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Ancient solutions of the mean

curvature flow

Robert Haslhofer and Or Hershkovits

In this short article, we prove the existence of ancient solutions of
the mean curvature flow that for t→ 0 collapse to a round point,
but for t→ −∞ become more and more oval: near the center they
have asymptotic shrinkers modeled on round cylinders Sj × R

n−j

and near the tips they have asymptotic translators modeled on
Bowlj+1 × R

n−j−1. We also obtain a characterization of the round
shrinking sphere among ancient α-Andrews flows, and logarithmic
asymptotics.

1. Introduction

In this article, we study ancient solutions of the mean curvature flow. Recall
that a one-parameter family of embedded hypersurfaces Mt ⊂ Rn+1 moves
by mean curvature flow if the normal velocity at each point is given by the
mean curvature vector. A solution is called ancient if it is defined on a time
interval (−∞, T ), T ≤ ∞. Ancient solutions typically arise in the study of
singularities and of high curvature regions (see e.g. [7, 9, 11, 12, 17, 23, 24]).
They also arise in conformal field theory, where they describe the ultraviolet
regime of the boundary renormalization group equation (see e.g. [5, 8, 19]).

Daskalopoulos, Hamilton and Sesum have obtained a complete classifica-
tion of ancient solutions in the case of closed embedded curves [6]. In higher
dimensions, based on formal matched asymptotics, Angenent recently con-
jectured the existence of ancient ovals [3], i.e. ancient solutions that for t→ 0
collapse to a round point, but for t→ −∞ become more and more oval in
the sense that they look like round cylinders Sj × Rn−j near the central
region and like translating solitons Bowlj+1 × Rn−j−1 near the tips.

In fact, variants of Angenent’s conjecture have been proved already by
White [24] and Wang [22]. Namely, by considering convex regions of increas-
ing eccentricity and using a limiting argument, White proved the existence
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of ancient flows of compact, convex sets that are not selfsimilar [24, p. 134].1

Using a related construction, phrased in the language of PDE estimates for
the level set equation, Wang proved the existence of ancient convex solutions
of the mean curvature flow that are not k-rotationally symmetric [22, Thm.
4.1]. Moreover, he proved that one can always find a blowdown limit that is
either a sphere, a cylinder, or a multiplicity two plane [22, Cor. 6.3].

The main purpose of this article is to carry out the above construction in
more detail — including in particular the study of the geometry at the tips
— and thus to prove the existence of ancient ovals of the form conjectured
by Angenent. We phrase our variant of the construction in the framework
of the estimates from Haslhofer-Kleiner [11], see also Section 2. This allows
us to give a proof that is short and easy to read.

We write H for the mean curvature, A for the second fundamental form,
κ1 ≤ · · · ≤ κn for the principal curvatures, and Bowl for the unique rota-
tionally invariant convex translating soliton [1], normalized such that the
mean curvature at the tip equals one.

Theorem 1.1 (Existence of ancient ovals). For every 1 ≤ j ≤ n− 1,
there exists an ancient solution {Mt ⊂ Rn+1}t∈(−∞,0) of the mean curvature
flow with compact and strictly convex time slices that for t→ 0 converges to
a round point and for t→ −∞ has the following asymptotics:

• asymptotic shrinker: for λ→∞ the parabolically rescaled flows λ−1Mλ2t

converge to the round shrinking cylinder Sj(
√

2j|t|)× Rn−j.

• asymptotic translators: given any direction v ∈ 0Rj+1 × Sn−j−1, the blow-
downs at the tip in direction v (see Claim 3.7) converge to Bowl(v)j+1

t ×
Rn−j−1, where Bowl(v)j+1

t ⊂ Rj+1 × 〈v〉 translates in direction −v and
Rn−j−1 is the orthogonal complement of 〈v〉 in Rn−j.

Moreover, our solutions are α-Andrews noncollapsed for some α = α(n) >
0 (see Def. 1.3), are Oj+1 ×On−j-symmetric, and also have the following
additional properties:

a) uniformly (n− j + 1)-convex: lim inft→−∞ infMt

κ1+···+κn−j+1

H > 0,

b) unbounded rescaled diameter: limt→−∞ |t|−1/2diam(Mt) =∞,

1Although not explicitly stated there, it of course follows from Huisken’s mono-
tonicity formula [14] and the arguments in [23, 24], that the tangent flows at the
singularity are shrinking spheres and the tangent flows at infinity are shrinking
cylinders or a multiplicity two plane (since otherwise the whole flow would be self-
similar).
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c) curvature decay of type II: lim supt→−∞ |t|1/2 supMt
|A| =∞.

Remark 1.2. For j = n− 1 (n ≥ 2) our solutions are analogous to Perel-
man’s example for three-dimensional Ricci flow [20, Ex. 1.4].

In physical terms, our solutions can be thought of as phase transitions
between the sphere in the infrared and the cylinders in the ultraviolet.

Our proof is based on the recent estimates of Haslhofer-Kleiner [11], see
also White [23, 24] and Huisken-Sinestrari [15, 16]. These estimates have
been developed in the context of mean convex (i.e. H ≥ 0) mean curvature
flows satisfying the conclusion of Andrews’ beautiful noncollapsing result [2],
see also White [23] and Sheng-Wang [21]. Let us now recall the definition:

Definition 1.3 (Andrews condition [11, Def. 1.1]). Let α > 0. A mean
convex mean curvature flow {Mt} is called α-Andrews if for every p ∈Mt

there are interior and exteriors balls tangent at p of radius at least α
H(p) .

Remark 1.4. There is a more general notion for weak solutions, but by
[11, Thm. 1.14] ancient α-Andrews flows are automatically smooth until they
become extinct. Also recall that, by the maximum principle, mean convexity
and the Andrews condition are both preserved under mean curvature flow.

For comparison, we also prove the following theorem which characterizes
the round shrinking sphere in the class of ancient α-Andrews flows.

Theorem 1.5 (Characterization of the sphere). Let {Mt⊂Rn+1}t∈(−∞,0)

be an ancient α-Andrews flow and assume at least one of the following con-
ditions is satisfied:

a) it is uniformly convex: lim inft→−∞ infMt

κ1

H > 0,

b) it has bounded rescaled diameter: lim supt→−∞ |t|−1/2diam(Mt) <∞,

c) the time slices are compact and the curvature decay is type I:
lim supt→−∞ |t|1/2 supMt

|A| <∞.

Then {Mt} is a family of round shrinking spheres.

Remark 1.6. A related result for closed, ancient, convex solutions of the
mean curvature flow has been announced recently by Huisken-Sinestrari [18].
Our proof based on the Andrews condition seems to be much shorter, though.

Theorem 1.5 shows that the additional properties a)–c) in Theorem 1.1
are in a sense sharp. Namely, if any of them is strengthened slightly, then this
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forces the solution to be a family of round shrinking spheres. Nevertheless,
one may wonder if there is a more quantitative growth rate for the diameter
as predicted by the formal asymptotics of Angenent [3]. Indeed, by combin-
ing our existence result from Theorem 1.1 and the unique asymptotics result
from Angenent-Daskalopoulos-Sesum [4], we obtain:

Corollary 1.7 (Logarithmic asymptotics). The classical Angenent ovals,
i.e. the solutions produced by Theorem 1.1 for j = n− 1, satisfy the diameter
estimate

(1.8) 0 < lim sup
t→−∞

diam(Mt)√|t| log |t| <∞.

Organization of the article: In Section 2 we collect some preliminaries. In
Section 3 we prove Theorem 1.1, and in Section 4 we prove Theorem 1.5.

Acknowledgements. We thank Bruce Kleiner, Hojoo Lee, Brian White,
and the referees for useful comments.

2. Preliminaries

Three key ingredient in our proofs are the convexity estimate, the global
convergence theorem, and the structure theorem for ancient solutions. The
theory of mean convex mean curvature flow has been developed in the fun-
damental work of White [23, 24] and Huisken-Sinestrari [15, 16]. For our
purpose it is most convenient to use the versions of these estimates ob-
tained by the new approach of Haslhofer-Kleiner [11]. As usual, we use the
notation P (p, t, r) = B(p, r)× (t− r2, t] for the parabolic ball centered at
(p, t) ∈ Rn+1 × R, of size r > 0.

Theorem 2.1 (Convexity estimate [11, Thm. 1.10], see also [24,
Thm. 8] and [16, Thm. 1.1]). For all ε > 0, α > 0, there exists η =
η(ε, α) <∞ with the following property. If Mt is an α-Andrews flow in a
parabolic ball P (p, t, η r) centered at a point p ∈Mt with H(p, t) ≤ r−1, then

(2.2) κ1(p, t) ≥ −εr−1.

Theorem 2.3 (Global convergence [11, Thm. 1.12]). Let Mk
t be a se-

quence of α-Andrews flows with supk H(0, 0) <∞ that is defined in parabolic
balls P (0, 0, rk) centered at 0∈Mk

0 with rk→∞. Then there exists a smoothly
convergent subsequence, Mk�

t →M∞
t in C∞loc on Rn+1 × (−∞, 0].
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Theorem 2.4 (Structure theorem for ancient solutions [11, Part
of Thm. 1.14], see also [24, Thm. 1]). Ancient α-Andrews flows in
Rn+1 are convex and smooth until they become extinct. The only selfsimilarly
shrinking ones are the sphere, the cylinders and the plane.

Let us also recall the rigidity case of Hamilton’s Harnack inequality.
Since we don’t know a-priori that the limits obtained using Theorem 2.3
have bounded curvature, this requires some minor adjustments.

Theorem 2.5 (Rigidity of Hamilton’s Harnack inquality [9, The-
orem B]). Let {Mt ⊂ Rn+1}t∈(−∞,∞) be a convex eternal mean curvature
flow that satisfies Hamilton’s Harnack inequality. Assume that the mean
curvature attains a critical value at a point in space-time. Then Mt is a
translating soliton.

Remark 2.6. Hamilton assumes that the mean curvature attains a maxi-
mum. However, his discussion of the equality case of the maximum principle
goes through verbatim for critical values. Also, note that the strict maximum
principle is local, and thus does not require curvature bounds.

3. Existence of ancient ovals

Proof of Theorem 1.1. Fix 1 ≤ j ≤ n− 1. Although not strictly necessary, it
is convenient to construct the solutions in an Oj+1 ×On−j symmetric way.

For every � ∈ N we construct a hypersurface M � as follows. We take
the product Sj(1)×Bn−j(�), where Bn−j(�) is the ball of radius �, and
cap it off in a rotationally symmetric, strictly convex, �-independent way,
say at a scale of length one. To see how the capping can be done, let
φ ∈ C2([0, 1]) be a strictly decreasing, nonnegative, concave function satisfy-
ing φ(ξ)|[0,δ] =

√
1− ξ2 and φ(ξ)|[1−δ,1] = (1− ξ2)1/3 for some δ > 0. Using

polar co-ordinates (r, θ) for Rj+1 and polar co-ordinates (s, μ) for Rn−j , we
can choose the caps to be the closure of the set

{((r, θ), (�+ φ(r), μ)) ∈ R
j+1 × R

n−j(3.1)

for r ∈ (0, 1], θ ∈ Sj , μ ∈ Sn−j−1}.

We therefore have:

• The hypersurfaces M � are uniformly n− j + 1 convex, i.e. κ1 + · · ·+
κn−j+1 ≥ βH for some β = β(n) > 0 uniformly for all �.
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• There exists an α = α(n) > 0 such that M � is α-Andrews for all �.

LetM �
t be the mean curvature flow starting atM � at t = 0. By Huisken’s

classical theorem [13] (see also Andrews [2, Rmk. 6]) the flow becomes ex-
tinct in a round point in finite time Text <∞. As Sn(1) lies entirely inside
the domain bounded by M �, while the cylinder Sj(1)× Rn−j lies entirely
outside of it, and as both the flow of the sphere and the cylinder become
extinct in time comparable to one, we see that Text is comparable to one.

Now, let {M̂ �
t }t∈[T�,0) (where T� < −1 denotes the new initial time) be

the sequence of solutions obtained by parabolically rescalingM �
t and shifting

the time parameter such that:

• The flow becomes extinct at t = 0.

• The ratio of the major radius a(t) = maxx∈M̂�
t
(
∑n+1

i=j+2 x
2
i )

1/2 and the

minor radius b(t) = maxx∈M̂�
t
(
∑j+1

i=1 x
2
i )

1/2 equals 2 for the first time
at t = −1.

Claim 3.2. There exists C <∞ independent of � such that

(3.3) C−1 ≤ diam(M̂ �
−1) ≤ C.

Proof. Since the flow becomes extinct in roughly one unit of time, the diame-
ter bounds follow from comparison with spheres. Indeed, if the diameter was
too small then M̂ �−1 would be surrounded by a sphere of very small radius,

which becomes extinct too soon. Similarly, using convexity and a(−1)
b(−1) = 2,

we see that if the diameter was too large, M̂ �−1 would surround a sphere of
large radius, contradicting again extinction in roughly one unit of time. �

Claim 3.4. lim�→∞ T� = −∞

Proof. Consider a time t0 < −1. Using convexity and a(t0)/b(t0) ≥ 2, we
can put a sphere of radius b(t0)/4 inside M̂t0 at distance a(t0)/2 from the
origin. Thus, by avoidance, it takes a(t) a time period of at least b(t0)

2/32n
to decrease by a factor one-half. On the other hand, b(t) decreases with time
and by Claim 3.2, we know that b(t0) ≥ δ for some δ > 0. Thus, it takes the

quotient a(t)
b(t) a time period of at least δ2/32n to decrease by a factor one-half.

Since a(T�)/b(T�)→∞ and a(−1)/b(−1) = 2, the claim follows. �
The same argument as in the proof of Claim 3.2 implies that there ex-

ist some C <∞ such for every � ∈ N and −1 < t < 0, d(M̂ �
t , 0) ≤ C

√|t|.
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Letting x�t ∈ M̂ �
t be a point with d(M̂ �

t , 0) = d(x�t, 0), we see that at ev-
ery time of differentiability of the locally Lipschitz function t 
→ d(M̂ �

t , 0),
H(x�t, t) = − d

dtd(M̂
�
t , 0), so

∫ 0
t H(x�s, s)ds ≤ C

√|t|. Thus, for every � ∈ N

and k ∈ N there exist t�k ∈ [−1/k, 0] and p�k ∈ M̂ �
t such that d(p�k, 0) ≤ C/

√
k

and H(p�k, t
�
k) ≤ C

√
k. Therefore, by the global convergence theorem (Theo-

rem 2.3), and a diagonal argument, the sequence M̂ �
t subconverges smoothly

to an ancient α-Andrews flow Mt, with convex compact time slices, that be-
comes extinct in a round point at the origin at time t = 0. In fact, Mt is
strictly convex. To see this, note that H > 0 everywhere (by the Andrews
condition, as the flow is clearly not a static plane), and recall that mean
curvature H and the second fundamental form A = Ai

j satisfy the evolution
equations

(3.5) ∂tH = ΔH + |A|2H, ∂tA = ΔA+ |A|2A.

Denoting by κ1(x, t) the smallest principal curvature of Mt, if the flow was
not strictly convex, the quantitiy κ1

H would attain a global space-time mini-
mum at some point (x, t). The strict maximum principle for tensors (see e.g.
[10] and [24, Appendix]) would then imply that the flow splits orthogonally
as Mt = Bt × R, contradicting the fact that Mt has compact time slices.
From the condition a(−1)

b(−1) = 2 we see that Mt is certainly not a family of
shrinking spheres. As we obtained Mt as a limit of rescalings of Oj+1 ×On−j
symmetric flows which are uniformly (n− j + 1)-convex, Mt has that sym-
metry and convexity property (i.e. property (a) in the statement of Theo-
rem 1.1) as well. To finish the proof of Theorem 1.1, it remains to establish
the other claimed properties for t→ −∞.

Let us start with the asymptotic shrinker. For every λ > 0, the flow
M̄λ

t = λ−1Mλ2t becomes extinct at a round point (0, 0). The argument after
the proof of Claim 3.4 shows that for every λ > 0 and k ∈ N there exist tλk ∈
[−1/k, 0] and pλk ∈ M̄λ

t such that d(pλk , 0) ≤ C/
√
k and H(pλk , t

λ
k) ≤ C

√
k.

Thus, by the global convergence theorem (Thm. 2.3), a diagonal argument,
and Huisken’s monotonicity formula [14] (see also [11, App. B]) the flows
M̄λ

t subconverge (as λ→∞) to a nonempty selfsimilar shrinking flow Nt.
By the structure theorem (Thm. 2.4), Nt must be a family of shrinking
spheres, cylinders or a plane. As Mt becomes extinct in a round point, it
follows from Huisken’s monotonicity formula that Nt is not the plane. The
condition a(t)/b(t) ≥ 2 for all t ≤ −1 excludes the possibility of Nt being
the sphere as well. Due to the Oj+1 ×On−j symmetry, it therefore must be
Sj(

√
2j|t|)× Rn−j . In particular, the limit is unique (the axis is also unique
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due to symmetry), and thus a full limit. The existence of an asymptotic
cylinder clearly implies that the solution has unbounded rescaled diameter,
i.e. proves property (b). Property (c) follows from property (b) by integra-
tion, as the velocity of the flow is (by definition) the mean curvature.

Finally, let us discuss the asymptotic translators. Fix a direction v ∈
0Rj+1 × Sn−j−1. Let pt be the unique point at the tip of Mt in direction v,
i.e. the unique point in Mt that can be written as μv for some μ > 0. We
now perform the modified type II blow-down as follows. Pick times tk such
that

(3.6) |tk|1/2H(ptk , tk) = max
t∈[−k,−1]

|t|1/2H(pt).

Claim 3.7. Let M̂k
t̂
be the sequence of flows obtained by shifting (ptk , tk)

to the origin and normalizing λk = H(ptk , tk) to one, explicitly M̂k
t̂
= λk ·

(Mt̂/λ2
k+tk

− ptk). Then M̂k
t̂
converges to Bowl(v)j+1

t × Rn−j−1.

Proof. Let r(t) = d(pt, 0). By the proof of property (b) and (c) we actually
have limt→−∞|t|−1/2r(t) =∞ and lim supt→−∞|t|1/2H(pt) =∞, as points of
bounded rescaled distance to zero must have a nonzero Rj+1 component
(since the shrinker at −∞ is the cylinder). In particular, tk → −∞ as k →
∞. By construction the flows M̂k

t̂
satisfy H(0, 0) = 1 and are defined for

−∞ < t̂ < λ2
k|tk| → ∞. Moreover, by condition (3.6) we have:

(3.8) Ĥ2(p̂, t̂) =
H2

(
p, t̂/λ2

k + tk
)

λ2
k

≤
∣
∣
∣
∣
∣

tk

t̂/λ2
k + tk

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

1− t̂/(λ2
k|tk|)

∣
∣
∣
∣
∣
→ 1

for p at the tip and all t̂ with 0 ≤ t̂ < λ2
k(|tk| − 1).

By the global convergence theorem (Thm. 2.3), M̂k
t̂
subconverges to an

eternal convex α-Andrews flow {Nt}t∈(−∞,∞) with H > 0 everywhere (as it

is not flat). By symmetry, M̂k
t̂
∩ ({0}Rj+1 × Rn−j) is an n− j − 1 sphere of

radius r̂k, and as

(3.9) r̂k = λkr(tk) = λk|tk|1/2|tk|−1/2r(tk)→∞,

this implies that if 0 ≤ κ1(x, t) ≤ κ2(x, t) ≤ · · · ≤ κn(x, t) are the principal
curvatures of Nt at x ∈ Nt, then κ1(0, 0) = · · · = κn−j−1(0, 0) = 0. Recall
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that Nt is convex and that A = Ai
j satisfies the evolution equation

(3.10) ∂tA = ΔA+ |A|2A.

As the quantities κ1

H , . . . κn−j−1

H obtain a global (space-time) minimum 0 at
(0, 0), the strict maximum principle for tensors (see e.g. [10] and [24, Ap-
pendix]) implies that the flow Nt splits orthogonally as Nt = Bt × Rn−j−1,
where Bt is strictly convex.

Note that Bt is Oj+1 symmetric. In particular, ∇H = 0 at the origin.
Since Bt arises as a smooth limit of compact solutions it satisfies Hamilton’s
Harnack inequality [9, Thm. A], in particular ∂tH ≥ 0. Together with equa-
tion (3.8) this implies ∂tH = 0 at the origin (for all times t > 0). Thus, by
the equality case of Hamilton’s Harnack inequality (Thm. 2.5), Bt must be
a translating soliton. By rotational symmetry, it must be the bowl. Finally,
due to uniqueness, the subsequential limit is actually a full limit. �

This finishes the proof of Theorem 1.1. �

Remark 3.11. Contrary to the standard type II blow-up procedure (see
e.g. [16, Sec. 4]), we could not select points (p, t) with maximal |t|1/2H(p, t)
over all times and points in those time slots. Since we didn’t know a-priori
the curvature is maximal at the tip, we needed the full strength of the global
convergence theorem (Thm. 2.3) to pass to a smooth limit.

4. Charaterizations of shrinking spheres

Proof of Theorem 1.5. By the structure theorem for ancient solutions (The-
orem 2.4) ancient α-Andrews flows are convex and smooth until they become
extinct. Arguing as in the proof of Theorem 1.1, we can find an asymptotic
shrinker. Namely, there is a sequence of of positive numbers {λk}∞k=1 with
λk →∞ such that λ−1k M−λ2

kt
→ Nt, where Nt is either a round shrinking

cylinder Sj × Rn−j or a round shrinking sphere Sn. However, any of the as-
sumptions (a)–(c) excludes the cylinders. Indeed, as the condition κ1

H ≥ δ > 0
is preserved under scalings and smooth limits, Nt must satisfy it, so in par-
ticular, it can not split off a line. Assumption (b) implies that there exists
some C <∞ such that for every k sufficiently large diam(λ−1k M−λ2

k
) ≤ C.

But then diam(N−1) ≤ C so it can not be a cylinder in case (b) either.
Assumption (c) in turn implies assumption (b), as assuming there exist
some C <∞ and T > −∞ such that |A| ≤ C|t|−1/2 for t < T , and letting
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D = diam(MT ), we get by integration

(4.1) diam(Mt) ≤ D + 4C
√

n|t|

for every t < T . In all cases, we conclude that the asymptotic shrinker Nt is
a round shrinking sphere. In particular, it follows that Mt is compact. Thus,
by Huisken’s classical theorem [13], Mt becomes extinct in a round point.

Now since Nt is a family of round shrinking spheres and Mt shrinks to
a round point, it follows from the scale invariance of Huisken’s entropy that
the entropy (w.r.t. the extinction point in space time) is in fact constant
along the flow Mt. By the equality case of Huisken’s monotonicity formula
[14] (see also [11, App. B]) the flow Mt must be a shrinker, which as observed
above becomes extinct at a round point, i.e. it must be a family of round
shrinking spheres. �

References

[1] S. Altschuler and L. Wu, Translating surfaces of the non-parametric
mean curvature flow with prescribed contact angle, Calc. Var. Partial
Differential Equations, 2 (1994), no. 1, 101–111.

[2] B. Andrews, Noncollapsing in mean-convex mean curvature flow, Geom.
Topol., 16 (2012), no. 3, 1413–1418.

[3] S. Angenent, Formal asymptotic expansions for symmetric an-
cient ovals in mean curvature flow, http://www.math.wisc.edu/

~angenent/preprints.html (2012).

[4] S. Angenent, P. Daskalopoulos, and N. Sesum, Unique asymptotics
of ancient convex mean curvature flow solutions, arXiv:1503.01178
(2015).

[5] I. Bakas, Renormalization group equations and geometric flows, arXiv:
hep-th/0702034 (2007).

[6] P. Daskalopoulos, R. Hamilton, and N. Sesum, Classification of compact
ancient solutions to the curve shortening flow, J. Differential Geom., 84
(2010), no. 3, 455–464.

[7] K. Ecker, Regularity theory for mean curvature flow, Vol. 57 of Progress
in Nonlinear Differential Equations and their Applications, Birkhäuser
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