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Two Morse functions and singularities of

the product map

Kazuto Takao

For two Morse functions on a manifold, some distances between
them are naturally defined from a topological point of view. We
give some upper bounds for the distances in terms of singularities
of the product map of the two Morse functions.

1. Introduction

We consider distances between two Morse functions on a manifold. Let X be
a closed smooth manifold, and F,G : X → R be Morse functions on X. By
the Cerf theory [2], the functions F,G can be connected by a generic homo-
topy, which has finitely many births and deaths of canceling pairs of critical
points and passings of critical values. This allows us to define D(F,G) as the
minimal number of births, deaths and passings over all generic homotopies
between F and G, and define d(F,G) as the minimal number of births and
deaths by ignoring passings. Indeed, D gives a metric for isotopy classes
of Morse functions, and d gives a metric for quasi-isotopy classes of Morse
functions. (See Section 2 for basic definitions.)

In this paper, we give some upper bounds for the distances D(F,G) and
d(F,G) in terms of singularities of the product map of the Morse functions
F and G. By the product map, we mean the map ϕ : X → R

2 defined by
ϕ(x) = (F (x), G(x)) for x ∈ X. We suppose that the dimension of X is at
least 2 and that ϕ is a stable map (cf. Remark 3). See Theorem 5 for our
bounds, one of which implies the following:

(�) d(F,G) ≤ 1

2
(m(F ) +m(G)) + c(ϕ),

where m(∗) denotes the number of critical points of a Morse function and
c(ϕ) denotes the number of cusp points of ϕ.

We remark that the above bound might be improved by a certain devel-
opment in singularity theory. Significantly, it is known by Levine [11] that
a stable map from X to R

2 can be homotoped so that the number of cusp
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points is at most 1. The inequality (�) and Levine’s theorem suggest the
following conjecture:

d(F,G) ≤ 1

2
(m(F ) +m(G)) + 1.(�′)

This cannot be proved immediately because Levine’s homotopy may not
preserve the product structure of ϕ. Still, some local moves of ϕ reducing the
number of cusp points can be performed preserving the product structure,
at least when X is 3-dimensional [23].

In the case where the source manifold is 2-dimensional, the distance d is
well understood, though the distance D is not so. Let F,G be Morse func-
tions on a compact connected surface. Maksymenko [12] showed that F,G
are quasi-isotopic if and only if mλ(F ) = mλ(G) for each λ ∈ {0, 1, 2}, where
mλ(∗) denotes the number of critical points of Morse index λ of a Morse
function. This implies that d(F,G) = |m0(F )−m0(G)|+ |m2(F )−m2(G)|.

In the case where the source manifold is 3-dimensional, the distance d is
well studied in the context of Heegaard theory, though the distance D is not
so. There are many results about the Reidemeister–Singer distance between
two Heegaard splittings for a closed connected orientable 3-dimensional man-
ifold, and they can be interpreted as results about the distance d. For ex-
ample, see [8–10, 19, 22] for bounds for the Reidemeister–Singer distance,
and see [1, 6, 9, 20] for relevant examples of Heegaard splittings. The in-
equality (�) can be regarded as a generalization of [22, Theorem 1]. The
conjecture (�′) corresponds to [22, Conjecture 5], which is best possible by
the example given in [6].

In the case where the source manifold is 4-dimensional or higher, the
distances d andD are of interest in the context of the Kirby calculus, but few
things are known about them. We remark that the Kirby calculus is related
to transformations of group presentations (see [5, Solution of Exercise 5.1.10
(d)]). We hope that we can also approach problems of group presentations
from a singularity theoretic point of view.

2. Preliminaries and main result

In this section, we review basic definitions and facts concerning singularities
of smooth maps, and we state the main result of this paper.

The notion of stable map is defined as follows. Let X,Y be smooth
manifolds and C∞(X,Y ) denote the space of smooth maps from X to Y
endowed with the Whitney C∞ topology (see [4] or [7]). A smooth ho-
motopy {φt : X → Y }t∈[0,1] is said to be an isotopy if there exist smooth
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ambient isotopies {HX
t : X → X}t∈[0,1] and {HY

t : Y → Y }t∈[0,1] such that
φt = HY

t ◦ φ0 ◦HX
t for t ∈ [0, 1]. Two smooth maps are said to be isotopic

if they are connected by an isotopy. A smooth map φ : X → Y is said to be
stable if there exists an open neighborhood U of φ in C∞(X,Y ) such that
φ and every map in U are isotopic.

A Morse function on a closed smooth manifold is a stable map from the
manifold to R. The critical points of a Morse function are all non-degenerate
and have pairwise distinct values. The Morse index is well-defined for each
non-degenerate critical point (see [15]).

The notion of generic homotopy for smooth functions is defined as fol-
lows. Let X be a closed smooth manifold, n denote the dimension of X,
and {Ft : X → R}t∈[−1,1] be a smooth homotopy. Note that {Ft}t∈[−1,1] is
an isotopy if Ft is a Morse function for every t ∈ [−1, 1]. The homotopy
{Ft}t∈[−1,1] is said to be a quasi-isotopy if the critical points of Ft are
all non-degenerate for every t ∈ [−1, 1]. A birth (resp. death) of a cancel-
ing pair of critical points, or simply a birth (resp. death), of {Ft}t∈[−1,1]

is the pair (o, p) of o ∈ (−1, 1) and p ∈ X such that Fs(x1, x2, . . . , xn) =
sx1 − x31 − x22 − · · · − x2λ+1 + x2λ+2 + · · ·+ x2n for a local coordinate system
(x1, x2, . . . , xn) at p and a local coordinate s at o whose direction agrees
(resp. disagrees) with that of t. Note that, by a birth (resp. death) with this
local form, a pair of non-degenerate critical points of Morse indices λ and
λ+ 1 appears (resp. disappears). A passing of critical values, or simply a
passing, of {Ft}t∈[−1,1] is the pair (o, {p, q}) of o ∈ (−1, 1) and {p, q} ⊂ X
such that p, q are distinct non-degenerate critical points of Fo with the same
value, and the Cerf graphic {(t, v) ∈ R

2 | v is a critical value of Ft|U∪V } has
a transverse crossing at (o, Fo(p)) for small neighborhoods U, V of p, q, re-
spectively. The homotopy {Ft}t∈[−1,1] is said to be generic if it is an isotopy
except that, at each of finitely many t in (−1, 1), it has either a single birth,
a single death or a single passing.

Some distances between two Morse functions are defined as follows. Let
F,G be Morse functions on a closed smooth manifold. We define d(F,G)
(resp. D(F,G)) as the minimal number of births and deaths (resp. births,
deaths and passings) over all generic homotopies between F and G. Also
we define dλ,λ+1(F,G) as the minimal number of births and deaths of can-
celing pairs of critical points of Morse indices λ and λ+ 1 over all generic
homotopies between F and G.

From now on, we consider a smooth map φ from a closed smooth n-
dimensional manifold X with n ≥ 2 to a smooth surface Y without bound-
ary.
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A singular point of φ is a point in X at which the differential of φ has
rank less than two. The singular set of φ is the set of singular points of φ,
and is denoted by Sφ.

A fold point of φ is a singular point p ∈ X such that φ(x1, x2, . . . , xn) =
(x1, −x22 − · · · − x2λ+1 + x2λ+2 + · · ·+ x2n) for local coordinate systems at p =
(0, 0, . . . , 0) and φ(p) = (0, 0). The minimum of {λ, n− λ− 1} does not
depend on the choice of coordinate systems, and is called the absolute index
of the fold point p. One can see that, in a small neighborhood U of p,
the singular set Sφ ∩ U is a smooth arc consisting of fold points of the
same absolute index as p, and the restriction of φ to the arc Sφ ∩ U is an
embedding.

A cusp point of φ is a singular point p ∈ X such that φ(x1, x2, . . . , xn) =
(x1, x1x2 − x32 − x23 − · · · − x2λ+1 + x2λ+2 + · · ·+ x2n) for local coordinate sys-
tems at p = (0, 0, . . . , 0) and φ(p) = (0, 0). The minimum of {λ− 1, n− λ−
1} does not depend on the choice of coordinate systems, and is called the
absolute index of the cusp point p. One can see that, in a small neighborhood
U of p, the singular set Sφ ∩ U is a smooth arc, and the restriction of φ to
the arc Sφ ∩ U has an ordinary cusp at p. One component of (Sφ ∩ U) \ {p}
consists of fold points of absolute index equal to that of p, and the other
component consists of fold points of absolute index equal to that of p plus
one, except when λ = n

2 . In the exceptional case, both of the components
consist of fold points of absolute index λ− 1.

If every singular point of φ is either a fold point or a cusp point, the
situation is as follows. By the above local observations and the compactness
of X, the singular set Sφ is a collection of smooth circles and includes finitely
many cusp points. The absolute index is well-defined for each complementary
subarc of the cusp points in Sφ. The restriction of φ to Sφ is an immersion
except that it has an ordinary cusp at each cusp point of φ, and is called
the discriminant curve of φ.

Stable maps from X to Y are characterized as in the next theorem. This
follows from Mather’s theorems [13, Theorem A, Proposition 1.8] and [14,
Theorem 4.1].

Theorem 1 (Mather). A smooth map from a closed smooth n-dimensional
manifold with n ≥ 2 to a smooth surface without boundary is stable if and
only if it satisfies the following:

• every singular point is either a fold point or a cusp point,

• every multiple point of the discriminant curve is a transverse crossing
of exactly two subarcs outside of the cusp points.
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From now on, we consider the product map of two functions.

Notation 2. Let X be a closed smooth n-dimensional manifold with n ≥ 2,
and F,G : X → R be smooth functions. Fix a global coordinate system (f, g)
of the plane R

2, and let πf , πg : R2 → R denote the projections (f, g) 
→ f ,
(f, g) 
→ g, respectively. Let ϕ : X → R

2 denote the product map of F,G
with respect to the coordinate system (f, g), that is, πf ◦ ϕ = F and πg ◦ ϕ =
G. Let Sϕ denote the singular set of ϕ.

Remark 3. If F,G are Morse functions, then ϕ is stable after arbitrarily
small isotopies of F and G.

Proof. Let UF (resp. UG) be an arbitrarily small open neighborhood of F
(resp. G) in C∞(X,R). Since F (resp. G) is stable, there exists an open
neighborhood U ′

F of F in UF (resp. U ′
G of G in UG) such that every func-

tion in U ′
F (resp. U ′

G) is isotopic to F (resp. G). Since πf (resp. πg) is
a smooth map, the induced map πf∗ : C∞(X,R2) → C∞(X,R), ψ 
→ πf ◦ ψ
(resp. πg∗ : C∞(X,R2) → C∞(X,R), ψ 
→ πg ◦ ψ) is continuous by [4, Chap-
ter II, Proposition 3.5]. Hence π−1

f∗ (U
′
F ) ∩ π−1

g∗ (U ′
G) is an open neighborhood

of ϕ in C∞(X,R2). Since stable maps are dense in C∞(X,R2) by [14], there
exists a stable map ϕ̃ in π−1

f∗ (U
′
F ) ∩ π−1

g∗ (U ′
G). The functions πf∗(ϕ̃), πg∗(ϕ̃)

are Morse functions isotopic to F,G, respectively, whose product map ϕ̃ is
stable. �

We analyze the discriminant curve of the product map. With the above
notation, we suppose that the product map ϕ is stable, and let Cϕ : Sϕ → R

2

denote the discriminant curve of ϕ. A cusp point of ϕ is also called a cusp
point of Cϕ. By a double point of Cϕ, we mean a point in R

2 at which Cϕ

has one of the transverse crossings. Note that each point in Sϕ uniquely
determines a tangent line in R

2 of Cϕ. This allows us to define the slope
of Cϕ at a point in Sϕ as the slope of the tangent line with respect to
the coordinate system (f, g). In particular, a point in Sϕ with slope zero
(resp. infinity) is called a horizontal (resp. vertical) point of Cϕ. A tangent
line of Cϕ is said to be a double tangent line of Cϕ if it has two or more
tangent points. We may regard the curve Cϕ as parametrized so that the
first derivative is not zero at every fold point of ϕ. A fold point is said to be
an inflection point of Cϕ if the first and the second derivatives are linearly
dependent. The following are generic conditions of the curve Cϕ, that is to
say, hold after an arbitrarily small isotopy of Cϕ in R

2:

(i) there are only finitely many inflection points and double tangent lines,
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(ii) each double tangent line has exactly two tangent points.

Remark 4. If F,G are Morse functions, then any sufficiently small isotopy
of Cϕ in R

2 can be realized by isotopies of F and G.

Proof. The maps πf∗, πg∗ : C∞(X,R2) → C∞(X,R) are continuous as men-
tioned in the proof of Remark 3. The map ϕ∗ : C∞(R2,R2) → C∞(X,R2),
H 
→ H ◦ ϕ is also continuous by [4, Chapter II, Proposition 3.9]. The maps
πf∗ ◦ ϕ∗ and πg∗ ◦ ϕ∗ are therefore continuous. �

We give some upper bounds for the distances between two Morse func-
tions in terms of the discriminant curve of the product map as in the fol-
lowing theorem.

Theorem 5. Let X be a closed smooth n-dimensional manifold with n ≥ 2,
let F,G : X → R be Morse functions, and let ϕ : X → R

2 denote the product
map of F,G. Suppose that ϕ is stable and its discriminant curve satisfies
the conditions (i) and (ii). Then, the following inequalities hold:

d(F,G) ≤ i−(ϕ),(1)

D(F,G) ≤ i−(ϕ) + t−(ϕ),(2)

d(F,G) ≤ 1

2
(m(F ) +m(G)) + c−(ϕ),(3) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0,1(F,G) ≤ m0(F ) +m0(G)

dλ−1,λ(F,G) + dλ,λ+1(F,G)

≤ mλ(F ) +mλ(G) + 2c−λ−1(ϕ) (0 < λ ≤ n
2 )

dλ−1,λ(F,G) + dλ,λ+1(F,G)

≤ mλ(F ) +mλ(G) + 2c−n−λ−1(ϕ) (n2 ≤ λ < n)

dn−1,n(F,G) ≤ mn(F ) +mn(G),

(4)

D(F,G) ≤ 1

2

(
m(F ) +m(G) + 2c−(ϕ)

)
(m(F ) +m(G)− 1)

+
1

2
m(F )m(G) + d−(ϕ),

(5)

where m(∗), mλ(∗) denote the numbers of critical points, critical points of
Morse index λ, respectively, of a Morse function, and i−(ϕ), t−(ϕ), c−(ϕ),
c−λ (ϕ), d−(ϕ) denote the numbers of negative slope inflection points, neg-
ative slope double tangent lines, negative slope cusp points, negative slope
cusp points of absolute index λ, double points of negative slope subarcs, re-
spectively, of the discriminant curve of ϕ.
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The inequality (1) can be regarded as a generalization of Johnson’s result
[8] about Heegaard splittings for orientable 3-dimensional manifolds. The
inequality (3) implies the inequality (�) in Section 1 by ignoring the slopes
at the cusp points. Compare this theorem with Fabricius-Bjerre’s relation
[3] about plane curves, and with the Morse type inequality by Motta–Porto–
Saeki [17] about stable maps.

3. Reading the discriminant curve

In this section, we describe how to read information about two functions
from the discriminant curve of the product map, and consider homotopies
of the functions and the curve.

We use Notation 2 and suppose that the product map ϕ is stable. Let
Cϕ : Sϕ → R

2 denote the discriminant curve of ϕ. Note that we do not as-
sume F,G to be Morse functions.

Throughout this section, the two functions F,G are symmetric, and
hence all the assertions for G also hold for F by replacing “horizontal”
with “vertical”.

We can read information about the function G from the discriminant
curve Cϕ of ϕ as follows. One can prove the next three lemmas by straight-
forward generalization of the proofs of [22, Lemmas 11, 12, 14], or see [21].

Lemma 6. A point in X is a critical point of G if and only if it is a singular
point of ϕ and is a horizontal point of Cϕ.

Lemma 7. A point in X is a degenerate critical point of G if and only if
it is a fold point of ϕ and is a horizontal inflection point of Cϕ.

Note that, by these two lemmas, each non-degenerate critical point of G
is either a downward convex horizontal point, an upward convex horizontal
point or a horizontal cusp point of Cϕ.

Lemma 8. The Morse index of a non-degenerate critical point p of G is
related to the behavior of Cϕ at p as in Table 1.

Note that the value of each critical point of G is the g-coordinate of the
image of the horizontal point of Cϕ. If some critical points of G have the
same value, Cϕ has a horizontal double tangent line at them. It follows that
G is a Morse function if and only if Cϕ has neither horizontal inflection
points nor horizontal double tangent lines.
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Table 1: The relation between the Morse index of p, shown in the first
column, and the possibilities of the image of Cϕ restricted to a neighborhood
of p, shown in the second column. The image of Cϕ in R

2 is drawn so that
the f -axis is horizontal and the coordinate g increases from bottom to top.
Each number in the second column stands for the absolute index of the
corresponding subarc of Sϕ.

if n = 2k for an integer k ≥ 1

n
0

n− 1 0
1

0

1

...
...

...
...

k + 1 k − 2
k − 1

k − 2

k − 1

k k − 1
k − 1

k − 1

k − 1

k − 1 k − 1
k − 2

k − 1

k − 2

...
...

...
...

1 1
0

1

0

0 0

if n = 2k + 1 for an integer k ≥ 1

n
0

n− 1 0
1

0

1

...
...

...
...

k + 2 k − 2
k − 1

k − 2

k − 1

k + 1 k − 1
k

k − 1

k

k k
k − 1

k

k − 1

k − 1
k − 1

k − 2

k − 1

k − 2

...
...

...
...

1 1
0

1

0

0 0

We consider the induced homotopies of F,G and Cϕ by an ambient
isotopy of the plane. Let {Ht : R

2 → R
2}t∈[−1,1] be a smooth ambient isotopy

of R2. Let ϕt = Ht ◦ ϕ and Ft = πf ◦ ϕt and Gt = πg ◦ ϕt and Cϕt
= Ht ◦ Cϕ

for each t ∈ [−1, 1]. Note that, by the definition, {ϕt}t∈[−1,1] is an isotopy
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of the stable map ϕ, and hence consists of stable maps. Note also that ϕt is
the product map of Ft and Gt, and Cϕt

is the discriminant curve of ϕt for
each t ∈ [−1, 1].

We can read information about the homotopy {Gt}t∈[−1,1] of G from the
isotopy {Cϕt

}t∈[−1,1] of Cϕ as follows. By the above results, {Gt}t∈[−1,1] is an
isotopy if Cϕt

has neither horizontal inflection points nor horizontal double
tangent lines for every t ∈ [−1, 1]. A horizontal inflection point appears when
{Cϕt

}t∈[−1,1] has a move as in Figures 1, and a horizontal double tangent line
appears when {Cϕt

}t∈[−1,1] has a move as in Figure 2. We call these moves a
birth or a death of a canceling pair of horizontal points of {Cϕt

}t∈[−1,1] and
a passing of horizontal points of {Cϕt

}t∈[−1,1], respectively, if they satisfy
certain transversality conditions. We can easily see that {Gt}t∈[−1,1] has
a passing of critical values when {Cϕt

}t∈[−1,1] has a passing of horizontal
points.

g

f

↔
g

f

↔
g

f

Figure 1: A birth or a death of a canceling pair of horizontal points.

g

f

↔
g

f

↔
g

f

Figure 2: A passing of horizontal points.

Lemma 9. The homotopy {Gt}t∈[−1,1] has a birth (resp. death) of a can-
celing pair of critical points when {Cϕt

}t∈[−1,1] has a birth (resp. death) of a
canceling pair of horizontal points. In particular, if the absolute index of the
arc is λ, then the Morse indices of the critical points which are the downward
and upward convex horizontal points are either λ and λ+ 1, respectively, or
n− λ− 1 and n− λ, respectively.

Proof. By Lemma 6, the homotopy {Gt}t∈[−1,1] has a birth (resp. death)
of a pair of critical points when {Cϕt

}t∈[−1,1] has a birth (resp. death) of
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a canceling pair of horizontal points. For the proof of the claim that the
pair of critical points is a canceling pair, we refer the reader to the proof
of [22, Lemma 16], which dose not depend on the dimension of X. The
latter claim of the present lemma almost follows from Lemma 8 since the
Morse indices of the critical points of a canceling pair are adjacent inte-
gers. It remains to rule out the possibility that n = 2k + 1 for an integer
k ≥ 1, the absolute index of the arc is k − 1, and the Morse indices of
the critical points are k and k + 1. By way of contradiction, we assume
that such a birth occurs at t = 0 and at p ∈ X. Since p is a horizontal in-
flection point of Cϕ0

and not a vertical point, p is a regular point of F0.
There exists a local coordinate system (x1, x2, . . . , xn) at p = (0, 0, . . . , 0)
such that F0(x1, x2, . . . , xn) = x1 + F0(p). The map ϕ0 has the local form
ϕ0(x1, x2, . . . , xn) = (x1 + F0(p), G0(x1, x2, . . . , xn)) at the fold point p. By
Morin’s characterization [16, Lemme 1],

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
∂2G0

∂x2
2

)
p

(
∂2G0

∂x2∂x3

)
p

· · ·
(

∂2G0

∂x2∂xn

)
p(

∂2G0

∂x3∂x2

)
p

(
∂2G0

∂x2
3

)
p

· · ·
(

∂2G0

∂x3∂xn

)
p

...
...

...(
∂2G0

∂xn∂x2

)
p

(
∂2G0

∂xn∂x3

)
p

· · ·
(
∂2G0

∂x2
n

)
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is a regular matrix, and the sum of the multiplicities of negative eigen-
values of H is equal to a number κ with which ϕ0 has the standard form
ϕ0(x1, x2, . . . , xn) = (x1, −x22 − · · · − x2κ+1 + x2κ+2 + · · ·+ x2n) at the fold
point p. We remark that the coordinate system of R2 in this form is other
than (f, g). Recall that n = 2k + 1 and that the absolute index k − 1 of
the fold point p is equal to the minimum of {κ, n− κ− 1}. It follows
that either κ = k − 1 or κ = k + 1. The sign of the determinant of H is
(−1)κ = (−1)k−1. Since {Gt}t∈[−1,1] has a birth of a canceling pair of critical
points of Morse indices k and k + 1 at t = 0 at p, there exists a local coordi-
nate system (y1, y2, . . . , yn) at p = (0, 0, . . . , 0) such that G0(y1, y2, . . . , yn) =
−y31 − y22 − · · · − y2k+1 + y2k+2 + · · ·+ y2n. For 2 ≤ i ≤ n and 2 ≤ j ≤ n, the
chain rule gives

∂G0

∂xj
=

∂G0

∂y1

∂y1
∂xj

+
∂G0

∂y2

∂y2
∂xj

+ · · ·+ ∂G0

∂y3

∂y3
∂xj

= −3y21
∂y1
∂xj

− 2y2
∂y2
∂xj

− · · · − 2yk+1
∂yk+1

∂xj
+ 2yk+2

∂yk+2

∂xj
+ · · ·+ 2yn

∂yn
∂xj

,
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∂2G0

∂xi∂xj
=

∂

∂xi

(
−3y21

∂y1
∂xj

− 2y2
∂y2
∂xj

− · · · − 2yk+1
∂yk+1

∂xj

+2yk+2
∂yk+2

∂xj
+ · · ·+ 2yn

∂yn
∂xj

)

= −
(
6y1

∂y1
∂xi

∂y1
∂xj

+ 3y21
∂2y1

∂xi∂xj

)
−

(
2
∂y2
∂xi

∂y2
∂xj

+ 2y2
∂2y2

∂xi∂xj

)

− · · · −
(
2
∂yk+1

∂xi

∂yk+1

∂xj
+ 2yk+1

∂2yk+1

∂xi∂xj

)

+

(
2
∂yk+2

∂xi

∂yk+2

∂xj
+ 2yk+2

∂2yk+2

∂xi∂xj

)

+ · · ·+
(
2
∂yn
∂xi

∂yn
∂xj

+ 2yn
∂2yn

∂xi∂xj

)
.

By substituting p = (0, 0, . . . , 0),

(
∂2G0

∂xi∂xj

)
p

= −2

(
∂y2
∂xi

)
p

(
∂y2
∂xj

)
p

− · · · − 2

(
∂yk+1

∂xi

)
p

(
∂yk+1

∂xj

)
p

+ 2

(
∂yk+2

∂xi

)
p

(
∂yk+2

∂xj

)
p

+ · · ·+ 2

(
∂yn
∂xi

)
p

(
∂yn
∂xj

)
p

.

We have

H = J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
. . .

−2
2

. . .

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

tJ ,

where

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
∂y2

∂x2

)
p

(
∂y3

∂x2

)
p

· · ·
(
∂yn

∂x2

)
p(

∂y2

∂x3

)
p

(
∂y3

∂x3

)
p

· · ·
(
∂yn

∂x3

)
p

...
...

...(
∂y2

∂xn

)
p

(
∂y3

∂xn

)
p

· · ·
(

∂yn

∂xn

)
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant of H is therefore |J |(−2)k2n−k−1|tJ | = (−1)k2n−1|J |2.
Thus, we have a contradiction to the sign of the determinant of H. �
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We remark that, during the isotopy {Cϕt
}t∈[−1,1], a horizontal cusp point

may appear as in Figure 3, but not as in Figure 4. If {Cϕt
}t∈[−1,1] has a local

move as in Figure 4, the homotopy {Gt}t∈[−1,1] has a birth or a death of a
pair of critical points at a cusp point by Lemma 6, but it is impossible by
Lemma 7. In general, at an ordinary cusp of a plane curve, the tangent line
always separates the two branches [18, Proposition 1.6].

g

f

↔
g

f

↔
g

f

Figure 3: A possible move involving a horizontal cusp point.

g

f

↔
g

f

↔
g

f

Figure 4: An impossible move involving a horizontal cusp point.

4. Rotating the discriminant curve

In this section, we prove the inequalities (1) and (2) in Theorem 5 and a
lemma for later use, by observing a rotation of the discriminant curve in the
target plane.

We use Notation 2 and suppose that the two functions F,G are Morse
functions and the product map ϕ is stable. Let Cϕ : Sϕ → R

2 denote the
discriminant curve of ϕ.

We assume some generic conditions. We first assume that Cϕ satisfies
the conditions (i) and (ii) as in the statement of the theorem. The curve Cϕ

also satisfies the following conditions after an arbitrarily small isotopy in
R
2:

(iii) the first and the third derivatives are linearly independent at each
inflection point,

(iv) the tangent lines at inflection points are not double tangent lines,
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(v) inflection points and double tangent lines have pairwise distinct slopes.

Note that such a small isotopy can be chosen not to increase the numbers
of negative slope inflection points and negative slope double tangent lines.
We may therefore assume these conditions by Remark 4.

We consider the induced homotopies by the (π/2)-rotation of the plane.
For each θ ∈ [

0, π2
]
, let Hθ : R

2 → R
2 denote the θ-rotation about the ori-

gin, that is,Hθ(f, g) = (f cos θ − g sin θ, f sin θ + g cos θ) for (f, g) ∈ R
2. Let

ϕθ = Hθ ◦ ϕ and Fθ = πf ◦ ϕθ and Gθ = πg ◦ ϕθ and Cϕθ
= Hθ ◦ Cϕ. Note

that ϕθ is a stable map and the product map of Fθ and Gθ, and that Cϕθ
is

the discriminant curve of ϕθ.
The induced homotopy {Gθ}θ∈[0,π2 ] connects F and G as follows. By the

definitions,

Gθ(x) = (πg ◦Hθ ◦ ϕ)(x) = (πg ◦Hθ)(F (x), G(x))

= πg(F (x) cos θ −G(x) sin θ, F (x) sin θ +G(x) cos θ)

= F (x) sin θ +G(x) cos θ

for θ ∈ [
0, π2

]
and x ∈ X. In particular, G0 = G and Gπ

2
= F .

We count the number of births and deaths of {Gθ}θ∈[0,π2 ]. They cor-

respond to births and deaths of canceling pairs of horizontal points of
{Cϕθ

}θ∈[0,π2 ] by Lemma 9. The rotation {Cϕθ
}θ∈[0,π2 ] of Cϕ has such births

and deaths only when inflection points of Cϕ become horizontal. The con-
dition (iii) guarantees the transversality condition of the births and deaths.
Note that only negative slope ones become horizontal during the (π/2)-
rotation. Thus, the number of births and deaths is equal to the number
i−(ϕ) of negative slope inflection points of Cϕ.

We count the number of passings of {Gθ}θ∈[0,π2 ]. They correspond to

passings of horizontal points of {Cϕθ
}θ∈[0,π2 ]. The rotation {Cϕθ

}θ∈[0,π2 ] of Cϕ

has such passings only when double tangent lines of Cϕ become horizontal.
The condition (iv) guarantees the transversality condition of the passings.
Note that only negative slope ones become horizontal during the (π/2)-
rotation. By the condition (ii), the number of passings is equal to the number
t−(ϕ) of negative slope double tangent lines of Cϕ.

The homotopy {Gθ}θ∈[0,π2 ] is generic and gives the inequalities (1) and

(2). The requirement that {Gθ}θ∈[0,π2 ] has at most one of the births, the

deaths and the passings at each time is guaranteed by the condition (v).
We can also prove the following lemma by observing the rotation of the

discriminant curve.
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Lemma 10. Critical points of F and G which are a vertical point and a
horizontal point of Cϕ located as in Figure 5 have the same Morse index.

Figure 5: A leftward convex vertical point and a downward convex horizon-
tal point.

Proof. After an appropriate ambient isotopy of R
2, we may assume that

Figure 5 shows the image of Cϕ in a disk D ⊂ R
2 centered at the origin,

and that Cϕ has no inflection points in ϕ−1(D). For each θ ∈ [
0, π2

]
, the

curve Cϕθ
has a unique horizontal point which is not an inflection point in

ϕ−1(D), that is, Gθ has a unique non-degenerate critical point in ϕ−1(D).
This shows that the critical points of G0 and Gπ

2
in ϕ−1(D) have the same

Morse index. �

5. Shearing the discriminant curve

In this section, we prove the inequalities (3), (4) and (5) in Theorem 5, by
observing a certain process of shearing the discriminant curve in the target
plane.

We use Notation 2 and suppose that the two functions F,G are Morse
functions and the product map ϕ is stable. Let Cϕ : Sϕ → R

2 denote the
discriminant curve of ϕ.

We assume some generic conditions. The curve Cϕ satisfies the following
conditions after an arbitrarily small isotopy in R

2:

(vi) horizontal points and vertical points are not cusp points and do not
map to double points,

(vii) the images of horizontal points, vertical points and cusp points have
pairwise distinct g-coordinates.

Note that such a small isotopy can be chosen not to increase the numbers
of negative slope cusp points and double points of negative slope subarcs.
We may therefore assume these conditions by Remark 4.
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We define an ambient isotopy {Ht}t∈[g−,g+] of the plane as follows. Let
g− be a value below the minimal value of G, and let g+ be a value above the
maximal value of G. Choose δ to be a sufficiently small positive constant
and Δ to be a sufficiently large constant. Let {ht : R → R}t∈[g−,g+] be a
smooth family of monotone increasing smooth functions such that ht(g) =
Δ(g − t) if g ≤ t− δ and ht(g) = 0 if g ≥ t+ δ. Let Ht : R

2 → R
2, (f, g) 
→(

f + ht(g)− hg−(g), g
)
for each t ∈ [g−, g+].

The isotopy {Ht}t∈[g−,g+] shears the discriminant curve Cϕ by the process
illustrated in Figure 6. Let R+

t , R
−
t and rt denote the regions {(f, g) ∈ R

2 |
g > t+ δ}, {(f, g) ∈ R

2 | g < t− δ} and {(f, g) ∈ R
2 | t− δ ≤ g ≤ t+ δ}, re-

spectively, for each t ∈ [g−, g+]. Note that the image of Cϕ is contained in
{(f, g) ∈ R

2 | g− < g < g+}, and the thin band rt runs over it from below
to above as t ascends from g− to g+. In the upper region R+

t , the curve
Ht ◦ Cϕ remains unchanged from Cϕ. In the lower region R−

t , the curve
Ht ◦ Cϕ is the result of shearing Cϕ so that it has positive slope outside of
small neighborhoods of horizontal points.

· · · →

g

t

f

→

g

t

f

→ · · ·

Figure 6: The deformation of Ht ◦ Cϕ as t ascends. The original curve Cϕ

is shown as a dotted curve, and the thin band rt is shown in gray.

We consider the induced homotopies by the isotopy {Ht}t∈[g−,g+]. For
each t ∈ [g−, g+], let ϕt = Ht ◦ ϕ and Ft = πf ◦ ϕt and Gt = πg ◦ ϕt and
Cϕt

= Ht ◦ Cϕ. Note that ϕt is a stable map and the product map of Ft

and Gt, and that Cϕt
is the discriminant curve of ϕt.

The induced homotopy {Ft}t∈[g−,g+] connects F and a Morse function
isotopic toG as follows. Note that all the inflection points and double tangent
lines of the sheared curve Cϕg+

have positive slopes. The functions Fg+ and
Gg+ are Morse functions by the result in Section 3, and are isotopic by the
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result in Section 4. By the definitions,

Fg−(x) = (πf ◦Hg− ◦ ϕ)(x) = (πf ◦Hg−) (F (x), G(x))

= πf (F (x), G(x))

= F (x)

Gg+(x) = (πg ◦Hg+ ◦ ϕ)(x) = (πg ◦Hg+) (F (x), G(x))

= πg
(
F (x) + hg+ (G(x))− hg− (G(x)) , G(x)

)
= G(x)

for x ∈ X. That is, Fg− = F and Gg+ = G.
In the following subsections, we frequently omit the phrase “the image

of” preceding terms of discriminant curves.

5.1. Numbers of births and deaths

In this subsection, we count the numbers of births and deaths of {Ft}t∈[g−,g+].
What to observe are restricted as follows. Births and deaths of

{Ft}t∈[g−,g+] correspond to births and deaths of canceling pairs of verti-
cal points of {Cϕt

}t∈[g−,g+] by Lemma 9. In the upper region R+
t , the curve

Cϕt
has no vertical inflection points as well as Cϕ. In the lower region R−

t ,
all the inflection points of Cϕt

has positive slopes. No births and no deaths
therefore occur in R+

t and R−
t , but in the thin band rt. Let α be a compo-

nent of Sϕ ∩ ϕ−1(rt) which is an arc apart from horizontal points, vertical
points and cusp points of Cϕ. In the case where Cϕ has positive slope in
α, the curve Cϕt

does also. In the case where Cϕ has negative slope in α,
the curve Cϕt

has one rightward convex vertical point in α. In both cases,
Cϕt

has no vertical inflection points in α. No births and no deaths therefore
occur when all the components of Sϕ ∩ ϕ−1(rt) are such arcs, but when rt
passes a horizontal point, a vertical point or a cusp point of Cϕ.

What to observe are classified as follows. Each cusp point of Cϕ is point-
ing either northeast, northwest, southeast or southwest, by the condition (vi).
Each horizontal (resp. vertical) point of Cϕ is not a double point by (vi),
and is convex either downward or upward (resp. leftward or rightward) since
G (resp. F ) is a Morse function. The following figures do not lose generality
since δ is sufficiently small, Δ is sufficiently large, and Cϕ has only finitely
many horizontal points, vertical points and cusp points.

When rt passes a downward convex horizontal point of Cϕ, a birth occurs
as in Figure 7. In particular, by combining Lemmas 9 and 10, if the horizontal
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point of Cϕ is a critical point of G of Morse index λ, then the critical points
of the canceling pair have Morse indices λ and λ+ 1.

→ →

Figure 7: The deformation of Cϕt
when rt passes a downward convex hori-

zontal point of Cϕ. The band rt looks pretty thick because the picture has
been greatly enlarged.

When rt passes a leftward convex vertical point of Cϕ, a death occurs
as in Figure 8. In particular, by Lemma 9, if the vertical point of Cϕ is a
critical point of F of Morse index λ, then the critical points of the canceling
pair have Morse indices λ and λ+ 1.

→ →

Figure 8: At a leftward convex vertical point of Cϕ.

When rt passes a rightward convex vertical point or an upward convex
horizontal point of Cϕ, no birth or no death occurs as in Figure 9 or 10,
respectively.

When rt passes a southeast pointing cusp point of Cϕ, a birth occurs as
in Figure 11. We remark that the tip of the cusp is moved as in Figure 3
but not as in Figure 4, and the birth occurs on the right branch. Suppose
that the absolute indices of the left and right branches are either λ− 1 and
λ, respectively, or λ− 1 and λ− 1, respectively, or n− λ and n− λ− 1,
respectively. By Lemma 8, the vertical cusp point in the third picture of
Figure 11 has Morse index λ. By Lemma 9, the critical points of the canceling
pair have Morse indices λ and λ+ 1.

When rt passes a northwest pointing cusp point of Cϕ, a death occurs
as in Figure 12. If the absolute indices of the left and right branches are
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→ →

Figure 9: At a rightward convex vertical point of Cϕ.

→ →

Figure 10: At an upward convex horizontal point of Cϕ.

→

→ →

Figure 11: At a southeast pointing cusp point of Cϕ.

either λ− 1 and λ, respectively, or λ− 1 and λ− 1, respectively, or n− λ
and n− λ− 1, respectively, then the critical points of the canceling pair
have Morse indices λ and λ+ 1.

When rt passes a northeast pointing cusp point or a southwest pointing
cusp point of Cϕ, no birth or no death occurs.
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→

→ →

Figure 12: At a northwest pointing cusp point of Cϕ.

Putting the above observations together, the homotopy {Ft}t∈[g−,g+] has

�

{
, of Cϕ

}
births and �

{
, of Cϕ

}
deaths.

In particular, the number of births of canceling pairs of critical points of
Morse indices λ and λ+ 1 is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

{
©0 of Cϕ

}
(λ = 0)

�

{
©λ ,

λ− 1

λ
of Cϕ

}
(0 < λ < n

2 )

�

{
©λ ,

λ− 1

λ− 1
of Cϕ

}
(λ = n

2 )

�

{
©λ ,

n− λ

n− λ− 1
of Cϕ

}
(n2 < λ < n),
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and the number of deaths of canceling pairs of critical points of Morse indices
λ and λ+ 1 is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

{
©0 of Cϕ

}
(λ = 0)

�

{
©λ ,

λ− 1

λ
of Cϕ

}
(0 < λ < n

2 )

�

{
©λ ,

λ− 1

λ− 1
of Cϕ

}
(λ = n

2 )

�

{
©λ ,

n− λ

n− λ− 1
of Cϕ

}
(n2 < λ < n).

Here, each circled number stands for the Morse index of the corresponding
critical point of F or G, and each non-circled number stands for the absolute
index of the corresponding subarc of Sϕ.

5.2. Number of passings

In this subsection, we estimate the number of passings of {Ft}t∈[g−,g+].
Passings of {Ft}t∈[g−,g+] are classified as follows. They correspond to

passings of vertical points of {Cϕt
}t∈[g−,g+]. For each passing, each of the

two vertical points belongs to either the upper region R+
t , the lower region

R−
t or the thin band rt. It cannot happen that both belong to R+

t , in which
vertical points do not move as t ascends. It also cannot happen that both
belong to R−

t , in which vertical points are translated uniformly as t ascends.
The passings are therefore classified into the following four types:

(I) one belongs to R+
t and the other belongs to R−

t ,

(II) one belongs to R+
t and the other belongs to rt,

(III) one belongs to rt and the other belongs to R−
t ,

(IV) both belong to rt.

We estimate the number of passings of type (I). As t ascends, vertical
points of Cϕt

in R−
t go leftward, while those in R+

t do not move. Note that
each vertical point of Cϕt

in R−
t closely accompanies a horizontal point of

Cϕt
, which comes from a horizontal point of Cϕ as in Figure 7 or 10. In this

sense, exactly one locus of
{
vertical point of Cϕt

in R−
t | t ∈ [g−, g+]

}
starts
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from each horizontal point of Cϕ. For a horizontal point p of Cϕ, the number
of passings of type (I) caused by the locus of {vertical point of Cϕt

in R−
t |

t ∈ [g−, g+]} starting from p is at most the number of vertical points of Cϕ in
R+(p), where R+(p) denotes the half plane {(f, g) ∈ R

2 | g > G(p)} above
ϕ(p). The total number of passings of type (I) is therefore at most

∑{
�

{
, of Cϕ in R+(p)

} ∣∣∣∣ p ∈
{

, of Cϕ

}}
.

We estimate the number of passings of type (II). As t ascends, vertical
points of Cϕt

in rt go leftward, while those in R+
t do not move. Note that

each vertical point of Cϕt
in rt closely traces a negative slope subarc of Cϕ,

and that the tracing starts when rt passes either a downward convex hori-
zontal point, a rightward convex vertical point, or a southeast pointing cusp
point of Cϕ as in Figure 7, 9 or 11, respectively. In this sense, exactly one lo-
cus of {vertical point of Cϕt

in rt | t ∈ [g−, g+]} starts from each downward
convex horizontal point or rightward convex vertical point of Cϕ, and that
exactly two loci of {vertical point of Cϕt

in rt | t ∈ [g−, g+]} start from each
southeast pointing cusp point of Cϕ. The number of passings of type (II)
caused by each locus of {vertical point of Cϕt

in rt | t ∈ [g−, g+]} is at most
the number of vertical points of Cϕ minus one. Here, the minus one is be-
cause no such passing is caused by the rightmost rightward convex vertical
point of Cϕ. The total number of passings of type (II) is therefore at most(
�

{
, of Cϕ

}
− 1

)(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})

= (m(F )− 1)

(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})
.

We estimate the number of passings of type (III). As t ascends, vertical
points of Cϕt

in R−
t go leftward faster than those in rt, since Δ is sufficiently

large. We can see that the number of passings of type (III) is at most(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})(
�

{
, of Cϕ

}
− 1

)

=

(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})
(m(G)− 1) .

Here, the minus one is because no passing of type (III) is caused by the locus
of

{
vertical point of Cϕt

in R−
t | t ∈ [g−, g+]

}
starting from the uppermost

upward convex horizontal point of Cϕ.
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We count the number of passings of type (IV). Recall that, as t ascends,
vertical points of Cϕt

in rt go leftward closely tracing negative slope subarcs
of Cϕ. Two of them cause a passing when rt passes a double point of such
subarcs as in Figure 13. The number of passings of type (IV) is therefore
equal to the number d−(ϕ) of double points of negative slope subarcs of Cϕ.

→ →

Figure 13: At a double point of negative slope subarcs of Cϕ.

Putting the above estimations together, the number of passings of
{Ft}t∈[g−,g+] is at most

∑{
�

{
, of Cϕ in R+(p)

} ∣∣∣∣ p ∈
{

, of Cϕ

}}

+

(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})
(m(F ) +m(G)− 2)

+ d−(ϕ).

5.3. Bounding the distances

In this subsection, we bound from above the distances between the Morse
functions F and G by using the results of the previous subsections and
similar observations.

We may assume that {Ft}t∈[g−,g+] is a generic homotopy as follows. The
condition (vii) guarantees that {Ft}t∈[g−,g+] has either a single birth or a sin-
gle death, ignoring passings, at each time. We can also arrange the required
condition of the passings by certain generic conditions of Cϕ and Remark 4.

By the results of the previous subsections, the generic homotopy
{Ft}t∈[g−,g+] gives the following bounds:

(6) d(F,G) ≤ �

{
, , , of Cϕ

}
,
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dλ,λ+1(F,G) ≤
(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

{
©0 , ©0 of Cϕ

}
(λ = 0)

�

{
©λ ,

λ− 1

λ
, ©λ ,

λ− 1

λ
of Cϕ

}
(0 < λ < n

2 )

�

{
©λ ,

λ− 1

λ− 1
, ©λ ,

λ− 1

λ− 1
of Cϕ

}
(λ = n

2 )

�

{
©λ ,

n− λ

n− λ− 1
, ©λ ,

n− λ

n− λ− 1
of Cϕ

}
(n2 < λ < n),

D(F,G) ≤(8)

�

{
, , , of Cϕ

}

+
∑{

�

{
, of Cϕ in R+(p)

} ∣∣∣∣ p ∈
{

, of Cϕ

}}

+

(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})
(m(F ) +m(G)− 2)

+ d−(ϕ).

We can also obtain other bounds by observing another process of shear-
ing the discriminant curve Cϕ. Let H ′

t : R
2 → R

2, (f, g) 
→ (f − ht(−g) +
h−g+(−g), g) for each t ∈ [−g+,−g−]. The ambient isotopy {H ′

t}t∈[−g+,−g−]

of R2 shears Cϕ positively as well as {Ht}t∈[g−,g+] but the process is upside-
down. By similar observations, the induced homotopy of F by {H ′

t}t∈[−g+,−g−]

gives the following bounds:

(9) d(F,G) ≤ �

{
, , , of Cϕ

}
,
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dλ−1,λ(F,G) ≤
(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

{
©λ ,

λ− 1

λ
, ©λ ,

λ− 1

λ
of Cϕ

}
(0 < λ < n

2 )

�

{
©λ ,

λ− 1

λ− 1
, ©λ ,

λ− 1

λ− 1
of Cϕ

}
(λ = n

2 )

�

{
©λ ,

n− λ

n− λ− 1
, ©λ ,

n− λ

n− λ− 1
of Cϕ

}
(n2 < λ < n)

�

{
©n , ©n of Cϕ

}
(λ = n),

D(F,G) ≤(11)

�

{
, , , of Cϕ

}

+
∑{

�

{
, of Cϕ in R−(p)

} ∣∣∣∣ p ∈
{

, of Cϕ

}}

+

(
�

{
, of Cϕ

}
+ 2 �

{
of Cϕ

})
(m(F ) +m(G)− 2)

+ d−(ϕ),

where R−(p) denotes the half plane below ϕ(p).
We combine the above bounds to obtain the desired ones. By combining

(6) and (9), we obtain

d(F,G) ≤ 1

2
�

{
, , , of Cϕ

}

+ �

{
, of Cϕ

}

=
1

2
(m(F ) +m(G)) + c−(ϕ)
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to conclude the proof of (3). By combining (7) and (10), we conclude the
proof of (4). For example, in the case where 0 < λ < n

2 ,

dλ−1,λ(F,G) + dλ,λ+1(F,G) ≤ �

{
©λ , ©λ , ©λ ©λ of Cϕ

}

+ 2 �

{
λ− 1

λ
,

λ− 1

λ
of Cϕ

}

≤ mλ(F ) +mλ(G) + 2c−λ−1(ϕ).

By combining (8) and (11), we obtain

D(F,G)

≤ 1

2
�

{
, , , of Cϕ

}
+ �

{
, of Cϕ

}

+
1

2

∑{
�

{
, of Cϕ

} ∣∣∣∣ p ∈
{

, of Cϕ

}}

+
1

2

(
�

{
, , , of Cϕ

}
+ 2 �

{
, of Cϕ

})
(m(F ) +m(G)− 2) + d−(ϕ)

=
1

2
(m(F ) +m(G)) + c−(ϕ) +

1

2
m(F )m(G)

+
1

2

(
m(F ) +m(G) + 2c−(ϕ)

)
(m(F ) +m(G)− 2) + d−(ϕ)

=
1

2

(
m(F ) +m(G) + 2c−(ϕ)

)
(m(F ) +m(G)− 1) +

1

2
m(F )m(G) + d−(ϕ)

to conclude the proof of (5).
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