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Second-order equations and local isometric
immersions of pseudo-spherical surfaces

Nabil Kahouadji, Niky Kamran, and Keti Tenenblat

We consider the class of differential equations that describe
pseudo-spherical surfaces of the form ut = F (u, ux, uxx) and uxt =
F (u, ux). We answer the following question: Given a pseudo-
spherical surface determined by a solution u of such an equation, do
the coefficients of the second fundamental form of the local isomet-
ric immersion in R

3 depend on a jet of finite order of u? We show
that, except for the sine-Gordon equation, where the coefficients
depend on a jet of order zero, for all other differential equations,
whenever such an immersion exists, the coefficients are universal
functions of x and t, independent of u.

1. Introduction

The class of partial differential equations describing pseudo-spherical sur-
faces, which has been defined and studied in depth in a foundational paper
by Chern and Tenenblat [3], contains a large subclass of equations enjoying
remarkable integrability properties, such as the existence of infinite hierar-
chies of conservation laws, Bäcklund transformations and associated linear
problems. Recall that a partial differential equation

(1) Δ

(
t, x, u,

∂u

∂x
,
∂u

∂t
, . . . ,

∂ku

∂tl∂xk−l

)
= 0,

is said to describe pseudo-spherical surfaces if there exist 1-forms

(2) ωi = fi1dx+ fi2dt, 1 ≤ i ≤ 3,
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where the coefficients fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, are smooth functions of t, x, u
and finitely many derivatives of u with respect to t and x, such that the
structure equations

(3) dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2

hold if, and only if, u is a solution of (1) for which ω1 ∧ ω2 �= 0. In other
words, every smooth solution of an equation (1) describing pseudo-spherical
surfaces defines on its domain U ⊂ R

2 a Riemannian metric

(4) ds2 = (ω1)2 + (ω2)2,

of constant Gaussian curvature equal to −1, with ω3 being the Levi-Civita
connection 1-form of the metric (4).

One of the most important examples of a partial differential equation
describing pseudo-spherical surfaces is the sine-Gordon equation

(5)
∂2u

∂t∂x
= sinu,

for which a choice of 1-forms (2) satisfying the structure equations (3) is
given by

ω1 = cos
u

2
(dx+ dt),(6)

ω2 = sin
u

2
(dx− dt),(7)

ω3 =
ux
2
dx− ut

2
dt.(8)

It should be noted that this choice of 1-forms is by no means unique. In
particular, we could also have used

ω1 =
1

η
sinu dt,(9)

ω2 = η dx+
1

η
cosu dt,(10)

ω3 = ux dx,(11)

where η is a continuous non-vanishing real parameter. This continuous pa-
rameter is closely related to the parameter appearing in the classical Bäck-
lund transformation for the sine-Gordon equation and accounts for the exis-
tence of infinitely many conservation laws for the sine-Gordon equation. More
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generally, partial differential equations (1) which describe pseudo-spherical
surfaces and for which one of the components fij (say f21) can be chosen
to be a continuous parameter will be said to describe η pseudo-spherical
surfaces.

In [3], Chern and Tenenblat provided a complete classification of the
evolution equations of the form

(12) ut = F (u, ux, . . . , ∂
ku/∂xk),

which describe pseudo-spherical surfaces under the assumption that f21 = η,
where η is a real parameter, providing an extensive class of non-linear par-
tial differential equations, in two independent variables, describing pseudo-
spherical surfaces. Rabelo in [10], [11] characterized equations of the form
uxt = F (u, ux, . . . , ∂u/∂x

k), with f21 = η. The complete classification for
equations of type uxt = F (u, ux) and ut = uxxx +G(u, ux, uxx) was given
in [12] and [13], respectively.

In general, the importance of the class of differential equations that de-
scribe pseudo-spherical surfaces is due to the fact that such a differential
equation is always the integrability condition of a linear system of differ-
ential equations, which may be used in the inverse scattering method to
solve the differential equation (see for example [1], where the method was
applied to a subclass of equations obtained in [11]). While the assumption
of f21 = η is natural in the context of the inverse scattering method, the
problem of classifying the differential equations describing pseudo-spherical
surfaces, without any other assumption, is important in its own right and
was considered by Kamran and Tenenblat in [8], where one can find a com-
plete classification of evolution equations of the form (12) which describe
pseudo-spherical surfaces, as opposed to η pseudo-spherical surfaces. These
results provide a systematic way of verifying if a given differential equa-
tion of this type describes pseudo-spherical surfaces. The results obtained
in [8] were extended by Reyes in [14] to differential equations of the form
ut = F (x, t, u, ux, . . . , ∂

ku/∂xk). The concept of a differential equation that
describes pseudo-spherical surfaces was extended by Ding and Tenenblat in
[4] to a system of differential equations that describes constant curvature
surfaces (pseudo-spherical and also spherical), where classification results
for such systems were obtained. More recently, in order to determine new
classes of differential equations that describe pseudo-spherical surfaces, as
a consequence of [8], assuming that f21 and f31 are linear combinations of
f11, Gomes [6] classified and obtained large new classes of such equations by
considering fifth order equations of type (12).
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We should point out that the classification results mentioned above, con-
tain not only general statements, but also examples of interesting new and
well kown non linear differential equations. Other aspects of the theory of
differential equations which describe pseudo-spherical surfaces and its appli-
cations thereof can be found in [2], [7], [9], [5], [14]-[18].

A classical theorem in the theory of surfaces states that any
pseudo-spherical surface can be locally isometrically immersed into three-
dimensional Euclidean space E

3. This result can thus be applied to the
metrics arising from the solutions u of any partial differential equation (1)
describing pseudo-spherical surfaces, thereby associating to any solution u
a local isometric immersion of a metric with constant Gaussian curvature
equal to −1. This theorem is however largely an existence result, which does
not give an explicit expression for the second fundamental form of the lo-
cal isometric immersion. It is therefore a most remarkable property of the
sine-Gordon equation that the second fundamental form of any such immer-
sion can be expressed in closed form as a function of u and finitely many
derivatives. Indeed, let us first recall that the components a, b, c of the second
fundamental form of any local isometric immersion of a metric of constant
curvature equal to −1 into E

3 are defined by the 1-forms ω3
1, ω

3
2 according to

(13) ω3
1 = aω1 + bω2, ω3

2 = bω1 + cω2,

where these forms satisfy the structure equations

(14) dω3
1 = −ω3

2 ∧ ω3, dω3
2 = ω3

1 ∧ ω3,

and the Gauss equation

ac− b2 = −1.

For the sine-Gordon equation, with the choice of 1-forms ω1, ω2 and ω3 given
by (6), (7) and (8), it is easily verified that the 1-forms ω3

1, ω
3
2 are given by

ω3
1 = sin

u

2
(dx+ dt) = tan

u

2
ω1,

ω3
2 = − cos

u

2
(dx− dt) = − cot

u

2
ω2.

In general, given a partial differential equation (1) describing pseudo-
spherical surfaces, it is straightforward to derive a set of necessary and suffi-
cient conditions, in terms of the coefficients fij of the 1-forms (2), for a, b and
c to be the components of the second fundamental form of a local isometric
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immersion corresponding to a solution of (1). We write

dω3
1 =

(
db(e1)− da(e2)

)
ω1 ∧ ω2 − aω2 ∧ ω3 + b ω1 ∧ ω3,(15)

dω3
2 =

(
dc(e1)− db(e2)

)
ω1 ∧ ω2 − b ω2 ∧ ω3 + c ω1 ∧ ω3,(16)

where (e1, e2) is the pair of vector fields dual to the coframe (ω1, ω2), given
by ∣∣∣∣ f11 f21

f12 f22

∣∣∣∣ e1 = f22∂x − f21∂t,

∣∣∣∣ f11 f21
f12 f22

∣∣∣∣ e2 = −f12∂x + f11∂t.

Thus, using the notation Dt and Dx for the total derivative operators, we
obtain

f11Dta+ f21Dtb− f12Dxa− f22Dxb(17)

− 2b

∣∣∣∣ f11 f31
f12 f32

∣∣∣∣+ (a− c)

∣∣∣∣ f21 f31
f22 f32

∣∣∣∣ = 0,

f11Dtb+ f21Dtc− f12Dxb− f22Dxc(18)

+ (a− c)

∣∣∣∣ f11 f31
f12 f32

∣∣∣∣+ 2b

∣∣∣∣ f21 f31
f22 f32

∣∣∣∣ = 0,

where a, b and c, which are assumed to depend on t, x, u and finitely many
derivatives of u with respect to t and x, satisfy the Gauss equation

(19) ac− b2 = −1.

In view of the above discussion, it is is natural to ask the following ques-
tion: Do there exist equations other than the sine-Gordon equation within
the class of partial differential equations describing pseudo-spherical (or η
pseudo-spherical) surfaces, for which the components a, b, c of the second fun-
damental form of the local isometric immersion depend on a jet of finite order
of u, that is on x, t, u and finitely many derivatives of u?

If such equations were to exist, they would have an important geometric
property in common with the sine-Gordon equation. In this paper, we give a
complete answer to the above question in the case of second-order hyperbolic
equations of the form

(20) uxt = F (u, ux),

and evolution equations of the form

(21) ut = F (u, ux, uxx),
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which describe η pseudo-spherical surfaces as in [12] and [3].
We begin with the case of evolution equations (21), for which our main

result is the following:

Theorem 1. Except for second-order evolution equations of the form

(22) ut =
f12,ux

f11,u
uxx +

f12,u
f11,u

ux ∓ λf11 − ηf12
f11,u

,

where f11,u �= 0 and f12,ux
�= 0, there exists no second-order evolution equa-

tion describing η pseudo-spherical surfaces, given as in [3], with the property
that the coefficients of the second fundamental forms of the local isometric im-
mersions of the surfaces associated to the solutions u of the equation depend
on a jet of finite order of u. Moreover, the coefficients of the second funda-
mental forms of the local isometric immersions of the surfaces determined
by the solutions u of (22) are universal, i.e., they are universal functions of
x and t, independent of u.

Theorem 1 suggests that there is no real analogue of the sine-Gordon
equation within the class of second-order evolution equations describing η
pseudo-spherical surfaces, from the perspective of the local isometric immer-
sions of pseudo-spherical surfaces associated to their solutions. Indeed, even
though the special class of evolution equations (22) has the property that the
components of the second fundamental forms of the immersions associated
to its solutions depend on jets of finite order of u, this dependence is given in
terms of functions of x and t for all choices of solutions u (see Proposition 2).

The results for second-order hyperbolic equations (20) are similar, with
the notable exception that they single out the sine-Gordon equation as the
only equation, up to constants, for which the second fundamental form of the
local isometric immersion is not universal. In order to state these results, we
begin by recalling the classification theorem proved by Rabelo and Tenenblat
[12] for equations (20) describing pseudo-spherical surfaces:

Theorem 2 (Rabelo & Tenenblat [12]). Let F be a differentiable func-
tion defined on an open connected subset U ⊂ R

2. An equation

uxt = F (u, ux)

describes an η pseudo-spherical surface for η ∈ P ⊂ R, where P is a dense
subset of R and F independent of η if, and only if, F satisfies one of the
following:
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i) F is independent of ux and F ′′(u) + αF (u) = 0, U = R
2, P = R \ {0},

and α is a non-zero real constant.

ii) F = νeδu
√

β + γu2x, where U = {(u, z) ∈ R
2;β + γz2 > 0},

P = R, δ, γ, β, ν are real constants, with δ, γ, ν nonzero, and β = 0
when γ = 1; or

iii) F = λu+ ζux + τ , where U = R
2, P = R \ {0}, and λ, ζ, τ are real

constants.

The expressions of functions fij of the 1-forms ωi for each equation of
Theorem 2 are recalled in Section 4 (Lemmas 6–8). We are now ready to
state our main result for the case of second-order hyperbolic equations (20).

Theorem 3. Let F be an equation of the form uxt = F (u, ux) that describes
η pseudo-spherical surfaces as in Theorem 2, with the 1-forms as in [12].

1) If F is independent of ux and satisfies F ′′(u) + αF (u) = 0, where α is
a positive real constant, then there exists a local isometric immersion
in R

3 of the pseudo-spherical surface determined by a solution u, for
which the coefficients of the second fundamental form depend on a jet
of finite order of u if, and only if, they depend on the jet of order zero.

2) If F = λu+ ζux + τ , then there exists a local isometric immersion in
R
3 of the pseudo-spherical surface determined by a solution u, for which

the coefficients of the second fundamental form depend on a jet of finite
order of u if, and only if, λ, ξ and τ do not vanish simultaneously, and
the coefficients are independent of u, that is they are universal functions
of x and t.

3) For the remaining equations, that is, if F is independent of ux and
satisfies F ′′(u) + αF (u) = 0, where α is a negative real constant, F =
νeδu

√
β + γu2x and F = 0, there is no local isometric immersion of

the pseudo-spherical surface determined by a solution u, for which the
coefficients of the second fundamental form depend on a jet of finite
order of u.

The coefficients of the second fundamental form of the local isometric
immersions stated in Theorem 3 are given explicitly in Section 4 (Propo-
sitions 3 and 5). Theorem 3 shows likewise that when viewed through the
perspective of the local isometric immersions associated to its solutions, the
sine-Gordon equation occupies a special position within the class of hyper-
bolic equations (20) as the unique equation, up to normalization constants,
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for which the coefficients of the second fundamental form of the local iso-
metric immersion of the surface determined by a solution u, depends on a
jet of finite order of u, without being universal, i.e. independent of u.

While Theorems 1 and 3 give a complete answer to the general question
we have raised in this paper in the case of second-order evolution equa-
tions (21) and second-order hyperbolic equations (20), the question still re-
mains open for all the other classes of equations describing pseudo-spherical
surfaces. We believe that it should be possible to extend the proof of The-
orem 1 to the case of k-th order evolution equations with k ≥ 3 in order to
obtain a similar result to the effect that all the second-fundamental forms
that depend only on jets of finite order of the solutions of evolution equation
should be universal.

Our paper is organized as follows. In Section 2, we recall the results of
Chern and Tenenblat [3] on the classification of evolution equations describ-
ing pseudo-spherical surfaces and use these to give an analogue of the normal
forms of Theorem 2 for the case of second-order evolution equations (21).
These normal forms are then used as the starting point in Section 3 of the
proof of Theorem 1. Section 4 is devoted to the proof of Theorem 3. The
proofs involve a careful analysis of the possible dependence on higher-order
jets of u of the solutions of the system of differential constraints (17) and (18)
that must be satisfied by components a, b, c of the second fundamental form,
together with the algebraic constraint given by the Gauss equation (19).

2. The classification of second-order evolution equations
describing η pseudo-spherical surfaces

In [3], Chern and Tenenblat obtained necessary and sufficient conditions in
the form of differential equations on the functions fij for the existence of an
evolution equation of the form

(23)
∂u

∂t
= F

(
u, ux, . . . ,

∂ku

∂xk

)
,

which describes η pseudo-spherical surfaces, i.e., with f21 = η, where η is a
nonzero parameter. They also performed a complete classification of the evo-
lution equations of the form (23) which describe η pseudo-spherical surfaces.
They obtained four classes of evolution equations (Theorems 2.2 to 2.5 in [3]).
These four classes of equations are determined algebraically by f11, f31, f22
and their derivatives, up to some differential constraints. In what follows, we
consider only second-order evolution equations of the form (23) and solve
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the differential constraints that f11, f31 and f22 must satisfy in order for (23)
to describe η pseudo-spherical surfaces. We shall deal with two of the four
classes (Theorems 2.2 and 2.4 in [3]) since the two remaining classes of evo-
lution equations (Theorems 2.3 and 2.5 in [3]) lead to evolution equations of
the first order, when k = 2.

It will be convenient to introduce the following notation for the spatial
derivatives of u (used in [3] and also in [8]),

zi =
∂iu

∂xi
, 0 � i � k,

and to view (x, t, z0, z1, . . . , zk) as local coordinates in an open subset U of
a manifold.

Lemma 1 (Chern & Tenenblat [3]). Consider a second-order evolu-
tion equation of the form z0,t = F (z0, z1, z2) which describes an η pseudo-
spherical surface with associated forms ωi = fi1dx+ fi2dt. If fij are differ-
entiable functions of z0, z1, z2, then

fij,z2 = 0, f11,z1 = f31,z1 = f22,z1 = 0,(24)
f2
11,z0 + f2

31,z0 �= 0.(25)

In order to state the results, we introduce the following notation

(26)
H = f11f11,z0 − f31f31,z0 , L = f11f31,z0 − f31f11,z0 ,

P = f11,z0f31,z0z0 − f31,z0f11,z0z0 , M = f2
31,z0 − f2

11,z0 .

Lemma 2. Let fij, 1 � i � 3, 1 � j � 2, be differentiable functions of
z0, z1, z2 such that (24) and (25) hold and f21 = η a nonzero parameter.
Suppose HL �= 0. Then z0,t = F (z0, z1, z2) describes an η pseudo-spherical
surface with associated 1-forms ωi = fi1dx+ fi2dt, if and only if

F =
∓f22,z0

η
√
1− α2f11,z0

z2 ∓ f22,z0z0

η
√
1− α2f11,z0

z21(27)

+

(
(η2 + f2

11 − f2
31)f22,z0

η
[
(1− α2)f11 ∓ αη

√
1− α2

]
f11,z0

+
f22
η

)
z1,
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and

f31 = αf11 ± η
√

1− α2,(28)

f12 =
f11f22

η
∓ f22,z0

η
√
1− α2

z1,(29)

f32 =
(αf11 ± η

√
1− α2)f22
η

∓ αf22,z0

η
√
1− α2

z1,(30)

where f22,z0 �= 0, f11,z0 �= 0, and α2 < 1.

Proof. If k = 2, Theorem 2.2 in [3] gives the general expression of second-
order evolution equations z0,t = F which describe η pseudo-spherical sur-
faces, namely

F =
1

L

1∑
i=0

zi+1Bzi +
1

HL

(
−z1

L

η
+ f2

31 − f2
11

)
z1A

0(31)

+
B

HL
(z1M + ηL) + z1

f22
η

,

where

B = f22,z0z1, A0 =
1

L
(−z1P + ηM)Bz1 + f22,z1H,

where the functions f12 and f32 are given by

(32)
f12 =

f11f22
η

+
1

H

(
−f11A

0

η
z1 + f31,z0B

)
,

f32 =
f31f22

η
+

1

H

(
−f31A

0

η
z1 + f11,z0B

)
,

and where (2.12) in [3] gives two differential equations that the functions
f11, f31 and f22 must satisfy. When k = 2, these equations reduce to

L

η
f22,z0 −

L

η

(
z1

A0

H

)
z0

+A0 +
M

H
Bz0 +

B

H2
(LP +M2) = 0,(33)

L

η
f22,z1 −

L

η

(
z1

A0

H

)
z1

+
M

H
Bz1 = 0.(34)

If L �= 0, then the differential equation (34) leads to Pf22,z0 = 0. The
vanishing of f22,z0 contradicts the fact that F is a second order evolution
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equation. We conclude then that

f22,z0 �= 0, P = 0.(35)

Differentiating (33) with respect to z1 leads to −L(M/HL)z0 +M2/L2 = 0
and hence, the differential equation (33) leads to

(36) M = −L2

η2
.

The vanishing of P implies that

(37) f31 = αf11 + β, where α, β ∈ R.

We have then

L = −βf11,z0 , H = [(1− α2)f11 − αβ]f11,z0 .(38)

The non-vanishing of L implies that β �= 0 and f11,z0 �= 0. Substituting (37)
in (36) and in the expression of M as in (26) leads to

(39) β2 = η2(1− α2).

The non-vanishing of β and η, and the latter equation imply that α ∈ (−1, 1).
Finally, substituting β = ±η

√
1− α2, P = 0 and (37) in the expressions (31)

and (32) leads to expressions (27), (28), (29), and (30). �

If HL = 0, then there are three classes of evolution equations to consider,
which are given in Theorems 2.3-2.5 in [3]. However, F is of second order
only when H = L = 0, as in Theorem 2.4 in [3].

Lemma 3. Let fij, 1 � i � 3, 1 � j � 2, be differentiable functions of
z0, z1, z2 such that (24) and (25) hold and f21 = η a nonzero parameter.
Suppose f31 = ±f11 �= 0. Then z0,t = F (z0, z1, z2) describes an η pseudo-
spherical surface with associated 1-forms ωi = fi1dx+ fi2dt, if and only if
f22 = λ, where λ is constant, f32 = ±f12, and

(40) F =
f12,z1
f11,z0

z2 +
f12,z0
f11,z0

z1 ∓ λf11 − ηf12
f11,z0

.

Proof. Immediate when k = 2 in Theorem 2.4 in [3]. �
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3. Proof of Theorem 1

Lemma 4. Let ut = F (u, ux, uxx) be a second-order evolution equation de-
scribing η pseudo-spherical surfaces as in Lemma 2 or in Lemma 3. If there
exists a local isometric immersion of a surface determined by a solution u
for which the coefficients of the second fundamental form (13) depend on a
jet of finite order of u, i.e., a, b and c depend on x, t, u, . . . , ∂�u/∂x�, where �
is finite, then a, b and c are universal, i.e., a, b and c depend only on x and t.

Proof. Assume a, b and c depend on a jet of finite order, i.e., they depend
on x, t, z0, . . . and z�, where � is fixed. Then (17) becomes

f11at + ηbt − f12ax − f22bx(41)
− 2b(f11f32 − f31f12) + (a− c)(ηf32 − f22f31)

−
�∑

i=0

(f12azi + f22bzi)zi+1 +

�∑
i=0

(f11azi + ηbzi)zi,t = 0,

and (18) becomes

f11bt + ηct − f12bx − f22cx(42)
+ (a− c)(f11f32 − f12f31) + 2b(ηf32 − f22f31)

−
�∑

i=0

(f12bzi + f22czi)zi+1 +

�∑
i=0

(f11bzi + ηczi)zi,t = 0.

Since f22,z0 �= 0 and f11,z0 �= 0 for evolution equations (27), and f11,z0 �= 0
and f12,z1 �= 0 for evolution equations (40), differentiating (41) and (42) with
respect to z�+2 leads to f11az� + ηbz� = f11bz� + ηcz� = 0, and hence

(43) bz� = −f11
η

az� , and cz� =
f2
11

η2
az� .

Differentiating the Gauss equation (19) with respect to z� leads to caz� +
acz� − 2bbz� = 0, and substituting (43) in the latter leads to

(44)
[
c+

(
f11
η

)2

a+ 2
f11
η

b

]
az� = 0.

If c+
(f11

η

)2
a+ 2f11

η b = 0 on an open set, then substituting the expres-
sion of c in the Gauss equation −ac+ b2 = 1 leads to (f11a/η + b)2 = 1, so
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that

b = ±1− f11
η

a, and c =

(
f11
η

)2

a∓ 2
f11
η

.

We have then

Dtb = −f11
η

Dta− a

η
f11,z0F,

Dtc =

(
f11
η

)2

Dta+
2

η

(
f11
η

a∓ 1

)
f11,z0F,

Dxb = −f11
η

Dxa− a

η
f11,z0z1, ,

Dxc =

(
f11
η

)2

Dxa+
2

η

(
f11
η

a∓ 1

)
f11,z0z1,

and hence

f11Dta+ ηDtb = −af11,z0F,(45)

f11Dtb+ ηDtc =

(
f11
η

a∓ 2

)
f11,z0F,(46)

f12Dxa+ f22Dxb = −Δ12

η
Dxa− af22

η
f11,z0z1,(47)

f12Dxb+ f22Dxc =
f11
η

Δ12

η
Dxa+

Δ12

η2
af11,z0z1(48)

+
f22
η

(
f11
η

a∓ 2

)
f11,z0z1.

whereΔ12 = f11f22 − ηf12. Substituting the latter four equalities in (17) lead
to

− af11,z0F +
Δ12

η
Dxa+

af22
η

f11,z0z1

− 2b(f11f32 − f31f12) + (a− c)(ηf32 − f31f22) = 0,

which is equivalent to

− af11,z0F +
Δ12

η

�∑
i=0

azizi+1 +
af22
η

f11,z0z1(49)

− 2b(f11f32 − f31f12) + (a− c)(ηf32 − f31f22) = 0.
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Substituting the four equalities (45)–(48) into (18) lead to(
f11
η

a∓ 2

)
f11,z0F − f11

η

Δ12

η
Dxa− Δ12

η2
af11,z0z1 −

f22
η

(
f11
η

a∓ 2

)
f11,z0z1

+ (a− c)(f11f32 − f31f12) + 2b(ηf32 − f31f22) = 0,

which is equivalent to

(
f11
η

a∓ 2

)
f11,z0F − f11

η

Δ12

η

�∑
i=0

azizi+1(50)

− Δ12

η2
af11,z0z1 −

f22
η

(
f11
η

a∓ 2

)
f11,z0z1

+ (a− c)(f11f32 − f31f12) + 2b(ηf32 − f31f22) = 0.

• If � ≥ 2, then differentiating (49) with respect to z�+1 leads to
Δ12az� = 0. Thus az� = 0 and also bz� = cz� = 0.

• If � = 1, then differentiating (49) and (50) with respect to z2 lead to

−af11,z0Fz2 +
Δ12

η
az1 = 0,(

f11
η

a∓ 2

)
f11,z0Fz2 −

f11
η

Δ12

η
az1 = 0.

The latter system leads to f11,z0Fz2 = 0, which runs into a contradic-
tion.

• If � = 0, then differentiating (49) and (50) with respect to z2 lead to

−af11,z0Fz2 = 0,(
f11
η

a∓ 2

)
f11,z0Fz2 = 0.

The latter system leads to f11,z0Fz2 = 0, which runs into a contradic-
tion.

Therefore, for all �, (17), (18) and the Gauss equation is an inconsistent
system.

If c+
(f11

η

)2
a+ 2f11

η b �= 0, then az� = 0, and hence bz� = cz� = 0, and suc-
cessive differentiation leads to azi = bzi = czi = 0 for all i = 0, . . . , �.

Finally, if the functions a, b and c depend on a jet of finite order, then
they are universal, i.e., they are functions of x and t only. �
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Proposition 1. For the second-order evolution equations which describe η
pseudo-spherical surfaces as in Lemma 2, there is no local isometric immer-
sion in R

3 of a pseudo-spherical surface determined by a solution u, for which
the coefficients a, b, c of the second fundamental form depend on a jet of finite
order of u.

Proof. Let a, b, and c be coefficients of the second fundamental form satisfy-
ing the Gauss equation ac− b2 = −1. By Lemma 4, if a, b and c depend on
a jet of finite order, then a, b and c depend only on x and t. From (28)–(30),
we have

f11f32 − f12f31 = f22,z0z1,(51)

ηf32 − f22f31 = ∓ αf22,z0√
1− α2

z1.(52)

Taking into account the expressions (51), (52) and (29), equations (17)
and (18) become

f11at + ηbt −
(
f11f22

η
∓ f22,z0

η
√
1− α2

z1

)
ax(53)

− f22bx − 2bf22,z0z1 ∓ (a− c)
αf22,z0√
1− α2

z1 = 0,

f11bt + ηct −
(
f11f22

η
∓ f22,z0

η
√
1− α2

z1

)
bx(54)

− f22cx + (a− c)f22,z0z1 ∓ 2b
αf22,z0√
1− α2

z1 = 0.

Differentiating (53) and (54) with respect to z1 and the fact that f22,z0 �= 0
lead to (

ax
bx

)
=

( ±η
√
1− α2 αη

αη ∓η
√
1− α2

)(
2b

a− c

)
.

The determinant of the 2× 2 matrix appearing in the above equation is
non-zero, therefore, ax and bx can not vanish simultaneously. Otherwise,
a− c = b = 0, and this contradicts the Gauss equation. (53) and (54) become
then

ηf11at + η2bt − f11f22ax − ηf22bx = 0,(55)
ηf11bt + η2ct − f11f22bx − ηf22cx = 0.(56)
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Differentiating (55) and (56) with respect to z0, and dividing by ηf11,z0
lead to

at =
(f11f22)z0
ηf11,z0

ax +
f22,z0
f11,z0

bx,(57)

bt =
(f11f22)z0
ηf11,z0

bx +
f22,z0
f11,z0

cx.(58)

Observe that (f11f22)z0
f11,z0

and f22,z0
f11,z0

cannot both be constant. Otherwise, f22,z0 =
0 which is a contradiction. Differentiating (57) and (58) with respect to z0
leads to (

(f11f22)z0
ηf11,z0

)
z0

ax +

(
f22,z0
f11,z0

)
z0

bx = 0,(
(f11f22)z0
ηf11,z0

)
z0

bx +

(
f22,z0
f11,z0

)
z0

cx = 0.

We conclude that

(59) axcx − b2x = 0.

Subtracting (58) multiplied by ax from (57) multiplied by bx, it follows
from (59) that

(60) axbt − atbx = 0.

From (55), we have f11(ηat − f22ax) + η2bt − ηf22bx = 0. Note that (ηat −
f22ax) �= 0. Otherwise, since f22,z0 �= 0, we have ax = at = 0 and hence it
follows from (59) that bx = 0, which runs into a contradiction. Therefore,

(61) f11 =
η(ηbt − f22bx)

ηat − f22ax
.

Differentiating (61) with respect to z0 and taking into account (60) lead to
f11,z0 = 0, which is a contradiction. �

Proposition 2. Let ut = F (u, ux, uxx) be a second-order evolution equation
which describes η pseudo-spherical surfaces, as in Lemma 3. There exists a
local isometric immersion in R

3 of a pseudo-spherical surface, determined
by a solution u, for which the coefficients of the second fundamental form
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(13) depend on a jet of finite order of u if, and only if, the coefficients are
universal and are given by

a =

√
le±2(ηx+λt) − γ2e±4(ηx+λt) − 1,(62)

b = γe±2(ηx+λt),(63)

c =
γ2e±4(ηx+λt) − 1√

le±2(ηx+λt) − γ2e±4(ηx+λt) − 1
,(64)

l, γ ∈ R, l > 0 and l2 > 4γ2. The 1-forms are defined on a strip of R where

(65) log

√
l −

√
l2 − 4γ2

2γ2
< ±(ηx+ λt) < log

√
l +

√
l2 − 4γ2

2γ2
.

Moreover, the constants l and γ have to be chosen so that the strip intersects
the domain of the solution of the evolution equation.

Proof. As for the previous proposition, if a, b and c depend on a jet of finite
order, it follows from Lemma 4 that a, b and c depend only on x and t.
We assume also that f12,z1 �= 0, otherwise, the evolution equation is not of
second-order. Equations (17) and (18) become

f11at + ηbt − f12ax − λbx ± (ηf12 − λf11)(a− c) = 0,(66)
f11bt + ηct − f12bx − λcx ± (ηf12 − λf11)2b = 0.(67)

Differentiating (66) and (67) with respect to z1, and the fact that f12,z1 �= 0
lead to

ax ∓ η(a− c) = 0,(68)
bx ∓ 2ηb = 0.(69)

Taking into account (68) and (69) and differentiating (66) and (67) with
respect to z0 leads to

at ∓ λ(a− c) = 0,(70)
bt ∓ 2λb = 0,(71)

and hence, (66) and (67) become

ηbt − λbx = 0,(72)
ηct − λcx = 0.(73)
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Note that (69) and (71) imply (72), and (68) and (70) imply

ηat − λax = 0,(74)

and hence imply (73). From (69) and (71), we conclude that

(75) b = γe±2(ηx+λt), γ ∈ R.

Note that a �= 0. Otherwise, if a = 0, then (68) implies that c = 0 and
the Gauss equation leads to b = ±1 which contradicts (69). Therefore, from
the Gauss equation we have c = (b2 − 1)a−1. Then, in view of (75), equa-
tions (68) and (70) reduce to

aax ∓ η(a2 − γ2e±4(ηx+λt) + 1) = 0,

aat ∓ λ(a2 − γ2e±4(ηx+λt) + 1) = 0.

The latter system leads then to

a =

√
le±2(ηx+λt) − γ2e±4(ηx+λt) − 1, l ∈ R,

which is defined wherever le±2(ηx+λt) − γ2e±4(ηx+λt) − 1 > 0. Hence l > 0
and

l −
√

l2 − 4γ2

2γ2
< e±2(ηx+λt) <

l +
√

l2 − 4γ2

2γ2
,

i.e., a is defined on the strip described by (65). Now, from either (68) or (70),
we obtain

c =
γ2e±4(ηx+λt) − 1√

le±2(ηx+λt) − γ2e±4(ηx+λt) − 1
.

A straightforward computation shows that the converse holds. Finally, we
observe that given a solution of the evolution equation, in order to have an
immersion, one has to choose the constants l and γ, such that the strip (65)
intersects the domain of the solution in R

2. �

4. Proof of Theorem 3

We begin by introducing some notations. Given a differentiable function
u(x, t), we denote its partial derivatives by

(76) zi =
∂iu

∂xi
, wi =

∂iu

∂ti
, where z0 = w0 = u.
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We have therefore

zi,x = zi+1, zi,t =
∂i−1uxt
∂xi−1

, wi,x =
∂i−1uxt
∂ti−1

, wi,t = wi+1,

and the total derivatives of a differentiable function ϕ = ϕ(x, t, z0, z1,
w1, . . . , z�, w�) are given by

Dxϕ = ϕx +

�∑
i=0

ϕzizi+1 +

�∑
i=1

ϕwi
wi,x,(77)

Dtϕ = ϕt +

�∑
i=1

ϕzizi,t +

�∑
i=0

ϕwi
wi+1.(78)

We also introduce the notation

(79) Δij = fi1fj2 − fj1fi2.

Observe that

(80) Δ12 �= 0, Δ2
13 +Δ2

23 �= 0.

In fact, Δ12 �= 0 is equivalent to ω1 ∧ ω2 �= 0. Moreover, ω1 ∧ ω3 = Δ13dx ∧
dt and ω2 ∧ ω3 = Δ23dx ∧ dt. If Δ13 = Δ23 = 0, then it follows from (3) that
dω1 = dω2 = 0. Therefore, ω3(e1) = ω3(e2) = 0 and hence ω3 = 0 that is in
contradiction with dω3 = ω1 ∧ ω2.

The classification theorem of Rabelo and Tenenblat (see Theorem 2)
for hyperbolic equations describing η pseudo-spherical surfaces makes use
of a number of lemmas. Its proof also provides the coefficients fij of the
1-forms (2) for each equation of Theorem 2. We will need the lemmas and
these coefficients for the proof of Theorem 3. We therefore recall them from
[12] without proof. However, the reader can easily check, in each case stated
in Lemmas 6-8, that the structure equations (3) hold if, and only if, the
corresponding hyperbolic equation holds.

Lemma 5. [12] Let uxt = F (u, ux) be a differential equation describing
η pseudo-spherical surfaces, with associated one-forms ωi = fi1dx+ fi2dt,
where fij and F are real differentiable (C∞) functions on a open connected
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set U ⊂ R
2. Then

f11,u ≡ f31,u ≡ 0,

f12,ux
≡ f22,ux

≡ f32,ux
≡ 0,

f2
11,ux

+ f2
31,ux

�= 0, in U.

Lemma 6. [12] The coefficients fij of the 1-forms (2) for the equation

(81) uxt = F (u), where F ′′(u) + αF (u) = 0, α ∈ R \ {0}

are given by

(82)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝ −α(Bz1 −AQ) Aα(QF ′ − ηF )/(Q2α+ η2)

η (ηF ′ + αQF )/(Q2α+ η2)
−α(Az1 −BQ) Bα(QF ′ − ηF )/(Q2α+ η2)

⎞
⎠ ,

where z1 = ux, A,B,Q ∈ R are such that α = 1/(A2 −B2), A2 −B2 �= 0
and Q2α+ η2 �= 0 and η ∈ R \ {0}. In particular, if B = 0 and hence A �= 0,
one has α = 1/A2 > 0 and

(83)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝ αAQ αA(QF ′ − ηF )/(Q2α+ η2)

η (ηF ′ +QαF )/(Q2α+ η2)
−αAz1 0

⎞
⎠ .

Lemma 7. [12] The coefficients fij of the 1-forms (2) for the equation
(84)
uxt = νeδu

√
β + γu2x, where δ, γ, ν ∈ R \ {0} and β = 0, when γ = 1,

are given as follows:
a) If γ �= 1, then

(85)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝ ηAδ − (Bz1 ∓A

√
Δ)δ2/(γ − 1) ±Aδνeδz0

η ±νeδz0

ηBδ − (Az1 ∓B
√
Δ)δ2/(γ − 1) ±Bδνeδz0

⎞
⎠ ,

where z0 = u, z1 = ux, Δ = β + γz21 > 0, A2 −B2 = (γ − 1)/δ2 and η ∈ R \
{0}.
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b) If γ = 1,

(86)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝ 1

2(
1
A + δ2A)z1 + ηδA ±Aδνeδz0

η ±νeδz0
1
2(− 1

A + δ2A)z1 ± ηδA Aδνeδz0

⎞
⎠ ,

where A, η ∈ R \ {0}.

Lemma 8. [12] The coefficients fij of the 1-forms (2) for the equation

(87) uxt = λu+ ξux + τ, λ, ξ, τ ∈ R

are given as follows:
a) If λ = ξ = τ = 0, then

(88)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝ z1 0

η ez0

η ez0

⎞
⎠ ,

where z0 = u, z1 = ux and η �= 0.
b) If λ �= 0, then

(89)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝ ±ηTz1/λ Tz0 + τT/λ

η λ/η ∓ ξ
ηTz1/λ ±Tz0 ± τT/λ

⎞
⎠

where T, η ∈ R \ {0}.
c) If λ = 0 and ξ2 + τ2 �= 0, then

(90)

⎛
⎝ f11 f12

f21 f22
f31 f32

⎞
⎠ =

⎛
⎝

∫
dz1/F (z1) 1/η

η 0∫
dz1/F (z1) 1/η

⎞
⎠

where η ∈ R \ {0}.

Having recalled these results from [12], we are now ready to proceed
with the proof of Theorem 3. The proof consists of a number of technical
lemmas and propositions, in which we analyze the existence of solutions for
the system of equations (17), (18) and (19) that depend on u and finitely
many derivatives, for each of the classes of hyperbolic equations obtained by
Rabelo and Tenenblat in Theorem 2.
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With the notation introduced in (79), equations (17) and (18) are written
as

f11Dta+ ηDtb− f12Dxa− f22Dxb− 2bΔ13 + (a− c)Δ23 = 0,(91)
f11Dtb+ ηDtc− f12Dxb− f22Dxc+ (a− c)Δ13 + 2bΔ23 = 0.(92)

Lemma 9. Consider an equation uxt = F (u, ux) describing η pseudo-
spherical surfaces, with 1-forms ωi as in (2) where the functions fij are given
by (82)–(90). Assume there is a local isometric immersion of any pseudo-
spherical surface, determined by a solution u(x, t), for which the coefficients
a, b, c of the forms ω3

1 and ω3
2 depend on a jet of finite order of u. Then

i) a �= 0 on any open set.

ii) c = 0 on an open set U if, and only if, f11 = 0 on U , i.e., F satisfies
(81) and fij are given by (83) with Q = 0. In this case, α = 1/A2 > 0,

(93) a = ± 2

Aα

F ′

F
, b = ±1, and c = 0.

Proof. If there is a local isometric immersion of the pseudo-spherical surface,
then (91), (92) and (19) must be satisfied by a, b and c.

i) Assume a = 0 on an open set, then it follows from (19) that b± 1.
Substituting into (91) and (92) leads to

∓2Δ13 − cΔ23 = 0,(94)
ηDtc− f22Dxc− cΔ13 ± 2Δ23 = 0.(95)

It follows from (94) and (80) that Δ23 �= 0 and c = ∓2Δ13/Δ23. Since Δ13

and Δ23 depend only on z0 and z1, we conclude that c depends only on z0
and z1 and (95) reduces to

(96) η(cz1F + cz0w1)− f22(cz0z1 + cz1z2)− cΔ13 ± 2Δ23 = 0.

Taking the derivative of this equation with respect to z2 and w1 implies
that f22cz1 = 0 and cz0 = 0. If f22 �= 0 then c is constant and (96) reduces to
−cΔ13 ± 2Δ23 = 0 i.e., we have( −c ±2

∓2 −c

)(
Δ13

Δ23

)
=

(
0
0

)
.

Since the determinant is nonzero, it implies that Δ13 = Δ23 = 0 which con-
tradicts (80). If f22 = 0 on an open set, then the functions fij are given
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by (90) and hence Δ13 = 0 and Δ23 = 1. Then (94) implies that c = 0
and (95) gives a contradiction. This concludes the proof of i).

ii) Observe that except for the functions fij given by (83) with Q = 0,
f11 does not vanish on an open set. We will first show that if f11 = 0 on an
open set i.e, F satisfies (81) and fij are given by (83) and Q = 0, then c = 0.
In fact, for such fijs we have Δ13 = −A2α2F (u)z1/η, Δ23 = AαF ′(u)z1/η,
α = 1/A2 > 0 and A �= 0. Hence (91) and (92) reduce to

ηDtb− f12Dxa− f22Dxb− 2bΔ13 + (a− c)Δ23 = 0,

ηDtc− f12Dxb− f22Dxc+ (a− c)Δ13 + 2bΔ23 = 0,

where f12 = −αAF/η and f22 = F ′/η. Assume c �= 0, then it follows from
(19) that a = (b2 − 1)/c. Assume that a,b and c depend on a jet of order � of
u. For � ≥ 1, taking derivatives of both equations with respect to w�+1 implies
that bw�

= cw�
= 0 and hence awk

= 0. Successive differentiation with respect
to wk,. . . ,w1 imply that a, b and c do not depend on w�,. . . ,w0. Successive
differentiation with respect to z�+1, . . . , z2 imply that a, b and c do not
depend on z�,. . . , z1. Hence, a, b and c depend only on x and t. Therefore,
the above system of equations reduce to

ηbt +
αAF

η
ax − F ′

η
bx + 2b

α2A2F

η
z1 + (a− c)

αAF ′

η
z1 = 0,

ηct +
αAF

η
bx − F ′

η
cx + (a− c)

α2A2F

η
z1 + 2b

αAF ′

η
z1 = 0.

Taking the derivative with respect to z1 we get

(97)
(

2b a− c
a− c 2b

)(
αAF
F ′

)
=

(
0
0

)
.

Since αAF and F ′ are not zero we get a− c = ±2b and the derivative with
respect to z0 of any equation of (97) reduces to b(AF ′ ∓ F ) = 0 as a con-
sequence of (81). If b = 0 then Gauss equation (19) reduces to a2 = −1. If
F = ±AF ′ then the derivative with respect to z0 implies that αA2 = −1. In
both cases we get a contradiction. Therefore, c = 0.

Conversely, assume c = 0 on an open set, then (19) implies b = ±1
and (91) and (92) reduce to

f11Dta− f12Dxa∓ 2Δ13 + aΔ23 = 0,(98)
aΔ13 ± 2Δ23 = 0.(99)
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It follows from (99) and (80) that Δ13 �= 0 and a = ∓2Δ23/Δ13. Since Δ13

and Δ23 depend only on z0 and z1, we conclude that a depends only on z0
and z1 and (98) reduces to

(100) f11(az1F + az0w1)− f12(az0z1 + az1z2)∓ 2Δ13 + aΔ23 = 0.

Differentiation with respect to w1 and z2 implies

(101) f11az0 = f12az1 = 0.

Since Δ12 �= 0, we observe that f11 and f12 cannot vanish simultaneously.
If both f11 �= 0 and f12 �= 0 then from (101) we conclude that a is con-

stant and (100) reduces to ∓2Δ13 + aΔ23 = 0. This equation with (99) im-
plies that Δ13 = Δ23 = 0 which contradicts (80).

If f12 = 0 on an open set, then fij are given by (82) with A = 0, B �= 0
or (85) with A = 0, B �= 0 or (88). Since f11 �= 0, it follows from (101) that
az0 = 0 and (100) reduces to

(102) f11az1F ∓ 2Δ13 + aΔ23 = 0.

If fij are given by (82) with A = 0, B �= 0, then

Δ13 =
α(QF ′ − ηF

Q2α+ η2
z1, Δ23 = −BαF, az1z1 = −a.

Substituting into (102) and differentiating twice with respect to z1 runs into
a contradiction. If fij are given by (85) with A = 0, B �= 0, then

Δ13 = ∓Bνδ2z1e
δz0 , Δ23 = ±νδz1e

δz0 , a = ± 2

Bδ
.

Therefore, (102) reduces to ∓2Δ13 + aΔ23 = 0 which is in contradiction
with (99). Finally if fij are given by (88), then Δ23 = 0, hence it follows
from (80) and (99) that a = 0 which is a contradiction.

We conclude that if c = 0 on an open set, then f11 = 0 i.e., fij are given
by (83) with Q = 0. Therefore Δ13 = −A2α2F (u)z1/η, Δ23 = AαF ′(u)z1/η
and hence (99) implies that a = ±2F ′/(AαF ). Moreover, (100) is an identity
since A2α = 1. This concludes the proof of Lemma 9. �

Consider an equation uxt = F (u, ux) describing η pseudo-spherical sur-
faces given by Lemmas 6-8. The existence of a local isometric immersion in
R
3 of any pseudo-spherical surface, determined by a solution u, for which
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the coefficients a, b and c depend on x, t, z0, z1, w1, . . . , z�, w�, is equivalent to
requiring that (91), (92) and (19) must be satisfied. Substituting the expres-
sions of the total derivatives with respect to x and t given by (77) and (78),
we rewrite (91) and (92) as

f11at + ηbt +

�∑
i=0

(f11awi
+ ηbwi

)wi+1(103)

+

�∑
i=1

(f11azi + ηbzi)
∂i−1F
∂xi−1

− (f12ax + f22bx)

−
�∑

i=0

(f12azi + f22bzi)zi+1 −
�∑

i=1

(f12awi
+ f22bwi

)
∂i−1F
∂ti−1

− 2bΔ13 + (a− c)Δ23 = 0,

and

f11bt + ηct +

�∑
i=0

(f11bwi
+ ηcwi

)wi+1(104)

+

�∑
i=1

(f11bzi + ηczi)
∂i−1F
∂xi−1

− (f12bx + f22cx)

−
�∑

i=0

(f12bzi + f22czi)zi+1 −
�∑

i=1

(f12bwi
+ f22cwi

)
∂i−1F
∂ti−1

+ (a− c)Δ13 + 2bΔ23 = 0.

Differentiating (103) and (104) with respect to w�+1 leads to

(105) f11aw�
+ ηbw�

= 0 f11bw�
+ ηcw�

= 0.

Differentiation of the Gauss equation (19) with respect to w� gives caw�
+

acw�
− 2bbw�

= 0. Taking into account (105) in the latter, we obtain

(106)
[
c+

(
f11
η

)2

a+ 2
f11
η

b

]
aw�

= 0.

The following two lemmas will consider the cases in which the expression
between brackets in (106) vanishes or not on an open set.
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Lemma 10. Consider an equation uxt = F (u, ux) describing η pseudo-
spherical surfaces, with 1-forms ωi as in (2) where the functions fij are
given by (82)–(90). Assume there is a local isometric immersion of a pseudo-
spherical surface determined by a solution u(x, t), for which the coefficients
a, b, c of the second fundamental form depend on a jet of finite order of u.
If

(107) c+

(
f11
η

)2

a+ 2
f11
η

b = 0

on a non empty open set, then

i) For equation (81) with fij as in (83) a, b and c are given by

a = ± 2η

A(Q2α+ η2)

(
ηF ′

αF
+Q

)
,

b = ∓ 1

Q2α+ η2

(
2ηQ

F ′

F
+Q2α− η2

)
,

c = ± 2QAα

Q2α+ η2

(
Q
F ′

F
− η

)
,

(108)

where α = 1/A2. In particular when Q = 0, a, b, c are given by (93).

ii) For all equations, except those considered in i), equations (91), (92)
and (19) form an inconsistent system.

Proof. If (107) holds then substituting c into the Gauss equation (19) leads
to (f11a/η + b)2 = 1, and hence

(109) b = ±1− f11
η

a and c =

(
f11
η

)2

a∓ 2
f11
η

.

Therefore,

f11Dta+ ηDtb = −af11,z1F,

f12Dxa+ f22Dxb = −Δ12

η
Dxa− af22f11,z1

η
z2,

f11Dtb+ ηDtc =
af11f11,z1

η
F ∓ 2f11,z1F,

f12Dxb+ f22Dxc =
f11Δ12

η2
Dxa+

Δ12af11,z1
η2

z2

+
af22f11f11,z1

η2
z2 ∓ 2

f22f11,z1
η

z2.
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Equation (91) becomes

− af11,z1F +
Δ12

η
Dxa+

af22f11,z1
η

z2 ∓ 2Δ13(110)

+ 2
f11
η

aΔ13 +

[
1−

(
f11
η

)2]
aΔ23 ± 2

f11
η

Δ23 = 0

and (92) becomes

af11f11,z1
η

F ∓ 2f11,z1F − f11Δ12

η2
Dxa(111)

− Δ12af11,z1
η2

z2 − af22f11f11,z1
η2

z2 ± 2
f22f11,z1

η
z2

+

[
1−

(
f11
η

)2]
aΔ13 ± 2

f11
η

Δ13 ± 2Δ23 − 2
f11
η

aΔ23 = 0.

If � � 2, then differentiating (110) with respect to z�+1 leads to az� = 0.
Successive differentiation with respect to z�, . . . , z3 leads to az� = az�−1

=
· · · = az2 = 0. If � ≥ 1, then differentiating (110) and (111) with respect to
z2 leads to

Δ12az1 + af22f11,z1 = 0,

−f11Δ12az1 −Δ12af11,z1 − af22f11f11,z1 ± 2ηf22f11,z1 = 0,

which is equivalent to

Δ12az1 + af22f11,z1 = 0,(112)
(Δ12a∓ 2ηf22)f11,z1 = 0.(113)

i) For equation (81) with fij given by (83) we have f11,z1 = 0. Hence
(113) is trivially satisfied and (112) implies that az1 = 0. Moreover, (110)
and (111) reduce to

Δ12

η
Dxa+ 2

(
f11
η

a∓ 1

)
Δ13 +

[(
1− f2

11

η2

)
a± 2

f11
η

]
Δ23,(114)

−f11
Δ12

η2
Dxa+

[(
1− f2

11

η2

)
a± 2

f11
η

]
Δ13 − 2

(
f11
η

a∓ 1

)
Δ23.(115)
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Adding equation (114) multiplied by f11/η with (115) and cancelling a
nonzero factor, we get

aΔ13 −
(
f11a

η
∓ 2

)
Δ23 = 0.

Since Δ13 − f11Δ23/η = f31Δ12/η, we conclude that a = ∓2Δ23η/(f31Δ12).
For the functions fij as in (83) we have f31 = −αAz1 �= 0 and

Δ12 = αAF, Δ13 =
α(QF ′ − ηF )

Q2α+ η2
z1, Δ23 =

αA(ηF ′ + αQF )

Q2α+ η2
z1.

Therefore, we conclude that a is given by

a = ± 2η

αQ2 + η2

(
ηA

F ′

F
+

Q

A

)
.

A straightforward computation shows that substituting the expressions of a,
Dxa = az0z1, f11 = αAQ and using the fact that αA2 = 1 equation (114) is
trivially satisfied. It follows from (109) that b and c are given as in (108).
Observe that when Q = 0 then (108) reduces to (93).

ii) For all equations except those considered in i) we have f11,z1 �= 0.
If � = 0, then differentiating (110) and (111) with respect to z2 leads

to af22f11,z1 = 0 and to Δ12af11,z1 + af22f11f11,z1 ∓ 2ηf22f11,z1 = 0. From
Lemma 9 a �= 0, hence f22f11,z1 = 0 and Δ12f11,z1 = 0. This implies that
f11,z1 = 0 which is a contradiction. Therefore, � ≥ 1.

If f22 = 0, which is the case for equation (87) with fij given by (90),
then (112) and (113) leads to a = 0 which contradicts Lemma 9. Thus, (91),
(92), and the Gauss equation form an inconsistent system.

If f22 �= 0, (which is the case for all equations except (87) with λ =
0, ξ2 + τ2 �= 0) then dividing (113) by f11,z1 leads to Δ12a∓ 2ηf22 = 0,
and differentiating the latter with respect to z1 gives Δ12az1 + aΔ12,z1 = 0,
where from (79) we have Δ12,z1 = f22f11,z1 . Therefore, (112) is a consequence
of (113). From (113), we have

(116) a = ±2η
f22
Δ12

,
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which means that aw1
= ax = at = 0, i.e., a is a function of z0 and z1 only.

Equations (110) and (111) become

−af11,z1F +
Δ12

η
az0z1 ∓ 2Δ13

+ 2
f11
η

aΔ13 +

[
1−

(
f11
η

)2]
aΔ23 ± 2

f11
η

Δ23 = 0,

af11f11,z1F

η
∓ 2f11,z1F − f11

Δ12

η2
az0z1 +

[
1−

(
f11
η

)2]
aΔ13

± 2
f11
η

Δ13 ± 2Δ23 − 2
f11
η

aΔ23 = 0,

which are equivalent to

af11,z1F − Δ12

η
az0z1 −

f11
η

aΔ13 ± 2Δ13 − aΔ23(117)

=
f11
η

(
af31

Δ12

η
± 2Δ23

)

and

±2f11,z1F =
f11
η

[
af11,z1F − Δ12

η
az0z1 −

f11
η

aΔ13 ± 2Δ13 − aΔ23

]
(118)

+ af31
Δ12

η
± 2Δ23.

Substituting (117) in (118), we obtain

F = ± 1

f11,z1

(
1 +

f2
11

η2

)(
af31

Δ12

2η
∓Δ23

)
,

which simplifies to

(119) F =
(f2

11 + η2)f32
ηf11,z1

.

Observe that we are considering f22 �= 0 and f11,z1 �= 0. A straightforward
computation shows that (119) leads to a contradiction for equation (81) with
fij as in (82) with B �= 0 and equations (84), (87) with fij given as in (85)–
(90). This concludes the proof of Lemma 10. �
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Lemma 11. Consider an equation uxt = F (u, ux) describing η pseudo-
spherical surfaces, with 1-forms ωi as in (2) where the functions fij are
given by (82)-(90). Assume there is a local isometric immersion of a pseudo-
spherical surface, determined by a solution u(x, t), for which the coefficients
a, b, c of the second fundamental form depend on a jet of finite order of u.
If

(120) c+

(
f11
η

)2

a+ 2
f11
η

b �= 0,

holds then a, b and c are functions of x and t, and thus universal.

Proof. If (120) holds then, it follows from Lemma 9 that c �= 0 and f11 �= 0.
Moreover, from (106) we get aw�

= 0 and hence (105) implies that bw�
=

cw�
= 0.
If � = 0, then a, b, and c are functions of x and t, and thus universal. If

� � 1, then consecutive differentiation of (103), (104) and (19) with respect to
w�, . . . w1 lead to awi

= bwi
= cwi

= 0 for i = 0, . . . , �. In particular, a, b and
c do not depend on z0. Therefore, a, b, and c are functions of x, t, z1, . . . , z�.
Differentiating (103) and (104) with respect to z�+1 leads to

(121) f12az� + f22bz� = 0 and f12bz� + f22cz� = 0.

Differentiation of the Gauss equation (19) with respect to z� gives

(122) caz� + acz� − 2bbz� = 0.

If f22 = 0, which is the case for equation (87) with fij as in (90), since
f12 �= 0, (121) implies that az� = bz� = 0, and (122) leads to acz� = 0. From
Lemma (9) we have a �= 0, hence cz� = 0. Successive differentiation of (103),
(104) and (19) with respect to z�, . . . , z2 leads to azi = bzi = 0, and hence
czi = 0 for i = 1, . . . , �. Therefore, a, b, and c are functions of x and t.

If f22 �= 0, then (121) leads to

(123) bz� = −f12
f22

az� and cz� =
f2
12

f2
22

az� .

Substituting these expressions into (122) we get

(124)
[
c+

(
f12
f22

)2

a+ 2
f12
f22

b

]
az� = 0.
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If

(125) c+

(
f12
f22

)2

a+ 2
f12
f22

b �= 0,

then az� = 0 and (123) implies that bz� = cz� = 0. Consecutive differentia-
tions of (103) and (104) with respect to z�, . . . , z2 lead to azi = bzi = czi = 0
for i = 1, . . . , �, and hence, a, b and c are functions of x and t only.

If

(126) c+

(
f12
f22

)2

a+ 2
f12
f22

b = 0

on a non empty open set, then Lemma 9 and (120) imply that c �= 0 and
hence f12 �= 0. It follows from (126) and (19) that

(127) b = ±1− f12
f22

a and c =

(
f12
f22

)2

a∓ 2
f12
f22

.

Therefore,

f11Dta+ ηDtb =
Δ12

f22
Dta− ηa

(
f12
f22

)
z0

w1,

f12Dxa+ f22Dxb = −af22

(
f12
f22

)
z0

z1,

f11Dtb+ nDtc =

(
2ηf12
f22

a− f11a∓ 2η

)(
f12
f22

)
z0

w1 − f12
f2
22

Δ12Dta,

f12Dxb+ f22Dxc = (af12 ∓ 2f22)

(
f12
f22

)
z0

z1.

Therefore, equation (91) becomes

Δ12

f22
Dta− ηa

(
f12
f22

)
z0

w1 + af22

(
f12
f22

)
z0

z1 − 2bΔ13 + (a− c)Δ23 = 0

and (92) becomes

− f12
f22

Δ12

f22
Dta+

{(
2ηf12
f22

a− f11a∓ 2η

)
w1 − (af12 ∓ 2f22)z1

}(
f12
f22

)
z0

+ (a− c)Δ13 + 2bΔ23 = 0.
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Differentiating the first equation with respect to w1 leads to ηa(f12f22
)z0 = 0.

Since ηa �= 0 we have (f12f22
)z0 = 0 and the equations reduce to

Δ12

f22
Dta− 2bΔ13 + (a− c)Δ23 = 0,(128)

−f12
f22

Δ12

f22
Dta+ (a− c)Δ13 + 2bΔ23 = 0,(129)

Adding (128) multiplied by f12/f22 with (129) we get

aΔ13 +

(
±2− f12

f22
a

)
Δ23 = 0,

which reduces to

(130)
f32
f22

Δ12a± 2Δ23 = 0.

Observe that we have f22 �= 0, f12 �= 0 and (f12/f22)z0 = 0. Therefore, the
only equation that satisfies these conditions is (84) with fij as in Lemma 7.

If γ = 1, it follows from (86) that f32 �= 0 and (130) implies that a is
constant hence, Dta = 0. Therefore, (128) and (129) reduce to

( −2b a− c
a− c 2b

)(
Δ13

Δ23

)
=

(
0
0

)
.

It follows from (80) that b = 0 and a = c, which contradicts the Gauss equa-
tion.

If γ �= 1, the functions fij are given by (85). If f32 = 0 then B = 0 and
(130) implies that Δ23 = 0. Then it follows from the expression of Δ23 that
A = 0, which contradicts the fact that A2 −B2 �= 0. If f32 �= 0 i.e., B �= 0,
then (130) implies that

(131) a = ∓2
Δ23f22
Δ12f32

.

Substituting the expressions of b and c as in (127) into (128) we get

(132)
Δ12

f22
Dta+ 2

(
f12
f22

a∓ 1

)
Δ13 +

[
a−

(
f12
f22

)2

a± 2
f12
f22

]
Δ23 = 0.
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Computing the total derivative of a with respect to t, using the expression
of a as in (131), equation (132) leads to

F (Δ23,z1Δ12 −Δ12,z1Δ23) = −f22(Δ
2
13 +Δ2

23),

which in view of (84) and (85) reduces to (B2 −A2γ)z21 −A2β = 0, which is
also a contradiction. Therefore, we conclude that the system (91), (92) and
the Gauss equation is an inconsistent system. This concludes the proof of
Lemma 11. �

Lemma 12. Consider the equation uxt = F (u, ux) which describes η
pseudo-spherical surfaces where F is given by (81) and fij as in (82). If
the coefficients of the second fundamental form of the isometric immersion
in R

3 of the pseudo-spherical surface, determined by a solution u, are uni-
versal, then the system of equations (91), (92) and the Gauss equation (19)
is inconsistent.

Proof. If the coefficients of the second fundamental form of the isometric
immersion of the η pseudo-spherical surfaces described by the differential
equation are universal, then equations (91) and (92) reduce to:

f11at + ηbt − f12ax − f22bx − 2bΔ13 + (a− c)Δ23 = 0

f11bt + ηct − f12bx − f22cx + (a− c)Δ13 + 2bΔ23 = 0,

where fij are given by (82). Differentiating both equations with respect to
z1 leads to

−αBat − 2b
α(QF ′ − ηF )

Q2α+ η2
+ (a− c)

αA(ηF ′ + αQF )

Q2α+ η2
= 0(133)

−αBbt + (a− c)
α(QF ′ − ηF )

Q2α+ η2
+ 2b

αA(ηF ′ + αQF )

Q2α+ η2
= 0(134)

Multiplying (133) and (134) by Q2α+ η2/α, and differentiating with respect
to z0, and taking into account that F ′′ = −αF , we obtain

(
2b αA(a− c)

−(a− c) 2αAb

)(
αQF + ηF ′

QF ′ − ηF

)
=

(
0
0

)
.

Since αQF + ηF ′ and QF ′ − ηF are not zero, we conclude that αA[4b2 +
(a− c)2] = 0. If b = 0 and a = c then Gauss equation leads to a contradiction.
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If A = 0 then equations (133) and (134) reduce to

−αBat − 2b
α(QF ′ − ηF )

Q2α+ η2
= 0,

−αBbt + (a− c)
α(QF ′ − ηF )

Q2α+ η2
= 0.

taking derivative with respect to z0 of both equations, we conclude that
b = a− c = 0 which is again a contradiction. Therefore, the system (91),
(92) and the Gauss equation is inconsistent. �

Proposition 3. Consider an equation

uxt = F (u), with F ′′ + αF = 0, α �= 0,

describing η pseudo-spherical surfaces with fij given by (82). There ex-
ists a local isometric immersion in R

3 of a pseudo-spherical surface, de-
fined by a solution u, for which the coefficients of the second fundamental
form depend on a jet of finite order of u, that is, a, b and c depend on
x, t, u, w1 . . . , ∂

�u/∂x�, w�, where � is finite if, and only if, α > 0 and fij
are given by (83), a, b, c depend on the jet of order zero of u and are given
by (108).

Proof. Assume the local isometric immersion exists. If c+ (f11/η)
2a+

2f11b/η = 0 on a non empty open set, then it follows from Lemma 10 that
B = 0, i.e. α > 0 and fij are given by (83). Moreover, a, b, c depend on the
jet of order zero of u and are given by (108). If c+ (f11/η)

2a+ 2f11b/η �= 0,
then Lemma 11 implies that a, b, c are universal. However, it follows from
Lemma 12 that such an immersion does not exist.

Conversely, a straightforward computation shows that if fij are given as
in (83) and a, b, c as in (108), then the connection forms ω3

1 and ω3
2 given

by (13) satisfy the structure equations (14) of an immersion in R
3 and the

Gauss equation (19). �

Proposition 4. Consider an equation of type uxt = νeδu
√

β + γu2x describ-
ing η pseudo-spherical surfaces, with fij given by Lemma 7. There is no local
isometric immersion in R

3 of a pseudo-spherical surface determined by a so-
lution u of the equation, for which the coefficients of the second fundamental
form depend on a jet of finite order of u.
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Proof. If the immersion exists, then Lemma 10 ii) implies that c+
(f11/η)

2a+ 2f11b/η �= 0, and it follows from Lemma 11 that a, b, c are uni-
versal. Therefore, equations (91) and (92) reduce to

f11at + ηbt − f12ax − f22bx − 2bΔ13 + (a− c)Δ23 = 0,

f11bt + ηct − f12bx − f22cx + (a− c)Δ13 + 2bΔ23 = 0,

where fij are given by (85) if γ �= 1 and (86) if γ = 1. Differentiating these
equations with respect to z1 and then with respect to z0 leads to

( −2b a− c
a− c 2b

)(
Δ13,z1z0

Δ23,z1z0

)
=

(
0
0

)
.

In both cases, i.e., γ = 1 or γ �= 1, since Δ13,z1z0Δ23,z1z0 �= 0, these equations
imply that b = 0 and a = c which is inconsistent with the Gauss equation.

�

Proposition 5. Consider an equation uxt = λu+ ξux + τ describing η-
pseudospherical surfaces with fij given by (88)-(90). There exists a local
isometric immersion in R

3 of a pseudo-spherical surface, defined by a so-
lution u, for which the coefficients of the second fundamental form a, b, c
depend of a jet of finite order of u if, and only if, λ, ξ and τ do not vanish
simultaneously and a, b, c are universal and given by:

i) When λ �= 0,

(135) a =
√

lL(x, t)− γ2L2(x, t)− 1, b = γL(x, t), c =
b2 − 1

a
,

where L(x, t) = e±2[ηx+(λ/η∓ζ)t] l, γ ∈ R and l2 > 4γ2 and the 1-forms
are defined on a strip of R where

(136) log

√
l −

√
l2 − 4γ2

2γ2
< ±[ηx+ (λ/η ∓ ζ)t] < log

√
l +

√
l2 − 4γ2

2γ2
.

ii) When λ = 0 and ξ2 + τ2 �= 0,

(137) a =
√

le2ηx − γ2e4ηx − 1, b = γe2ηx, c =
b2 − 1

a
,
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l, γ ∈ R and l2 > 4γ2 and the 1-forms are defined on a strip of R2

where

(138) log

√
l −

√
l2 − 4γ2

2γ2
< ηx < log

√
l +

√
l2 − 4γ2

2γ2
.

Moreover, the constants l and γ have to be chosen so that the strip intersects
the domain of the solution of the evolution equation.

Proof. If the coefficients of the second fundamental form of the local isometric
immersion of η pseudo-spherical surfaces described by the equation of type
iii) depend of a jet of finite order of u, then they are universal by Lemmas 10
and 11, and hence (91) and (92) becomes

f11at + ηbt − f12ax − f22bx − 2bΔ13 + (a− c)Δ23 = 0,(139)
f11bt + ηct − f12bx − f22cx + (a− c)Δ13 + 2bΔ23 = 0.(140)

If λ = ξ = τ = 0 and fij are given by (88) then taking the derivative of
both equations with respect to z0, and using the fact that Δ13 = ez0z1 and
Δ23 = 0 we get

bx + 2bz1 = 0,

cx − (a− c)z1 = 0.

Since a, b, c are universal we conclude that b = 0 and a = c which contradicts
Gauss equation. Therefore the immersion does not exit.

i) If λ �= 0 and the functions fij are as in (89) then Δ13 = 0. Differenti-
ating (139) and (140) with respect to z1 leads to (after dividing by f11,z1)

at = ±f22(a− c),(141)
bt = ±2bf22.(142)

Differentiating (139) and (140) with respect to z0 leads to (after dividing by
f12,z0)

ax = ±η(a− c),(143)
bx = ±2ηb.(144)
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and hence, (139) and (140) reduce to

ηbt − f22bx = 0,(145)
ηct − f22cx = 0.(146)

The equations (141), (142), (143), (144), (145), and (146) are the same
as (70), (71), (68), (69), (72), and (73) respectively, since f22 is contant.
Therefore, a is as in (62), b is as in (63), and c is as in (64) and are subject
to (65), where λ is replaced by f22 = λ/η ∓ ζ. Therefore, we obtain a, b, c
given as in (135) defined on the strip (136).

ii) If λ = 0, ξ2 + τ2 �= 0 and the functions fij are as in (90), then Δ13 = 0
and Δ23 = 1, hence (139) and (140) reduce to

f11at + ηbt − f12ax + (a− c) = 0,(147)
f11bt + ηct − f12bx + 2b = 0.(148)

Differentiating with respect to z1 leads to at = bt = 0. Since from Lemma 9
we have a �= 0, Gauss equation implies that ct = 0 and thus (147) and (148)
become

ax = η(a− c),

bx = 2ηb,

where c = (b2 − 1)/a. The arguments used in the proof of Proposition 2, with
λ = 0 and ± replaced by +, imply that a, b, c are given by (137), that are
defined on the strip given by (138).

The converse follows from a straightforward computation. �
Finally, the proof of Theorem 3 follows from Propositions 3, 4 and 5. �

References

[1] R. Beals, M. Rabelo, and K. Tenenblat, Bäcklund transformations and
inverse scattering solutions for some pseudospherical surface equations,
Stud. Appl. Math., 81 (1989), no. 2, 125–151.

[2] J. A. Cavalcante and K. Tenenblat, Conservation laws for nonlinear
evolution equations, J. Math. Phys., 29 (1988), no. 4, 1044–1049.

[3] S. S. Chern and K. Tenenblat, Pseudospherical surfaces and evolution
equations, Stud. Appl. Math., 74 (1986), 55–83.



642 N. Kahouadji, N. Kamran, and K. Tenenblat

[4] Q. Ding and K. Tenenblat, On differential systems describing surfaces
of constant curvature, J. of Differential Equations, 184 (2002), 185–214.

[5] V. M. Foursov, P. J. Olver, and E.G. Reyes, On formal integrability of
evolution equations and local geometry of surfaces, Differential Geom.
Appl., 15 (2001), 183–199.

[6] V. P. Gomes Neto, Fifth-order evolution equations describing pseudo-
spherical surfaces, J. of Differential Equations, 249 (2010), 2822–2865.

[7] P. Górka and E. G. Reyes, The modified Hunter-Saxton equation, J.
Geom. Phys., 62 (2012), 1793–1809.

[8] N. Kamran and K. Tenenblat, On differential equations describing
pseudo-spherical surfaces, J. of Differential Equations, 115 (1995), no. 1,
75–98.

[9] L. Jorge and K. Tenenblat, Linear problems associated to evolution equa-
tions of type utt = F (u, ux, uxx, ut), Stud. Appl. Math., 77 (1987), 103–
117.

[10] M. Rabelo A characterization of differential equations of type uxt =
F (u, ∂u/∂x, . . . , ∂k/∂xk) which describe pseudospherical surfaces, An.
Acad. Brasil. Ciênc., 60 (1988), no. 2, 119–126.

[11] M. Rabelo On equations which describe pseudospherical surfaces, Stud.
Appl. Math., 81 (1989), 221–248.

[12] M. Rabelo and K. Tenenblat, On equations of the type uxt = F (u, ux)
which describe pseudospherical surfaces, J. Math. Phys., 6 (1990), 1400–
1407.

[13] M. Rabelo and K. Tenenblat, A classification of pseudospherical surfaces
equations of the type ut = uxxx +G(u, ux, uxx) which describe pseudo-
spherical surfaces, J. Math. Phys., 33 (1992), 537–549.

[14] E. G. Reyes, Pseudo-spherical surfaces and integrability of evolution
equations, J. of Differential Equations, 147 (1998), no. 1, 195–230.

[15] E. G. Reyes, Conservation laws and Calapso-Guichard deformations
of equations describing pseudo-spherical surfaces, J. Math. Phys., 41
(2000), 2968–2989.

[16] E. G. Reyes, Geometric integrability of the Camassa-Holm equation,
Lett. Math. Phys., 59 (2002), 117–131.



Pseudo-spherical surfaces 643

[17] E. G. Reyes, Pseudo-potentials, nonlocal symmetries and integrability of
some shallow water equations, Selecta Math. (N.S.), 12 (2006), 241–270.

[18] E. G. Reyes, Correspondence theorems for hierarchies of equations of
pseudo-spherical type, J. Differential Equations, 225 (2006), 26–56.

Department of Mathematics, Northwestern University
Evanston, IL 60208-2370, USA
E-mail address: nabil@math.northwestern.edu
Current address:
Department of Mathematics
Northeastern Illinois University
Chicago, IL 60625-4699, USA

Department of Mathematics and Statistics, McGill University
Montreal, Quebec, H3A 0B9, Canada
E-mail address: nkamran@math.mcgill.ca

Department of Mathematics, Universidade de Brasília
Brasília – DF, 70910-900, Brazil
E-mail address: K.Tenenblat@mat.unb.br

Received September 20, 2013




