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Regularity of shadows and the geometry

of the singular set associated to a

Monge-Ampère equation

E. Indrei and L. Nurbekyan

Illuminating the surface of a convex body with parallel beams of
light in a given direction generates a shadow region. We prove
sharp regularity results for the boundary of this shadow in every
direction of illumination. Moreover, techniques are developed for
investigating the regularity of the region generated by orthogonally
projecting a convex domain onto another. As an application we
study the geometry and Hausdorff dimension of the singular set
corresponding to a Monge-Ampère equation.

1. Introduction

Shadows play an important role in many different branches of mathematics
such as differential geometry, convex geometry, geometric combinatorics, and
functional analysis [1–3, 8, 11, 12, 16, 18]. Our aim in this paper is to show
that they also naturally appear in a free boundary problem associated to a
Monge-Ampère equation. Indeed, it turns out that the regularity of certain
shadow regions yields information on the Hausdorff dimension of the singular
set appearing in the optimal partial transport problem [6, 7, 9, 10, 15].

1.1. Illumination shadows

Illumination shadows form powerful tools in the classification of surfaces. For
instance, it is a well-known fact that if every shadow boundary generated by
parallel illumination on a Blaschke surface embedded in R3 is a plane curve,
then the surface is quadric [19, Theorem 5.8]. Moreover, in 2001 Ghomi [11]
solved the shadow problem formulated in 1978 by Wente: if M is a closed
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oriented 2-dimensional manifold and f : M → R3 is a smooth immersion,
then f is a convex embedding if and only if the shadow region generated by
parallel illumination is simply connected in every direction.

Regularity properties of shadow boundaries have been investigated in
[11, 12, 14, 21, 24, 25]. For example, given a smooth manifold it is well
known that if the Gaussian curvature does not vanish at a given point, then
the shadow boundary is locally smooth around that point (via the inverse
function theorem). Moreover, using Sard’s theorem, it is not difficult to
prove that in almost every direction (in the sense of Lebesgue), the shadow
boundary of a surface is continuous. Steenarts [24] showed that for a smooth
convex body, the shadow boundary has finite (n− 2)-dimensional Hausdorff
measure in almost all directions (in the sense of Lebesgue). On the other
hand, Gruber and Sorger [12] showed that when one considers the product
space of convex bodies and directions G × Sn−1, most pairs (Ω, u) ∈ G ×
Sn−1 (i.e. up to a meagre set in the sense of Baire) generate boundaries
with infinite (n− 2)-dimensional Hausdorff measure while having Hausdorff
dimension (n− 2), see [12, Theorems 1 & 2]. These results suggest that
in the general class of convex bodies, most shadow boundaries are highly
irregular.

Moreover, in applications one may need regularity results for the shadow
boundary of a generic convex body in every direction (an example is given in
§4). In this weak setting, the tools of differential geometry do not apply due
to lack of regularity and “almost everywhere” results in the sense of Lebesgue
or Baire do not suffice since they may exclude a dense set of directions. In
§2, we address this problem with tools from convex geometry and obtain the
following results.

• [Theorem 2.5] For a strictly convex domain in Rn, the boundary of
the shadow generated by parallel illumination is locally a continuous
graph in every direction.

• [§2.1] There exists a convex set and a direction so that the shadow
boundary generated by parallel illumination is not locally a graph.

• [Theorem 2.6] For a p-uniformly convex C1,α domain in Rn, α ∈ (0, 1],
p ≥ 2, the boundary of the shadow generated by parallel illumination
is locally a C0, α

p−1 graph in every direction.

• [§2.2] For every α ∈ (0, 1] and p ≥ 2, there exists a C∞ smooth convex
set and a direction so that the shadow boundary generated by parallel
illumination in that direction is in C0,β \ C0, α

p−1 for some β < α
p−1 .
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• [Remark 2.8] For a 2-uniformly convex Ck+1 domain in Rn, k ≥ 1, the
boundary of the shadow generated by parallel illumination is locally a
Ck graph.

We note that shadows generated by another type of illumination process
also appear in a well-known covering problem of Levi [17] and Hadwiger [13]:
let Ω ⊂ Rn be a convex body and h(Ω) the smallest number so that Ω can be
covered by h(Ω) smaller homothetical copies of itself; the conjecture states
that h(Ω) ≤ 2n, with equality if and only if Ω is an n-parallelotope. Indeed,
Boltyanskii [5] connected this conjecture with an illumination problem by
showing that h(Ω) = l(Ω) where l(Ω) is the smallest number of light sources
outside of Ω required to illuminate ∂Ω; a boundary point y of Ω is said to
be illuminated from x /∈ Ω if the half-line through y from x intersects the
interior of Ω (at a point not between x and y). For further reading, we refer
the reader to two survey articles [2, 18] and the references therein.

1.2. Projection shadows

In 1986 Kiselman [16] addressed the following question: what degree of
smoothness does a two-dimensional projection of a three-dimensional smooth
convex set possess? He proved that if the convex set is C1, then its projec-
tion is also C1; if it is C2,1, then the boundary of the projection is twice
differentiable; and, if it is real-analytic, then the boundary of the projec-
tion is C2,α for some α > 0. Moreover, he provided examples to show that
these results are essentially sharp: in the real-analytic case, the boundary

of the projection may be exactly C2, 2
q for any odd integer q ≥ 3 [16, Ex-

ample 3.2], and the boundary of the shadow of a C∞ set may not be C2

[16, Example 3.3]. V. Sedykh [23] studied this question in higher dimensions
and proved that the projection of a smooth closed convex surface in Rn

onto a hyperplane is C1,1 and showed that this result is sharp in the sense
that there exists a hypersurface whose shadow is not twice differentiable;
this contrasts with Kiselman’s result in R3. Moreover, the analytic case also
displays a loss of regularity in higher dimensions: Bogaevsky [4] showed the
existence of a real-analytic closed convex hypersurface, whose shadow does
not belong to the class C2. These results are all compiled and discussed in
the book “Arnold’s problems” by V.I. Arnold [1] (Arnold calls these types
of shadows “apparent contours”).

In applications, however, one may require regularity results of this
shadow when projecting onto a strictly convex domain (as opposed to a
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hyperplane as in the results above), see e.g. §1.3. Indeed, this situation is
quite different in the sense that the projection no longer occurs in just one
direction, but in many different directions determined by the normal of the
set onto which the projection takes place. Therefore, the variation of this
normal dictates the regularity and geometry of the boundary of the projec-
tion and this requires a new approach in contrast with the affine case. Here
is the precise statement of the problem: given two convex domains Ω ⊂ Rn,
Λ ⊂ Rn, if PΛ(Ω) denotes the orthogonal projection of Ω onto Λ, then how
smooth is ∂(PΛ(Ω) ∩ ∂Λ)? The following results are established in §3.
• [Theorem 3.1] Let Ω ⊂ Rn be a bounded strictly convex domain and
Λ ⊂ Rn a convex domain whose boundary is C1,1. If Ω ∩ Λ = ∅, then
∂PΛ(Ω) is finitely (n− 2)-rectifiable.

• [Remark 3.2] The disjointness assumption in Theorem 3.1 is necessary:
there exist two bounded convex domains Ω and Λ in R2 for which
H0(∂(PΛ(Ω) ∩ ∂Λ)) =∞.

• [Theorem 3.3] If Ω and Λ are Ck+1 convex domains in Rn with dis-
joint closures, k ≥ 1, and Ω is bounded and 2-uniformly convex, then
∂PΛ(Ω) is an (n− 2)-dimensional Ck

loc graph.

We point out that when one takes Λ to be a hyperplane, Theorem 3.1
is immediate: the projection of a convex set onto a hyperplane is convex, so
∂PΛ(Ω) is locally Lipschitz. However, the situation is different if Λ is curved.
Here is the idea of our method: we take a point y ∈ ∂PΛ(Ω) and represent
Λ locally by a bi-Lipschitz graph with respect to the tangent space at y,
Ty∂Λ = Rn−1. Then we consider PRn−1∂PΛ(Ω) and cook up an auxiliary
uniformly convex C1,1 function that touches this set at PRn−1∂PΛ(y). By
applying our results from Theorem 2.6 (or rather, the idea in the proof),
we show that there exists a Lipschitz function which touches PRn−1∂PΛ(Ω)
at PRn−1∂PΛ(y) and bounds PRn−1∂PΛ(Ω) from one side (in a suitable co-
ordinate system). This yields the existence of a cone whose opening can be
shown to depend only on the initial data (i.e. Ω and Λ) and that touches
PRn−1∂PΛ(Ω) only at PRn−1∂PΛ(y); the rest follows by iterating the argument
above and locally transporting cones at all the other points in PRn−1∂PΛ(Ω)
from the surrounding tangent spaces via the C1,1 charts representing Λ and
applying a standard covering argument from geometric measure theory.

The idea of this argument in terms of finding a cone was employed by
Indrei [15], although he assumed Λ to be uniformly convex. The novelty in
this paper is that we construct our barrier-type function without requiring
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uniform convexity of Λ. Indeed, this support function is constructed by using
the boundary of the shadow generated by illuminating Λ in the direction of
some normal of Ω at the point y + t(y)NΛ(y), where t(y) is the first hitting
time of Ω. However, in contrast with [15, Proposition 4.1], we require a strict
convexity assumption on Ω. Nevertheless, this tradeoff turns out to be more
useful when applying our theory to a free boundary problem that has a strict
convexity assumption on Ω naturally built into it, see §1.3.

On the other hand, the method we employ to prove Theorem 3.3 is
completely different. The starting point is that we may represent the sets
∂Ω and ∂Λ locally as level sets of two convex functions G : Rn → R and
F : Rn → R. By exploiting the geometry of the problem, we construct a
function φ : R2n+1 → Rn+3 so that ∂PΛ(Ω) is locally a coordinate projection
of a level set of φ (herein lies the novelty of our approach since we are
connecting the two sets and the unknown shadow boundary by a single
function); next, we compute the differential of this map and show that it
has full rank and conclude via the implicit function theorem.

1.3. Shadows and a Monge-Ampère equation

The optimal partial transport problem is a generalization of the classical
Monge-Kantorovich problem: given two non-negative functions f = fχΩ,
g = gχΛ ∈ L1(Rn) and a number 0 < m ≤ min{‖f‖L1 , ‖g‖L1}, the objective
is to find an optimal transference plan between f and g with mass m. A
transference plan is a non-negative, finite Borel measure γ on Rn × Rn,
whose first and second marginals are controlled by f and g respectively: for
any Borel set A ⊂ Rn,

γ(A× R
n) ≤

∫
A
f(x)dx, γ(Rn ×A) ≤

∫
A
g(x)dx.

An optimal transference plan is a minimizer of the functional

(1.1) γ �→
∫
Rn×Rn

c(x, y)dγ(x, y),

where c is a non-negative cost function. Issues of existence, uniqueness, and
regularity of optimal transference plans have been addressed by Caffarelli &
McCann [6], Figalli [9, 10], Indrei [15], and Chen & Indrei [7].

If

‖f ∧ g‖L1(Rn) ≤ m ≤ min{‖f‖L1(Rn), ‖g‖L1(Rn)},
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then by the results in [10, Section 2], there exists a convex function Ψm and
non-negative functions fm, gm for which

γm := (Id×∇Ψm)#fm = (∇Ψ∗m × Id)#gm,

is the unique solution of (1.1) and ∇Ψm#fm = gm (see [10, Theorem 2.3]).
Ψm is known as the Brenier solution of the Monge-Ampère equation

det(D2Ψm)(x) =
fm(x)

gm(∇Ψm(x))
,

with x ∈ Fm := set of density points of {fm > 0}, and ∇Ψm(Fm) ⊂ Gm:=
set of density points of {gm > 0}. Moreover, as in [10, Remark 3.2], we set

Um := (Ω ∩ Λ) ∪
⋃

(x̄,ȳ)∈Γm

B|x̄−ȳ|(ȳ),

Vm := (Ω ∩ Λ) ∪
⋃

(x̄,ȳ)∈Γm

B|x̄−ȳ|(x̄),

where Γm is the set

(Id×∇Ψm)(Fm ∩D∇Ψm
) ∩ (∇Ψ∗m × Id)(Gm ∩D∇Ψ∗m),

with D∇Ψm
and D∇Ψ∗m denoting the set of continuity points for ∇Ψm and

∇Ψ∗m, respectively, where Ψ∗m is the Legendre transform of Ψm.
The free boundary associated to fm is denoted by ∂Um ∩ Ω and the

free boundary associated to gm by ∂Vm ∩ Λ. They correspond to ∂Fm ∩ Ω
and ∂Gm ∩ Λ, respectively [10, Remark 3.3]. One method of obtaining free
boundary regularity is to first prove regularity results on Ψm and then utilize
that ∇Ψm gives the direction of the normal to the free boundary ∂Um ∩ Ω(
by symmetry and duality, this also implies a similar result for ∂Vm ∩ Λ

)
.

Indeed, this method was employed by Caffarelli & McCann [6] to deduce
C1,α
loc free boundary regularity away from a singular set S̃ in the case when

Ω and Λ are strictly convex and separated by a hyperplane. Indrei [15]
generalized an improvement of this result in the overlapping case: he obtains
C1,α
loc free boundary regularity away from Ω ∩ Λ and a singular set S which in

the disjoint case is a subset of S̃. Moreover, he developed a method to study
the Hausdorff dimension of S and utilized it to prove that if the domains
are C1,1, then S has dimension at most (n− 2).

In §4, we connect the shadow boundaries with this singular set and show
that one may replace the uniform convexity assumption with a strict con-
vexity assumption to obtain that the singular set has Hausdorff dimension
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at most (n− 2), see Theorem 4.3. The precise connection is this: the singu-
lar set breaks up into two parts; one of these can be handled using notions
from transport theory and non-smooth analysis; the other can be shown to
be trapped on the boundary of PΛ(Ω). Thus, understanding the Hausdorff
dimension of the boundary of this shadow is a way to obtain bounds on the
Hausdorff dimension of the singular set. This is where the rectifiability result
of Theorem 3.1 comes into play. Since Theorem 2.6 was used in the proof
of Theorem 3.1, this highlights the interplay between the shadow generated
by parallel illumination, the shadow generated by orthogonal projections,
and the Monge-Ampère free boundary problem arising in optimal transport
theory.

2. Regularity of shadows generated by parallel illumination

In this section we investigate the regularity of the shadow region of a convex
domain (i.e. an open, convex set) Λ ⊂ Rn under parallel illumination. For
u ∈ Sn−1, the shadow of Λ generated by u is the set Su of points x ∈ ∂Λ
such that there exists an outward-pointing normal vector ν(x) at x (i.e.
〈ν(x), y − x〉 ≤ 0 for all y ∈ Λ) for which 〈ν(x), u〉 > 0. In other words,

Definition 2.1. Su :=
{
x ∈ ∂Λ : 〈ν(x), u〉 > 0 for some outward-pointing

normal ν(x) at x
}
.

Our aim is to prove that for a strictly convex domain Λ, the boundary
∂Su (in the topology of ∂Λ) is locally a continuous graph and that this
regularity is optimal in the sense that if Λ is not strictly convex, then ∂Su

might fail to locally be a graph.
Given k ∈ N and x = (x1, x2, . . . , xk) ∈ Rk, we denote an arbitrary vector

in Rk−1 by x′ := (x1, x2, . . . , xk−1). Furthermore, x′′ := (x′)′ = (x1, x2, . . . ,
xk−2) ∈ Rk−2, and given a set A ⊂ Rk, A′ := {x′ : x ∈ A} and A′′ := (A′)′.

Let x0 ∈ ∂Λ be a boundary point of Su. Without loss, we assume that in a
neighborhood of x0, say U , Λ is parametrized as xn ≤ φ(x′), for some strictly
concave function φ. Consequently, ∂Λ is locally given by xn = φ(x′) where
the domain of φ is a bounded, open set U ′ ⊂ Rn−1. Note that x′ �→ (x′, φ(x′))
is a homeomorphism between the spaces U ′ and ∂Λ ∩ U .

We denote the superdifferential of the concave function φ at a point
x′ ∈ U ′ by

∂+φ(x′) :=
{
z′ ∈ R

n−1 : ∀y′ ∈ U ′, φ(y′) ≤ φ(x′) + 〈z′, y′ − x′〉}.
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For every y′ ∈ U ′ there is a one-to-one correspondence between superdiffer-
entials w ∈ ∂+φ(y′) and outward-pointing normals ν at (y′, φ(y′)) given by

ν = (−w,1)
(|w|2+1)1/2 . Therefore (y

′, φ(y′)) ∈ Su if and only if 〈w, u′〉 < un, for some

w ∈ ∂+φ(y′).
In this section we prove that ∂S′u ∩ U ′ (in the usual Rn−1 topology) is lo-

cally a continuous graph. By rotating the coordinate system, if necessary, we
may assume x0 = 0 and u′ = (0, 0, . . . , un−1) ∈ Rn−1 with un−1 > 0; more-
over, Rn−2 is identified with (u′)⊥. Under these assumptions, the condition
〈w, u′〉 < un takes the form wn−1 < un

un−1
. We begin our analysis with the

following lemma.

Lemma 2.1. Let Λ ⊂ Rn be a strictly convex domain and y′ ∈ S′u ∩ U ′.
Then (y′′, t) ∈ S′u, for every t > yn−1 such that (y′′, t) ∈ U ′.

Proof. Since y′ ∈ S′u, there exists w1 ∈ ∂+φ(y′) such that w1
n−1 <

un

un−1
. Let

t > yn−1 be such that (y′′, t) ∈ U ′ and consider w2 ∈ ∂+φ(y′′, t). By the
monotonicity formula,

〈w2 − w1, (y′′, t)− y′〉 < 0,

or equivalently (w2
n−1 − w1

n−1)(t− yn−1)<0. Therefore, w2
n−1<w1

n−1<
un

un−1

and this implies (y′′, t) ∈ S′u. �

Lemma 2.2. Let Λ ⊂ Rn be a strictly convex domain. Then there ex-
ists t1 > 0 > t2 and a ball V ′′ ⊂ Rn−2 centered at 0′′ with the following
properties: for every y′′ ∈ V ′′, (y′′, t1), (y′′, t2) ∈ U ′, and for any t ≤ t2 such
that (y′′, t) ∈ U ′, any ζt ∈ ∂+φ(y′′, t), and η ∈ ∂+φ(y′′, t1), one has ηn−1 <
un

un−1
< ζtn−1.

Proof. Since the set ∂+φ(0′) is convex, one of the following is true:

(i) wn−1 < un

un−1
for every w ∈ ∂+φ(0′);

(ii) wn−1 > un

un−1
for every w ∈ ∂+φ(0′);

(iii) wn−1 = un

un−1
for some w ∈ ∂+φ(0′).

However, by continuity properties of the superdifferential of a concave func-
tion (see e.g. [20, Corollary 24.5.1]), if (i) or (ii) holds, then the same strict in-
equality will be satisfied for all w ∈ ∂+φ(y′), for all y′ in some neighborhood
of 0′. This contradicts 0′ ∈ ∂S′u. Hence, wn−1 = un

un−1
for some w ∈ ∂+φ(0′).

Pick t1 > 0 > t2 such that (0′′, t1), (0′′, t2) ∈ U ′. The monotonicity formula
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combined with the strict convexity of Λ implies that every η ∈ ∂+φ(0′′, t1)
satisfies ηn−1 < wn−1 = un

un−1
; similarly, for t ≤ t2 such that (0′′, t) ∈ U ′, ev-

ery ζt ∈ ∂+φ(0′′, t) satisfies ζtn−1 > wn−1 = un

un−1
, and by utilizing the con-

tinuity of the superdifferential, the same inequalities hold in some ball V ′′

centered at 0′′. �

Remark 2.3. Rephrased in terms of the shadow set Su, Lemma 2.2 states
that ((y′′, t1), φ(y′′, t1)) ∈ Su while ((y′′, t), φ(y′′, t)) /∈ Su for any y′′ ∈ V ′′

and t ≤ t2.

Let V ′′ be the ball from Lemma 2.2. For every y′′ ∈ V ′′, define

(2.1) γ(y′′) := inf{t : (y′′, t) ∈ S′u ∩ U ′}.

By Lemma 2.2, γ is well-defined with (y′′, γ(y′′)) ∈ U ′. Moreover,

t1 ≤ γ(y′′) ≤ t2

for all y′′ ∈ V ′′.

Lemma 2.4. (Properties of γ) Let Λ ⊂ Rn be a strictly convex domain and
V ′′ the ball from Lemma 2.2. For every y′′∈V ′′ there exists w∈∂+φ(y′′, γ(y′′))
such that wn−1 = un

un−1
. Moreover, if t > γ(y′′) and (y′′, t) ∈ U ′, then ζn−1 <

un

un−1
for every ζ ∈ ∂+φ(y′′, t). Similarly, if t < γ(y′′) and (y′′, t) ∈ U ′, then

ζn−1 > un

un−1
for every ζ ∈ ∂+φ(y′′, t). Furthermore, γ is continuous.

Proof. Suppose wn−1 < un

un−1
for all w ∈ ∂+φ(y′′, γ(y′′)). By continuity of the

superdifferential, ζn−1 < un

un−1
for all ζ ∈ ∂+φ(y′′, t) if t is sufficiently close

to γ(y′′); therefore, (y′′, t) ∈ S′u ∩ U ′ for some t < γ(y′′), and this contra-
dicts the definition of γ. On the other hand, if wn−1 > un

un−1
for all w ∈

∂+φ(y′′, γ(y′′)), then again by continuity of the superdifferential, ζn−1 >
un

un−1
for all ζ ∈ ∂+φ(y′′, t) if t is sufficiently close to γ(y′′). This implies

(y′′, t) ∈ (S′u)c ∩ U ′ for γ(y′′) < t ≤ t0, with t0 sufficiently close to γ(y′′);
again, this produces a contradiction. Therefore, there exist w0, w1 ∈ ∂+φ(y′′,
γ(y′′)) such that w1

n−1 ≤ un

un−1
and w0

n−1 ≥ un

un−1
. Hence, for some s ∈ [0, 1],

wn−1 = un

un−1
where w = (1− s)w0 + sw1. Since ∂+φ(y′′, γ(y′′)) is a convex

set, it follows that w ∈ ∂+φ(y′′, γ(y′′)). Now pick any t > γ(y′′). By the
monotonicity formula, for every ζ ∈ ∂+φ(y′′, t), ζn−1 < wn−1 = un

un−1
. Sim-

ilarly, if t < γ(y′′), then ηn−1 > wn−1 = un

un−1
for all η ∈ ∂+φ(y′′, t). Next let

y′′k , y
′′ ∈ V ′′ and y′′k → y′′. Since {γ(y′′k)} is a bounded sequence, every subse-

quence has a further subsequence that converges. Take such a subsequence
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and suppose it converges to, say, t ∈ R. If t > γ(y′′), then by what has al-
ready been proved, we have that ζn−1 < un

un−1
for all ζ ∈ ∂+φ(y′′, t). There-

fore, by the continuity of the superdifferential, this condition is satisfied in
some neighborhood of (y′′, t), but this contradicts the fact that (y′′k , γ(y

′′
k))→

(y′′, t) (along this subsequence) and that there exists wk ∈ ∂+φ(y′′k , γ(y
′′
k))

such that wk
n−1 =

un

un−1
. The case t < γ(y′′) may be excluded in the same

manner. Hence, t = γ(y′′), and we proved that every subsequence of {γ(y′′k)}
admits a further subsequence converging to γ(y′′); this implies the continuity
of γ. �

Now we have all the ingredients to prove the following theorem which
may be seen as the first step towards investigating the regularity of the
boundary of the shadow region.

Theorem 2.5. Let Λ ⊂ Rn be a strictly convex domain and u ∈ Sn−1. Then
the boundary of the shadow region generated by parallel illumination in the
direction u is locally the graph of a continuous function. More precisely,

(2.2) ∂S′u ∩ U ′ ∩ (
V ′′ × R

)
= {(y′′, γ(y′′)) : y′′ ∈ V ′′}.

Proof. Lemma 2.4 implies the continuity of γ and that (y′′, t) ∈ S′u for ev-
ery t > γ(y′′) and (y′′, t) ∈ (S′u)c for every t < γ(y′′), where (y′′, t) ∈ U ′ ∩
(V ′′ × R). �

In some configurations, one may identify a modulus of continuity of
the shadow boundary. To make this more precise, we utilize the notion of
p-uniform convexity: let p > 0 and consider a domain E ⊂ Rk. A locally
Lipschitz function Ψ : E → R is said to be p-uniformly concave on E if
there exists C > 0 such that all points of differentiability x, x′ ∈ E ∩ dom∇Ψ
satisfy

〈∇Ψ(x)−∇Ψ(x′), x− x′〉 < −C|x− x′|p,
where dom∇Ψ is the domain of ∇Ψ.

If the convex domain to be illuminated is p-uniformly convex with p ≥ 2
(i.e. its boundary can be locally represented as the graph of a p-uniformly
concave function), then the shadow boundary is locally Hölder continuous
under mild regularity assumptions. The next theorem quantifies this state-
ment.

Theorem 2.6. If Λ ⊂ Rn is a p-uniformly convex C1,α domain with p ≥ 2
and α ∈ (0, 1], then ∂S′u is locally a C0, α

p−1 graph.
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Proof. From Theorem 2.5 it follows that ∂S′u is the graph of a continuous
function γ defined on the ball V ′′. Therefore, it suffices to show that γ is
Hölder continuous on V ′′. Lemma 2.4 implies that for every y′′ ∈ V ′′, t =
γ(y′′) is the only solution of the equation ∂φ

∂yn−1
(y′′, t) = un

un−1
, hence

(2.3)
∂φ

∂yn−1
(y′′, γ(y′′)) =

un
un−1

,

(recall that φ generates the local chart representing ∂Λ). Since Λ is C1,α and
p-uniformly convex, φ is C1,α and p-uniformly concave, i.e.

(2.4) |∇φ(y′)−∇φ(z′)| ≤ L|y′ − z′|α

and

(2.5) 〈∇φ(y′)−∇φ(z′), y′ − z′〉 ≤ −θ|y′ − z′|p,

for some L, θ > 0 and all y′, z′ ∈ V ′. To prove that γ is Hölder, it suffices
to show that at every point on the graph of γ, we can place a cusp with
uniform opening that stays above the graph (by symmetry this implies an
analogous result below the graph). We show this at just one point since the
proof is identical for any other point. Without loss, we assume 0′ ∈ ∂S′u and
show that a cusp can be placed at 0′ that stays above the graph: fix a point

(y′′, yn−1) such that yn−1 > (Lθ )
1

p−1 |y′′| α

p−1 . By (2.4) we have

∂φ

∂yn−1
(y′′, yn−1) ≤ ∂φ

∂yn−1
(0, yn−1) + L|y′′|α.

On the other hand, the monotonicity formula (2.5) and the assumption
0′ ∈ ∂S′u imply

∂φ

∂yn−1
(0, yn−1) ≤ ∂φ

∂yn−1
(0, 0)− θyp−1n−1 =

un
un−1

− θyp−1n−1.

By combining the previous two inequalities, it follows that

∂φ

∂yn−1
(y′′, yn−1) ≤ un

un−1
− θyp−1n−1 + L|y′′|α <

un
un−1

,

which means (y′′, yn−1) ∈ S′u or equivalently yn−1 > γ(y′′). Hence, the epi-

graph of the cusp yn−1 = (Lθ )
1

p−1 |y′′| α

p−1 touches the graph of γ from above.
�
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Remark 2.7. Note that the opening of the cusp in the proof of Theorem 2.3

is determined by (Lθ )
1

p−1 .

Remark 2.8. If Λ is a uniformly (i.e. 2-uniformly) convex domain with a
Ck+1, k ≥ 1, smooth boundary then it is not difficult to see that ∂S′u is a
Ck graph. Indeed, it suffices to show that γ is a Ck function. Since Λ is 2-
uniformly convex, φ is uniformly concave or D2φ ≤ −θId, for some θ > 0. In
particular, ∂2φ

∂y2
n−1

≤ −θ < 0. Since γ(y′′) is the only solution of the equation
∂φ

∂yn−1
(y′′, yn−1) = 0, by the implicit function theorem, γ is as regular as

∂φ
∂yn−1

, i.e. Ck (note that in the smooth case, we may assume without loss of

generality that un = 0 in (2.3)).

2.1. Theorem 2.5 is sharp

In Theorem 2.5, it was shown that for a strictly convex set, the boundary of
the shadow is locally a continuous graph in any given direction. It is natural
to wonder if this result extends to merely convex sets. Indeed, the following
counterexample shows that this is not so: in R3, consider the circle

{(x, y, z) : (x− 1)2 + z2 = 1, y = 0}

and construct a cone-like set by connecting this circle to the point (0, 1, 0)
with line segments. It is not difficult to see that this process generates a
convex body so that when it is illuminated in the direction (0, 1, 0), the
boundary of the resulting shadow is

{(x, y, z) : (x− 1)2 + z2 = 1} ∪ {(0, t, 0) : 0 ≤ t ≤ 1}.

In particular, the boundary of the shadow is not a graph near the origin in
any coordinate system, see Figure 2.1.

2.2. Theorem 2.6 is sharp

Here, we show that Theorem 2.6 is optimal in the following sense: given a
direction u ∈ Sn−1, p ≥ 2, and α ∈ (0, 1], there exists a smooth (i.e. C∞)
convex body Λ ⊂ Rn for which the boundary of the shadow is not locally
C0, α

p−1 . Indeed, the key observation in the construction of the counterexam-
ple is that for a smooth, strictly convex set, γ(y′′) is the unique solution of
the equation ∂φ

∂yn−1
(y′′, yn−1) = 0 (see (2.3)), and since we are working lo-

cally, it suffices to find a smooth, strictly convex function φ : R2 → R whose
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Figure 2.1: Figure (a) depicts the cone. Figure (b) depicts the shadow
boundary.

level set

{(x, y) : ∂yφ(x, y) = 0}
is far from smooth. In fact, an example like this already appeared in work of
Kiselman [16] in which the regularity of the projection of a three dimensional
convex set onto a 2-dimensional plane is analyzed (see [16, Example 3.2]):
let q be an odd natural number and set

φ(x, y) = x2
(
4− y +

1

2
y2
)
+

1

q + 1
yq+1 − 1

q + 2
yq+2;

note that φ is convex in the strip |y| < 1
2 and

∂yφ(x, y) = (yq − x2)(1− y).

Thus, one may construct a smooth convex set in Λ ⊂ R3 whose boundary is
locally given by φ in a neighborhood of the origin. In particular, at the local
level

{(x, y) : ∂yφ(x, y) = 0}
is represented by {

(x, y) : y = |x| 2q
}
,

and by selecting u = (0, 1, 0) it becomes evident that illuminating Λ in the

direction u generates a shadow boundary which is of class C0, 2
q ; hence, we

may pick q large enough to generate a convex body whose shadow is not
C0, α

p−1 . Note that this level set method also suggests a way of constructing
shadows on the surface of convex bodies with a specified degree of regularity.



806 E. Indrei and L. Nurbekyan

3. Regularity of shadows generated by convex projections

Let Ω ⊂ Rn, Λ ⊂ Rn be two convex domains and suppose that we wish to
project Ω onto Λ via the metric projection: for a given x ∈ Ω,

PΛ(x) := argmin{|x− z| : z ∈ Λ} = {
z ∈ Λ : |x− z| ≤ |x− w| ∀w ∈ Λ

}
.

This operation generates a shadow region PΛ(Ω) ∩ ∂Λ on the boundary of
Λ. The purpose of this section is to study the regularity of this shadow. In
other words, given z0 ∈ ∂(PΛ(Ω) ∩ ∂Λ), we wish to understand how smooth
∂(PΛ(Ω) ∩ ∂Λ) is in a neighborhood of z0. For the convenience of the reader,
we first collect several properties of the metric projection.

Lemma 3.1. Let Ω ⊂ Rn, Λ ⊂ Rn be two convex domains such that Ω ∩
Λ = ∅ and Ω is bounded. Then the following holds.

(a) If x ∈ Ω, then PΛ(x) ∈ ∂Λ is single-valued and for any z ∈ PΛ(Ω) there
exists x ∈ ∂Ω ∩ P−1Λ (z).

(b) PΛ(Ω) is bounded.

(c) For x �= z, z ∈ PΛ(x) if and only if x− z is an outward normal vector
for Λ at z.

(d) If x ∈ ∂Ω, ν is an outward unit normal to Ω at x, and x− PΛ(x) ⊥ ν,
then PΛ(x) ∈ ∂PΛ(Ω).

(e) If ∂Λ is C1 and z ∈ ∂PΛ(Ω), then there exists x ∈ ∂Ω and an outward
normal ν to Ω at x such that z = PΛ(x) and x− z ⊥ ν.

Proof. (a) Firstly, by considering a minimizing sequence |x− zk| → |x−
PΛ(x)|, it follows that {zk} is bounded and so there exists z ∈ Λ, such that
z ∈ PΛ(x). If z ∈ Λ, then zt = z + t(x− z) ∈ Λ for t > 0 small and since
|x− zt| = (1− t)|x− z|, this produces a contradiction. Thus, z ∈ ∂Λ. Next
if there exist x1 �= x2 ∈ PΛ(x), then the convexity of Λ, the disjointness as-
sumption, and the fact that |x− x1| = |x− x2|, imply that x is not on the
line generated by the direction x1 − x2. With this in mind, let w := 1

2(x1 +
x2) ∈ Λ and note that |w − x| < |x− x1|, a contradiction. Now let z = PΛ(x)
for some x ∈ Ω and set xt := tx+ (1− t)z, t ∈ [0, 1]. Since Ω ∩ Λ = ∅, it fol-
lows that xt ∈ ∂Ω for some t ∈ (0, 1). Suppose that there exists w ∈ Λ such



Regularity of shadows and the geometry of the singular set 807

that |xt − w| < |xt − z|. Note

|xt − z| = t|x− z| ≤ t|x− w| ≤ t|x− xt|+ t|xt − w|
< t(1− t)|x− z|+ t|xt − z| = |xt − z|,

a contradiction. Thus z = PΛ(xt).

(b) Let z0 ∈ Λ and pick R > 0 such that Ω ⊂ BR(0). Then for all x ∈ Ω,

|PΛ(x)| ≤ 2|x|+ |z0| ≤ 2R+ |z0|.

(c) Without loss, assume z = 0. If there exists w ∈ Λ such that 〈w, x〉 > 0,
set wt := tw ∈ Λ. Pick t > 0 small such that t|w|2 < 2〈x,w〉. This implies
|x− wt|2 < |x|2, a contradiction. Thus, for all w ∈ Λ, 〈w, x〉 ≤ 0 and hence
x is an outward normal for Λ at 0. Conversely, if 〈w, x〉 ≤ 0 for all w ∈ Λ,
|x|2 = x · (x− w) + x · w ≤ |x||x− w| and thus |x| ≤ |x− w| for all w ∈ Λ,
i.e. PΛ(x) = 0.

(d) Without loss, assume PΛ(x) = 0. There exists a concave function φ whose
graph locally represents ∂Λ. Assume the positive en direction is given by
x− PΛ(x) so that in particular x = |x|en and 0′ ∈ ∂+φ(0′). Note that ν =
(ν ′, 0) in these coordinates. Fix t > 0 small, w′t ∈ ∂+φ(tν ′), and note that
the ray

{(tν ′, φ(tν ′)) + λ(−w′t, 1) : λ > 0}
is outward-pointing in the direction of the normal to Λ at the origin. Mono-
tonicity implies 〈ν ′, w′t〉 ≤ 0, so for any λ > 0,

〈(tν ′, φ(tν ′)) + λ(−w′t, 1)− x, ν〉 = 〈tν ′ − λw′t, ν
′〉 ≥ t > 0.

In particular, the above ray does not intersect Ω and since w′t is an ar-
bitrary supergradient, (c) implies (tν ′, φ(tν ′)) /∈ PΛ(Ω) for any t > 0 suffi-
ciently small. Thus PΛ(x), being a limit of points in ∂Λ \ PΛ(Ω), is a bound-
ary point.

(e) Consider a sequence zk ∈ PΛ(Ω) such that zk → z. The disjointness as-
sumption and (c) yield zk = PΛ(xk), xk �= zk, xk − zk is an outward normal
to Λ, and thanks to (a) we may assume without loss that xk ∈ ∂Ω. Thus
up to a subsequence, xk → x0 ∈ ∂Ω and x0 − z is parallel to the outward
normal to Λ at z so (c) implies z = PΛ(x0). Next consider z̃k /∈ PΛ(Ω) such
that z̃k → z. The C1 regularity assumption implies that the outward unit
normal vectors to Λ at the points z̃k converge to the outward unit normal
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at z. Thus the ray in the outward normal direction at z intersects Ω only
along its boundary (otherwise some z̃k ∈ PΛ(Ω)) and x can be chosen to be
any of these intersection points (e.g. x0 above). The existence of the claimed
outward normal follows by applying [20, Theorem 11.2] with C = Ω. �

3.1. Weak case

A set E ⊂ Rm is said to be finitely (m− 1)-rectifiable if there are finitely
many Lipschitz maps fi : Ai ⊂ Rm−1 → Rm such that E ⊂ ⋃k

i=1 fi(Ai) for
some k ∈ N.

Theorem 3.1. Let Ω ⊂ Rn be a bounded strictly convex domain and Λ ⊂
Rn a convex domain whose boundary is C1,1. If Ω ∩ Λ = ∅, then ∂PΛ(Ω) is
finitely (n− 2)-rectifiable.

Proof. Consider an arbitrary y ∈ ∂PΛ(Ω), and let φ : Ty(∂Λ)→ R be a C1,1

concave function whose graph locally represents ∂Λ in a neighborhood Bry

around y so that ∇φ(y) = 0. In this way, Ty(∂Λ) is identified with Rn−1. By
translating the coordinate system, if necessary, we may also assume y = 0.
Lemma 3.1 (c) & (e) imply that the half-line L at the origin in the direction
of the unit outward normal to Λ at 0, NΛ(0), touches Ω tangentially at
some point x and 〈ν,NΛ(0)〉 = 0 for some unit outward normal ν to Ω at
x. It follows that ν lives on the tangent space of Λ at 0. Let en−1 := ν and
{e1, . . . , en−1} be a basis for Rn−1; set

t∗ := max
x∈Ω,z∈PΛ(Ω)

|x− z|

(t∗ <∞ by Lemma 3.1 (b)) and

Ψ(z′) := Ψ(z′′, zn−1) = φ(z′)− 1

2t∗
|z|2.

Note that Ψ is C1,1 and 2-uniformly concave, so by Theorem 2.6, it follows
that locally around the origin, the level set

{(z′′, zn−1) : 0 = ∂zn−1
Ψ(z′′, zn−1)},

is a Lipschitz graph which will be denoted by γ̃(z′′) = zn−1(z′′) (see (2.3)).
Now let γ(z′′) := max{γ̃(z′′), 0}, and note that γ is Lipschitz. We claim that



Regularity of shadows and the geometry of the singular set 809

locally around the origin,

(3.1) Φ−1(PΛ(Ω)) ⊂ {(z′′, zn−1) : zn−1 ≤ γ(z′′)},

where Φ(w′) := (w′, φ(w′)). Indeed, let

z′ := (z′′, zn−1) ∈ Φ−1(PΛ(Ω)) \ {0};

if zn−1 ≤ 0, then since γ ≥ 0, the result follows. So without loss assume
zn−1 > 0. Since z′ ∈ Φ−1(PΛ(Ω)) and Ω ∩ Λ = ∅, Lemma 3.1 (c) implies the
existence of t(z′) > 0 such that

Φ(z′) + t(z′)NΛ(Φ(z
′)) ∈ ∂Ω

and since the ray at Φ(z′) in the direction of NΛ(Φ(z
′)) collapses to the same

point via the metric projection (see e.g. [22, Lemma 1.2.2]), it follows that

Φ(z′) + t(z′)NΛ(Φ(z
′)) �= x.

Next, consider

PRn−1(Φ(z′) + t(z′)NΛ(Φ(z
′))) ∈ R

n−1

and note that the en−1 component of this point is negative (since Ω is strictly
convex and en−1 is one of its outer normal vectors). In other words, zn−1 −
t(z′) ∂zn−1

φ(z′)√
1+|∇φ(z′)|2 < 0. Thus, ∂zn−1

φ(z′) > 0 (recall zn−1 > 0) and since t(z) ≤
t∗, it follows that

∂zn−1
Ψ(z′′, γ̃(z′′)) = 0 <

∂zn−1
φ(z′)√

1 + |∇φ(z′)|2 −
1

t∗
zn−1(3.2)

< ∂zn−1
φ(z′)− 1

t∗
zn−1 = ∂zn−1

Ψ(z′′, zn−1);

now assume by contradiction that zn−1 > γ(z′′). In particular, zn−1 > γ̃(z′′)
so by monotonicity,

〈∇Ψ(z′′, zn−1)−∇Ψ(z′′, γ̃(z′′)), (0, zn−1 − γ̃(z′′))〉 ≤ 0.

Thus,

∂zn−1
Ψ(z′′, zn−1) ≤ ∂zn−1

Ψ(z′′, γ̃(z′′)) = 0,
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and this contradicts (3.2) and proves the claim (i.e. (3.1)). Next, note that

0 ∈ Φ−1(PΛ(Ω)) ∩ {(z′′, zn−1) : zn−1 ≤ γ(z′′)},

and since γ is Lipschitz, (3.1) implies that we can place a cone with vertex
at 0′ and oriented in the positive en−1 direction so that it lies in

R
n−1 \ Φ−1(PΛ(Ω)).

The opening of the cone depends on the Lipschitz constant of ∇Ψ and the
uniform convexity constant of −Ψ; in particular, it depends on t∗y. However,
since PΛ(Ω) is bounded (recall that Ω is bounded) and the domains have
disjoint closures, it follows that t∗y has a uniform positive lower bound. The
existence of this cone implies the claim within the proof of [15, Proposition
4.1]. Indeed, this is the only part where Indrei used the uniform convexity
of Λ, which we were able to replace with strict convexity of Ω in our proof
above; thus, the rest of the proof follows exactly as [15, Proposition 4.1] (the
idea is that once we have a cone at a point, we can use the C1,1 regularity
to transition between charts to get a cone at every point of ∂PΛ(Ω); nev-
ertheless, the cones may be oriented in different directions, but this readily
implies rectifiability via a covering argument). �

Remark 3.2. The disjointness assumption in Theorem 3.1 is necessary:
indeed, consider a Cantor set C on [1, 2] and let g be a smooth function
whose zero level set is C. For ε > 0 small, it follows that f(x) := x2 + εg(x)
is convex, so its epigraph is a convex set in R2. Moreover, consider the
epigraph of the function h(x) := x2; of course, it is likewise convex. Now
it is not difficult to see that using these epigraphs, one may obtain two
bounded convex sets, say Ω and Λ, with the property that their boundaries
intersect on the image of C under h. In this case, ∂(PΛ(Ω) ∩ ∂Λ) does not
have finite H0 measure. Nevertheless, in the general case one may still prove
a local version of Theorem 3.1 away from ∂(∂(Ω ∩ Λ) ∩ ∂Λ).

3.2. Smooth case

In Theorem 3.1, we utilized a geometric method for investigating the reg-
ularity of shadow boundaries generated by orthogonal projections. In what
follows, we develop an analytical approach to attack this problem. The idea
is to represent the unknown boundary as the level set of a function defined
in terms of local charts. However, since the differential of this function con-
tains the information regarding the regularity of the level set, we need to
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ensure that this function is smooth enough; this leads us to impose higher
regularity on the domains.

Theorem 3.3. Suppose Ω ⊂ Rn and Λ ⊂ Rn are Ck+1, k ≥ 1, convex do-
mains separated by a hyperplane with Ω bounded and 2-uniformly convex. If
Ω ∩ Λ = ∅, then ∂PΛ(Ω) is locally an (n− 2)-dimensional Ck graph.

Proof. Given a point y ∈ ∂Λ let f : Rn−1 → R be the Ck+1 concave function
which represents ∂Λ locally around y. Likewise, for x ∈ ∂Ω let g denote the
Ck+1 uniformly concave function locally representing Ω around x. Set

F (y1, . . . , yn) = yn − f(y1, . . . , yn−1),
G(x1, . . . , xn) = xn − g(x1, . . . , xn−1)

and consider the function

φ : Rn × R
n × R→ R

n+3

given by

φ(x, y, t) := (G(x), F (y),∇G(x) · ∇F (y), y + t∇F (y)− x).

Lemma 3.1 implies that ∂PΛ(Ω) is locally the y-projection of φ−1(0, 0, 0, 0):
indeed, let (x, y, t) ∈ φ−1(0, 0, 0, 0); then, y ∈ {F (y) = 0} and since this set
locally describes the boundary of Λ, it follows that y ∈ ∂Λ; likewise x ∈
{G(x) = 0} implies x ∈ ∂Ω. Then, since Ω ∩ Λ = ∅ and x− y = t∇F (y), it
follows that t �= 0, and as ∇F (y) is an outward normal for Λ at y, t > 0 and
Lemma 3.1 (c) implies y = PΛ(x); next, ∇G(x) · ∇F (y) = 0 and part (d) of
the same lemma yield y ∈ ∂PΛ(Ω) (since ∇G(x) is an outward normal to
Ω at x). Conversely, based on (c) and (e) of Lemma 3.1, the set ∂PΛ(Ω) is
locally a subset of the y-projection of φ−1(0, 0, 0, 0). With this in mind, our
strategy is to prove that φ−1(0, 0, 0, 0) is locally an (n− 2)-dimensional Ck

graph where the (n− 2) parameters are taken from the y variables. The first
step is to compute the differential of φ and show that it has full rank n+ 3:
let

φ1(x, y, t) := G(x)

φ2(x, y, t) := F (y)

φ3(x, y, t) := ∇G(x) · ∇F (y)

Φ(x, y, t) := [φ4(x, y, t), . . . , φn+3(x, y, t)]
T := y + t∇F (y)− x.
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Thus,

∇xφ1 = ∇G(x)

∇yφ1 = 0

∂tφ1 = 0

∇xφ2 = 0

∇yφ2 = ∇F (y)

∂tφ2 = 0

∇xφ3 = D2G(x)∇F (y)

∇yφ3 = D2F (y)∇G(x)

∂tφ3 = 0

DxΦ = −Id ∈ R
n×n

DyΦ = Id+ tD2F (y) ∈ R
n×n

DtΦ = ∇F (y).

Therefore,

Dφ(x, y, t) =

⎡
⎢⎢⎣

∇G(x)T 0 0
0 ∇F (y)T 0

(D2G(x)∇F (y))T (D2F (y)∇G(x))T 0
−Id Id+ tD2F (y) ∇F (y)

⎤
⎥⎥⎦

(note that this is an (n+ 3)× (2n+ 1) matrix). Next we show ker(Dφ)T =
{0} at points (x, y, t) ∈ φ−1(0, 0, 0, 0). Indeed, let

(α1, α2, α3, v) ∈ ker(DΦ)T ,

and note that since

Dφ(x, y, t)T =

⎡
⎣∇G(x) 0 D2G(x)∇F (y) −Id

0 ∇F (y) D2F (y)∇G(x) Id+ tD2F (y)
0 0 0 ∇F T (y)

⎤
⎦ ,

we have

0 = α1∇G(x) + α3D
2G(x)∇F (y)− v;(3.3)

0 = α2∇F (y) + α3D
2F (y)∇G(x) + v + tD2F (y)v;(3.4)

0 = ∇F (y) · v.(3.5)

In particular,
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0 = ∇F (y) · v
= ∇F (y) · (α1∇G(x) + α3D

2G(x)∇F (y))

= α1∇F (y) · ∇G(x) + α3∇F T (y)D2G(x)∇F (y)

= α3∇F T (y)D2G(x)∇F (y),

(note∇F (y) · ∇G(x) = 0 since (x, y, t) ∈ φ−1(0, 0, 0, 0)). SinceG is uniformly
convex, it follows that α3 = 0 and so (3.3) implies

v = α1∇G(x);

plugging this information into (3.4) and taking a dot product with ∇G(x)
yields

0 = α1

(
t∇G(x)TD2F (y)∇G(x) + |∇G(x)|2).

Since |∇G(x)| > 0, and F is convex, it follows that α1 = 0 which readily
implies v = 0 and so α2 = 0. Thus, we proved ker(DφT ) = {0}; in particu-
lar, rank(Dφ) = n+ 3 for each point of interest (x, y, t). Now for (x, y, t) ∈
φ−1(0, 0, 0, 0) consider the (n+ 3)× (n+ 1) matrix

Dxtφ :=

⎡
⎢⎢⎣

∇G(x)T 0
0 0

(D2G(x)∇F (y))T 0
−Id ∇F (y)

⎤
⎥⎥⎦ .

Let (w, β) ∈ ker(Dxtφ). Then,

0 = D2G(x)∇F (y) · w;
0 = −w + β∇F (y),

so uniform convexity of G readily yields β = |w| = 0. Thus Dxtφ has rank
n+ 1. Let

{v1, . . . , v2n+1}
denote the columns of Dφ, i.e., vi = Dxi

φ for 1 ≤ i ≤ n; vi = Dyi−n
φ for

n+ 1 ≤ i ≤ 2n and v2n+1 = Dtφ. Since Dxtφ has rank n+ 1, it follows that
the set {v1, . . . , vn, v2n+1} consists of linearly independent vectors. If for all
j ∈ {n+ 1, . . . , 2n}, vj is in the span of {v1, . . . , vn, v2n+1}, then the rank
of Dφ would be n+ 1, a contradiction (we know rank(Dφ) = n+ 3). Thus,
there exists some j ∈ {n+ 1, . . . , 2n} so that {v1, . . . , vn, v2n+1, vj} consists
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of linearly independent vectors and repeating this rationale it follows that
there exists j �= j′ ∈ {n+ 1, . . . , 2n} so that {v1, . . . , vn, v2n+1, vj , vj′} con-
sists of n+ 3 linearly independent vectors. 1 Thus detDxyj−nyj′−ntφ �= 0,
and by the implicit function theorem it follows that φ−1(0, 0, 0, 0) is lo-
cally an (n− 2)-dimensional Ck graph where the (n− 2) parameters are
{y1, y2, . . . , yn} \ {yj−n, yj′−n}; hence, the y-projection of φ−1(0, 0, 0, 0) is
locally an (n− 2)-dimensional Ck graph. �

Remark 3.4. The disjointness assumption in Theorem 3.3 is necessary, cf.
Remark 3.2.

4. The singular set associated to a Monge-Ampère equation

In this section, a connection is established between the illumination shadow,
the projection shadow, and the singular set associated to a Monge-Ampère
equation arising in mass transfer theory. More precisely, we apply the results
of the previous sections to improve a result of Indrei [15] (see §1.3 for a
description of the optimal partial transport problem and relevant notation).

4.1. The structure of the singular set

In order to analyze the singular set for the free boundaries, we recall two
sets which play a crucial role in the subsequent analysis; cf. [15, Equations
(2.2) and (2.3)]. The nonconvex part of the free boundary ∂Um ∩ Ω is the
closed set

(4.1) ∂ncUm := {x ∈ Ω ∩ Um : Ω ∩ Um fails to be locally convex at x},

(a set E fails to be locally convex at x if E ∩Br(x) is not convex for all
r > 0). Moreover, the nontransverse intersection points are defined by

(4.2) ∂ntΩ := {x ∈ ∂Ω ∩ Ω ∩ ∂Um : 〈∇Ψ̃m(x)− x, z − x〉 ≤ 0 ∀z ∈ Ω},

where Ψ̃m is the extension of Ψm given by [10, Theorem 4.10]. By du-
ality, ∂ncVm and ∂ntΛ are similarly defined. Now, for x ∈ ∂(Ω ∩ Um), if

1In fact, by explicit computation it follows that v2n = (0, 1, 0, en) where en =
(0, . . . , 1) so that either vj or vj′ must be v2n since it is linearly independent from
the columns of Dxtφ.



Regularity of shadows and the geometry of the singular set 815

x �= ∇Ψ̃m(x) (e.g. if Ω and Λ have disjoint closurers), let

L(x) :=

{
∇Ψ̃m(x) +

x−∇Ψ̃m(x)

|x−∇Ψ̃m(x)| t : t ≥ 0

}
;

K :=
{
x ∈ ∂(Ω ∩ Um) : L(x) ∩ Ω ∩ Um ⊂ ∂(Ω ∩ Um)

}
;

S1 := ∇Ψ̃−1m (∂ntΛ) ∩K;

A1 := S1 ∩ ∂Um;

A2 := S1 \ ∂Um.

If Ω and Λ are strictly convex and have disjoint closures, the singular points
of the free boundary ∂Vm ∩ Λ are contained in the set

S = (∇Ψ̃m(∂ncUm) ∪∇Ψ̃m(S1)) ∩ ∂Vm ∩ ∂Λ

= (∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) ∪ (∇Ψ̃m(S1) ∩ ∂Vm ∩ ∂Λ)

= (∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) ∪∇Ψ̃m(A1) ∪∇Ψ̃m(A2),

see [15, Corollary 3.13 and Remark 3.11; cf. Theorem 4.9]. The next lemma
describes the first two sets appearing in S.

Lemma 4.1. Assume Ω ⊂ Rn and Λ ⊂ Rn are strictly convex bounded do-
mains with disjoint closures. Then

(∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) ∪∇Ψ̃m(A1)

is Hn−2 σ-finite. Moreover, if Ω is C1, then

Hn−2((∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) ∪∇Ψ̃m(A1)) <∞.

Proof. Firstly, ∇Ψ̃m is a homeomorphism between Um ∩ Ω and Vm ∩ Λ by
[10, Theorem 4.10]. Thus, for y ∈ (∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) set x :=
∇Ψ̃∗m(y); since Ω is convex and x ∈ ∂ncUm, it follows that x /∈ Ω \ ∂Um.
Moreover, since free boundary never maps to free boundary (see e.g. [15,
Proposition 2.15]), we also have x /∈ ∂Um ∩ Ω, which implies x ∈ ∂Um ∩ ∂Ω.
Therefore,

(∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) ⊂ ∇Ψ̃m(∂Um ∩ ∂Ω) ∩ ∂Vm ∩ ∂Λ.

An application of [15, Proposition 4.8] yields that

∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ
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is Hn−2 - finite; the fact that ∇Ψ̃m(A1) is Hn−2 σ-finite (Hn−2 finite if Ω is
C1) follows from [15, Corollary 4.6]. �

In the following lemma, we establish a connection between the singular
set S and the boundary of the projection of Ω onto Λ studied in §3.

Lemma 4.2. Assume Ω ⊂ Rn and Λ ⊂ Rn are strictly convex bounded do-
mains with disjoint closures. Then

(4.3) ∇Ψ̃m(A2) ⊂ ∂PΛ(Ω).

Proof. Let y := ∇Ψ̃m(x) ∈ ∇Ψ̃m(A2), Lt := ∇Ψ̃m(x) + x−∇Ψ̃m(x)

|x−∇Ψ̃m(x)| t and note

that the half-line {Lt}t≥0 is tangent to the active region Um ∩ Ω due to the
fact that x ∈ A2 ⊂ K. Since x ∈ ∂Ω \ ∂Um, it follows that Lt is tangent to
Ω at x; hence, [20, Theorem 11.2] gives the existence of an outward normal
to Ω at x, perpendicular to Lt so that Lt is a subset of a tangent space to Ω
at x, Tx∂Ω. Let z = PΛ(x) ∈ ∂Λ (recall that PΛ is the orthogonal projection
operator). Then by Lemma 3.1 (c), x− z is parallel to some unit outward
normal NΛ(z) to Λ at z. Since x ∈ S1, it follows that ∇Ψ̃m(x) ∈ ∂ntΛ; in
particular, x−∇Ψ̃m(x) is parallel to some outward normal to Λ at ∇Ψ̃m(x),
say NΛ(∇Ψ̃m(x)). Thus, invoking Lemma 3.1 (a) & (c), it follows that z = y.
Combining {Lt}t≥0 ⊂ Tx∂Ω and y = PΛ(x) yields y ∈ ∂PΛ(Ω) by Lemma 3.1
(d). �

Lemmas 4.1 & 4.2 imply that the singular set S is contained in the
union of an Hn−2 σ-finite set and ∂PΛ(Ω) under a strict convexity and
disjointness assumption on the domains. Thus, a way to obtain bounds on
the Hausdorff dimension of the singular set is by studying the Hausdorff
dimension of ∂PΛ(Ω). In [15, Proposition 4.1], Indrei shows that if Ω is
a bounded convex domain and Λ is uniformly convex, bounded, and C1,1

smooth, then PΛ(Ω) ∩ ∂Λ is (n− 2)-rectifiable away from ∂(∂(Ω ∩ Λ) ∩ ∂Λ);
in particular, if the domains have disjoint closures, then

Hn−2(∂PΛ(Ω)) <∞.

The proof of [15, Proposition 4.1] is technical but relies on a simple idea
which we describe in the language developed in this paper in order to fur-
ther highlight the connection with shadows: let y ∈ ∂PΛ(Ω) and x ∈ ∂Ω
be such that y = PΛ(x). Then ∂PΛ(Ω) ⊂ ∂Λ \ SNΩ(x), where NΩ(x) is some
outward normal of Λ at the point x and SNΩ(x) is the shadow from §2
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(see also Lemma 3.1 (e)). In other words, PΛ(Ω) is trapped in the illumi-
nated portion of ∂Λ under parallel illumination in the direction NΩ(x). Since
y ∈ ∂PΛ(Ω) ∩ ∂SNΩ(x), it follows that ∂SNΩ(x) acts as a one-sided support
for ∂PΛ(Ω) locally around y. Therefore, if one can place a cone in the shadow
portion SNΩ(x), a compactness argument would yield the desired rectifiabil-
ity result. Indeed, this is where the uniform convexity and C1,1 assumptions
come into play in the proof of [15, Proposition 4.1]. However, the results
of §2 shed new light on the regularity and uniform convexity assumptions;
more specifically, they imply that by this method, the uniform convexity
assumption is necessary to obtain the desired cone and the C1,1 regularity
assumption is irrelevant: indeed, §2.2 shows that there exists a C∞ strictly
convex set whose shadow is Hölder, but not Lipschitz (with arbitrarily small
Hölder exponent). In particular, this discussion shows that one may not hope
to remove the uniform convexity assumption by the same method (i.e. by
using ∂SNΩ(x) as a support function).

However, Theorem 3.1 implies that one may obtain the cone without a
uniform convexity assumption; this is achieved by cooking up a new type
of support function related to the distance between the two sets. Moreover,
Theorem 3.3 yields a higher regularity result. Thus, Theorem 3.1, Theo-
rem 3.3, Lemma 4.1, Lemma 4.2, and the definition of S imply the following
theorem.

Theorem 4.3. Assume Ω ⊂ Rn, Λ ⊂ Rn are bounded strictly convex do-
mains and that Λ has a C1,1 boundary. If Ω ∩ Λ = ∅, then the free boundary
∂Vm ∩ Λ is a C1,α

loc hypersurface away from the compact, Hn−2 σ-finite set:

S := (∇Ψ̃m(∂ncUm) ∩ ∂Vm ∩ ∂Λ) ∪∇Ψ̃m(A1) ∪∇Ψ̃m(A2).

If Ω has a C1 boundary, then S is Hn−2 finite. Moreover, if Ω and Λ are
Ck+1, k ≥ 1, and Ω is 2-uniformly convex, then ∇Ψ̃m(A2) is contained on
an (n− 2)-dimensional Ck

loc graph.

Remark 4.4. By duality and symmetry, an analogous statement holds for
∂Um ∩ Ω.

Remark 4.5. In the case when Ω and Λ overlap, a careful analysis may be
conducted to obtain regularity of the free boundary away from Ω ∩ Λ. The
idea is as follows: a result of Figalli [10] asserts that the free boundary does
not intersect Ω ∩ Λ and he shows that away from Ω ∩ Λ, the free boundary is
locally C1. Starting from this result, Indrei localized the method utilized by
Caffarelli and McCann [6] in the disjoint case to deduce local C1,α regularity
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away from Ω ∩ Λ. Even in the disjoint case, the method of Caffarelli and
McCann may fail at points where the free boundary of say Λ intersects
the fixed boundary ∂Λ. A method was developed in [15, §4] to estimate the
Hausdorff dimension of such points. By utilizing the results developed in this
paper, one may employ the strategy in [15, §4] to obtain a result analogous
to Theorem 4.3 in the case when there is overlap (cf. [15, Proposition 4.1,
Theorem 4.9]).
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