(iii) changing a braid word of the form aiα to αai or vice versa;

(iv) adding ai somewhere in the braid word.
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Remark 14. Note that two braid words can be connected with a sequence
using (i) and (ii) if and only if they define the same braid. Two braid words
can be connected with a sequence using (i), (ii), and (iii) if and only if they
define the same closed braid. And two braid words can be connected with a
sequence using (i) through (iv) if and only if they are connected as described
in Lemma 6.

Conversely, a sequence of braid words as described in Observation 13
yields a Rudolph diagram on A. This amounts to the following:

Proposition 15. The assignment given by (5) yields an one-to-one corre-
spondence between outward-oriented Rudolph diagrams on A, up to isotopy
through outward-oriented Rudolph diagrams, and finite non-empty sequences
of braid words (β0, . . . , βk) such that βj+1 is obtained from βj by one of the
operations (i), (ii), (iii) and (iv) described in Observation 13.

4.3. Smoothing of Rudolph diagrams and proof of Lemma 6

After this translation of sequences of braid words to Rudolph diagrams we
need a final ingredient to prove Lemma 6:

Proposition 16. Let G be a Rudolph diagram on A. There exists a smooth
Rudolph diagram G̃ on A satisfying the following:
• G and G̃ are identical in a neighborhood of the inner boundary S1. In
particular, the braid words β1 and β̃1 corresponding to S1 are the same.
• The braids β2 and β̃2 corresponding to the outer boundary S1

2 have the
same closure.

Proof. Let B = {v1, . . . , vk} be the set of 1-valent vertices in G. For every
v in B, we choose an embedded arc γv in A that connects v to the inner
boundary S1 of A such that γv intersects G in the interior of A transversally
and outside of vertices (except at v of course). Furthermore, we arrange
that all the arcs γv1

, . . . , γvk
are pairwise disjoint. A neighborhood N in A

of the union S1 ∪ γv1
∪ · · · ∪ γvk

defines an annulus on which G is smooth.
The boundary of N has two components: S1 and a curve that is isotopic
to S1

2 in A \B. Therefore, we obtain a Rudolph diagram on A as wanted
by identifying N with A via a diffeomorphism that is the identity in a
neighborhood of S1. This is illustrated in Figure 5. �
Proof of Lemma 6. Let β1 and β2 be quasi-positive braid words satisfying
the assumptions in Lemma 6. We find a finite sequence of braid words as
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S1 S1

Figure 5: Left: A neighborhood N (blue) of the inner boundary S1 of A and
the embedded arc γv (red). Right: Restriction of the Rudolph diagram to
N , where N is identified with A.

described in Observation 13 that starts with β1 and ends with β2. Let G
be the corresponding Rudolph diagram on A provided by Proposition 15.
By Proposition 16 we may assume that G is smooth (this may change β2
but the corresponding closed braid remains the same). Since β1 is quasi-
positive, there is a smooth Rudolph diagram G̃ on D such that β1 is the
braid word read off when following the boundary of D by Example 9. We
glue (G̃,D) and (G,A) together along S1 to get (by rescaling) a smooth
Rudolph diagram R on the disk D; see left-hand side of Figure 6. Next, we

S1
r1

S1
r2

γ1

γ2

Figure 6: Left: The Rudolph diagram R in D, which is obtained by gluing
(G̃,D) (green) and (G,A) (blue) together. Middle: Realization of R in D as
G(f) with the isotoped annulus A (blue) and the curves γ1 and γ2 (red).
Right: The annulus Ã with S1

r1 and S1
r1 (red).

remove all closed cycles in R. This might change the braid word β1 but not
the closed braid it represents by Remark 11. By Proposition 10, there exists
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an algebraic function f such that R = G(f) after an isotopy of R. The latter
isotopy yields an embedding of A in C (we denote its image again by A)
such that G(f) ∩A = G. By the uniformization theorem for open annuli (see
e.g. [Ahl78, 6.4. Theorem 10]), there exists a biholomorphic map φ from the
interior of A ⊂ C to an open annulus Ã ⊂ C with concentric boundary circles
centered at the origin. Setting f̃(x, y) = f(φ−1(x), y) defines holomorphic
map on Ã× C of the form

yn + c̃n−1(x)yn−1 + · · ·+ c̃0(x) with c̃i holomorphic on Ã.

We choose two concentric circles S1
r1 and S1

r2 in Ã such that their preimages
under φ are curves γ1 and γ2 in A for which the closed braids Vf � (γi × C)
are βi. This is, for example, achieved by choosing r1 and r2 close to the
radii of the inner and the outer boundary of Ã, respectively; see Figure 6.
Therefore, V

˜f
intersects the cylinders Zi = S1

ri × C transversely in closed

braids and those closed braids are βi since V
˜f
� (S1

ri × C) is the image of

Vf � (γi × C) under the biholomorphic map

A× C→ Ã× C, (x, y) �→ (φ(x), y).

By polynomial approximation of the holomorphic coefficients c̃i of f̃ , we
find a polynomial g = yn + cn−1(x)yn−1 + · · ·+ c0(x) with ci ∈ C[x] such
that its zero-set Vg intersects the above cylinders transversally in the same
closed braids as V

˜f
. We replace the cylinders Zi with cylinders Zi,R = {x, y ∈

C | |x|2 + |y|
R

2
= r2i , x �= 0}, which for large enough R intersect Vg in the same

closed braids as the Zi. Finally, we set F (x, y) = 1
Rn g(x,Ry) and conclude

the proof by noticing that the 3-spheres S3
ri of radius ri intersect the zero-set

VF in the links that are the closures of βi since rescaling the y-coordinate
by the factor 1

R maps Zi,R onto S3
ri \ ({0} × S1

ri). �

5. Construction of optimal and algebraic cobordisms
between torus knots via positive braids

In this section, we construct several families of optimal cobordisms between
torus knots, which are also algebraic by Lemma 6. It came as a surprise to
the author that Ozsváth, Stipsicz, and Szabó’s Υ-invariant shows that the
constructions for torus knots of braid index 4 or less cannot be improved.

Definition 17. For links K and T that are closures of positive braids, we
say K is subword-adjacent to T , denoted by K ≤s T , if there are positive
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n-braids β1 and β2, for some integer n, such that β1 can be obtained from
β2 by successively deleting generators.

Here, deleting a generator in a positive braid β means removing an ai
in a positive braid word that represents β. We think of subword-adjacency
as a combinatorial toy model for adjacency of singularities (as described in
Section 2), hence the name.

Remark 18. If a positive n-braid β1 is obtained from a positive n-braid β2
by deleting positive generators, then β2 can be obtained from β1 as described
in Lemma 6. Therefore, if K is subword-adjacent to T , then there exists an
algebraic cobordism between them, by Lemma 6.

Remark 19. In what follows we consider positive braids β with non-split
closure; in particular, their closures β are fibered; see Stallings [Sta78]. In
this case, the optimal cobordism provided by a subword-adjacency can be
understood on the fiber surfaces: Removing a generator in a positive braid β
corresponds to deplumbing a positive Hopf band on its fiber surface Fβ . In
other words, if K = β1 is subword-adjacent to T = β2, then the open book
of S3 with binding K is obtained from the open book of S3 with binding T
by χ(Fβ1

)− χ(Fβ2
) = l(β2)− l(β1) positive destabilizations.

In this section, we use fence diagrams to represent positive braids. I.e. in
a braid diagram, positive crossings are replaced with horizontal inter-
vals ; see Rudolph [Rud98]. For example, the positive 3-braid a1a2 is

represented by instead of the braid diagram .
Simple examples of a subword-adjacency, which yield well-known opti-

mal cobordisms, are the following.

Example 20. Let n,m, a, b be positive integers. If n ≤ a and m ≤ b, then
Tn,m is subword-adjacent to Ta,b. This subword-adjacency is obtained by
deleting generators in the positive a-braid word (a1 · · · aa−1)b, which has
closure Ta,b, until one reaches a positive braid word with closure Tn,m. Fig-
ure 7 illustrates this for the adjacency T (4, 5) ≤s T (7, 7).

The subword-adjacencies given in Example 20, have analogs in the al-
gebraic adjacency setting since it is easy to write down an adjacency from
ya − xb to yn − xm.

A proposition due to Baader provides examples of subword-adjacencies
that are more interesting.
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−→ ,

Figure 7: Subword adjacency between T4,5 and T7,7. The arrow indicates the
removal of the generators marked in red.

Proposition 21. [Baa12, Proposition 1] Let a, b, c be positive integers with
a ≤ b. Then Ta,bc is subword-adjacent to Tb,ac.

However, again there exists an algebraic adjacency from ya − xbc to yb −
xac; see [Fel14, Proposition 23], which yields an algebraic cobordisms from
Ta,bc to Tb,ac without appealing to Lemma 6.

5.1. Optimal examples for torus knots of small braid index and
proofs of the main results

After these first examples, we proceed with subword adjacencies between
torus knots that turn out to be optimal and that, to the author’s knowledge,
are not known to have algebraic adjacency analogs.

The following propositions provide all optimal cobordisms that are
needed to establish Theorem 1, Theorem 2, and Corollary 3.

Proposition 22. Let n and m be positive integers. If n ≤ 5m−1
3 , then the

torus link T2,n is subword-adjacent to the torus link T3,m.

Proposition 23. Let n and m be positive integers. If n ≤ 5m−3
2 , then the

torus link T2,n is subword-adjacent to the torus link T4,m.

It is part of the statement of Theorems 1 and 2 that Propositions 22
and 23 cannot be improved, at least when the involved links are knots. This
is a consequence of the cobordism distance bound

(6) dc(K,T ) = g4(K�− T ) ≥ max{|τ(K)− τ(T )|, |υ(K)− υ(T )|},



Optimal cobordisms between torus knots 1011

provided in [OSS14, Theorem 1.11], generalizing the τ -bound in [OS03].
Before proving Propositions 22 and 23, we use them and (6) to prove The-
orem 1, Theorem 2, and Corollary 3.

Proof of Theorems 1 and 2. By Remark 18, the fact that (II) implies (III)
is an immediate consequence of Proposition 22 and Proposition 23, respec-
tively. By the Thom conjecture, (III) implies (I). Therefore, it remains to
show that (I) implies (II).

Throughout the proof we haveK = T2,n, for some odd integer n ≥ 3, and
T is a torus knot of braid index 3 or 4. We assume towards a contradiction
that (II) does not hold and calculate that

(7) |g(T )− g(K)| < |υ(T )− υ(K)|,

which contradicts (I) by (6). We do this according to the 3 cases T = T3,3k+1,
T = T3,3k+2 (Theorem 1); and T = T4,2k+1 (Theorem 2), where k is a positive
integer:

For T = T3,3k+2, we have that (II) fails precisely when

n ≥ 5k + 4⇐⇒ 5k + 2 < n− 1

⇐⇒ 3k + 1− n− 1

2
<

n− 1

2
− (2k + 1)

⇐⇒
∣∣∣∣3k + 1− n− 1

2

∣∣∣∣ < ∣∣∣∣n− 1

2
− (2k + 1)

∣∣∣∣
(1)(2)⇐⇒ |g(T )− g(K)| < |−υ(K) + υ(T )| .

This shows that, if (II) fails, then (7) holds.
Similarly, for T = T3,3k+1 and T = T4,2k+1, we have that (II) fails pre-

cisely when

n ≥ 5k + 2⇐⇒ 5k < n− 1

⇐⇒ 3k − n− 1

2
<

n− 1

2
− 2k

⇐⇒
∣∣∣∣3k − n− 1

2

∣∣∣∣ < ∣∣∣∣n− 1

2
− 2k

∣∣∣∣
(1)(2)⇐⇒ |g(T )− g(K)| < |−υ(K) + υ(T )| .

As before this shows that, if (II) fails, then (7) holds. �
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Proof of Corollary 3. For torus knots K and T such that the sum of their
braid indices is 6 or less, we want to establish

dc(K,T ) = g4(K�T ) = max{|τ(K)− τ(T )|, |υ(K)− υ(T )|}.

By (6), it suffices to find a cobordism C between K and T with genus

g(C) ≤ max{|τ(K)− τ(T )|, |υ(K)− υ(T )|}.

If K and T are torus knots of opposite sign, then we have that

dc(K,T ) = g4(K�T ) = g(K) + g(T ),

where the second equality invokes the Thom Conjecture; compare Remark 4.
If K and T are positive torus knots that have the same braid index, then

dc(K,T ) = g4(K�T ) = |g(K)− g(T )|,

where the second equality follows from Example 20; compare Remark 4.
Therefore, if K and T are torus knots of opposite sign or torus knots with
the same braid index, then

dc(K,T ) = g4(K�T ) = |τ(K)− τ(T )|

since g(K) + g(T ) = |τ(K)− τ(T )| or |g(K)− g(T )| = |τ(K)− τ(T )|, re-
spectively; compare [OS03, Corollary 1.7]. Thus, after taking mirror images
of K and T , if necessary, we may assume that K and T are both positive
torus knots such that K has braid index 2 and T has braid index 3 or 4.

Let n and k be the positive integers such that K is T2,n and T is T3,3k+1,
T3,3k+2, or T4,2k+1. Furthermore, we do not need to consider the cases covered
by Theorems 1 and 2; i.e. when (I), (II), and (III) of Theorems 1 and 2,
respectively, are satisfied.

We first consider T = T3,3k+2. By Proposition 22 there exist a cobordism
C1 from T to T2,5k+3 which is optimal; i.e. C1 has Euler characteristic

χ4(T )− χ4(T2,5k+3) = (−6k − 1)− (−5k − 1) = −k.

Note that n > 5k + 3 since we are assuming that there does not exist an
optimal cobordism fromK to T ; compare (II) in Theorem 1. By Example 20,
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we have a cobordism C2 from T2,5k+3 to K of Euler characteristic

χ4(K)− χ4(T2,5k+3) = −n+ 2− (−5k − 1) = −n+ 5k + 3.

Gluing C1 and C2 together yields a cobordism C of Euler characteristic
−n+ 4k + 3 between T and K. Thus,

g(C) =
n− 4k − 3

2
=

n− 1

2
− 2k − 1

(2)
= −υ(K) + υ(T ) = |υ(K)− υ(T )|.

Similarly, if T = T3,3k+1 or T = T4,2k+1, we get a cobordism from T to
T2,5k+1 with Euler characteristic

−6k + 1− (−5k + 1) = −k

by Proposition 22 or Proposition 23, respectively, and a cobordism from
T2,5k+1 to K with Euler characteristic

−n+ 2− (−5k + 1) = −n+ 5k + 1.

As before, we combine these two cobordisms to a cobordism C from T to K
with

g(C) =
(n− 1)− 4k

2
=

n− 1

2
− 2k

(2)
= −υ(K) + υ(T ) = |υ(K)− υ(T )|.

�
We now provide proofs of Proposition 22 and Proposition 23. We thank

Sebastian Baader for important inputs for these proofs.

Proof of Proposition 22. We denote the 3-strand full twist (a1a2a1)
2 by Δ2.

The full twist commutes with every other 3-braid.
Let us first consider the case where m = 3l for some positive integer l.

The torus link T3,3l is the closure of 3-braid Δ2l. Note that

Δ2Δ2 = a1a2a1a1a2a1Δ
2 = a1a2a1a1a2Δ

2a1.

Adding another full twist yields

Δ2Δ2Δ2 = a1a2a1a1a2Δ
2Δ2a1 = a1a2a1a1a2(a1a2a1a1a2Δ

2a1)a1

and inductively we get Δ2l = (a1a2a1a1a2)
l(a1)

l. The subword a2a1a2 occurs
l − 1 times in (a1a2a1a1a2)

l(a1)
l. Applying l − 1 times the braid relation
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a2a1a2 = a1a2a1 gives the 3-braid word

w = a1a2a1a1(a1a2a1a1a1)
l−1a2(a1)l.

Deleting all but the first a2 in w yields a1a2a
5l−2
1 , which has T2,5l−1 as

closure.
If m is 3l + 1 for some positive integer l, we write T3,3l+1 as the closure

of

a1a2Δ
2l = a1a2w = a1a2

(
a1a2a1a1(a1a2a1a1a1)

l−1a2(a1)l
)

= a1a1a2a1a1a1(a1a2a1a1a1)
l−1a2(a1)l.

Deleting all but the first a2 yields a1a1a2(a1)
5l−1, which has closure T2,5l+1.

Finally, if m is 3l + 2 for some positive integer l, view T3,3l+2 as the
closure of

a1a2a1a2Δ
2l = a1a1a2a1Δ

2l = a1(a1a2Δ
2l)a1

= a1

(
a1a1a2a1a1a1(a1a2a1a1a1)

l−1a2(a1)l
)
a1.

Deleting all but the first a2 yields a1a1a1a2(a1)
5l, which has T2,5l+3 as clo-

sure. �

Proof of Proposition 23. We view T4,2l+1 as the closure of the 4-braid
(a1a3a2)

2l+1. Using the fact that the half twist on 4 strands

Δ = a1a3a2a1a3a2 = a1a2a1a3a2a1

anti-commutes with every other 4-braid, i.e. a1Δ = Δa3, a3Δ = Δa1, and
a2Δ = Δa2, we have that

Δk = a1a2a1a3a2a1Δ
k−1

= a1a2a1a3a2Δ
k−1a2+(−1)k−1

= a1a2a1a3a2

(
a1a2a1a3a2Δ

k−2a2+(−1)k−2

)
a2+(−1)k−1

= (a1a2a1a3a2)
2Δk−2a1a3

= · · · = (a1a2a1a3a2)
ka
� k+1

2
�

1 a
� k

2
�

3 .
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With this we can write (a1a3a2)
2l+1 as follows.

(a1a3a2)
2l+1 = (a1a3a2)

2a1a3a2(a1a3a2)
2(l−1)

= (a1a3a2)
2a1a3a2(a1a2a1a3a2)

l−1a�
l

2
�

1 a
� l−1

2
�

3

= (a1a3a2)
2a1a3(a2a1a2a1a3)

l−1a2a
� l

2
�

1 a
� l−1

2
�

3

= (a1a3a2)
2a1a3(a1a2a1a1a3)

l−1a2a
� l

2
�

1 a
� l−1

2
�

3 .

Deleting the last l occurrences of a2 in this braid word gives

(a1a3a2)
2a1a3(a1a1a1a3)

l−1a�
l

2
�

1 a
� l−1

2
�

3 = (a1a3a2)
2a

3l−2+� l

2
�

1 a
l+� l−1

2
�

3 ,

which has closure

T2,4+(3l−2+� l

2
�)+(l+� l−1

2
�) = T2,5l+1.

Similarly, the torus link T4,2l+2 is the closure of the 4-braid

(a1a3a2)
2l+2 = (a1a3a2)

2a1a3a2a1a3(a1a2a1a1a3)
l−1a2a

� l

2
�

1 a
� l−1

2
�

3 .

Deleting the last l + 1 occurrences of a2 yields a 4-braid that has closure
T2,5l+3. �

5.2. Subword-adjacency for the torus knot Tm,m+1

We now study, which T2,n is subword-adjacent to Tm,m and Tm,m+1. Our
result is roughly that, whenever n ≤ 2m2

3 +O(m), then T2,n is subword-
adjacent to Tm,m and Tm,m+1. Our interest in this stems from the fact that
this is an improvement over what is known in the algebraic setting; com-
pare with (4). In other words, the algebraic cobordism obtained by applying
Lemma 6 to the subword-adjacencies provided in the following Proposition
is not known to come from an algebraic adjacency between y2 − xn and
ym − xm or a singular algebraic curve of degree m with an An−1-singularity.

Remark 24. After a first preprint of this article appeared, the author was
pointed to work of Orevkov, where the same bound is attained in a very
similar setting, and his result was also motivated by questions discussed in
Section 2. Indeed, Orevkov’s result [Ore12, Theorem 3.13] allows to conclude
that there exists an optimal cobordism between T2,n and Tm,m, whenever
n ≤ 2m2

3 +O(m).
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Proposition 25. Let m and n be positive integers. If n ≤ 2m2+4
3 −m, then

T2,n is subword-adjacent to Tm,m.

Remark 26. A similar statement holds for the knots Tm,m+1: let m and
n be positive integers. If n ≤ 2m2−m+5

3 , then T2,n is subword-adjacent to
Tm,m+1.

Remark 27. We do not know whether the factor 2
3 is optimal. If it is, the

straight-forward application of Υ does not suffice to show this. In fact, it
only gives us that, whenever there is an optimal cobordism between Tm,m+1

and T2,n, then

(8) n ≤ 3m2

4
+O(m),

which is the same upper bound that is known for the algebraic setting;
see (3). Indeed, let us fix a positive integer m and assume that there exists
an optimal cobordism between the T2,n and Tm,m+1 for some odd n > 0; i.e.

dc(T2,n, Tm,m+1) = |g(T2,n)− g(Tm,m+1)|.

Using

(9)

υ(T2,n)
(2)
= −n− 1

2
and

υ(Tm,m+1) = −
⌊
m2

4

⌋
[OSS14, Proposition 6.3],

the obstruction given in (6) yields

−υ(T2,n) + υ(Tm,m+1) ≤ g4(Tm,m+1)− g4(T2,n)
(1)(9)⇐⇒

n− 1

2
−
⌊
m2

4

⌋
≤ m(m− 1)

2
− n− 1

2
⇐⇒

n ≤ 3m2 − 2m+ 4

4
.

A similar calculation using the signature instead of υ also yields (8).

We proceed with the proof of Proposition 25, which can be adapted to
yield Remark 26.
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Proof of Proposition 25. We denote by Δm the half twist on m strands;
i.e. the m-braid

(a1a2 · · · am−1)(a1a2 · · · am−2) · · · (a1a2)a1.

The torus link Tm,m is the closure of the full twist on m strands Δ2
m.

The main step in the proof consists of deleting generators in Δm yielding
a braid that is a split union of positive 2-braids and which has roughly length
2
3 l(Δm). More precisely, we delete the generator am−1 in Δm and then apply
braid relations to get the positive braid word

(a21a2 · · · am−2) · · · (a21a2)a21 in Bm.

Then, we delete all a2 yielding a split union of a
2(m−2)
1 on strands 1 and 2,

a half twist on the strands 3 to m− 1, and strand m. We illustrate this for
m = 7.

(10) Δ7 = −→ = −→ ,

where arrows indicate the deletion of the generators marked in red. To the
remaining half twist, which we readily identify with Δm−3, we apply the
same procedure. And we do this inductively until the remaining half twist
is Δ3,Δ2, or Δ1, where Δ1 is just the trivial 1-strand braid. Applying the
procedure to Δ3 just yields the split union of a21 and one strand. On Δ2 = a21
and Δ1 it does not do anything. This inductive procedure yields a braid βm,
which closes to a split union of torus links of braid index 2. As before we
illustrate this for m = 7.

(11) Δ7 =
(10)−→ −→ · · · −→ = β7

The length l(βm) of βm is described by the following formula.

l(βm) = 2(m− 2) + 2(m− 5) + 2(m− 8) + · · ·

=

⎧⎨⎩
(3l − 1)l for m = 3l
(3l + 1)l for m = 3l + 1
(3l + 3)l + 1 for m = 3l + 2
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We use the above to obtain a braid γm that closes to a T2,n by deleting
generators in Δ2

m, which shows that T2,n is subword-adjacent to Tm,m. For
this we write

Δ2
m = ΔmΔm = (a1a2 · · · am−1)(a1a2 · · · am−2)Δ̃m−2Δm,

where Δ̃m−2 is a half twist on the first m− 2 strands. Now, we apply the

above deleting algorithm to Δ̃m−2, which is seen as Δm−2, and Δm yielding

γm = (a1a2 · · · am−1)(a1a2 · · · am−2)β̃m−2βm,

where β̃m−2 is the m strand braid which is obtained by having βm−2 on the
first m− 2 strands. The braid γm is of the form

γm = (a1a2 · · · am−1)(a1a2 · · · am−2)aα1

1 aα3

3 · · · aα2k−1

2k−1 ,

where k = �m2 � and αk are positive integers. As above we illustrate this for
m = 7.

Δ2
7 = → = → (11)→ = γ7

The closure of γm is a braid index two torus link T2,n. This follows from
observing that the closure of (a1a2 · · · am−1)(a1a2 · · · am−2) is T2,m−1. Since

l(γm)− l((a1a2 · · · am−1)(a1a2 · · · am−2)) = l(βm) + l(βm−2)

we see that n = m− 1 + l(βm−2) + l(βm); i.e. the closure of γm is
T2,m−1+l(βm−2)+l(βm). With the above calculations for l(βm) we get

n = 3l − 1 + (3l − 2)(l − 1) + (3l − 1)l = 6l2 − 3l + 1,

n = (3l + 1− 1) + (3l)(l − 1) + 1 + (3l + 1)l = 6l2 + l + 1,

n = (3l + 2− 1) + (3l − 1)l + (3l + 3)l + 1 = 6l2 + 5l + 2,

for m = 3l, m = 3l + 1, and m = 3l + 2, respectively. This finishes the proof
since n is the largest integer with n ≤ 2m2+4

3 −m. �
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6. Calculation of Υ for torus knots of small braid index

For completeness, we provide the calculations that yield the υ-values given
in (2).

Proposition 28. For positive integers n, we have

υ(T3,3n+1) = −2n, υ(T3,3n+2) = −2n− 1, and υ(T4,2n+1) = −2n.

Remark 29. More generally, the calculation we provide below in the proof
of Proposition 28 allows to determine the function ΥT : [0, 2]→ R for torus
knots T of braid index 3 and 4: For all positive integers n, we have

ΥT3,3n+1
(t) =

{
−3nt for 0 ≤ t ≤ 2

3

−2n for 2
3 ≤ t ≤ 1

ΥT3,3n+2
(t) =

{
−(3n+ 1)t for 0 ≤ t ≤ 2

3

−2n− t for 2
3 ≤ t ≤ 1

ΥT4,4n+1
(t) =

{
−6nt for 0 ≤ t ≤ 1

2

−2n− 2nt for 1
2 ≤ t ≤ 1

and ΥT4,4n+3
(t) =

⎧⎪⎨⎪⎩
−(6n+ 3)t for 0 ≤ t ≤ 1

2

−2n− (2n+ 3)t for 1
2 ≤ t ≤ 2

3

−2n− 2− 2nt for 2
3 ≤ t ≤ 1

This fully describes ΥT since it is symmetric, i.e. ΥT (t)=(2−t); see [OSS14].1

Our calculations have convinced us that, for a general torus knot Tp,q,
ΥTp,q

(t) might look similar to the homogenization of the signature pro-
file of torus knots; i.e. the following function, studied by Gambaudo and
Ghys [GG05]:

SignTp,q
: [0, 2]→ R, t �→ lim

k→∞

σeπit

(
((a1 · · · ap−1)q)k

)
k

,

1Added in print: a formula that allows to calculate Υ for torus knots and alge-
braic knots and, in particular, recovers these calculations has since been described
in [FK16].
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where σω denotes the Levine-Tristram signature. We hope to explore this
further in the future.2 The only Heegaard-Floer theory input in the proof of
Proposition 28 is the following combinatorial procedure to determine Υ for
torus knots (or more generally L-space knots) [OSS14]:

Write the Alexander polynomial

Δ(Tp,q) = t−
(p−1)(q−1)

2
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)

as
∑l

k=0(−1)ktαk , where (αk)
l
k=0 is a decreasing sequence of integers. Con-

struct a corresponding decreasing sequence of integers (mk)
l
k=0 defined by

(12)
m0 = 0, m2k = m2k−1 − 1, and

m2k+1 = m2k − 2(α2k − α2k+1) + 1.

Then one has

(13) ΥTp,q
(t) = max

0≤2k≤l
{m2k − tα2k} [OSS14, Theorem 1.15].

In particular,

ΥTp,q
(1) = υ(Tp,q) = max

0≤2k≤l
{m2k − α2k}.

In fact, for the calculation one only needs the evenly indexed mk, for
which (12) can be shortened to

(14) m0 = 0 m2k = m2k−2 − 2(α2k−2 − α2k−1).

2Added in print: the relation between Υ and the signature profil for torus knots
has since been described in [FK16].
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Proof of Proposition 28. We observe that

Δ(T3,3n+1) = t−3n
(t9n+3 − 1)(t− 1)

(t3n+1 − 1)(t3 − 1)

= t−3n
t9n+2 + t9n+1 + · · ·+ 1

(t3n + t3n−1 + · · ·+ 1)(t2 + t+ 1)

=
t6n+2 + t6n+1 + · · ·+ t−3n+1 + t−3n

t3n+2 + 2t3n+1 + 3t3n + 3t3n−1 + · · ·+ 3t3 + 3t2 + 2t+ 1
= (t3n − t3n−1) + (t3n−3 − t3n−4) + · · ·+ (t3 − t2) + 1− t−2 + · · ·

=

n−1∑
i=0

(t3n−3i − t3n−3i−1) + 1 +

n∑
i=1

(−t−3i+1 + t−3i).

In other words, Δ(Tp,q) =
∑l

k=0(−1)ktαk for

l = 4n, α2k = 3n− 3k, and α2k−2 − α2k−1 =

{
1 for k ≤ n

2 for k > n

Therefore, (14) yields m2k = −2k for k ≤ n and m2k = 2n− 4k for k ≥ n,
and so

υ(T3,3n+1) = max
0≤2k≤l

{m2k − α2k} = m2n − α2n = −2n.

Similarly, one calculates

Δ(T3,3n+2) =
t6n+4 + t6n+3 + · · ·+ t−3n + t−3n−1

t3n+3 + 2t3n+2 + 3t3n+1 + 3t3n + · · ·+ 3t3 + 3t2 + 2t+ 1
= t3n+1 − t3n + t3n−2 − t3n−3 + · · ·+ t4 − t3 + t− 1 + · · ·

=

n−1∑
i=0

(t3n−3i+1 − t3n−3i) + t− 1 + t−1 +
n∑

i=1

(−t−3i + t−3i−1),

which means that Δ(Tp,q) =
∑l

k=0(−1)ktαk for l = 4n+ 2,

α2k=

{
3n+ 1− 3k for k ≤ n

3n+ 2− 3k for k > n
and α2k−2−α2k−1=

{
1 for k ≤ n+ 1

2 for k > n+ 1

Thus, m2k = −2k for k ≤ n+ 1 and m2k = 2n+ 2− 4k for k ≥ n+ 1, which
yields

υ(T3,3n+2) = max
0≤2k≤l

{m2k − α2k} = m2n − α2n = m2n+2 − α2n+2 = −2n− 1.
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For T4,2n+1, we calculate first when n is even, i.e. n = 2s for a positive
integer s:

Δ(T4,4s+1) = t−6s
(t16s+4 − 1)(t− 1)

(t4s+1 − 1)(t4 − 1)

=
t−6s(t16s+3 + t16s+2 + · · ·+ 1)

(t4s + t4s−1 + · · ·+ 1)(t3 + t2 + t+ 1)

=
t10s+3 + t10s+2 + · · ·+ t−6s+1 + t−6s

t4s+3 + 2t4s+2 + 3t4s+1 + 4t4s + 4t4s−1 + · · ·+ 4t4 + 4t3 + 3t2 + 2t+ 1

=

s−1∑
i=0

(t6s−4i − t6s−4i−1) +
2s−1∑
i=s

(t6s−4i − t6s−4i−2)

+

3s−1∑
i=2s

(t6s−4i − t6s−4i−3) + t−6s,

which means

l = 3n, α2k = 3n− 4k, and α2k−2 − α2k−1 =

⎧⎪⎨⎪⎩
1 for k ≤ n

2

2 for n
2 < k ≤ n

3 for n < k

Therefore, we have

m2k =

⎧⎪⎨⎪⎩
−2k for k ≤ n

2

n− 4k for n
2 ≤ k ≤ n

3n− 6k for n ≤ k

which yields that υ(T4,2n+1) equals

max
0≤2k≤l

{m2k − α2k} = mn − αn = mn+2 − αn+2 = · · · = m2n − α2n = −2n.

Finally, for n odd, a similar calculation yields

Δ(T4,2n+1) =

n−1

2∑
i=0

(t3n−4i − t3n−1−4i) +
n∑

i=n+1

2

(t3n+1−4i − t3n−1−4i)

+

3n−1

2∑
i=n+1

(t3n+2−4i − t3n−1−4i) + t−3n,
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which means l = 3n+ 1,

α2k =

⎧⎪⎨⎪⎩
3n− 4k for k ≤ n−1

2

3n+ 1− 4k for n−1
2 < k ≤ n

3n+ 2− 4k for n < k

and

α2k−2 − α2k−1 =

⎧⎪⎨⎪⎩
1 for k ≤ n+1

2

2 for n+1
2 < k ≤ n+ 1

3 for n+ 1 < k

Therefore, we have

m2k =

⎧⎪⎨⎪⎩
−2k for k ≤ n+1

2

n+ 1− 4k for n+1
2 < k ≤ n+ 1

3n+ 3− 6k for n+ 1 < k

This yields that υ(T4,2n+1) equals

max
0≤2k≤l

{m2k − α2k} = mn+1 − αn+1

= mn+3 − αn+3 = · · · = m2n − α2n = −2n.
�
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