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A positive mass theorem for
asymptotically flat manifolds with
a non-compact boundary

SERGIO ALMARAZ, EZEQUIEL BARBOSA, AND LEVI LOPES DE LIMA

We define a mass-type invariant for n-dimensional asymptotically
flat manifolds with a non-compact boundary and prove a positive
mass theorem if either 3 < n <7 or if n > 3 and the manifold is
spin. This settles, for this class of manifolds, a question posed in
a recent paper by the first author in connection with the long-
term behavior of a certain Yamabe-type flow on scalar-flat compact
manifolds with boundary.

Introduction and statements of the results
The variational approach to the mass

The mass as a geometric invariant

A proof of Theorem 1.3

Another proof of Theorem 1.3

Appendix A The proof of Proposition 3.3

References

1. Introduction and statements of the results

673

678

681

689

694

702

712

Let (M™, g) be an oriented Riemannian manifold with a non-compact bound-
ary ¥ and dimension n > 3. We denote by R, the scalar curvature of (M, g).
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We also assume that X is oriented by an outward pointing unit normal vector
7, so that its mean curvature is H, = divyn.

We say that (M, g) is asymptotically flat with decay rate 7 > 0 if there
exists a compact subset K C M and a diffeomorphism W : M\ K — R} \
ET(O) such that the following asymptotic expansion holds as r — +oc:

(1.1) 1963 (@) = 8351 + rlgig (@) + 7% |gijm(2)] = OGT).

Here, = (1,...,xy) is the coordinate system induced by ¥, r = |z|, g;;
are the coefficients of g with respect to x, the comma denotes partial differ-
entiation, R” = {z € R";z,, > 0} and B, (0) = {& € R"; |z| < 1}. The sub-
set Mo = M\K is called the end of M. In this paper, we use the Ein-
stein summation convention with the index ranges ¢,7,---=1,...,n and
a,f,---=1,...,n—1. Observe that, along X, {0}, spans T'Y while 9,
points inwards.

The simplest example, and in fact the model case, of a manifold in this
class is the closed half-space R} endowed with the standard flat metric 6.
This work is devoted to the study of a certain geometric invariant which
measures the deviation at infinity of a general asymptotically flat manifold
(M, g) from the model space (R';,J).

Definition 1.1. Suppose that 7 > (n —2)/2 and R, and H,, are integrable
on M and ¥, respectively. In terms of asymptotically flat coordinates as
above, the mass of (M, g) is given by

r—+00

n
r

(1.2) Mprg) = lim {/S‘n—l(gij7j —gjj,i),uids;fll +/ B ganﬁad«SJ}Q},
ot

where 82;1 C M is a large coordinate hemisphere of radius r with outward
unit normal p, and ¥ is the outward pointing unit co-normal to S?~2 =
882;1, oriented as the boundary of the bounded region ¥, C ¥ (see Fig-
ure 1).

As we shall see in Section 3, the limit on the right-hand side of (1.2)
exists and its value does not depend on the particular asymptotically flat
coordinates chosen. Thus, m(y; ) is an invariant of the asymptotic geometry
of (M, g).

Besides having an obvious intrinsic geometric relevance, this invariant
appears crucially in [A] in connection with the global convergence of a certain
Yamabe-type flow first considered by S. Brendle in [Br], which produces,
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Figure 1: An asymptotically flat manifold.

in the long-term limit, conformal scalar-flat metrics with constant mean
curvature on the boundary. As explained in [A], the following conjecture is
expected to be true.

Conjecture 1.2. If (M, g) is asymptotically flat with decay rate T > (n —
2)/2 as above and satisfies Ry >0 and Hy > 0 then Mg > 0, with the
equality occurring if and only if (M, g) is isometric to (R}, 0).

This conjecture has been confirmed in some special cases in [Es, Ra]. In
this work we show more generally that it holds true whenever the standard
Positive Mass Conjecture holds (see [SY1, SY2, Wi, Ba]). More precisely,
the following result holds.

Theorem 1.3. Conjecture 1.2 holds true if either 3 <n <7 or if n >3
and M is spin.

Combined with the results in [A, Br|, this guarantees the global conver-
gence of the Yamabe-type flow introduced in [Br] for any initial scalar-flat
compact manifold with boundary which meets the conditions of the theo-
rem (i.e. either it is spin or has dimension n < 7). This applies in particular
to Euclidean domains. The following immediate consequence of the rigidity
statement in Theorem 1.3 is also worth noticing.

Corollary 1.4. Let (M,g) be as in Theorem 1.3 and assume further that
there exists a compact subset K C M such that (M \ K, g) is isometric to
(R%. \ET(O),(S). Then (M, g) is isometric to (R}, 6).

We provide here two proofs of Theorem 1.3. In the proof presented in
Section 4, the first step is an improvement of the asymptotics of the given
metric in the spirit of the classical proof of the standard positive mass theo-
rem by Schoen and Yau ([SY2]). Once this technical step is accomplished in
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Proposition 4.1, this proof proceeds by a reduction to the classical cases via
a doubling construction. We employ a result by Miao ([Mi]), which covers
the situation in which corners along a compact inner hypersurface appear,
to prove that the conjecture above holds true whenever the classical Positive
Mass Theorem holds for the doubled manifold. We also use the improvement
in the asymptotics to present an alternative proof of Theorem 1.3 in the case
3 < n <7 which is more in the spirit of the classical arguments by Schoen-
Yau ([SY1]). More precisely, we show that the assumption of negative mass
implies the existence of a stable minimal hypersurface without boun dary
leading to a contradiction as in [SY1]. In these proofs, the rigidity statement
in the theorem follows by means of the variational characterization of the
mass given in Proposition 2.1. Finally, if n > 3 and M is spin we present
in Theorem 5.2 the natural extension of Witten’s celebrated formula for the
mass in terms of a suitable harmonic spinor globally defined on M. The proof
of Theorem 1.3 in this case is an immediate consequence of this expression.

Remark 1.5. We can conceive a version of Theorem 1.3 in which the
manifold (M, g) has two collections of finitely many ends, say {E;}/*, and
{E/}7™,, which we assume endowed with diffeomorphisms ¥, : B} — R\
B (0) and W) B — R"\ B1(0) such that the expansion (1.1) holds. To
each end E; we associate the mass given by (1.2), and to each end E] we
associate its standard ADM mass as in [Ba, LP]. In this setting, if Ry >0
and H,; > 0 then the mass of each end is non-negative. Moreover, if at least
one mass vanishes then (M, g) actually has only one end, being isometric
either to (R}, 0) or to (R", §), according to the type of the end. Observe that,
since we are not assuming that ¥ is connected, we allow for the presence of
finitely many compact boundary components. If we think of (M, g) as being
the initial data set for a time-symmetric solution of Einstein fields equations,
then these components may be viewed as trapped hypersurfaces. In fact,
the rigidity statement above actually implies that, in the presence of such
compact trapped hypersurfaces, the mass of each end is actually positive.
This is of course related to the positive mass theorem for black holes first
considered in [GHHP] (see also [H]). For more recent results along these
lines in the classical spin setting we refer to [DX] and the references therein.

Remark 1.6. As mentioned above, Theorem 1.3 follows from the classi-
cal positive mass theorem via a doubling argument. Amazingly enough, it
turns out that our result is in fact logically equivalent to the classical the-
orem in the sense that Theorem 1.3 implies the classical assertion as well.
This is an immediate consequence of a recent breakthrough by Carlotto and
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Schoen ([CS]). These authors show that, given a scalar-flat asymptotically
flat manifold (M, ¢g) and a pair of nested, acute cones C1 C Cs in the asymp-
totic region, with C} enclosing the core region of (M, g), then there exists
another scalar-flat asymptotically flat metric ¢’ on M which agrees with g
inside C7 and is flat outside Cs. Moreover, the cone apertures can be chosen
as small as we wish. Thus, ¢’ is a sort of localized version of g. Finally, it is
shown that the ADM mass of ¢’ converges to the ADM mass of ¢ as the cone
vertex recedes to infinity. An immediate consequence is that, in order to es-
tablish the classical mass inequality, it suffices to consider localized metrics.
But for any such metric, if ¥ is a totally geodesic hyperplane in the flat
region, then the closure of the connected component of M \ ¥ containing
the core region is a bordered manifold to which Theorem 1.3 applies. Also,
it is clear that the mass of this manifold, as computed using (1.2), coincides
with the ADM mass of the localized metric ¢, which proves our claim. We
remark that A. Carlotto has also noted this amazing connection between
Theorem 1.3 and the classical positive mass theorem.

This paper is organized as follows. In Section 2 we give a motivation
for the definition of the mass, by showing that it can be approached from a
variational perspective. In Section 3 we prove that the mass is a geometric
invariant in the sense that it does not depend on the asymptotic structure
and varies smoothly with the metric. The first proof of Theorem 1.3 is
presented in Section 4. As already mentioned, this proof makes use of a
result due to Miao to reduce our positive mass theorem to the classical
version, for manifolds without boundary. In Section 5 we provide a second
proof of our main theorem by adapting the arguments of Schoen and Yau,
for dimensions up to seven, and the arguments of Witten, for spin manifolds.
The appendix is devoted to the proof of a technical result concerning some
elliptic problems in weighted Holder spaces.

Acknowledgements. We first learned about the notion of mass in (1.2)
from Professor F. Marques. We would like to thank him for suggesting us
that Theorem 1.3 should hold true and for helpful discussions. The first and
second authors would like to thank the hospitality of Professor A. Neves at
Imperial College London where part of this research was carried out. While
at Imperial College, the first author was supported by CAPES/Brazil and
CNPq/Brazil grants and the second one by a CNPq grant. While in Brazil,
the three authors were partially supported by CNPq grants.
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2. The variational approach to the mass

In this section we show how the mass m(,;,) can be approached from a
variational perspective. This not only motivates Definition 1.1 but also plays
a key role in the proof of the rigidity statement in Theorem 1.3.

The arguments here are similar to those used in [LP, Section 8] for the
ADM mass and we start by recalling this procedure. We consider a manifold
M of dimension n > 3. Recall that M, the space of Riemannian metrics on
M, is an open cone in Sym? (M), the space of bilinear symmetric tensors on
M. Thus, if g € M and dg € Sym?(M) is small enough then g + g € M.
We recall that the corresponding variation for the scalar curvature R = R,
is

SR = Vi(Vig™* — V'6g) — Rydg™,

where 89 = ¢g**6g;x, V is the Levi-Civita connection of ¢ (extended to act
on tensors) and R;x is the Ricci tensor. Also, the variation of the volume
element is

1_
(2.3) 0dM, = 8gdM,.

This allows us to compute the variation of the Hilbert-Einstein action given
by
gEMHA(g)z/ RdM, .
M
We have

. _ R .
(2.4) 0A = /M VZ-(chSg”“ — VZ(Sg)dMg — /M (Rz‘k — 29m> 5gldeg.

Thus, if no boundary is present, the first term in the right-hand side van-
ishes after integration by parts and we obtain the usual variational formula,
namely,

R .
(2.5) SA = _/ (Rik - 2gik> 59k dM,,
M

In particular, critical metrics for the Hilbert-Einstein action are precisely
Ricci-flat metrics. This applies if M is closed or, more generally, if the vari-
ation d¢g is compactly supported.

If M is asymptotically flat (with an empty boundary) then it is natural
to consider variations preserving this kind of structure at infinity. This time
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a boundary contribution appears and, as explained in [LP], the ADM mass is
precisely the term that should be subtracted from A to restore the expected
form of the variational principle. More precisely, if for any such metric g on
M we define the ADM mass of (M, g) as

(2.6) Morg) = [ (9335 = 9jii)udS;

r

where y is the outward unit normal to a large coordinate sphere S?~! in the
asymptotic region, and set

then it follows from (2.4) that

(2.7) oB = —/ (Rik - Rgm) 5gideg,
M 2

the obvious analogue of (2.5).

Let us now assume that (M, g) is asymptotically flat with a non-compact
boundary as in Theorem 1.3. The natural analogue of A is the Gibbons-
Hawking-York action (|[GH, Y]) given by

(2.8) Alg) = /MRdMg+2 /Z HdY),,

where h = g|s; and H = H,. As before, one must subtract the mass m(,; )
from this in order to restore the expected form of the variational principle.

Proposition 2.1. If (M, g) is asymptotically flat and

B=A- m(M,g),

then

(2.9) 6B=— / <Rik — ?9%) Sg*dM, — / (Aap — Hhopg) ShOPdSy,
M >

where A is the shape operator of 3.
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Proof. We adapt a classical computation ([Ar, Lo]) to the quantity
(2.10) A(g) = / RAM, +2 / Hds),
M, s,

where M, is the compact domain whose boundary is ¥, U S:f;l; see Figure 1.
Notice that this is not the standard GHY action for the compact manifold
M, since the boundary integral over S;fjrl is missing.

In order to compute 6.4, we note that from (2.4) the variation of A,,
the Hilbert-Einstein action evaluated on M,., is

(2.11) 6A, = / 0 (Vidgk — Vidg)dS, + /S 1 (Vidgy — Vidg)ds) !
27‘

n—1
™+

R .
- / <Rik - 29z‘k> sg'tdM,,
M,

where dS;ffjrl is the area element of Sf,jrl.

As usual, we adopt the index ranges 4,j,---=1,...,n and «, 3, - =
1,...,n—1 and choose local coordinates so that {0,}, spans 73 while
Op, = —n. Since

(2.12) n=—(g"")""?g"0;,
the second fundamental form is
(2.13) Aag = =0, Vads) = (¢"") "/ *T5.
The variation of H = haBAag is given by
Yo oo 1 af 1
where V* is the induced connection on ¥.. From this and (2.3) we see that
(2.14)  6(2HdY,) = (2v§5gf; — hoBY ,\0has + HORS — Hagg) 4%,
On the other hand, in those coordinates we have
0" (Vidg; = Vidg) = =Vadgy + Vn(g*"3gap).
so that

(2.15) 7' (Vidgi — Vidg) = =V56g0e + 9°°Vnbgas — A*6gap + Hog).
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Thus, if we combine (2.15), (2.14) and (2.11) we get

5 A, = — / <RZ-;€ — };gik> Sg*dM, — / (Ao — Hhop) ShOP Sy,
M, Y

o

The last integral is clearly a divergence so we can rewrite this as

Pt (Vidgh — Vﬁg)dSﬁ;l —/ VES5gon'dYy,.
%,

n—1
-+

SA, = — / <Rz-k — ggi,g> SgFdM, — / (A — Hhop) ShOP Sy,
M. pI

b

It follows from the results in the next section that the last two integrals
converge as 7 — +00 to dm,y 4, the variation of the mass. From this, (2.9)
follows easily. O

1 (Vidg) — Vidg)ds) ' — / B 98 Gain'dS" 2.

n—1 n
™+ S"'

We thus see that Ricci-flat metrics are again critical for B with respect
to variations fixing the metric along the boundary (dh = 0).

3. The mass as a geometric invariant

In this section we give a proof of the geometric invariance of the mass by
adapting the standard arguments in [Ba, LP]. We also show that this invari-
ant depends smoothly on the asymptotically flat metric, thus justifying the
computation leading to (2.9).

Let us define the function r(x) as any smooth, positive extension of the
asymptotic parameter |z| to M. We start by recalling the expansions of the
scalar curvature and the mean curvature in the asymptotic region.

Proposition 3.1. One has

(3.16) R=Ci;+06, ©= O(r72772)?
and
1 ,
(3.17) H =7 (=Cin' + gnao) + ', 0" =001,

where C; = gij.; — gjji s the ADM mass density.
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Proof. The expansion (3.16) is well-known (see [Ba, LP]). Also, (3.17) follows
easily from the formula (2.13). O

We now introduce the right functional spaces in order to handle this type
of question. Given a complete Riemannian manifold M (with or without
boundary), k£ > 0 an integer and v € R, we proceed as in [LP] and define
the weighted C* space Cﬁ(M ) as the set of C* functions u on M for which

the norm
k

[ullcxary = ZSUP r V|
i—0 M

is finite. Moreover, if 0 < o < 1, we define the weighted Holder space C’lf’a
as the set of functions u € C'I;(M ) such that the norm

k _ Uk
a0y = s an + sup min ) ) 7+ V-8 =20
x7y

is finite. Here, the supremum is over all x # y such that y is contained in a
normal coordinate neighborhood of x, and V¥u(y) is the tensor at = obtained
by the parallel transport along the radial geodesic from x to y.

We also define the weighted Lebesgue space Lgﬂ(M), g>1, BeR, as
the set of locally integrable functions u for which the norm

lullyos = ( / rr—ﬁu\qr-”dMg)

is finite. For k£ > 0 an integer, ¢ > 1 and 8 € R, we define the weighted
Sobolev space Lf, 5(M) to be the set of u for which [V'u| € L§ 5_,(M) for
1=0,1,...,k, with the norm

k
lullgrs =Y IV llg0,5-i-
i=0
Notice that for 5§ = —n/q we recover the standard Sobolev spaces, denoted

simply by L{(M).

It is easy to check that these are Banach spaces whose underlying topolo-
gies do not depend on the choices of r(x) and the asymptotically flat metric
g. As stated in [LP] for manifolds without boundary, the following weighted
Sobolev lemma also holds in our context.

Proposition 3.2. Let ¢ > 1,1l —k—a>n/q and € > 0. Then there are
continuous embeddings C’l’fe(M) C L?ﬁ(M) C C’g’a(M).
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After fixing asymptotically flat coordinates on the end My, we consider,
for each 7 > 0, the space M. of all metrics on M so that

g—0eC"(My), ReL'(M), HelL(%).

If we fix a background metric go and write g = gg + b, it is clear from Propo-
sition 3.1 that we can identify M, to a subset of the affine space

{go + b; bijﬂ'j — bi@j]’ S LI(MOO), baa,n S LI(E N Moo)}
In the topology induced by this identification we have g — ¢ if and only if

gk = gllereary = 0

and
Ry, — Ryl ary + [1Hg, — Hgllp1(s5) — 0.

The following proposition describes the main technical result on weighted
Holder spaces needed in this work. Its proof is postponed to Appendix A.

Proposition 3.3. Let (M, g) be an asymptotically flat manifold (M, g) with
g e M;, >0, and with a nonempty boundary . Fiz 2 —n <~y <0 and
let T : C3*(M) — CI% (M) x C;%(S) be defined by

T(u) = (—Agu + hu, du/On + hu)

where Ay is the Laplacian, 1 is the outward unit normal to X, h € Cg’g_e(M)
and h € Ci’f_€(2), for some € >0 small. If h >0 and h >0 then T is an
isomorphism.

We can use standard interpolation methods to define Lj B(E) for any
k € R,. In particular, the restriction map

u€ CX (M) — (u,0u/dn) € C*(X) x C(X)
extends continuously to the so-called trace map
T Lgﬁ(M) — Lg_l/qﬁ(Z‘) X L‘{_l/q,ﬁ_l(E),

which is surjective. Hence, it makes sense to consider the subspaces of
L ﬁ(M ) consisting of functions satisfying Neumann and Dirichlet bound-
ary conditions, namely,

Wy = {u € Lj 5(M); Ou/dn =0 on X}
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and
Wp = {u € L5 5(M); u=0 onX}.

Proposition 3.4. Consider Ay : Wy — L 5 o(M). Then
(a) Ay is an isomorphism if and only if 2 —n < 3 < 0;
(b) Ay is injective if 0 > B ¢ 7Z;

(c) Ay is surjective if 2 —n < 3 & Z.

Proposition 3.5. Consider Ay : Wp — L 5 o(M). Then
(a) Ay is an isomorphism if and only if 2 —n < 3 < 0;
(b) Ay is injective if 0 > B ¢ Z;

(c) Ay is surjective if 2 —n < ¢ Z.

Proofs of Propositions 3.4 and 3.5. We consider the double (M, g)of (M, g)
along ¥ defined by M = M x {0,1}/ ~, where (y,0) ~ (y,1) for all y € X,
and g(y,j) = g(y) for all y € M and j = 0, 1. Although g is not smooth on
M, it satisfies the hypotheses in [Ba, Definition 2.1]. Then both proofs follow
from [Ba, Proposition 2.2] by means of reflection arguments of functions on
M. The details are left to the reader. 0

Remark 3.6. Suppose ¢ Z, 5 >2—n. As a consequence of Proposi-
tion 3.4, standard arguments show that the Neumann problem

Agu=f inM,
3.18 _
( ) % = on,
an
has a solution u € L3 4(M) for any f € L 5 (M) and fe L‘Ll/q’ﬁil(E).

In fact, we can solve the cases f =0 and f = 0 separately. The latter case
follows directly from Proposition 3.4. In order to solve the case f =0, we
choose ¢ € Lgﬁ(M) such that 0¢/0n = f. Then we use Proposition 3.4 to
find ¢ € Wy satisfying Agyp = —Ag¢ € Lg”@_g(M). Thus, u = ¢ + ¢ is a so-
lution to (3.18) when f = 0. A similar result holds for the Dirichlet problem
in (3.18) as a consequence of Proposition 3.5.

The geometric invariance of the mass is described in the next proposition.
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Proposition 3.7. If (M,g) is asymptotically flat with g € M,, 7> (n —
2)/2, then the mass m(y,q) only depends on the metric g. Moreover, this
dependence is smooth with respect to the topology on M. described above.

The rest of this section is devoted to the proof of Proposition 3.7. The
first step is to integrate (3.16) over the region M, , determined by two
coordinates hemispheres, say S,ffjrl and Sf,,jrl, with r < r’. We find that

/ RdM, = / Cop'dS) ) — / Cip'dS) T
M, not

/ Cin sy, +/ OdM,,

where ¥,., is the portion of the boundary of M, ,  lying on ¥. On the other
hand, from (3.17) we get

/ CindS), = / Gom 9 dST 2 / G0 dST
SR sn2 s

—2/ Hd2h+2/ Q'dy,.
0 DI

T

Hence,

/S Gipldsy /S  Gan¥dS)
!+ !

:/ RdMg+2/ Hd2h+/ Cip'dS) 7!
ol 27‘1,‘/ 8:11 ’

+ / gomé‘o‘cl"g,’?_2 +o(r"),
Sr—2

where lim, o, o(r') = 0. Taking into account that R € L'(M) and H €
LY(X), this clearly shows that the limit in the right-hand side of (1.2) exists
and is finite for any given asymptotically flat coordinate system.

If we repeat the above computation using ¢C instead of C, where ¢ is a
cutoff function which equals 1 in a neighborhood of infinity, then we easily see
that the mass is continuous as a function on M, for the fixed asymptotically
flat chart. Since it is obviously affine, its smoothness follows at once. Thus,
it remains to check that the mass does not depend on the asymptotically
flat chart used to compute it. To that end, we need to show that R’} is rigid
at infinity in a suitable sense. This uses harmonic coordinates as in [Bal; see
also [Ch] for an alternative approach to the invariance of the ADM mass.
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Proposition 3.8. Suppose (M, g) is asymptotically flat with g € M., T >
(n—2)/2, and {x;} are asymptotically flat coordinates defined on Ms,. Then
there exist smooth functions {z} on M satisfying

Agm’ﬁ =0 inM,
81‘23

67:0 onZ,
n

for=1,....n—1,

Agz, =0 inM,
x, =0 ony,

and

T — T, € Cz’fH(Moo) ifn > 4;
LeCP L (M) ifn=3.

Moreover, the functions {z} form an asymptotic flat coordinate system in
a neighborhood of infinity.

Proof. We first extend z; arbitrarily to smooth functions on M satisfying
Zn, =0 on OM.

If n >4, then —7 + 1 is negative and the result follows from Propo-
sition 3.3. Indeed, we use the fact that Agx; € Cg’f_l(M) and Oxg/0n €
C’i’f‘(E), for f=1,...,n—1, to solve for z; € Cg’fﬂ(M) the equations
Agzg = Agzg and Agz, = Agxy,, with boundary conditions 0zz/dn =
O0xg/0n and z, = 0, respectively. It is clear that a;; = x; — z; meets the con-
ditions of the proposition.

If n=3, —7 + 1 may be positive, so we will need to make use of Proposi-
tions 3.4 and 3.5 to find z, as above. By Proposition 3.2, Agz; € Cﬂ’ﬁgl (M) C
L§ . 14(M) and Ozg/0n € ch(m) ¢ L({—l/q,—T—&-e(E)’ for any ¢ > 1 and
€ > 0. Assuming that € is chosen such that y=—-7+1+€e¢¢ Z and v >
2 —n, it follows from Remark 3.6 that there exist 2 € Lj (M) satisfy-
ing Agzg = Agag and Ayz, = Agx, with boundary conditions 0zg/0n =
O0xg/0n and z, = 0, respectively. For ¢ > n, Proposition 3.2 implies that
zi € C%’Q(M), and Lemma A.2(a) ensures that z; € C’E’f‘Hﬁ(M). Finally,
we set again z, = x; — z;.

That {«}} form a coordinate system in some neighborhood of infinity
follows from the fact that |Vz;| = O(r=7¢). O
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We now consider two asymptotically flat coordinate systems {z;} and
{y;} on the same manifold and let {z}} and {y,} be the corresponding har-
monic coordinate systems as in Proposition 3.8. The following result de-
scribes the relationship between these coordinate systems.

Proposition 3.9. If (M,g) is as in Proposition 3.8 then there exists an
orthogonal matriz {Q] ijl and constants a;, i = 1,...,n, so that
with Q2 = Q4 =a, =0, fora=1,...,n—1.

Proof. We consider the double (M ,g) as in the proofs of Propositions 3.4
and 3.5. Since z € ker Ay C Lgﬁ(M) for all 1 <8 <2 and ¢ > 1, we can
define functions 7} € ker Az C Lgﬂ(]\?) by 7/, (x,7) = zl,(z) and Z),(x, ) =
(—1)Ja),(z) for j = 0,1. We define 7. in a similar way. Although the coordi-
nates x; and y; define different spaces LZ7 ﬁ(M ) for k > 1, ker Ay is indepen-
dent of the chosen coordinates as observed in [Ba, p. 676].

Since dim(ker Az) =n+ 1 and the set {1,7;,...,9,} is linearly inde-
pendent, we can write 7, = Qg @; + a; and then the result follows by using
the boundary conditions on z} and y,. We observe that {Qf } is orthogonal
because the metric g is asymptotially flat with respect to both 2} and y;. O

By eventually composing the coordinates with rigid motions of R}, we
may assume that

(3.19) 3y, = Qi
with
AL st —T+e Ao
(3.20) Qs =6;+0(r ), and Q5 =0 alongX.

This is the promised rigidity at infinity of R’!, which we now explore to
complete the proof of Proposition 3.7.

As in [Ba, p.680] we write R*,1 = dC*) + Din a given coordinate sys-
tem {x;}, where C(*) = g¥wh A G.;, with V,0,, = wkd,, and G = (9u, A
Dy, ) axg 1, and D = O(r~27=2). Observe that the mass density C(*) (defined

J
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in Proposition 3.1) in this same coordinate system satisfies

lim (€™, wydsr = lim ),

r——+oo 8:11 r—-+00 8:11
Proceeding as in [Ba, pp.681-682] it follows from (3.19)—(3.20) that
C® —CW =4 <*5 (@zdx] A dmz>> + O(r— 27712,

that is, the ADM densities differ by the sum of a total differential and a
term that integrates to zero as r — 4-o0. This is the ‘simple but curious
cancellation’ mentioned in [Ba]. Observing the chosen orientation for S"~2
in Definition 1.1, we find that

lim C@ — lim CW = lim *§ (@gdl’z A dl’j)
r——400o S:,jrl r——400 S:;l r—-+4o0 Sn—2
= lim *§ <@dea A dacn> )

r——+00 Sr—2
r

On the other hand, by (3.19)—(3.20) we compute that

g((l:%’b) = <ayu ) 8yn> = <©?axﬂ @;Laﬁbj)
= Q5Qrgs) = Qrgl) + 02+
= g8+ Qn+0(r7).

This completes the proof of Proposition 3.7.

Remark 3.10. In a coordinate system where g,, = 0 along ¥ in the asymp-
totic region, the expression (1.2) simplifies to

(3.21) Mg = lim (9ijg — gjja)n'dS; 5

r——400o Sn;l
.

In particular, this takes place if the metric is conformally flat near infinity,
which is the case of the metric § constructed in Proposition 4.1 below. As
a concrete example, consider the half Schwarzschild space, which is M, =
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{z e RY; |z| > (m/Z)i} endowed with the conformal metric

4

Gm = (1 + %|az|2_”)f2 9, m>0.

Thus, g, is scalar-flat with a non-compact totally geodesic boundary given
by z, = 0 and a straightforward computation using (1.2) shows that

m(Mm’gm) = (n — 1)wn_1m.

This means that m(,;, oy is half the ADM mass of the standard Schwarz-
schild space, which is the double of (M,,,gm,) along its totally geodesic
boundary. A similar remark applies for the mass invariants of the manifolds
appearing in the doubling construction used in the proof of Theorem 1.3
presented in the next section.

4. A proof of Theorem 1.3

In the following we denote the dependence of geometric invariants on the
underlying metric by a subscript. In particular, we consider the conformal
operators

Ly=—a,Ag+ Ry, an=4(n—-1)/(n—-2),
and
By =0,0/0ng+ Hy, b, =2(n—1)/(n—2).

We also recall the function r(z) defined in Section 3 as any smooth, positive
extension of the asymptotic parameter |x| to M.

The following result shows that, under the conditions of Theorem 1.3,
the asymptotics of the metric g can be substantially improved. This follows
an idea first put forward by Schoen and Yau in their celebrated proof of the
classical Positive Mass Theorem ([SY2]).

Proposition 4.1. Let (M,g) be an asymptotically flat manifold with g €
Mz, where T > (n —2)/2, and assume that Ry > 0 and Hy > 0. Then for
any € > 0 small enough there exists an asymptotically flat metric g € M,_,
satisfying:

i) Rg >0 and Hg > 0, with Rg =0 and Hyz = 0 near infinity;
i) g is conformally flat near infinity;

iii) |m(M7§) — m(th)’ S €.
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Proof. Our argument uses the conformal method and proceeds similarly to
the proof in [LP, Lemma 10.6]. Let x : R — [0, 1] be a smooth cutoff function
such that x(t) =1 for t <1 and x(¢t) =0 for ¢t > 2. For R > 0 large define
xr(7) = x(R71r(z)) and set gr = xrg + (1 — xg)d. We will solve

(4 22) {LgRuR = XRRQUR in M,

By, ur = xrHyug onX

for ug > 0 and R large enough, and check that the conformal metric gp =

u? gr has all the desired properties.
We write up = 1 4+ vr and set
1 0 1

Lp=—Ag, +— B = —5
R gR+an’YR7 R angR+bnrYR7

where vg = Ry, — XrRy and Yp = Hgy, — xrHy. Thus, (4.22) is equivalent
to

bnBror = —yr on,

For any € >0 we have |’73||CE’3,2+5(M) — 0 and HTYR”C}S,HS(E) — 0 as

R — o0. In what follows we solve (4.23) uniquely for vg € Cz’f+6(M), with
||URHCi,a+ vy — 0 as R — oo. In particular, up > 0 for R large.

Fix0<e<t-— "T_2 According to Proposition 3.3, the operator

T C2% (M) = C%, (M) x C** (%)

given by Tu = (Agu, 867“) is an isomorphism.
Set Tru = (Lgu, Bru). It follows from the easily established estimates

1(Ags = Bg)wllcos, ary < lgr = gllepe@nllulleze
1(0/0ng, — 8/8779)16”0};;71(2) < llgr — gHC(?’“(M)HuHCf’erE(M) )
Ivrullcos, an < Ivellcosanllullcos, oy
and

1Frullgre, () < Rlcre s lullcre,
that Tr — T is arbitrarily small in the operator norm as R — oo. From this
we conclude that T is also an isomorphism for large R, which provides a
unique solution vg to (4.23).
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Now we can choose gr with R large, proving (i) and (ii). It is easy
to prove that gr — g in M,_., as R — oo, so that the property (iii) also
holds. U

We will now present our first proof of Theorem 1.3. We first observe
that in order to prove the inequality m(,s 4y > 0, it suffices to assume that g
satisfies the conclusion of Proposition 4.1. Thus, we may assume that 2, > 0
and H, > 0 everywhere, with R, = 0, H, = 0 and g conformally flat outside
a compact set K ={z € M; r(z) < C}.

Observe that X, restricted to My, is a subset of OR’} which is totally
geodesic with respect to the Euclidean metric. Hence, we can assume that
> is umbilic outside K, with respect to the conformally flat metric g.

Since ¥ is umbilic and Hy = 0 outside K it follows that 3\ K is totally
geodesic. This suggests to consider the double (M ,g) of (M,g) along X.
More precisely, M = M x {0,1}/ ~, where (y,0) ~ (y,1) for all y € ¥, and
9(y,j) = g(y) for ally € M and j = 0, 1. It is easy to check that g is C?® on
M\ K, where K is the double of K. Observe that, if we consider the compact
hypersurface (with boundary) ¥x = ¥ N K, we have that both g AAM and
on gp\x induce the same metric on 3 and hence on Y. Also, since ¥k has
nonnegative mean curvature Hy with respect to M\ and the unit normal
7, it has nonpositive mean curvature —H, with respect to M\M and the
same unit normal vector 7.

We can extend Yx to a closed hypersurface ¥’ in such a way that
;i\Z x C M\K and n points to the unbounded connected component of
M\Y; see Figure 2. Let H" be the mean curvature of 3’ with respect to
this unbounded component and H~ be the one with respect to the bounded
component, both calculated using a smooth extension of 7 normal to X'.
Observe that H- = —H" = H, > 0 on Xk, the region where g is possibly
nonsmooth. On the other hand, since g is C* in M\K > >'\Sg, we see that
H* = H~ on ¥\Xg. Thus, M together with ¥’ satisfy the assumptions of
[Mi, Theorem 1], which allows us to infer that the ADM mass Mii ) of the
doubled manifold is nonnegative. As in Remark 3.10, this mass 1s precisely
2m(py ), 0 we conclude that mr ) > 0, as desired.

Remark 4.2. Although originally stated in more restrictive settings, the
result in [Mi] also holds in our context where ¥/ may have finitely many
connnected components and the unbounded region N determined by this
hypersurface does not need to be diffeomorphic to R™ minus a ball. In fact,
it is enough that N is an asymptotically flat manifold in the classical sense.
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Figure 2: The doubling construction.

We can extend this result even further to the case where M \V has a finite
number of ends, allowing the generalization stated in Remark 1.5.

We now prove the rigidity statement in Theorem 1.3. The key result
is the lemma below, which says that a manifold (M, g) as in Theorem 1.3
which has minimal mass is necessarily Ricci-flat and has totally geodesic
boundary.

Lemma 4.3. Under the conditions of Theorem 1.3, if w4 =0 then
Ricy =0 and Ay = 0.

Proof. As in the proof of [LP, Lemma 10.7], we will use the variational char-
acterization of the mass; see Proposition 2.1. We set g; = g + tk, where k
is a compactly supported symmetric 2-tensor on M. These metrics do not
necessarily satisfy the positivity conditions on the scalar and mean curva-
tures but we remedy this as follows. We consider the linear boundary value
problem

(4.24)

Lgus = Rguy inM,
Bg,us = Hyuy on X,

for t € R. If we write u; = 1 + v; this is equivalent to
—anAgtUt + v =—y InM,

bn 8 UVt
aT]g t

4.25
( ) + Vv = =Y on X,
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where 14 = Ry, — Ry and ; = H,y, — H,. Since ~y; and ; are both compactly
supported and converge to zero in C* as ¢ — 0, we see that vellcoe ary — 0
and [|%[[c1o (5 = Oast — 0. Arguing as in the proof of Proposition 4.1, for

small |¢] we can solve (4.25) uniquely for v; € C*%(M), with lvell 2o ary — O
as t — 0. Thus, if we set g; = u," g, it follows from (4.24) that

_n+2 a4
(4.26) Ry =wu; "*Lgus =u; "Ry >0,

__n_ 2
— n—2 _ n—2
Hy, = v, By, ug = uy H;>0.

Notice that we have already proved that m(; 4y > 0 for any (M, g) as in
Theorem 1.3. Hence, the assumption m(;s 5) = 0 means that g is a minimum
for the mass among the metrics g;, with |¢| small. On the other hand, if
U= %uthzo we easily see that

d 4 1
— = dM; = — 1R,dM, + — ! k dM,
dt‘t:oRgt ge n— 2URg ot 2Rg <n— 2ug+ ,g> &

and

d 4 '
il g 23 0%, = =S + 1, < itg + k,g> dSy,

n—2
Using Propositions 2.1 and 3.7, and putting all these facts together, a

straightforward computation gives

d
0= %’t:om(M’g‘)
_ / (k. Ric,) dM, + / (k, Ay) dS.
M ¥

Since this holds for any compactly supported k, the conclusion follows. [J

The proof of Theorem 1.3 is completed using the following lemma.

Lemma 4.4. If (M,g) as in Theorem 1.3 satisfies Ricg > 0 and Ay =0
then it is isometric to R’} with the standard flat metric.

Proof. The double (M ,g) of (M,g) along its totally geodesic boundary %
is a complete C*® asymptotically flat manifold (with an empty boundary)
satisfying Ricz > 0, which is well-known to be isometric to R™ with the
standard flat metric. The result follows. U
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5. Another proof of Theorem 1.3

In this section we provide another proof of Theorem 1.3 which is more in
line with the classical arguments. Thus, in Subsection 5.1 we treat the case
n < 7 and in Subsection 5.2 we treat the case when M is spin.

5.1. The case n < 7

We present below another proof of Theorem 1.3 for this case, following the
ideas in [SY1, SY2].

Let us assume by contradiction that the mass m;; 4 is negative. We will
construct an embedded asymptotically flat minimal hypersurface H C M
and obtain a contradiction. The boundary ¥ will work as a barrier when
constructing H.

By Proposition 4.1 we can assume that (M, g) is asymptotically flat
satisfying g = unz 0, with u > 0, and Ry = 0 = H, near infinity. Hence

Au=0 in R?‘_ ,
ou

I 0 ondR",

Ln

for |z| large. Thus we can write

(5.27) u(@) = 1+ ClaP ™ + O(la]' ™),

where C' = c(n)mys ) and c(n) is a positive constant, so that C' < 0 by our
assumptions. (The proof of this asymptotic expansion is a simplified version
of the arguments used for the function v below. An alternative argument is
a modification of the one in [LP], p.83.)

If f1 and f5 are positive functions decaying rapidly on M and ¥ respec-
tively, then we can find a solution to

(5.28) {Lgv —fi inM,

Byjv=f; onX.

in the form v(z) = 1 + €|lz|> ™ + O(|z|* "), where we can make ¢ > 0 arbi-
trarily small. (See Section 4 for the definition of L, and By.) In fact, as in the
proof of Proposition 4.1 we rewrite the system (5.28) by making v = 1 + 9,
(NS sz (M), and obtain a new system in terms of ¢, which is solvable
if fi = fi — Ry € C*® (M) and fy = fo — H, € C*® | (X). The solvability
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of this problem relies on the fact that Ry, H, > 0, which allows us to use
Proposition 3.3. Observe also that }3 has the same decay rate of f;, for
Jj = 1,2, because both R, and H, have compact support.

In order to obtain the expansion f(zr v, we rewrite the system for
in terms of the background metric v~ »-2¢g , which is Euclidean outside a
compact set. Then we proceed as in the proof of Lemma A.4 to estimate
|z~ 2[¢)(z)| by a constant which can be assumed arbitrarily small by choos-
ing f; and fy small with appropriate decay at infinity. The details are left
to the reader.

In particular, in what follows we can assume that R, > 0in M, H; > 0
onx, g= w728 in the end M+, and u has the asymptotic expansion (5.27)
with C' < 0. .

Let us consider the unit vector field v = v~ »—209/0z,, defined on My,
and inward normal to ¥ N My,. We can extend v to M in such a way that
it is still a unit vector on M and still normal to ¥ outside My,. As in [S] we
compute the divergence of v to find that

divgy = —2(n — 1)0‘% +O(lz|™),
near infinity. So we can choose ag > 0 sufficiently large such that divyv(x) >

0 whenever z,, > ag.
For o > 0 large and a > 0, we set

Loo={z=(Z,2p); |Z| =0, , = a}.

Let Hyq C M be the (n — 1)-hypersurface of least area having I'y , as its
boundary. This is possible because H, > 0 along ¥. We define

A(o) = min{areay(Hoq); a € [0, aol}.

We set Ho = Ho,a, for as € [0, ap] such that areay(Ho o) = A(0).

For R > 0 large, let us set Qp = {x € M; |z| < R}. As in [SY1], we can
choose Ry large such that =+ |z|? is a convex function for |z| > Ry. For
each o large we choose R, > Ry such that

{z = (z,2,) € Muo; |Z| = 0; xy, < ap} C Qpg,.
By the maximum principle we see that H, C Qg, .

Since we have changed the metric g in such a way that 3 has positive
mean curvature, we have divyr < 0 along Y. By continuity, one can choose
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€s > 0 small such that divyv(z) < 0 for any z € Qg_ such that dgy(z, ) < €.
In particular we can conclude that

(5.29) He C{z € Qp,; dy(z,X) > €, }.

for some 0 < €. < €,. This is done by means of the divergence theorem and
the minimizing properties of H,.

Remark 5.1. If M has more than one end, the same arguments apply
observing that |z| = R, R large, works as a barrier in the other ends as well,
preventing H, from escaping to infinity.

Now the proof follows as in [S], observing that (5.29) ensures that the
boundary does not interfere when calculating the area first and second vari-
ations formula for each H,. The limiting area minimizing hypersurface H,
obtained as 0 — o0, is asymptotically flat without boundary, and we will be
able to change conformally the induced metric on H to a scalar-flat metric.
In dimensions 4 < n < 7, by analyzing the second variation formula of area
on H we conclude that its mass is negative, contradicting the classical ver-
sion of the positive mass theorem. In dimension n = 3, the contradiction is
given by analyzing the integral of the Gaussian curvature of the surface H
as well as its Euler number.

The rigidity statement follows as in the previous section.

5.2. The case M spin

In this subsection we establish a Witten-type formula for the mass of asymp-
totically flat spin manifolds in any dimension n > 3. As a consequence, we
obtain another proof of Theorem 1.3 in the spin setting.

Theorem 5.2. If (M,g) is an asymptotically flat spin manifold of dimen-
sion n >3 as in Theorem 1.3 then

1 R 1
(5.30) “Marg) _/ (va\2+|¢|2> dMg+/H|¢|2dEh,
4 ' M 4 2 /s
where 1 is a suitable nontrivial harmonic spinor globally defined on M.
We start by recalling some basic facts regarding spinors on manifolds

with boundary. The reader will find a more detailed account of this prepara-
tory material in [F, HMZ, HMRI1].
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5.2.1. The integral Lichnerowicz formula on spin manifolds with
boundary. We consider a spin manifold 2 of dimension n > 3 endowed
with a Riemannian metric g. We denote by S¢2 the spin bundle of 2 and by V
both the Levi-Civita connection of TQ2 and its lift to S€2. The corresponding
Dirac operator D : I'(SQ) — ['(SQ) is locally given by

n

(5.31) Dy => y(e)Veth, ¢ eT(SQ),

=1

where {e;} ; is a local orthonormal frame and 7 : TQ2 x SQ — SQ is the
Clifford product.

If S is the boundary of €2, which we assume oriented by its inner unit
normal v = —n, then, given a spinor ¢ € I'(SQ2), a well-known computation
gives the integral Lichnerowicz formula:

R
63 [ (6P 1Del+ JIeR ) an = - [ (Buplas.
where
By =7(X)D+ Vy, X eI(TQ).

For our purposes it will be convenient to rewrite the left-hand side above
in terms of the mean curvature H of S. We first note that S carries the spin
bundle SQ2|s, obtained by restricting SQ2 to S. This becomes a Dirac bundle
if its Clifford product is

V(X)) =vX)W)e, X eI(TS), ¢el(SQs),
and its connection is
1

(5.33) Vie = Vxp = 577 (AX)p,
where A is the shape operator of S. The corresponding Dirac operator DT :
['(SQs) — I'(SQs) is

n—1

DT = 7T(f;)V} e
j=1

where {f; }?;11 is a local orthonormal frame along S. A well-known compu-
tation shows that

H
(5.34) DTy = 5%~ Bue,
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so that (5.32) is equivalent to

R H
539 [ (19 - 10eP + i) a0 = [ (DT~ Tip)as
Q S

5.2.2. A boundary value problem for spinors. Here we follow [GN]
and discuss a certain boundary value problem for spinors on an asymp-
totically flat manifold M with a non-compact boundary ». We start by
observing that if v is the inward unit normal to X then the linear map ¢ =
iv(v) : SM|s, — SM]|x, is a self-adjoint involution. Thus, we have a (point-
wise) decomposition,

(5.36) SMls =V, & V.,

corresponding to the eigenbundles of €, that is, Vi = {¢ € SM|x;ep = £¢}.
We denote the corresponding projections by Py : SM|y, — Vi,

Piz (Id:l:ﬁ),

DO |

and we set ¢ = oy + ¢_, o+ = Pyp. It is easy to check that DTPy = P+ DT.
Proposition 5.3. If o € I'(Vy) then (DTp, ) = 0.
Proof. We compute

(DT, ) = (DT Piyp, Pro) = (PrDT¢, Prp) = 0,

where in the last step we used that the decomposition (5.36) is orthogonal.
O

It turns out that the projections Py define nice boundary conditions for
the Dirac operator D of M. More precisely, the following result holds.

Proposition 5.4. If (M,g) is as in Theorem 1.3 and ¢ € I'(SM) satisfies
V¢ € L*>(SM), then there exists a unique & € L2(SM) solving the boundary
value problem

D¢ =—-D¢ in M

& =0 on X
Proof. The assumption V¢ € L?(SM) implies, via (5.31) and Cauchy-
Schwarz, that D¢ € L?(SM). The result is then an immediate consequence
of [GN, Corollary 4.19]. O
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5.2.3. The proof of the Witten-type mass formula. In this subsec-
tion we prove Theorem 5.2 by showing that the mass formula (5.30) holds
true. As already mentioned above, our proof adapts Witten’s well-known
argument as reported in [LP] to the class of asymptotically flat manifolds
we consider here.

We first claim that, starting from an arbitrary asymptotically flat coor-
dinate system {x;}, we can always produce another such coordinate system
{z}} such that go, = 0 along ¥ near infinity; see Remark 3.10. Indeed, it
follows from (2.12) that V!(n+9,,) = O(r~"7!) for I = 0,1,2. Also, from
(2.13) we see that A= O(r~""1) and VA = O(r~7~2). Thus, the claim is
verified if we choose {} so that z;, = x4 and d,, = —n along ¥ and extend
this to the whole asymptotic region in the obvious manner. In such a coordi-
nate system, we can use the simplified expression (3.21) to compute m,y ).

With this preliminary remark at hand, we start the proof by fixing a
constant spinor ¢ with respect to the given asymptotically flat chart, which
means that 9;¢ = 0 in the asymptotic region. Moreover, we may assume
that |¢| — 1 and ¢_ = 0 along the boundary of this region. We extend ¢ as
zero to the rest of X, so that ¢_ = 0 everywhere, and finally we extend ¢
to the rest of M in an arbitrary manner. The well-known formula for the
spin connection shows that V¢ € L?2(SM), so we may find ¢ € L(SM) as
in Proposition 5.4. It is immediate that

(5.37) Y=E+0¢
satisfies
DiyYy=0 inM
Y- =0 onX

We now apply (5.32)—(5.35) in the usual way to the region M, with
boundary X, U Sﬁ;l to obtain

2, R o _ 1 2
[ (wor+ e ) st = [ orowyae, 5 [ aopa,

+ R (Byp, ) dS7
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where 1 = —v is the outward unit normal and R denotes real part. The
boundary condition _ = 0 implies, via Proposition 5.3, that the first inte-
gral in the right-hand side vanishes. By sending r — 400 we get

2, B o _ 1 2
[ (rwor+ Siwe ) ave =3 [ mpas,

+ lim R (Voo ) dSPTY

r—4o00 n—
ST) !
SO we must Check lhat

. n— 1
(5.3) lim R /S (V) aST = ),

r—-+o00
r+

We use (5.37) to split the integral as

R (Vitp, ) dS'

Syt
=R - (Vno, ) dSPTH+ R / (V9,6 dS]!
™+
TR VaEd +1+§R/ Vo, 8) dSPT
ot

As explained in [LP], algebraic cancellations and the decay properties of V¢
and £ imply that the first three terms eventually vanish at infinity, so we
must evaluate the fourth one as r — +o0.

In order to handle this limit we note that asymptotic flatness means that

Gij = 0ij + aij, a;; =0("").
Hence, the coordinate frame 0; can be orthonormalized to yield
e = 0; — %aijaj +O0(r "),
which gives
(5.39) ej-ej-=0;-0;-+0(r7),

where from now on we represent Clifford product by a dot. Following [LP]
we introduce the (n — 2)-form

w = ([e, em-]¢, &) ejuemdM.
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A straightforward computation gives

dw = —4 (<Bez¢7£> - <¢7 Bez€>> ejadM,

where

1

(5.40) Be, =V, +e D= (0m+e-em)Ve, = §[el-,em~]vem.

In particular,
1
Gay [ Bagseni— [ (B gaar=] [ w
S:L,;l S,,n’ll 4 877}72

In Witten’s original argument, the boundary term in the right-hand side
of (5.41) vanishes because the integration in the left-hand side is performed
over a closed sphere. In our case, S” '+ is a hemisphere and this terms con-
tributes with an integral over S?~2 = =0S;! +1 which, as we shall see, vanishes
at infinity. To see this we integrate by parts to get

s <v6157 ¢> el—'dM =R <(Bez — € D)ga d)> el—’dM
st s

= 5]?/ (Be, ¢, &) equdM + 13‘%/ w
St 4 Jsr-2

ot

—§R/ B <el Df ¢> el_JdM
_§R/ Be, &, &) equdM + afe w
sr?

+ R (e1- D¢, ¢) ejadM,
Syt

where in the last step we used (5.37) and the fact that ¢ is harmonic. Again
due to the decay properties, the first integral in the right-hand side above
vanishes at infinity. Also, the standard computation as in [LP] shows that

. o1 N
lim & <el : qu, gb) eleM = lim / (gim - gjj,i)uldSﬁJrl.
Sy

r—-+4o00 S 11 r—+00
r,

Thus, it remains to check that

(5.42) lim ﬂ%/ w=0.
S

r—-+00
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Using (5.39) and restricting to ¥ in the asymptotic region we have
(5.43) W ="4(0y - On + &,&)0q10,dM + (O(r~7) - ¢,£) Do 20nd M.

Since 9y 0padM = dSP~2 = O(r"~2) we see that the last term in the right-
hand side integrates to zero at infinity. On the other hand, if { means trans-
pose conjugation then (e, - e,-)T = e, - ey and hence (94 - 0,-)f = 9y, - O -
+O(r~7) by (5.39). By using Clifford relations in the asymptotic region we
get

0= —2gan
=0y Op - +0p - On-
=0 Op -+ (0 - 0p) +00™7),

which gives 0, - Op,- = O(r~7) on Vi. Thus, the first term in the right-hand
side of (5.43) also integrates to zero as r — +o00. This completes the proof
of Theorem 5.2.

With Theorem 5.2 at hand, we can easily produce a proof of Theorem 1.3
in the spin case. First, it is immediate from (5.30) that a spin manifold as in
Theorem 1.3 satisfies the mass inequality mys 4y > 0. Moreover, if m,, ;) = 0
then (M, g) carries a non-trivial parallel spinor, say 1. In particular, g is
Ricci flat. Also, since iv - 1) = 1 along 3, we see after differentiation that
AX -4 =0 for any X tangent to X. Since (M, g) actually carries as many
parallel spinors as the model space (R';,d), we conclude that ¥ is totally
geodesic and the rigidity statement follows from Lemma 4.4.

Appendix A. The proof of Proposition 3.3

In this technical appendix we present a proof of Proposition 3.3. The argu-
ment follows from a series of lemmas which, taken together, establish the
mapping properties of the operator 7' appearing in that proposition. Our
proof is inspired by the ideas in [CSCB], where the case of manifolds with-
out boundary is treated.

Lemma A.1. If2 —n <~ <0 there exists C = C(n) > 0 such that, for all
u € C%(RS‘F), we have

lullco@my) < CllAullco_,@r) + Cll0u/0zn|co_, (orr)-

P?"OOf. We  set qb(x,y) = |x - y|27n + |x - @'|27n7 where 17: (yh <oy Yn—1,
—yn) if y = (y1,...,yn). Observe that A,¢(z,y) = 0 for any x,y € R, and
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ai ¢(x,y) =0 for any = € OR"} and y € R"}. Then, for any y € R with
ly| < R, Green’s formula ylelds

(n —2)wp—1u(y) / o(z,y)Au(x)dz
z€R% |z|<R

/ 8o, ) o (@)don()
z€ORY |z|<R n

ou
+ / ey PV 5 @A)
-/ a%c yyu(z)dor(z).

€RY,|z|=R or

Choosing R > 2|y| and using the fact that u € Cg(Rﬁ), one can check that

/xER" || Rgb(w’y)}gq;(x)‘dff}z(l‘) <C(n)R".

Also, since

for any u € R™ with R > 2|y|, we get
o¢
—(z,y)u ‘daR ) < C(n)R".
/aceR J|z|=R or

Hence, taking the limit as R — oo in Green’s formula above and using the
hypothesis v < 0 we obtain

(A.1) (n —2)wp—1u(y) = — /GR" o(z,y)Au(z)dx

ou
[y P9 gy o),

n

Since 2 —n < v, we can use the fact that

/ &~y e[ 2de + / & — "2 do(z) < Cn)lyl"
mERi

zeIRY}
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for any y € R™, so that it follows from (A.1) that
ly[Mu(y)l < C Y77 oz, y) Au(z)|dz

T€RY

ou
+C Yl To(x,y ‘x
gceaml | o(z,y) a:En()

<c / I e T S
zeRY

o
oxy,

do(a),

+C lyl ()|
z€ORY}

() do ()

Co_, (9RY)

)

ou
< CllAu(@)lles_y@mny +C Hc‘)(x)
Tn - llco_, (arn)

which proves the lemma. O

Lemma A.2. Let (M,g) be an asymptotically flat manifold with g € M,
7> 0, and boundary 3, and let v € R. Then the following assertions hold:

(a) There exists C = C(M,g,v) >0 such that, if ue C%’O‘(M), Agu €
C’gf‘Q(M) and Ou/dn, € C’if‘l(E), then u € C2*(M) and we have

[ullezeary < CllAgullos, ary + CllOu/Ongll e 55y + Cllullcoary-

(b) Assume that g =6 outside a compact set and 2 —n <~y < 0. Then
there exists C' = C(M,g,v) > 0 and a compact set K C M such that,
for allw € C2(M),

[ullcoary < CllAgullco ,ary + CllOuw/Ongllco () + Cllullerx).-

In particular, if g = 0 outside a compact set and 2 —n < v <0, then
there exists C' = C(M, g,v) > 0 and a compact set K C M such that,
if u e C%’Q(M), then u € C’%’O‘(M) and we have

lullczeany < CllAgullgos ary + CllOu/Ongll e 55y + Cllullor (k)

Proof. We can identify the end M., with R \{z € R}, || > 1} under the
given asymptotically flat chart. For R > 1 we will denote by K the compact
set M\{x € M; |z| > R}. Finally, for any subset Q C M, we define 9'Q) =
Qns. B
For the proof of item (a), we set A ={z € My; 1 < |z| <4} and A =
{x € Mw; 2 <|z| <3}. For R>1 we also set Ap ={x € My; R< |z| <
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AR} and AR = {2 € My; 2R < |z| < 3R} so that A; = A and A; = A. Let
0 < x <1 be a smooth cutoff function satisfying x =1 in A and xy =0 in
M\A, and let u € C%’O‘(M). We set ur(z) = u(Rzx) for x € A and define a
metric gr on A by (gr)ij(x) = gi;(Rx).

It follows from elliptic regularity that u € Cf 7Y (M) and

(A2)  Ixurllc2ea) < CllAg: (xur)llcoea)y + CllO(xur)/Ongyllcre o ),

for some C' = C(M, g). Observe that

(A.3) lurllcen zy < lIxturllc2ea),
(A4) [Agr (XuRr)|lco.e(a) < CllAgrurllco.eay + Cllurllcraca
and

(A5) [lI0(xur)/Ongllcre(a a) < CllOur/Onggllcre(o ay + Cllurllcre@ ay

so that

(A.6) lurllgea iy < CllAgrurllcon(ay + CllOur/Onggllcre (o a)
+ Cllurllcra(a)-

Expanding this in terms of CY norms, multiplying by R~ and rewriting the
result in terms of v and g, we get

(A7) [ull g2z, < CllAgullcos, ay + CllOu/ngllore o a,)
+ Cllulleroay)-

Since this holds for R arbitrarily large, we conclude that u € Cg’a(M ).
Combining (A.6) with a well-known interpolation inequality, namely,

[vllcraay < ellvllozacay + Ce)|v]lcogay,

and proceeding as in (A.7) we obtain

HUHcgwa(gR) < CHAgUHogf (Ap) T CHau/anch;fl(a'AR)

2

+ O(O)lullegagn +ellullozean)-
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Hence,

ullezean i) < ClAgullcos, k) + CllOu/ngllcre (o k)

+ C(O)llullcoan ) + ellullczean k)

which implies

(A.8) [ullcze i,y < CllAgullcoe, () + CllOu/Ongll e, (5
+ C()llullcoary + ellull gz (ary -

Let us now consider a smooth cutoff function 0 < 6 < 1 satisfying 6 =1
in K3 and 0 = 0 in M\ K4. By elliptic regularity,

ulloza ) < 10ullc2a(x,) < CllAG(OU)llcoa (k) + CllOOU)/Ongllcre ok,
< CllAgullco.a i,y + CllOu/Ongllcreo k) + Cllullore(x,)
< CllAgullco.a(x,) + CllOu/Ongllcre o x,) + C€)||ull o,

+ €llullcza k),

so that

(A.9) [ull ey < CHAgUHcgﬂ ot C||5U/377ch;fl(z)

-2

+ C()lullcoary + ellull gz an.

The estimate in item (a) follows immediately from (A.8) and (A.9).

In order to prove item (b), assume that g =¢ in M\Kpr, R> 1, and
consider a smooth cutoff function 0 < 6§ < 1 satisfying# = 1in Kz and § =0
in M\ Ksp. Since (1 — )u has support in M, the restriction of (1 — 0)u to
M can be seen as a function v € C%(R’}r) Hence, according to Lemma A.1,
there exists C'= C(n) > 0 such that

[vllcomn) < CllAv|co ey + CllOv/dznllco_ (are)-
Thus,

lullcooanir) < CllAgullco (i) + CllOw/Ongllco_ (oK)
+ Cllullor (ko p\Kr)s

which clearly implies the estimate in item (b). O
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Lemma A.3. Let (M,g) be as in Lemma A.2 and consider the operators
L=A,+hand B=09/dn,+ h where h € C”S (M) and h € C* (%). If
2 —n <y <0, we define by T(u) = (Lu, Bu) the operator

« 0,0 1,
T : C2%(M) — CI%(M) x C% (%),
If T is injective then there holds
(A.10) ||U||(J$~“(M) < C||Lu”02f2(M) + CHBUHcifl(zy
forallu € C%’Q(M) and some C'= C(M, g,7, [hllcos (an)s ||B||Cl~f‘_5(2)) > 0.

Proof. We retain the notation in the proof of Lemma A.2. We consider
a smooth cutoff function 0 < # <1 satisfying 6 =1 in M\K, and § =0
in K. Since the support of € is contained in M\Kj, it makes sense to
define O, R > 1, by Or(x) = 0(R~'x), which is supported in M\Kr C M.
Also, define the metric gr on M by gr = 0rd + (1 — Or)g, so that gg = J in
M\ Ksp. For later use we observe that

(A.11) 9—9r =0r(g —9).

By the last assertion in Lemma A.2 there exists C' > 0 such that

(A.12) [ullgzeary < CllAgrullcoe, (ary + CllOw/Onggll oo, (ary
+ Clluller (k)
for some large R’ > 2R.

Let us first estimate [[(L — Ag,)ul|co. (5p). Using the standard coordi-
~y—2
nate expression for the Laplacian we can verify that

1(Ag = Ag)ullcos, ary < Cllgr — gHCg’“(M)vau”CSf‘Q(M)
+Cligr = 9liczeanIVoullcoe ar)

<Cllgr — 9||C§’“(M)||u||03,'“(M) :
Also, using (A.11) we have
lgr = 9llczeany < ClOR(G = Ol = (ar)

< Cllg = dllcaean k)
< CR7(lg = dllcreankp) »
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where the constant C' is independent of R, which implies
1(Ag = Bglullgoeary < CR™ [|ull gz agy-

On the other hand, writing v = (1 — 0r)u + Ogu we have

HhuHCSf’Z(M)
< (X = Or)ull oo ary + I1hORUl o) a1\ K )
< hllog anll(t = Or)ullco«ary + 1Bllcoe (v ke 10RUI coo (ar i )
< Cllbllcog apllullcoswp) + BNl cog anwllullcos an
< Cllullcos(ram) + B Nullcoxan)

where the last constant C' depends on [[h|coe 5y Thus,
(A13) (L = Agp)ullgoe, (ary < Cllullcon(rny + CR™T + B [Jull gz ay -
Similarly, if we make use of (2.12) we obtain

(ALD) (B 0/0n5) ullgre vy < Cllulloneo s+
+OR™ + R ullzo sy,

where C' depends on HBHC}I{ (x)» SO that (A.12), (A.13) and (A.14) lead to

||u||C$’“(M) = C||Lu||02f2(M) +C[Lu - AgR“Hchz(M)
+ Cl|Bull e (s + C||Bu - Ou/Ongg ll 2=, (5

+ Clluller(x,0)
< Ol Lullgoe,ary + C(R™T + R [ull gz (apy
+ Cl[Bull e sy + Cllullero i)

Hence, if we choose R large we finally obtain the key estimate
(A.15) HUHCﬁ’“(M) < CHLUHCSf“Q(M) + CHBUHQg(Z) + C”UHCW(KR,) .

The rest of the proof of Lemma A.3 will follow by a contradiction
argument using the injectivity assumption and (A.15). Indeed, assuming
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that (A.10) does not hold we can choose {u;}32; C C’%’O‘(M) satisfying

U= {lujllczeany = dllLujllcos an + 3l Bujllore s -

In particular, as j — oo,
Luj — 0 in CY% (M

(A.16) { v 010 Cr(M),

Buj — 0 inC.75(%).

Since |u;jl|c2e(ppy =1 we can assume that {u;} converges in CY(Kg).
Then, using (A.15) with v = u; —uy, we see that {u;} is a Cauchy se-
quence in Cg’a(M ). Hence, this sequence converges in C,%’a(M ) to some
u e C2*(M) with |ull gz (ary = 1. The fact that T'= (L, B) is a continuous
operator together with (A.16) implies that Lu = 0 and Bu = 0. Thus, u =0
by the injectivity hypothesis. This contradicts the fact that |lul|cz. =1
and concludes the proof of Lemma A.3. O

Lemma A.4. Let (M,g) be an asymptotically flat manifold as in Lemma
A.8. If 2 —n <~ <0 consider the operator

2,(1 07(1 1701
T:CZ)(M) — C5% (M) x C5 (D).
gwen by T'(u) = (Agu, 0u/0ny). If g = 0 outside a compact subset of M then
T is an isomorphism.

Proof. We use the notation in the proof of Lemma A.3. Choose R large so
that g = § in M\ Kg and consider the subset M\ Kr C M, which we still
denote by M. Then the diffeomorphism

¢ Bt (0O\{0} = Moo,  ¢(z) = o/2f?

extends to a coordinate system ¢ : B}_,(0) = My U{oo}. Moreover, if
{9;}7_, is the canonical frame on B}, ,(0), then ¢ induces the coordinate
frame {¢.0;}7; on My, U {oo}.

Define a metric § = (*g on M, where ( is a positive smooth function on
M satisfying ((¢(z)) = |z| for all z € B}, ,(0)\{0}. Observe that g can be
extended to a smooth metric on M U {oo} = K U My, U {0}, still denoted
by g. In fact, for any @ € B}_,(0)\{0}, we have 9o(x) (0405, $:0;) = 0y
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In this setting, let us consider the problem of finding u € C%Q(M ) sat-
isfying

—Agu=f inM,
(A.17) Ou — 7 onx.
Ong

for given f € C’gf‘z(M) and f € C’if‘l(E). We first assume that f and f are
compactly supported.

By eventually multiplying f and f by real constants and using the no-
tation of Section 4, this is equivalent to

Lyu—Ryu=f inM,
Bgu—ng:f on Y

and using that Lz(¢*™"u) = (T"?Lyu and Bg((* "u) = (" Bgyu, this be-
comes

(A.18) {Lgv — (R =("2f inM,

Bjv—(?Hp=("f onx,

where v = (> "u. Now we shall find v € C°°(M U {cc}) solving

(A.19) Lyv — 'Ry = (7" 2f in M U {oo},

' Bsv— (¢ ?Hpo=("f onXU/{oco},
so that it solves (A.18) in particular. To that end, it suffices to prove unique-
ness for (A.19). Thus, suppose that v satisfies

Ljv—(*Ru=0 inMU{oc},
Bjv— (¢ ?Hou =0 onXU {co}.

Then elliptic regularity implies that v € C*°(M U {oo}) and we shall see
that actually v = 0. Since multiplication is continuous in weighted Holder
spaces (see [CSCB, Lemma 1]), it follows that ¢"2v € C§_ (M) for any
k> 0. But u = ("2 satisfies

Aju=0 inM,
0

—“:0 on Y,
Ong
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which implies u = 0, as we can check by a simple integration by parts. Hence,
v =0 and we have uniqueness for the problem (A.19). (In particular, T is
injective.) Thus, we can always find a solution v € C*°(M U {o0}) to (A.19)
and hence a solution u € C “(M) to (A.17) in case both f and f are com-
pactly supported.

We now consider the general case where f € CSf‘Q (M) and f € C,if‘l(E).
We want to find u € CQO‘( M) such that (Lu Bu) = (f,f). If0 < oy < aand
7 <71 <0 we can find sequences {f;}32; C C2°(M) and {f] °, COX(%)
such that, as j — +oo,

165 = Flleoinny = 0. 155 = Fllgrn sy = 0,

and
||f]HC° (M) < C||f||c°a M) > Hfj”cifl(z) < C|f‘|c;f1(z) ‘

By the special case already proved, we can find u; € CE? (M) such that
(Luj, Buj) = (fj, f;). It follows from Lemma A.3 that, as j,k — +o0,

[y — uk”cﬁfl(M) <Clfj - fk:ch’l‘g(M) +C|If; - fk”ci’lill(z:) — 0,
and
lujllczeary < Cllfillcos, any + Cllfillcre, ) < C-

Hence, we can assume that u; — u in C’2 (M) for some u € C’ *(M). As
a consequence, Lu; — Lu in C’O (M) and Buj — Bu in C1 o (E) as j —

oo, and the result follows from the fact that Lu; = f; — f in C’O (M) and
Buj = f]—>f1nClo“( ). O

Proof of Proposition 3.3. First observe that all the operators 71" as in the
proposition are injective, as we can see by applying the maximum principle.
Let C be the set of all these operators and let C C C be the subset of iso-
morphisms. We consider C with the operator norm topology. It follows from
the Implicit Function Theorem that C is open in C. We will prove that it is
also closed.

We set X = C’gfz(M), Y = Cif‘l () and consider X x Y with the norm

1CF Dy = Ifllx + 1 f Nl

Let T; € C be a sequence converging to some 1" € C under the operator norm
Il llop- We shall prove that T' is surjective.
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Given (f,f) € X xY we must find u e CZ*(M) such that T(u)=

u, bu) = (f, f). Let us write 1; = i, bi). By hypothesis, there exists
Lu,Bu) = (f.f). L ite Tj = (L;, B;). By hypothesis, there exi
uj € C%a(M) satistying (L;uj, Bjuj) = (f, f), so that, by Lemma A.3, there

exists C' > 0 such that
gl 2 ary < CNCE Hllxxy

for all j. In particular, u; is uniformly bounded in C’%’a(M ).

If we choose a1 € (0, ) and 71 € (7,0), it follows from [CSCB, Lemma 3]
that, by eventually passing to a subsequence, we may assume that u; — u
in CZ% (M), for some u € C3*(M).

We just need to prove that Lju; — Lu in C°(M) and Bjuj — Bu in
C%(%) to conclude that (Lu, Bu) = (f, f). Observe that |7 — T}, — 0 im-
plies that ||L — Lj||op — 0 and ||B — Bj||op — 0. We also have

(A.20)  |[Ljuj — Lullcoqary < [1L(wj = wllcoany + [1(Ls = L)ujllcoqy -

The first term on the right-hand side of (A.20) converges to zero because
uj — u in C’%al(M). As for the second one,

I(Lj = L)ujlicoan < I1(Lj = Lyujllcoe, iy < 15 = Lllopllwjllczeary = 0,

since [|u;[| 2.y is uniformly bounded. This proves that ||Lju; — Lullco(ar)
— 0. The proof that || Bju; — Bul|cocs;) — 0 is similar, which proves that C
is closed in C. N

Finally, we need to prove that C is connected and contains an isomor-
phism. Using the notation in the proof of Lemma A.3, we consider the fam-
ily of metrics gr for R > 1, and observe that the operators of the form
(—Agy,0/0ng,) are isomorphisms, according to Lemma A.4. We set L; =
—Ag, 1 +th, By =0/0ng, , . + th, and define Ty = (L¢, By) for t GN[O, 1)
and T1 = T. Then {7} },c[0,1] is a continuous family of operators in C con-
necting (—A,,,0/0n,,) to T. This finishes the proof of Proposition 3.3. O
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